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BAYESIAN STOCHASTIC GRADIENT DESCENT FOR
STOCHASTIC OPTIMIZATION WITH STREAMING INPUT DATA\ast 
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Abstract. We consider stochastic optimization under distributional uncertainty, where the
unknown distributional parameter is estimated from streaming data that arrive sequentially over
time. Moreover, data may depend on the decision at the time when they are generated. For both
decision-independent and decision-dependent uncertainties, we propose an approach to jointly esti-
mate the distributional parameter via Bayesian posterior distribution and update the decision by
applying stochastic gradient descent (SGD) on the Bayesian average of the objective function. Our
approach converges asymptotically over time and achieves the convergence rates of classical SGD in
the decision-independent case. We demonstrate the empirical performance of our approach on both
synthetic test problems and a classical newsvendor problem.

Key words. Bayesian estimation, streaming input data, stochastic gradient descent, endogenous
uncertainty
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1. Introduction. Stochastic optimization is a mathematical framework that
models decision making under uncertainty. It usually assumes that the decision maker
has full knowledge about the underlying uncertainty through a known probability dis-
tribution and minimizes (or maximizes) a functional of the cost (or reward) function
[55]. However, the probability distribution of the randomness in the system is rarely
known in practice and is often estimated from historic data. The impact of the es-
timation accuracy and the subsequent distributional uncertainty have been widely
studied in the literature. For example, [9] and [51] conduct perturbation analysis
of the stochastic optimization problems and quantify the sensitivity of the optimal
value (and/or solution) to the probability distribution. One popular approach to ad-
dressing this distributional uncertainty in stochastic optimization is distributionally
robust optimization (DRO) (e.g., [14, 7, 61]). The DRO framework assumes that the
underlying unknown probability distribution lies in an ambiguity set of probability
distributions and then optimizes the problem with respect to the worst case in the
ambiguity set. It has been successfully applied to a broad range of problems in statis-
tics, optimization, and control, such as stochastic programming (e.g., [4, 37]), Markov
Decision Processes (e.g., [67, 68]), stochastic control (e.g., [58, 69]), and ranking and
selection (e.g., [27, 66, 65, 25]). To construct an appropriate ambiguity set that con-
tains the true distribution with a probabilistic guarantee and ensures tractability
of the optimization problem, various DRO methods have been developed, such as
methods based on moment constraints (e.g., [14]), \phi -divergence (e.g., [5]), and Wasser-
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390 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

stein distance (e.g., [24]). In contrast to DRO, [72, 64] proposed a Bayesian risk
optimization (BRO) framework, with the motivation to use the Bayesian posterior
distribution (which encodes the likelihoods of all possibilities) to replace the ambi-
guity set (which treats every possibility inside the set with equal probability), and
further take a risk functional with respect to the posterior distribution to allow a
more flexible risk attitude.

Nearly all the aforementioned works that focus on stochastic optimization in
static settings assume that the input data are given as one fixed batch. However,
in many applications, data are often collected over time, and the decision maker of-
ten needs to make decisions in an online fashion given all the available data. For
example, an inventory manager observes the customer demand on a daily or weekly
basis, and adjusts his/her decision accordingly; a robot that searches for an unknown
source receives signals from the source over time, and makes its move accordingly
(e.g., [43]). Such streaming data have only been considered recently in stochastic
simulation optimization, e.g., [63, 71, 62, 57]. While these recent works consider the
streaming input data, their assumption is that the data are generated from an exoge-
nous (decision-independent) distribution and hence are independent and identically
distributed (i.i.d.). This assumption restricts their application to many real-world
problems where the input data are endogenous (decision-dependent). For example,
in live streaming e-commerce, there is usually a rolling banner that counts how many
products are left, and customers are more likely to purchase the product that has
only a few left since it is more popular. As another example, in the supermarket, tall
stacks of a product impact its visibility, which leads more customers to purchase the
product [30, 3].

Motivated by these real-world problems where data arrive sequentially and could
even depend on the decision, in this work we consider stochastic optimization problems
where the underlying distribution is unknown but data from the distribution arrive
in batches over time. We assume a parameterized distributional model, and thus the
distribution family is known but the true distributional parameter is unknown. It is
also interesting to consider a nonparametric setting with a prior of Dirichlet process
(see [59] for a nonparametric simulation optimization problem setting), though the
associated analysis could be much more complicated. At each time stage, our proce-
dure consists of two steps: (1) use the current batch of data to update the Bayesian
posterior distribution of the distributional parameter, and (2) take the Bayesian av-
erage of the objective function and apply stochastic gradient descent (SGD) to this
reformulated objective function. Our proposed approach can be viewed as an online
extension of the BRO framework in [64]: BRO considers a fixed batch of data and only
needs to solve the fixed BRO formulation; in contrast, we consider the setting where
batches of data come in sequentially, and therefore, we update the stagewise BRO
problem every time with the new incoming data; moreover, due to the limited time
in each stage, we can only apply a few SGD iterations to solve each stagewise BRO
problem. As a result, the convergence analyses of BRO and our paper are quite dif-
ferent and the results have distinct implications: the convergence of BRO shows that
if the fixed batch of data has an infinite size, the BRO formulation recovers the true
problem and BRO solutions are indeed the true optimal solutions; our convergence
analysis shows that even though our algorithm applies SGD iterations to a sequence
of estimated (Bayesian-average) problems, but the algorithm still converges to the
true (local) optimal solution. Another related work [56] considers the same problem
of fixed data batch as [72, 64] and uses Bayesian average to estimate the true problem,
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BAYESIAN STOCHASTIC GRADIENT DESCENT 391

but it also takes a robust approach with respect to the uncertainty associated with
the parametric distributional model.

We consider both cases of exogenous and endogenous input data. In the former
case, data follow a fixed distribution that only involves the distributional parameter.
In the latter case, the data follow a time-varying distribution depending not only on
the distributional parameter but also on the decision at the current time. It is worth
noting that due to the correlation and nonstationarity of the decision-dependent data
across time stages, the Bayesian estimation with such data is different from the clas-
sical Bayesian updating with i.i.d. data, which poses a great challenge to showing the
consistency of the Bayesian posterior distribution. We consider the same problem
as [57], but differ in two key aspects: first, we take a Bayesian approach to estimate
the distributional parameter, whereas they estimate by maximum likelihood estimator
(MLE) and solve the problem with the plug-in MLE; second, they only consider exoge-
nous (decision-independent) uncertainty. Also note that compared to our preliminary
conference version [44], this paper is a substantial extension in both theoretical analy-
sis and numerical experiments. For the decision-independent uncertainty, we further
show the convergence rate of the proposed algorithm. Apart from a synthetic test
problem, we also evaluate the performance of the proposed algorithm in a classical
newsvendor problem.

