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Abstract. Evolving virtual creatures is a field with a rich history and
recently it has been getting more attention, especially in the soft robotics
domain. The compliance of soft materials endows soft robots with com-
plex behavior, but it also makes their design process unintuitive and in
need of automated design. Despite the great interest, evolved virtual soft
robots lack the complexity, and co-optimization of morphology and con-
trol remains a challenging problem. Prior work identifies and investigates
a major issue with the co-optimization process – fragile co-adaptation of
brain and body resulting in premature convergence of morphology. In
this work, we expand the investigation of this phenomenon by compar-
ing learnable controllers with proprioceptive observations and fixed con-
trollers without any observations, whereas in the latter case, we only have
the optimization of the morphology. Our experiments in two morphol-
ogy spaces and two environments that vary in complexity show, concrete
examples of the existence of high-performing regions in the morphology
space that are not able to be discovered during the co-optimization of the
morphology and control, yet exist and are easily findable when optimiz-
ing morphologies alone. Thus this work clearly demonstrates and charac-
terizes the challenges of optimizing morphology during co-optimization.
Based on these results, we propose a new body-centric framework to
think about the co-optimization problem which helps us understand the
issue from a search perspective. We hope the insights we share with this
work attract more attention to the problem and help us to enable efficient
brain-body co-optimization.

Keywords: Evolutionary robotics · Soft robotics · Brain-body
co-optimization

1 Introduction

Evolving virtual creatures is a field with a long history, starting with Karl Sims’
seminal work “Evolving Virtual Creatures” [51] almost 30 years ago. Karl Sims’
approach of co-optimizing brain and body then widely adapted and researched,
especially in soft robotics [2–6,10,20,38,40,54].
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The field of soft robotics with volumetric actuation started with [13,15,55]
and accelerated with the availability of simulators [2,14,33,37]. The compli-
ance and flexibility of the material make soft robots capable of exhibiting com-
plex and unintuitive behaviors, resulting in different abilities of soft robots
such as walking [2,5,6,10,20,22,24–26,38–40,43,52], swimming [9,20], squeez-
ing through obstacles [4], damage recovery and regeneration [16,17,28], shape
change [48] and self-replication [23] being tested. The highly non-linear and
complex nature of soft material dynamics that don’t exist in their rigid coun-
terparts [21,46,49], provides an increased potential for morphological computa-
tion [41,42] that can be unlocked by a tightly integrated body design and control
strategy.

The ability to output complex behavior, however, makes the design pro-
cess of soft robots counter-intuitive, highly encouraging automated design
over manual design. Despite the great interest in the automated brain-body
co-optimization [2–6,9,10,13,15,20,22,26,35,38,40,53,54], evolved soft robots
struggles to surpass the complexity of the Sims’ initial creatures [51]. Prior
work identifies and investigates an important phenomenon that hinders the co-
optimization process – premature convergence of morphology [3,20].

As the optimization takes place, two parts of the solution, the brain and
the body, become more and more specialized for each other, making the overall
performance of the solution very sensitive to changes in either component [3].
In the case of co-optimizing the brain and body in soft robots, this is espe-
cially prominent for the morphology of the solution where even small changes
in the morphology can drastically reduce the performance of the solution [40].
Commonly used algorithms for brain-body co-optimization don’t like solutions
with poor performances and focus the search over other parts of the morphology
space, making them unable to discover high-performing regions in the search
space. To overcome the poor search over morphologies, prior work proposes the
use of better search algorithms that reduce the selection pressure of individuals
with new body plans to promote more search over morphologies [5,30], or pro-
poses ways to alleviate the performance decline during the morphological search
by using different genetic representations for coordinated changes [54,57] or by
using controllers that are robust to changes in the morphology [40].

Rather than proposing a solution, we provide an investigation of this phe-
nomenon following the previous investigation of Cheney et al. [3]. Specifically, we
investigate the use of neural network controllers with proprioceptive observations
where we optimize both morphology and control, and heuristically devised fixed
controllers where we only optimize the morphology. This allows us to shed light
on the effects of control optimization and specialization on the co-optimization
process and understand the premature convergence issue. The main contribu-
tions of this work are to:

– expand previous investigations towards a more generalized understanding of
the brain-body fragile co-optimization phenomenon by focusing on important
and missing aspects such as the use of more varied and complex controllers,
sensory information, morphology spaces, and environments (Sect. 3).