Our considered problem is related to online learning (e.g., [10, 53]). Online learn-
ing is often formulated as a repeated game: at each round, the learner makes a
prediction and receives the true solution (or a cost function), with the goal to min-
imize the cumulative cost over time. Classical algorithms in online learning such as
follow the leader and its variants, such as follow the perturbed Leader and follow the
regularized leader, incorporate the learning process, which takes the information from
previous rounds to improve prediction, into the algorithms in order to choose the next
action that leads to the lowest cumulative cost. In contrast to the goal of minimizing
the cumulative cost, our considered problem aims to find an optimal solution of a
stationary objective function in the decision-independent case and a nonstationary
objective function in the decision-dependent case, where the nonstationarity is only
caused by the decision-dependent uncertainty. Since the online data in our problem
are restricted to the randomness in the system that is generated from the (unknown)
underlying distribution, it is natural to update our belief of the (unknown) distri-
bution in a Bayesian way. In addition to the distinctive goal in our problem, it is
worth noting the key differences between our approach and two closely related al-
gorithms in online learning. The first one is the online gradient descent algorithm
(see [73, 34, 16]), for which the cost function can vary completely arbitrarily over
time and, hence, is unlike our SGD algorithm that makes use of the structure of the
Bayesian average of the objective function over time. The second one is the Thomp-
son sampling algorithm (see [1, 11]), which also assumes a parameterized model and
updates the posterior distribution on the parameter in a Bayesian way. However,
Thompson sampling makes the decision based on only one sample from the posterior
distribution in each round, whereas our algorithms takes the entire posterior distribu-
tion into account and solve the Bayesian average of the original (unknown) objective
function. Later in the numerical experiments, we show that the Bayesian average
provides a better estimate of the original objective function compared to a point
estimate.
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392 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

As a final note, the endogenous uncertainty has been considered in many fields,
including dynamic programming (e.g., [60]), robust optimization (e.g., [48, 40]), and
stochastic optimization (e.g., [31, 17, 22, 35, 49, 45, 70]), with many applications in
inventory control (e.g., [6, 41]), healthcare (e.g., [32]), and so on. However, almost
none of the aforementioned work involving decision-dependent uncertainty take into
consideration the additional input data. Only until recently, [38] and [46] study the
performative prediction problem, which is essentially a stochastic optimization prob-
lem with streaming decision-dependent data; however, the goal is to find the so-called
performatively stable point (or equilibrium point), which is in general different from
the true optimal solution. Along the same line, [15] also considers static stochastic
optimization under decision-dependent uncertainty, and proposes a proximal gradi-
ent method and its variants that converge to the performatively stable point under
relatively strong assumptions (strong convexity, Lipschitz continuity, etc.). Asymp-
totic normality and optimality of the stochastic approximation algorithm are further
studied in a follow-up work [13]. Most recently, [36] and [47] redesign the gradient
algorithms in [38] by introducing a gradient correction term, and show the conver-
gence to the true optimal solution. In particular, [36] also considers a parameterized
model where the distributional parameter (as a function of the decision variable) can
be estimated from streaming input data, and uses finite difference to estimate the
gradient of the objective function. An important assumption in their approach is
that the estimated distributional parameter has a constant error bound. Differently
from their approach, we learn the distributional parameter with a Bayesian approach,
and show the Bayesian consistency of the posterior distribution that finally leads to
the convergence of the SGD algorithm to a stationary point of the original objective
function (optimal solution if the problem is convex).

We summarize the contribution of this paper as follows. First, we propose a
Bayesian stochastic gradient descent approach to the stochastic optimization prob-
lem with unknown underlying distribution and with streaming input data that could
depend on the decision. This new approach is among the very few works [64, 56, 33]
in the literature that take a Bayesian perspective on approaching distributional un-
certainty in stochastic optimization. Second, we show the convergence of our ap-
proach in the decision-independent case and decision-dependent case, respectively.
Under decision-independent uncertainty, our approach achieves the convergence rates
of classical nonconvex SGD. Third, we show the consistency of the Bayesian pos-
terior distribution with endogenous non-i.i.d. data under mild conditions; this re-
sult is applicable to a wide range of problems involving Bayesian estimation beyond
the scope of this paper. Our nonasymptotic analysis of the Bayesian estimate with
i.i.d. data is also new and could be potentially useful for analyzing other Bayesian
algorithms.

The rest of the paper is organized as follows. We first propose Bayesian-SGD algo-
rithms for stochastic optimization with decision-independent and decision-dependent
streaming input data in section 2. We then analyze the convergence properties of
the proposed algorithms for both cases in section 3. We verify the theoretical results
and demonstrate the performance of our algorithms in the numerical experiments in
section 4. Finally, we conclude the paper in section 5.

2. Bayesian SGD algorithms for stochastic optimization with stream-
ing input data. We consider the following stochastic optimization problems with
decision-independent uncertainty and decision-dependent uncertainty, receptively:
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BAYESIAN STOCHASTIC GRADIENT DESCENT 393

min
x\in X

H(x) :=Ef(\cdot ;\theta c)[h(x, \xi )] (decision-independent uncertainty),(2.1)

min
x\in X

H(x) :=Ef(\cdot ;x,\theta c)[h(x, \xi )] (decision-dependent uncertainty),(2.2)

where x \in X \subset Rd is the decision vector, \xi \in \Xi \subset Rm is a random vector, h :
Rd \times Rm \rightarrow R is a deterministic function. The expectation is taken with respect to
(w.r.t.) the distribution of \xi , which is denoted by f(\cdot ; \theta c) in the decision-independent
case, and by f(\cdot ;x, \theta c) in the decision-dependent case. The density function f(\cdot ;x, \theta c)
takes a general form, where the parameter \theta c does not depend on x. For example,
f(\xi ;x, \theta c) = \theta cx exp( - \theta cx\xi ) is the density function of the exponential distribution
with rate \theta cx. More assumptions on the density function will be discussed in section
3. We assume the distribution of \xi belongs to a parameterized family of distribu-
tions with parameter set \Theta \subset Rl, and let \theta c be the true parameter value of the
distribution.

In practice, the true distribution f(\cdot ; \theta c) or, in other words, the true distributional
parameter \theta c, is rarely known exactly and usually estimated from data. We consider
an online setting where data arrive sequentially in time and decisions are updated at
each time stage. It is natural to take a Bayesian approach for sequential estimation
of the unknown parameter, since it is computationally convenient and the estimate
is guaranteed with strong consistency with i.i.d. data (however, Bayesian consistency
with non-i.i.d. data are much more complicated, which we will discuss later in section
3). With the Bayesian estimate of the distributional parameter, we apply iterations
of the SGD algorithm on the estimated problem to update the decision, because the
light computational effort of SGD makes it appealing for the online setting. On a
high level, at each time stage t, after observing a new batch of data we carry out the
following two steps:

\bullet Update the Bayesian posterior distribution of the parameter with the new
data.

\bullet Use SGD on the Bayesian average of problem (2.1) or (2.2) to update the
decision.

We now discuss the details of these two steps in the following. Let's first focus
on the decision-independent case. Suppose at each time stage t we observe a batch of
data yt = \{ yt,j , j = 1, . . . ,D\} , where \{ yt,j\} are i.i.d. according to f(\cdot ; \theta c) and D is the
batch size. By viewing the unknown distributional parameter as a random vector \theta 
and assuming a prior distribution \pi 0 on \theta , the posterior distribution of \theta is updated
by the Bayes rule as follows:

\pi t(\theta ) =
\pi t - 1(\theta )f(yt;\theta )\int 
\pi t - 1(\theta )f(yt;\theta )d\theta 

=
\pi t - 1(\theta )

\prod D
j=1 f(yt,j ;\theta )\int 

\pi t - 1(\theta )
\prod D

j=1 f(yt,j ;\theta )d\theta 
.(2.3)

The objective function (2.1) can be viewed as a function of \theta , so we define the following
function

H(x, \theta ) :=Ef(\cdot ;\theta )[h(x, \xi )].

To estimate the true objective function (2.1), we consider the Bayesian average of the
objective function,

min
x\in X

E\pi t
[H(x, \theta )] ,(2.4)
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394 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

where the expectation is taken w.r.t. the posterior distribution \pi t defined in (2.3).
Then we apply SGD on (2.4) for K iterations within each time stage, where K is a
user choice or limited by the time length of the current stage before the next batch
of data come in. The key element in SGD is the stochastic gradient estimator, and
an unbiased gradient estimator of the objective function in (2.4) can be computed by
the infinitesimal perturbation analysis [26] as

\nabla xh(x, \xi ), \xi \sim f(\cdot ; \theta ) and \theta \sim \pi t.(2.5)

Now let's focus on the decision-dependent case. With a slight abuse of notations,
we use the same notations as in the decision-independent case unless defined otherwise.
Unlike the decision-independent case where the data batches are i.i.d. over time from
the fixed distribution f(\cdot ; \theta c), in the decision-dependent case data batches \{ yt\} t are
correlated and differently distributed across time stages, since yt depends on the
decision xt which is in turn updated from previous data over time. Regardless of the
nonstationarity of the data batches, we still use Bayesian posterior distribution to
estimate \theta :

\pi t(\theta ) =
\pi t - 1(\theta )f (yt;xt, \theta )\int 
\pi t - 1(\theta )f (yt;xt, \theta )d\theta 

=
\pi t - 1(\theta )

\prod D
j=1 f(yt,j ;xt, \theta )\int 

\pi t - 1(\theta )
\prod D

j=1 f(yt,j ;xt, \theta )d\theta 
.(2.6)

Due to the nonstationarity of data batches, the consistency of the posterior dis-
tribution is a question here; we will characterize the conditions needed for strong
consistency of \pi t in section 3. The Bayesian average of the objective function is

E\pi t
[H(x, \theta )] =E\pi t

\bigl[ 
Ef(\cdot ;x,\theta ) [h (x, \xi )]

\bigr] 
.(2.7)

An unbiased gradient estimator of the objective function (2.7) is

\nabla xh(x, \xi ) + h(x, \xi )
\nabla x
\widehat ft (\xi ;x)\widehat ft (\xi ;x) , \xi \sim f(\cdot ; \theta ) and \theta \sim \pi t,(2.8)

where \^ft(\cdot ;x) := E\pi t
[f(\cdot ;x, \theta )], \nabla x

\^ft(\cdot ;x) := \nabla xE\pi t
[f(\cdot ;x, \theta )]. The derivation of the

gradient estimators (2.5) and (2.8) will be shown in section 3. Informally, (2.8) is ob-
tained by taking derivative of h(x, \xi )f(\xi ;x, \theta ) w.r.t. x. In the algorithms we assume
that the posterior distribution \pi t and the expectation in \^ft(\cdot ;x) and \nabla x

\^ft(\cdot ;x) can be
exactly computed, which is often the case when we choose a conjugate prior distri-
bution for Bayesian updating. For general posterior distributions, we can use general
Markov chain Monte Carlo methods, such as the Langevin algorithm ([23, 20]), to
sample from the posterior and use these samples to approximate the expectation. It
is worth noting that the first term in (2.8) is the same as the stochastic gradient
estimator (2.5) in the decision-independent case, and the second term is unique here
and caused by the dependence of the distribution on the decision x.

The algorithms, named Bayesian SGD (Bayesian-SGD), for stochastic optimiza-
tion with decision-independent uncertainty and decision-dependent uncertainty are
shown in Algorithms 2.1 and 2.2, respectively. Please note that to accelerate algo-
rithm convergence, variants of SGD methods could be used instead of the plain SGD
iterations in these algorithms.
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BAYESIAN STOCHASTIC GRADIENT DESCENT 395

Algorithm 2.1. Bayesian-SGD (decision-independent uncertainty).
input: data batch size D, number of SGD iterations K, step size sequence
\{ at,j , t= 1,2, . . . ; j = 0, . . . ,K  - 1\} , time horizon T .
initialization: choose an initial decision x1 and prior distribution \pi 0(\theta ).
for t= 1 : T do

-A batch of data yt,1, . . . , yt,D
i.i.d\sim f(\cdot ; \theta c) arrives;

-Posterior update: compute \pi t(\theta ) according to (2.3).
-Decision update:

\bullet set xt,0 := xt;
\bullet for j = 0, \cdot \cdot \cdot ,K  - 1, draw samples \theta t,j \sim \pi t(\theta ) and \xi t,j \sim f(\cdot ; \theta t,j), and

carry out SGD iteration:

xt,j+1 := ProjX \{ xt,j  - at,j\nabla xh(xt,j , \xi t,j)\} ,(2.9)

where ProjX is a projection operator that projects the iterate to the
set X .