40 A. Mertan and N. Cheney

– provide arguably the most concrete example that shows the existence of high-
performing designs that aren’t discovered by the co-optimization process, due
to poor search over the morphology space (Sect. 4).

– develop a new body-centric framework to conceptualize the fitness landscape
of the co-optimization problem, allowing us to understand the challenge of
co-optimization from a search perspective (Sec. 5).

– organize the existing solutions to premature convergence within the proposed
framework, helping us to clarify promising research directions (Sect. 5).

We hope these findings and the proposed framework will be useful for further
research into enabling better brain-body co-optimization.

2 Experiment Design

2.1 Simulation

We perform our experiments in the Evolution Gym version 1.0.0 (Evogym) [2].
It is an open-source voxel-based soft-body simulator with a suite of benchmark
tasks. Voxels are represented as a mass-spring system, and it works in 2D, similar
to the simulation engines in [11,20,36–40,43,54].

Each voxel of the robot can have a different type that determines its behavior
and is represented with different colors visually. There are two types of active
materials that can actuate volumetrically, either horizontally or vertically, and
they are under the direct control of the controller. These materials are controlled
by specifying the target length a ∈ [0.6, 1.6] (in the form of a multiplier of the
resting length) at each time step where materials gradually expand/contract to
achieve the target length. We query the controller every 5th timestep (referred to
as the effective timestep) and repeat the queried action until the next effective
time step to limit high-frequency dynamics that might lead to unstable behavior.
Additionally, there are two types of passive materials that are not under direct
control, and they differ in their elasticity, one being rigid and the other being
elastic. Designing a robot is simply choosing the existence and material type of
voxels in a grid layout. While Evogym allows for specifying whether neighbor-
ing voxels are connected to each other, we omit this feature and assume that
neighboring voxels are always connected to each other.

The simulation engine provides various proprioceptive and environmental
observations. We only use proprioceptive observations of volume, speed, and
material properties of voxels and a global time signal.

2.2 Task and Environments

We use two environments with a locomotion task that are presented in the
Evogym benchmark suite, namely Walker-v0 and BridgeWalker-v0 [2]. Loco-
motion is the most used task for voxel-based soft robotics research [3,5–
7,10,11,16,17,24–28,35,36,38–40,43,52–54]. We adopt the modified fitness func-
tion in [40], R(r, T ) = ∆prx + I(r) +

∑T
t=0 −0.01 + 5, which rewards robots r for
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moving in the positive x direction with the term ∆prx, rewards them for finish-
ing the task with the indicator function I(prx), and encourages them to finish
the task faster by applying a negative penalty at each time step with the term∑T

t=0 −0.01. The last term, +5, is equal in magnitude to the maximum penalty
and is used to shift the reward to be positive for ease of analysis.

Environments often consist of a flat [3,5–7,10,16,17,24–28,35,36,38–40,52–
54] or uneven [6,11,43,52] surfaces, supposedly harder task. We experiment with
both locomotion on a flat surface (Walker-v0) and an uneven, dynamic surface
(BridgeWalker-v0) to understand the relationship between the environment and
the brain-body co-optimization process.

2.3 Robot Design and Controller Strategies

Robot Representation and Design. Following [2,38,40], we use a direct rep-
resentation for robot design where the existence of voxels and their material type
encoded in a matrix ∈ Mh×w(T ), where T ∈ {0,1,2,3,4}. While indirect encod-
ings are commonly used in prior work that works in 3D [3–6,9,10,20,22,25],
working in 2D makes it possible to use direct encoding which is shown to be com-
parable to complex indirect encodings [2] and allows us to control for the change
in morphology during mutation. Following the common practice of limiting the
morphology space [3,5,10,24,35,38,40,54], we experiment with two morphology
spaces, (h,w) ∈ {(5, 5), (7, 7)}, to provide more instances for investigation of
premature convergence, as encouraged by previous investigation [3].