\bullet set the updated decision as xt+1 := xt,K ;
end for
return xT+1

Algorithm 2.2. Bayesian-SGD (decision-dependent uncertainty).
input: data batch size D, number of SGD iterations K, step size sequence
\{ at,j , t= 1,2, . . . ; j = 0, . . . ,K  - 1\} , time horizon T .
initialization: choose an initial decision x1 and prior distribution \pi 0(\theta ).
for t= 1 : T do

-A batch of data yt,1, \cdot \cdot \cdot , yt,D
i.i.d\sim f(\cdot ;xt, \theta 

c) arrives;
-Posterior update: compute \pi t(\theta ) according to (2.6).
-Decision update:

\bullet set xt,0 := xt;
\bullet for j = 0, . . . ,K  - 1, draw sample \theta t,j \sim \pi t(\theta ) and \xi t,j \sim f(\cdot ;xt,j , \theta t,j), and

carry out SGD iteration:

xt,j+1 := ProjX

\Biggl\{ 
xt,j  - at,j

\Biggl( 
\nabla xh (xt,j , \xi t,j)(2.10)

+h (xt,j , \xi t,j)
\nabla x
\widehat ft (\xi t,j ;xt,j)\widehat ft (\xi t,j ;xt,j)

\Biggr) \Biggr\} 
,

where ProjX is a projection operator that projects the iterate to the
set X .

\bullet set the updated decision as xt+1 := xt,K ;
end for
return xT+1

3. Convergence analysis. In this section, we show asymptotic convergence of
Algorithms 2.1 and 2.2. Towards this end, we first need to show the consistency of the
Bayesian posterior distribution and then show the convergence of SGD when applied
to the nonstationary Bayesian average stochastic optimization problems (2.4) and
(2.5). In addition, we show the convergence rate in the decision-independent case.
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396 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

3.1. Convergence analysis for the decision-independent case. Let's first
consider the decision-independent case. The probability space is constructed as fol-
lows. Define the Bayesian prior \pi 0 on (\Theta ,B\Theta ), where B\Theta is the Borel \sigma -algebra on
\Theta . Let Y \subset Rm denote the data (observation) space. The data y take values in
Y equipped with a Borel \sigma -algebra BY and a probability measure \{ P\theta c\} , such that

P\theta c(y \in A) =
\int 
A
f (y;\theta c)dy,\forall A \in B(Y ). For the sequence y1, y2, . . . , yn

i.i.d\sim f(\cdot ; \theta c),
the probability measure is denoted by Pn

\theta c . As for the infinite sequence \{ y1, y2, . . .\} ,
the probability measure P\infty 

\theta c can be constructed by Kolmogorov's extension theorem
(cf. Theorem A.3.1 in [21]). In the following, w.p.1 (or almost surely) means that the
considered property holds with probability one w.r.t. the probability measure P\infty 

\theta c .
Finally, let Ft := \sigma \{ (y\tau ) , \tau \leq t\} be the \sigma -filtration generated by the data. We have
the convergence of the posterior distribution \{ \pi t\} that is updated according to (2.3)
under the following assumptions.

Assumption 3.1 (see [56, Assumption 3.1]). (i) The set \Theta is convex and compact
with nonempty interior. (ii) ln\pi 0(\theta ) is bounded on \Theta . (iii) f(\xi | \theta ) > 0 for all \xi \in \Xi 
and \theta \in \Theta . (iv) f(\xi | \theta ) is continuous in \theta \in \Theta . (v) lnf(\xi | \theta ), \theta \in \Theta , is dominated by
an integrable (w.r.t. \xi \sim f(\cdot ; \theta c)) function. (vi) The data batches are i.i.d. over time
from the fixed distribution f(\cdot ; \theta c).

We refer the readers to [56] for detailed explanations of the above assumptions.
The next lemma shows the Bayesian consistency under Assumption 3.1, which implies
the distributional uncertainty diminishes as t\rightarrow \infty .

Definition 3.2 (weak convergence). A sequence of distributions Pn \Rightarrow P if and
only if

\int 
gdPn \rightarrow 

\int 
gdP as n\rightarrow \infty for all g bounded and continuous.

Lemma 3.3 (see [56, Lemma 3.2]). Under Assumption 3.1, \pi t(\theta )\Rightarrow \delta \theta c(\theta ) w.p.1,
where \delta \theta c is the Dirac delta function concentrated on the true parameter \theta c.

We then study the asymptotic behavior of Algorithm 2.1 by the ordinary differen-
tial equation (ODE) method (please refer to [39] for a detailed exposition on the ODE
method for stochastic approximation). The main idea is that SGD can be viewed as a
noisy discretization of an ODE. Under certain conditions, the noise in SGD averages
out asymptotically, such that the SGD iterates converge to the solution trajectory
of the ODE. For simplicity, we consider the case where K = 1 and rewrite the SGD
iteration (2.9) as

xt+1 = xt  - at\nabla xh (xt, \xi t) + atzt,(3.1)

where atzt is the projection term, i.e., the vector of shortest Euclidean length needed
to keep the decision xt+1 from leaving the decision space X . We first show that under
certain mild conditions, the proposed gradient estimator in (3.1) is unbiased.

Assumption 3.4. h(x, \xi ) is C1-smooth in x for all \xi \in \Xi , and the map \xi \rightarrow \nabla xh(x, \xi )
is Lh-Lipschitz continuous for any x\in X .

Assumption 3.4 is a commonly used smooth assumption in the stochastic approx-
imation literature (cf. [28, 15]). An important consequence is that for any probability
measure, Eh(x, \xi ) is differentiable in x with gradient E\nabla xh(x, \xi ) (cf. [15]).

Lemma 3.5. Under Assumption 3.4, \nabla xh(x, \xi ) with \xi \sim f(\cdot ; \theta ) and \theta \sim \pi t is an
unbiased gradient estimator of the objective function in (2.4).
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BAYESIAN STOCHASTIC GRADIENT DESCENT 397

Proof. For every fixed x\in X ,

E\pi t

\bigl[ 
Ef(\cdot ;\theta )[\nabla xh(x, \xi )]

\bigr] 
=E\pi t

\bigl[ 
\nabla xEf(\cdot ;\theta )[h(x, \xi )]

\bigr] 
=\nabla xE\pi t

\bigl[ 
Ef(\cdot ;\theta )[h(x, \xi )]

\bigr] 
,

where the first equality holds because the gradient \nabla xh(x, \xi ) is Lipschitz continu-
ous, and the interchange between expectation and differentiation is justified by the
dominated convergence theorem (DCT). Similarly, the second equality above is again
justified by the DCT. Therefore, the proposed estimator in (3.1) is an unbiased gra-
dient estimator of the objective function in (2.4).

Assumption 3.6.
\bullet The step size \{ at\} satisfies

\sum \infty 
t=1 a

2
t < \infty ,

\sum \infty 
t=1 at = \infty , limt\rightarrow \infty at = 0,

at > 0 \forall t > 0.
\bullet The decision space X \subset Rd is compact and convex.

The above assumptions on the step size and the compact and convex decision
space are often used in SGD (cf. [39]). The first assumption essentially requires
that the step size diminishes to zero not too slowly (

\sum \infty 
t=1 a

2
t < \infty ) nor too quickly

(
\sum \infty 

t=1 at =\infty ). For example, we can choose at =
a
t for some a> 0.

Before proceeding to our main convergence result, we introduce the continuous-
time interpolations of the decision sequence \{ xt\} . Define t1 = 1 and tn = 1 +\sum n - 1

i=1 ai, n \geq 2. For t \geq 1, let N(t) be the unique n such that tn \leq t < tn+1.
For t < 1, set N(t) = 1. Define the interpolated continuous process X as X(1) = x1

and X(t) = xN(t) for any t > 1, and the shifted process as Xn(s) = X(s + tn). We
then show in the following theorem that Algorithm 2.1 converges w.p.1.

Theorem 3.7. Let Dd[0,\infty ) be the space of Rd-valued operators which are right
continuous and have left-hand limits for each dimension. Under Assumptions 3.1, 3.4,
and 3.6, there exists a process X\ast (\cdot ) to which the subsequence of \{ Xn(\cdot )\} n converges
w.p.1 in the space Dd[0,\infty ), where X\ast (\cdot ) satisfies the following ODE,

\.X = - \nabla H(X,\theta c) + z, z \in  - C (X), X(1) = x1,(3.2)

where C (X) is the Clarke's normal cone to X , i.e., for any x\in X , C (x) = \{ c : cTx\geq 
cT y \forall y \in C \} . z is the projection term: it is the vector of shortest Euclidean length
needed to keep the trajectory of the ODE X(\cdot ) from leaving the decision space X . The
sequence \{ xt\} t in (3.1) also converges w.p.1 to the limit set of the ODE (3.2).

Proof. Note that

E [\nabla xh (xt, \xi t) | x1, ys, \xi s, s < t]

=E\pi t
[Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]]

=\nabla xH(xt, \theta 
c) +

\bigl( 
E\pi t [Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]] - \nabla xH(xt, \theta 

c)
\bigr) 

=\nabla xH(xt, \theta 
c) +

\bigl( 
E\pi t

[Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]] - E\delta \theta c [Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]]
\bigr) 
.

Let \epsilon t = E\pi t [Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]] - E\delta \theta c [Ef(\cdot ;\theta ) [\nabla xh (xt, \xi )]]. By Lemma 3.3, \pi t(\theta ) \Rightarrow 
\delta \theta c(\theta ) w.p.1 (P\infty 

\theta c ), and by Theorem 3.1 in [64], \epsilon t \rightarrow 0 as t\rightarrow \infty w.p.1 (P\infty 
\theta c ). We can

then directly apply Theorem 5.2.3 in [39] and obtain the result.

Remark 3.8. The SGD iterates specified in (2.9) approach the solution trajectory
of the ODE (3.2) and eventually converge to a limit point of the ODE, which is a
point x\ast satisfying \nabla H(x\ast , \theta c) = 0 if the point is in the interior of X . Hence, such
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398 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

a point is a stationary point of problem (2.1) for the decision-independent case and
can be a local optimal solution if it is stable. On a related note, stochastic gradient
Langevin dynamic (SGLD), a popular variant of SGD, adds properly scaled isotropic
Gaussian noise to an unbiased estimate of the gradient at each iteration, which allows
the solution trajectory to escape local minimum and guarantees asymptotic conver-
gence to a global minimizer for sufficiently regular nonconvex objectives (see [52, 18]
and references therein). It is an interesting future direction to apply SGLD to our
considered stochastic optimization problem with streaming input data.

Next, we investigate the convergence rate of Algorithm 2.1 for the unconstrained
case, i.e., without the projection term atzt under the following additional assumptions.

Assumption 3.9.
\bullet The parameter space \Theta is finite, i.e., \Theta = \{ \theta 1, . . . , \theta k\} . Moreover, \theta c \in \Theta .
\bullet There exists 0<LH <\infty such that | | \nabla xH(x, \theta 1) - \nabla xH(x, \theta 2)| | 2 \leq LH | | \theta 1  - 

\theta 2| | 2 for all \theta 1, \theta 2 \in \Theta and for all x\in X .
\bullet Sampling variance is bounded by \sigma 2, i.e., E[| | \nabla xh(x, \xi ) - \nabla xH(x, \theta )| | 22| \theta ]\leq \sigma 2,

for all \theta \in \Theta .

Due to technical challenges, in Assumption 3.9 we only consider a finite parameter
space, which is practical in many real-world problems. For example, it can be viewed
as a discrete approximation of a continuous parameter set, and the discretization can
be chosen of any precision. The second assumption essentially requires H(x, \theta ) is C1-
smooth in \theta for all x \in X and is a common assumption in stochastic approximation
literature (cf. [57]). The bounded sampling variance is also a common assumption in
nonconvex SGD convergence analysis (cf. [54]).

Under Assumption 3.9, we can show the bias term (the difference between
E\pi t\nabla xH(x, \theta ) and E\pi t\nabla xH(x, \theta c)) can be upper bounded with high probability, which
serves as a key lemma in showing the convergence rate of the decision-independent
algorithm.

Lemma 3.10. Under Assumption 3.9, there exists a constant C1 > 0 such that for
any \delta > 0, with probability at least 1 - \delta we have

| | E\pi t
\nabla xH(x, \theta ) - E\pi t

\nabla xH(x, \theta c)| | 22 \leq C1

logDt+ log 1
\delta 

Dt
\forall x\in X \forall t > 0.