Controller Design and Model. We compare a learnable controller and a
fixed, non-sensing controller. The fixed controller allows us to create a scenario
where fragile co-adaptation of design and controller cannot occur due to the
lack of optimization on the controller part and helps us investigate premature
convergence that we observe with learnable controllers. Specifically, we use a
modular/decentralized control strategy as a learnable control1 as they are shown
to help with the brain-body co-optimization [40].

Learnable Controller. One of the common choices in control design is the use
of modular control strategy [18,36,38,40,43]. They are considered to be more
versatile and robust to changes in the robot morphology [59], which helps with
the co-optimization process [40], and are compatible with any robot morphology.

The modular controller consists of a shared neural network model (single hid-
den layer with 32 neurons) assigned to each active voxel, observing a local patch
around it and only determining the behavior of a single voxel it is assigned. The
controller observes a 3× 3 window centered around the active voxel. The observa-
tions to the controller consist of the proprioceptive information (volume, speed,
and material type) of the voxels in this observation window and timestep mod 2
as the time signal to have a fair comparison with the fixed controller.
1 We repeated every experiment with the most commonly used global/centralized
control strategy [11,18,36,39,40,52,53] and didn’t observe any qualitatively different
results. For the sake of space and simplicity, we omit the global controller and only
present the results with the modular controller.
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Fixed Controller. One of the simplest control strategies used in the literature
is the fixed actuation following a global signal [3–6,9,22,24–28,53]. While the
learnable controller performs a nonlinear mapping from proprioceptive observa-
tions to actions, fixed controller lacks any sensory input. Active voxels under
the control of the fixed controller alternate between expanding and contracting
maximally at every effective timestep. Therefore, the controller has zero learn-
able parameters and doesn’t require any control optimization, hence the name
fixed. Having a fixed controller that doesn’t require any control optimization
allows us to create a scenario where fragile co-adaptation doesn’t occur, helping
us understand premature convergence with learnable controllers better.

2.4 Optimization Algorithm

To optimize the design and control of the soft robots, we adopt the use of evo-
lutionary algorithms, similar to [3,5,20,38,40,44,54,56,57]. Evolutionary algo-
rithms allow us to simultaneously make improvements in both design and control,
supposedly reducing the computational cost of two-level optimization approaches
where outer loop does design optimization and the inner loop optimizes the con-
trol for a given design, as in [2].

In particular, we use age-fitness Pareto optimization (AFPO) [47] with trun-
cation selection. Individuals’ ages are increased at every generation, and we inject
a random individual at each generation with the age of 0 for diversity. Recom-
bination wasn’t considered and the offspring are created through mutation only.
Individuals created by mutation inherit the age of their parent.

Following [2,40], we use a mutation operator that creates new designs by
changing each voxel type of a robot with a 10% probability from/to an empty
voxel. To mutate in the control space, we add noise sampled from N (0, 0.1) to
all learnable controller parameters.

When creating offspring through mutation, we either mutate the body plan
or the controller of the solution. Following [5,40], there is a 50% probability of
choosing either component of the solution for the mutation. Note that the fixed
controller doesn’t have any controller parameters. Yet, for a fair comparison,
individuals with fixed controllers go through control mutation with the same
probability, effectively creating a copy of the same solution.

3 Co-optimization

The main problem we are interested in is the co-optimization of morphological
design and control, and understanding the premature convergence of morphol-
ogy. To compare the effects of different control strategies, we evolve two pop-
ulations of solutions: one with learnable and one with fixed controllers. While
with the learnable controller, we have the co-optimization of morphology and
control, the fixed controller allows us to test the case where we only optimize
the morphology, allowing us to investigate the effect of controllers on the prema-
ture convergence issue. We experiment with evolving these populations under 4
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Fig. 1. Fitness over time plots (left) and distributions of the best solutions (right)
for the co-optimization experiments. The simplest controller, the fixed controller, sig-
nificantly outperforms the learnable controller in all experimental settings. Moreover,
populations with fixed controllers converge faster. Left: Solid lines show the best fitness
found at each generation, averaged across 10 runs. Shaded regions show the 95% con-
fidence intervals. Right: Each data point is plotted, as well as the mean values which
are marked with dark red. Horizontal lines indicate statistically different results. ***:
P < 0.001, **: P < 0.005, *: P < 0.05 (Color figure online)

different settings by varying the environment, Walker-v0 and BridgeWalker-v0,
and the morphology space, (h,w) ∈ {(5, 5), (7, 7)}. Each setting is named as
{Environment name}{(h,w)}, e.g. W5 for the setting Walker-v0, (5, 5). For
each setting, we repeat the experiment 10 times and use the Wilcoxon Rank
Sum test [58] to report P -values. Each run consists of a population size of 16
individuals evolved for 10000 generations with the AFPO algorithm [47].

Figure 1 left, illustrates the fitness over evolutionary time plots for each exper-
iment. Solid lines show the fitness of the best solution found at each generation,
averaged across 10 runs. Shaded regions show the 95% bootstrapped confidence
interval. Additionally, Fig. 1 right illustrates the distribution of the performance
of the final solutions. The results demonstrate that the populations with fixed
controllers find better solutions faster (all P < 0.05 for achieving 85% of final
performance) and find significantly better solutions (all P < 0.005). These results
are consistent across different environments and morphology spaces. While indi-
viduals with fixed controllers are, admittedly, incapable of observing their envi-
ronment, hence unlikely to scale to more complex problems, fixed controllers
nevertheless provide a strong baseline for performance for simple tasks such as
locomotion, where a lot of research is still being done.

The success of fixed controller might seem interesting, yet it is a well-
established phenomenon that it is difficult to optimize body plan and control
together [3,5,20,40]. Having two interdependent parts of a solution creates a
challenging optimization problem where the parts become more and more spe-
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cialized for each other as the optimization takes place, making them unamenable
to change without breaking the solution’s performance – fragile co-adaptation.
This is especially true for morphology, as it is the interface between the controller
and environment and thus changing morphology also scrambles the controller. It
makes it harder to search the morphology space, resulting in premature conver-
gence of morphology [3,20]. On the other hand, the lack of parameters for the
fixed controller turns the co-optimization of the morphology and control prob-
lem into only the optimization of the morphology, eliminating the issue of fragile
co-adaptation. The results demonstrating superior performance for fixed con-
trollers suggest that fixed controller doesn’t suffer from premature convergence
and allows optimization process to find body plans that outsource complexity to
the dynamics of the system, an example of morphological computation [42].

Lastly, we note that the fixed controller consistently outperforms the more
complex learnable controller in the BridgeWalker-v0 environment in two different
morphology spaces. In light of these results, we conjecture that the locomotion
over uneven surface doesn’t present fundamentally harder/different optimization
problem than locomotion on flat surface for brain-body co-optimization.

4 Analysis

Our experiments demonstrate the inferior performance of co-optimization with
learnable controllers compared to morphology optimization with fixed con-
trollers. In this section, we perform a series of analyses to understand how the
differences in controllers affect the co-optimization. Since we expect learnable
controllers to be capable of learning to output the simple behavior that the
fixed controllers exhibit, the differences in performance should arise from the
different controllers’ effects on the search over the morphology space. As prior
work strongly emphasizes the issue of premature convergence as the major hurdle
in the brain-body co-optimization [3,20,40], we specifically focus on this issue
in our analysis.

Qualitative Analysis of Body Plans. As we discussed earlier, one of the
biggest challenges of brain-body co-optimization is the premature convergence
of the morphology [3,20,40]. While optimizing a controller for a given body plan
is relatively easy, search over the morphology space often prematurely converges
to a local optimum. To compare experimented controllers in terms of their effect
on the search over the morphology space, we start by looking at the body plans
of the best solutions found at each run, i.e. run champions, under each setting.

First, we try to measure the run champions’ convergence to a particular body
plan, which indicates a better search over the morphology space as we expect
a successful search to be able to exploit high-performing regions of the space
across runs [3]. To this end, we perform t-SNE dimensionality reduction [34] of
the optimized morphologies. We visualize the clusters in Fig. 2 and measure the
average intra-cluster distance, to quantify the variation in found morphologies for
a given controller paradigm. We find that run champions with fixed controllers
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Fig. 2. t-SNE plots of the run champions’ body plans and average intra-cluster dis-
tances in the embedding space. The populations with the fixed controller converge
better to a body plan across different runs and morphology spaces.

converge to more similar solutions across different runs and morphology spaces in
two different environments. We also note that the learnable run champions show
less diversity in the BridgeWalker-v0 environment, showing that the environment
also plays a role in shaping the fitness landscape and affecting which body plans
can be easily found during the co-optimization process.