The proof of Lemma 3.10 can be found in Appendix A. Next, we show the conver-
gence rate of Algorithm 2.1. To simplify the analysis and also be consistent with the
convergence analysis of smooth nonconvex SGD, we consider a variant of SGD where
the final output is randomly chosen as follows: let zT = xt with probability at\sum T

t=1 at
,

t= 1, . . . , T . The randomization scheme helps with the analysis of the expected gra-
dient of the final output under the true parameter \theta c, and has been widely used in
the smooth nonconvex SGD literature (cf. [28]). We then have the following theorem
giving the convergence rate of the randomized output algorithm under different step
sizes.

Theorem 3.11. Under Assumptions 3.1, 3.4, 3.6, and 3.9, for any \delta > 0, we
have with probability at least 1 - \delta , for any T > 0, the following bound on the expected
gradient of the final output under the true parameter \theta c:
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BAYESIAN STOCHASTIC GRADIENT DESCENT 399

(i) If the step size satisfies at =
a\surd 
T

\forall t\leq T for some constant a<
\surd 
T

Lh
, then

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 
\biggl[ 
2(H(x1, \theta 

c) - minx\in X H(x, \theta c))

a
\surd 
T

\biggr] 
+

\biggl[ 
A1

T
+

A2 logT

T
+

A3 log
2 T

T

\biggr] 
+

Lha\sigma 
2

\surd 
T

,

where A1 =
C1(logD - log \delta )

LhD
, A2 =

C1(logD - log \delta )
LhD

+ C1

LhD
, A3 =

C1

LhD
.

(ii) If the step size satisfies at =
a
t \forall t\leq T for some constant a< 1

Lh
, then

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 
\biggl[ 
2(H(x1, \theta 

c) - minx\in X H(x, \theta c))

a
+

6C1 + \pi 2C1(logD - log \delta )

6D

+
\pi 2Lha\sigma 

2

6

\biggr] 
1

logT
.

(iii) If the step size satisfies at =
a\surd 
t
\forall t\leq T for some constant a< 1

Lh
, then

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 
\biggl[ 
2(H(x1, \theta 

c) - minx\in X H(x, \theta c))

a
\surd 
T

+
3C1(logD - log \delta ) + 4C1

D
\surd 
T

+
Lha\sigma 

2

\surd 
T

\biggr] 
+

Lha\sigma 
2 logT\surd 
T

.

The proof of Theorem 3.11 can be found in Appendix B. Theorem 3.11 shows
that for the constant step size at =

a\surd 
T
, the convergence rate is O( 1\surd 

T
). Note that

in case (i), the first term in the convergence rate depends on the initialization of
the solution (difference between H(x1, \theta 

c) and minxH(x, \theta c)); the last term depends
on the Lipschitz constant and sampling variance. These two terms are consistent
with the classical smooth nonconvex SGD (cf. [28]). The second, third, and fourth
terms are caused by the difference between E\pi t

\nabla xH(x, \theta ) and E\pi t
\nabla xH(x, \theta c), which

is due to the Bayesian estimation that is unique to the considered problem. As for
the classical decreasing step size at =

a
t , the convergence rate is O(1/ logT ). For the

bigger decreasing step size at =
a\surd 
t
, the convergence rate is O(logT/

\surd 
T ).

3.2. Convergence analysis for the decision-dependent case. In this sec-
tion, we theoretically study the convergence behavior of Algorithm 2.2. We follow the
approach in [13] to construct the probability space for the decision-dependent case.
Note that the data y take values in the space Y equipped with a Borel \sigma -algebra BY

and a probability measure P\theta c(\cdot | x) such that P\theta c(y \in A| x) =
\int 
A
f(y;x, \theta c)dy \forall A \in 

BY . Suppose that there is a probability space (S ,H , \mu ) and a measurable map
F : S \times X \rightarrow Y such that for every set A \in BY , the P\theta c(\cdot | x)-measure of A is
equal to the \mu -measure of the set \{ s \in S : F (s,x) \in A\} . Then we define (\Omega ,F ,P\infty 

\theta c )
as the countable product (S ,H , \mu )\infty . In the following, w.p.1 (or almost surely)
means that the considered property holds with probability one w.r.t. the probability
measure P\infty 

\theta c . Let Ft = \sigma \{ (x\tau , y\tau ), \tau \leq t\} be the \sigma -filtration generated by the data
and decision sequences. For simplicity, we assume at each time stage the data batch
size D = 1 and the number of SGD iterations K = 1. We have the convergence of
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400 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

the posterior distribution \{ \pi t\} that is updated according to (2.6) under the following
assumptions.

Assumption 3.12.
\bullet The parameter space \Theta is discrete. Moreover, \theta c \in \Theta .
\bullet The prior distribution \pi 0(\theta 

c)> 0.

The assumptions above are regularity conditions and easy to be verified in prac-
tice. Note that Algorithm 2.2 works for a general parameter space, but due to technical
challenges, we assume a discrete parameter space for the convergence analysis. Note
that for the decision-dependent case, the correlated and differently distributed data
\{ yt\} pose a great challenge to analyzing the consistency of the Bayesian posterior
distribution \pi t. To prove the Bayesian consistency, we first show the following inter-
mediate result. Let DKL(P\| Q) :=

\int 
log( dPdQ )dP denote the Kullback--Leibler (K-L)

divergence from distribution P to distribution Q.

Lemma 3.13. Suppose Assumption 3.12 holds. Recall \^ft(\cdot ;x) =
\sum 

\theta \pi t(\theta )f(\cdot ;x, \theta ).
Denote f\ast (\cdot ;x) := f(\cdot ;x, \theta c), for any x \in X . At decision xt+1, the K-L divergence
from f\ast to \^ft is denoted as dt, i.e., dt :=DKL(f

\ast (\cdot ;xt+1)| | \^ft(\cdot ;xt+1)). Then we have

lim
t\rightarrow \infty 

dt = 0 and
\infty \sum 
t=1

dt <\infty w.p.1(P\infty 
\theta c ).

The proof of Lemma 3.13 can be found in Appendix C. Intuitively, Lemma 3.13
implies that with more observation data even at different decisions, we know more
about the true parameter \theta c and are able to provide a more precise estimation of the
density f\ast at the next decision. Moreover, if we know that each \theta is identifiable as
rigorously defined in the following assumption, we can further prove the consistency
of \{ \pi t\} regardless of the correlation and nonstationarity of the observation data.