To qualitatively analyze the robot body plans and gaits, we present Fig. 3,
where we show the body plans of the run champions, and Fig. 4, where we display
15 snapshots during the lifetime of select individuals. In our experimental setup,
fixed controllers (Fig. 4b) consistently find similar body plans with near identical
gaits. We do not observe this level of converge across runs that co-optimize
morphology with a learnable controller (Fig. 4a). This trend holds across all
experimental settings.

Quantitative Analysis of Body Plans. Our qualitative analysis of body
plans shows that champions with the learnable controller show more diversity
while fixed run champions are grouped closer in the morphology space. The
diversity of solutions found with learnable controllers can be interpreted as a
positive feature. However, the literature strongly suggests that it is a sign of
poor search over the morphology space [3]. Although it is possible that the
search space contains many distinct near-optimal solutions, the high-performing
body plans of fixed run champions imply the existence of better-performing body
plans that aren’t discovered in runs with the learnable controller.

Therefore in this section, we try to definitively answer our main question:
have learnable controllers failed to find high-performing body plans that were
discovered by fixed controllers? To answer this question, we take the morpholo-
gies of the run champions found in runs with fixed controllers and no co-
optimization, then optimize a learnable controller for each body plan. We suggest
that by pairing the same learned closed-loop controller from the co-optimization
paradigm to the morphologies found when optimized with the fixed controller,
we will be able to fairly compare how well each optimization setup is able to find
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Fig. 3. Morphologies of the run champions under each experimental setting. The left
half of the figure shows the run champions with learnable controllers, and the right
half shows the ones with fixed controllers. We see diverse body plans evolve with the
learnable controller, especially in (a). On the other hand, we see the same form of the
mostly active bottom with two vertical apparatus at the front and back, resembling
a head and a tail, evolved with the fixed controller in (e). For the BridgeWalker-v0
environment, individuals with learnable controllers show similar body plan features
in (b) and (d), e.g. upright posture, r or T shape, individuals with fixed controller
usually consists of a thin, horizontal body with active materials and forward apparatus
resembling a leg in (f–h).
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Fig. 4. Timelapse images of three run champions’ behavior from each of the two tasks
of the (5, 5) morphology space, co-optimized brain and body (a) and morphology-only
optimization with fixed control (b). Learnable controllers demonstrate more diversity,
especially in the Walker-v0 environment. Most of the individuals with learnable con-
trollers (a) find a bipedal (rows 1, 2, 4–6) or monopedal gait (row 3). Fixed controllers
(b) show one common behavior on flat ground (rows 1–3), consisting of an active bot-
tom with two vertical apparatus at the front and back, resembling a head and a tail.
When the muscle at the bottom of the robot contracts, vertical apparatuses help the
bottom part form an arch, creating front and back legs to locomote. In the bridge
environment (rows 4–6) often includes a thin, horizontal body with active materials,
a forward apparatus resembling a leg, and some upper body (presumably used for
balancing). Individuals with this body plan throw themselves forward by actuating
their muscles in phase and pulling themselves forward with their forward apparatus,
achieving bipedal locomotion.
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Fig. 5. Comparison of performances on the body plans of learnable and fixed run
champions with learnable and fixed controllers. The first and last columns in each plot
show the results of the main co-optimization experiment, and the second and third
columns show the results when the learnable controller is optimized from scratch on
body plans of learnable run champions and fixed run champions, respectively. In 3 out
of 4 experimental settings, the body plans found by the fixed controller during the co-
optimization experiments outperform the body plans found by the learnable controller
when the learnable controller is optimized to control them. It demonstrates the failure
of search over the morphology space during co-optimization with learnable controllers
since they failed to discover high-performing body plans of fixed champions.

high-performing morphologies in the search space. We take the body plans of
the run champions with fixed controllers and start new evolutionary runs from
scratch, with 16 individuals having the same fixed body plan as the correspond-
ing run champion, and optimize only the controller for 5000 generations.

Figure 5 compares the performance of the learnable controller on the body
plans of run champions found during co-optimization with learnable and
morphology/only optimization with fixed controllers. For comparison, we also
show the original performances of the fixed run champions with the fixed con-
troller. In 3 out of 4 experimental settings (W5, W7, and B5; all P < 0.05), the
learnable controller achieves significantly better performance on the body plans
of fixed champions, which definitively demonstrates the existence of better body
plans than the ones found during co-optimization with the learnable controller.
To the best of our knowledge, this is the most concrete example to date show-
ing the failure of brain-body co-optimization to find specific and demonstratedly-
reachable high-performing regions of the morphology space.

It is also possible that simply the act of re-training the controller once the
body plan has already been found and fixed produces a much different opti-
mization trajectory than co-optimizing both at once. To account for this we also
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take the run champions found when co-optimizing morphology with a learnable
controller, freeze the resulting morphology and re-train a learnable controller
on it from scratch (emulating the setup described above). Across all conditions,
this resulted in statistically indistinguishable performance from the original co-
optimized robots (Fig. 5, first versus second columns, all P > 0.44), demonstrat-
ing that the controllers found during co-optimization were well already converged
to their current body plan. This finding also provides further evidence consistent
with the notion that the struggle to co-optimize brain-body systems is due to
sub-par morphologies more so than sub-par controllers.

For completeness, we also measured the performance of learnable run cham-
pions’ body plans when they were controlled by the fixed controller. As expected,
they performed very poorly (mean performance in W5: 4.88, W7: 6.31, B5: 2.64,
B7: 2.47) and most solutions couldn’t even reach the end of the environment.
This suggests that the fixed controllers are not inherently better than the learn-
able controllers, but benefit from enabling search to discover more effective body
plans, and especially body plans that are well adapted to the given control policy.

Lastly, contrary to what we expect, we observe that the learnable controller,
when it is trained on fixed run champions’ body plans, doesn’t always achieve
the same level of performance as fixed controllers do (Fig. 5, third versus last
columns, P < 0.05 in W5, W7, and B7), which we interpret as the challenge of
achieving very simple behaviors with complex neural network controllers when
they are optimized through fitness alone. Future work could consider exper-
imenting with more complex tasks and environments to understand how the
co-optimization process unfolds when the complexity of the task/environment
better matches the complexity of the controller.

5 Discussion

Our co-optimization experiment and the following analysis produced a num-
ber of important results that can be seen in Fig. 5. Most importantly, we have
shown that optimizing learnable controllers on the high-performing body plans
found with fixed controllers, resulted in better solutions compared to the solu-
tions found with learnable controllers during co-optimization in most experi-
mental settings (first vs middle columns, P < 0.05 in 3 out of 4), which clearly
demonstrates the failure of the search over the morphology space with learnable
controllers during co-optimization, providing more evidence for the premature
convergence of morphology as the main challenge of brain-body co-optimization.

While Cheney et al. [3] provides an embodied cognition perspective into this
phenomenon, here we try to understand it from an optimization perspective.
The standard intuition conceives a solution space where each solution has a
single corresponding fitness creating a landscape over the solution space. How-
ever rugged it may be, we hope solutions with similar fitness values are grouped
together in the solution space at some resolution, which allows us to search the
space with heuristic search methods. This is certainly applicable to the brain-
body co-optimization problem as well, where the brain and body together cre-
ate the solution space. But instead of visualizing a standard landscape with
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one fitness value per brain-body pair, we could alternatively conceptualize two
solution domains: one a fitness landscape over controllers and another a fitness
landscape over body plans. In doing so, we notice a peculiarity about brain-body
solution space. While small changes in one part of the solution, that being the
brain, can result in solutions with similar fitness and thus produce a typical and
relatively smooth fitness landscape, changes to a robot’s body almost always
result in a severe fitness drop [40]. In light of this insight, we advocate for a
new morphology-centric way of conceptualizing the fitness landscape that the
co-optimization process runs on. Rather than imagining a fixed fitness value per
each solution candidate, we can conceptualize the fitness landscape as a surface
over the morphology space with a range of possible fitness values per body plan,
where the actual fitness depends on the controller.