Assumption 3.14 (linear independence). For almost every x in X for any K \subseteq N,
where N is the set of natural numbers, \{ f(\cdot ;x, \theta i)\} i\in K are linearly independent in Y ,
i.e., \sum 

i\in K

cif(y;x, \theta i) = 0 \forall y \in Y \Rightarrow ci = 0 \forall i\in K .

Assumption 3.14 intuitively requires that for almost every decision x, the obser-
vation distributions generated from different \theta 's are distinguishable (or identifiable;
cf. Definition 5.2 in [42]). For the ease of notation, we denote the density function
as f(\cdot ;x, \theta ) := f(\cdot ;g(x, \theta )), where g : Rd \times Rl \rightarrow Rs is a mapping from X \times \Theta to
the s-dimensional parameter space of the distribution. A necessary condition for As-
sumption 3.14 to hold is g(x, \theta 1) \not = g(x, \theta 2) for almost every x\in X and for all \theta 1 \in \Theta ,
\theta 2 \in \Theta such that \theta 1 \not = \theta 2. Under this necessary condition, Assumption 3.14 is satisfied
by many distribution families. For example, the Wronskian determinant for expo-
nential distributions with different parameters g(x, \theta 1), . . . , g(x, \theta n) is computed by
W (\xi ) =

\prod n
i=1 g(x, \theta i) exp( - 

\sum n
i=1 g(x, \theta i)\xi )

\prod 
i\not =j(g(x, \theta i)  - g(x, \theta j)), which is nonzero

for almost every x \in X and all \xi \in \Xi when the \theta i's are distinct, which directly im-
plies the linear independence of \{ f(\cdot ;x, \theta i)\} i. For other exponential families, such as
normal, gamma, and Poisson, a general solution to check the Wronskian determinant
may not be readily available. Instead, one could check whether the components of
the sufficient statistics are linearly independent, i.e., whether the exponential family
is minimal (cf. Chapter 1.5 in [42]).

Assumption 3.15. The decision space X \subset Rd is compact and convex.
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BAYESIAN STOCHASTIC GRADIENT DESCENT 401

We then have the following proposition on the consistency of the posterior distri-
bution \{ \pi t\} .

Proposition 3.16. Under Assumptions 3.12, 3.14, and 3.15, \pi t \Rightarrow \delta \theta c w.p.1
(P\infty 

\theta c).

The proof of Proposition 3.16 can be found in Appendix D. Proposition 3.16
guarantees that although the observation at each time depends on the current decision,
it can provide enough information to ensure the posterior distribution will eventually
concentrate on the true parameter. In the following, we will show that the consistency
of \{ \pi t\} ensures that the gradient estimator is accurate enough and thus Algorithm
2.2 converges.

Remark 3.17. We note that the consistency of posterior distributions for non-
i.i.d. observations is previously shown in [29]. However, they give very general conver-
gence result with assumptions (such as existence of a testing function sequence) that
are often abstract and hard to verify in practice. On the other hand, our Bayesian
consistency result is built on assumptions (in particular Assumption 3.14) that are
easy to verify and interpret.

We then study the asymptotic behavior of Algorithm 2.2 by the ODE method
similar to the decision-independent case. We can rewrite the SGD iteration (2.10) as

xt+1 = xt  - at

\Biggl( 
\nabla xh(xt, \xi t) + h(xt, \xi t)

\nabla x
\widehat ft (\xi t;xt)\widehat ft (\xi t;xt)

\Biggr) 
+ atzt,(3.3)

where atzt is the projection term. We show that under certain mild conditions, the
proposed gradient estimator (3.3) is unbiased.

Assumption 3.18. The density function f(\xi ;x, \theta ) is C1-smooth in x for all \xi \in \Xi 
and for all \theta \in \Theta .

Together with Assumption 3.4, Assumption 3.18 puts mild conditions that justify
the interchange between differentiation and integral for the decision-dependent case.

Lemma 3.19. Under Assumptions 3.4 and 3.18, we have that \nabla xh(xt, \xi )+h(xt, \xi )
\nabla x

\widehat ft(\xi ;xt)\widehat ft(\xi ;xt)
with \xi \sim f(\cdot ;xt, \theta ) and \theta \sim \pi t is an unbiased gradient estimator of the

objective function in (2.7).

The detailed derivation can be found in Appendix E. Note that in performative
prediction literature (e.g., [15]), the gradient estimator is also derived using the chain
rule similarly to (2.8). However, due to the difficulty in estimating the second term,
most of the literature in performative prediction focus only on the first term, and
show that under the biased gradient estimator, the solution converges to a so-called
performative stable point which is in general different from the true optimal solution.
In contrast, our approach provides a Bayesian way to estimate the second term un-
der the parametric assumption and aims to converge to the true optimal solution of
problem (2.2).

A final set of assumptions on the step size to show the convergence of Algorithm
2.2 is listed below.

Assumption 3.20. The step size at satisfies
\sum \infty 

t=1 at = \infty , limt\rightarrow \infty at = 0, at >
0 \forall t > 0.

We then have the following theorem showing the weak convergence of Algorithm
2.2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 1

30
.2

07
.9

5.
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



402 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

Theorem 3.21. Let Dd[0,\infty ) be the space of Rd-valued operators which are right
continuous and have left-hand limits for each dimension. Under Assumptions 3.4,
3.12, 3.14, 3.15, 3.18, and 3.20, for each subsequence of \{ Xn(\cdot )\} n, there exists a
further subsequence \{ Xnk(\cdot )\} nk

and a process X\ast (\cdot ) such that Xnk(\cdot )\Rightarrow X\ast (\cdot ) in the
weak sense as t\rightarrow \infty in the space Dd[0,\infty ), where X\ast (\cdot ) satisfies the following ODE,

\.X = - \nabla H(X,\theta c) + z, z \in  - C (X), X(1) = x1,(3.4)

where C (X) is the Clarke's normal cone to X , i.e., for any x\in X , C (x) = \{ c : cTx\geq 
cT y,\forall y \in C \} . z is the projection term: it is the vector of shortest Euclidean length
needed to keep the trajectory of the ODE X(\cdot ) from leaving the decision space X . Let
LX be the set of limit points of (3.4) in X . Then there exist \mu n \rightarrow 0 and Tn \rightarrow \infty 
such that

lim
n

P

\biggl\{ 
sup
t\leq Tn

Dist (Xn(t),LX )\geq \mu n

\biggr\} 
= 0,

where Dist(x,E ) = infy\in E \| x - y\| 2 for any set E and point x\in X . The sequence \{ xt\} t
in (3.3) also converges weakly to the limit set of the ODE (3.4).