This new view allows us to understand the premature convergence of mor-
phology from a search perspective. Body plans that we found early in the co-
optimization process accrue more controller optimization steps, climbing up to
their maximum fitness value – an example of a first-mover advantage [31]. Con-
versely, body plans we found later on during the search via mutation, however
promising these body plans may be, are at a disadvantage: they can’t compete
with first-movers until a controller is optimized for them to provide a better
assessment of their maximum fitness, but typically can’t survive long enough to
accrue control optimization if they can’t compete with first movers initially.

Indeed, Cheney et al. [3] investigate this by designing a smaller search space
for the control which reduces the range of possible fitness values per body plan,
effectively limiting the first-movers advantage, and showing that the premature
convergence of morphology disappears. We take this even further by using a
fixed controller which collapses the range of possible fitness values per body
plan into a single value, turning the fitness landscape into a familiar format
that we can search effectively. The success of the fixed controller shows that our
algorithms are adequate in searching the standard landscape, but confronted
with the peculiar co-optimization landscape that is unforgiving to changes in
the body plan, they fail and get stuck in local optima.

Luckily, this new understanding of the fitness landscape allows us to put
recently proposed solutions into perspective: if the search over the morphology
space is failing due to our inability to effectively measure the true potential of
body plans, then (1) we could give our algorithms more resources to assess new
body plans [5], and/or (2) we could try to have a better initial assessment for
new body plans by alleviating the performance decline during the morphological
search by using different genetic representations for coordinated changes [54,57]
or by using controllers that are robust to changes in the morphology [40]. These
two ways are orthogonal to each other and we believe further research on these
avenues holds the potential for unlocking successful brain-body co-optimization.

It also enables us to draw connections to other fields. For example, considering
the optimization of the controller for a given morphology to be an approximation
of the true potential (i.e. maximum) fitness of that morphology. Thus our frame-
work connects brain-body co-optimization with a wealth of literature on surro-
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gate proxy fitness models [19,50], on approaches to optimization under uncer-
tainty such as for the multi-arm bandit problems [1,29]. In robot brain-body
co-optimization the computation expense of fitness evaluations makes it unrea-
sonable to train individual controllers from scratch to ideally and independently
determine the fitness of each morphology. This is also the case for training the
weights for a deep neural network architecture, and this framing draws analogies
to the notion of sharing controllers for all possible body-plans/architectures in
the fitness landscape, deemed supernet weight-sharing algorithms in the Neural
Architecture Search literature [32,45]. It also suggests the importance of methods
to enable effective transfer of controllers from one morphology to another when
sharing these fitness approximators across disparate body plans via approaches
like meta-learning, transfer learning, and few-shot learning [12,40,60,61].

Moreover, the success of body optimization with fixed controllers (Fig. 5, first
vs last columns, all P < 0.005) brings the formulation of “brain” and “body” into
question. Formulating the control of the robot in ways that it assigns a single
or smaller range of fitness values unlocks the body plan optimization by col-
lapsing the fitness landscape and limiting the first-movers advantage. Solutions
where robots’ materials react to their environment in simpler ways and complex
behavior emerges by exploiting the dynamics of the body and interaction with
the environment, such as [4,6,8–10], can be further investigated. Especially, scal-
ing this methodology to solve more complex tasks that would normally assumed
to require complex closed-loop decision making should be investigated.

6 Conclusion

We have compared learnable neural network controllers and heuristically
designed fixed controllers in the problem of co-optimization of brain and body
(while for the latter, it is just the optimization of the body) for the locomotion
task in multiple environments and morphology spaces that vary in complexity.
Our experiments demonstrated the existence of high-performing regions that
weren’t found during the co-optimization process. Based on our analysis with
the fixed controller, we developed a new morphology-centric understanding of the
fitness landscape which explains the premature convergence from a search per-
spective and clarifies previously proposed solutions. We hope this new framework
will help us systematically tackle the challenges of brain-body co-optimization.
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