Remark 3.22. (3.4) shows the weak convergence of Algorithm 2.2. The SGD iter-
ates specified in (2.10) approach the solution trajectory of the ODE (3.4) and eventu-
ally converge to a limit point of the ODE, which is a point x\ast satisfying\nabla H(x\ast , \theta c) = 0
if the point is in the interior of X . Hence, such a point is a stationary point of prob-
lem (2.2) for the decision-dependent case and can be a local optimal solution if it
is stable. The weak convergence result implies that once the trajectory enters the
domain of attraction of a local optimal solution, the chance of escaping from it goes
to 0 in the limit.

Now we prove (3.4) below.

Proof. Recall that at time t+ 1, Algorithm 2.2 takes the following update:

xt+1 = xt  - at

\Biggl( 
\nabla xh(xt, \xi t) + h(xt, \xi t)

\nabla x
\widehat ft (\xi t;xt)\widehat ft (\xi t;xt)

\Biggr) 
+ atzt.

From the derivation of the unbiased gradient estimator in Appendix E, we have

E\pi t

\bigl[ 
Ef(\cdot ;xt,\theta ) [\nabla xh(xt, \xi )]

\bigr] 
=E \^ft(\cdot ;xt)

[\nabla xh(xt, \xi )]

=Ef\ast (\cdot ;xt)\nabla xh(xt, \xi ) +
\Bigl( 
E \^ft(\cdot ;xt)

[\nabla xh(xt, \xi )] - Ef\ast (\cdot ;xt)[\nabla xh(xt, \xi )]
\Bigr) 

=Ef\ast (\cdot ;xt)[\nabla xh(xt, \xi )] + \beta t,1,

where f\ast (\cdot ;x) = f(\cdot ;x, \theta c) for x\in X , \beta t,1 =E \^ft(\cdot ;xt)
[\nabla xh(xt, \xi )] - Ef\ast (\cdot ;xt)[\nabla xh(xt, \xi )].

Similarly, we have

E\pi t

\Biggl[ 
Ef(\cdot ;xt,\theta )

\Biggl[ 
h(xt, \xi )

\nabla x
\widehat ft (\xi ;xt)\widehat ft (\xi ;xt)

\Biggr] \Biggr] 
=

\int 
\Xi 

h(xt, \xi )\nabla x
\widehat ft (\xi ;xt)d\xi t

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 1

30
.2

07
.9

5.
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



BAYESIAN STOCHASTIC GRADIENT DESCENT 403

=

\int 
\Xi 

h(xt, \xi t)\nabla xf
\ast (\xi ;xt)d\xi 

+

\biggl( \int 
\Xi 

h(xt, \xi )\nabla x
\widehat ft (\xi ;xt)d\xi  - 

\int 
\Xi 

h(xt, \xi )\nabla xf
\ast (\xi ;xt)d\xi 

\biggr) 
=

\int 
\Xi 

h(xt, \xi )\nabla xf
\ast (\xi ;xt)d\xi + \beta t,2,

where \beta t,2 =
\int 
\Xi 
h(xt, \xi )\nabla x

\widehat ft (\xi ;xt)d\xi  - 
\int 
\Xi 
h(xt, \xi )\nabla xf

\ast (\xi ;xt)d\xi . Note that\int 
\Xi 

h(xt, \xi )\nabla xf
\ast (\xi ;xt)d\xi +Ef\ast (\cdot ;xt)[\nabla xh(xt, \xi )] =\nabla xH(x, \theta c),

and we can rewrite the update as

xt+1 = xt  - at\nabla xH(xt, \theta 
c) - at\beta t,1  - at\beta t,2  - at\delta Mt + atzt,

where

\delta Mt =\nabla xh(xt, \xi t) + h(xt, \xi t)
\nabla x
\widehat ft (\xi t;xt)\widehat ft (\xi t;xt)

 - E \^ft(\cdot ;xt)

\Biggl[ 
\nabla xh(xt, \xi ) + h(xt, \xi )

\nabla x
\^f(\xi ;xt)

\^f(\xi ;xt)

\Biggr] 
is a martingale difference sequence. Suppose that we can show limt\rightarrow \infty \beta t,1 = 0 w.p.1
(P\infty 

\theta c ) and limt\rightarrow \infty \beta t,2 = 0 w.p.1 (P\infty 
\theta c ), then the rest of the update is exactly the

discretization of ODE (3.4). Then (3.4) is proved by a straightforward application of
Theorem 7.2.1 in [39]. We conclude the proof with the following two lemmas showing
that the two bias terms \beta t,1 and \beta t,2 vanish in the limit.

Lemma 3.23. Under Assumptions 3.4, 3.12, 3.18, and 3.20, we have limt\rightarrow \infty \beta t,1 =
0 w.p.1 (P\infty 

\theta c ).

Lemma 3.24. Under Assumptions 3.4, 3.12, 3.14, and 3.18, we have limt\rightarrow \infty \beta t,2 =
0 w.p.1 (P\infty 

\theta c ).

See Appendices F and G for the detailed proofs of the above two lemmas.

Finally, we summarize the main similarities and differences between decision-
independent and decision-dependent cases below. Both cases require a compact and
convex decision space X and smoothness of the objective function h(x, \xi ) in x. For the
decision-dependent case, we also require the density function f(\xi ;x, \theta ) to be smooth in
x, since the gradient estimator of the objective function in (2.7) involves the gradient
of f(\xi ;x, \theta ) and, moreover, we assume linear independence between densities in order
to show the consistency of the posterior distribution with non-i.i.d. decision-dependent
data. For the decision-independent case, we further impose some stronger conditions
in order to show stronger results, including the finiteness of the parameter space \Theta 
to show the convergence rate, and a stricter step size assumption to show the strong
convergence of the solution sequence to the limit set of the ODE.

4. Numerical experiments.

4.1. Synthetic test problems. We first demonstrate the performance of Al-
gorithms 2.1 and 2.2 on two synthetic test problems in a univariate setting and in a
multivariate setting, respectively. Our method is abbreviated as Bayesian-SGD.

4.1.1. Decision-independent uncertainty. We first carry out numerical ex-
periments on a simple quadratic problem in a univariate setting, h(x, \xi ) = (x - 5)2 +

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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404 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

0.5\xi x, where \xi \sim N (\theta c, \sigma 2). The parameter values are as follows: \sigma = 4, \theta c = 9,
D= 1, K = 1, \Theta = \{ 1,2, . . . ,20\} , at = 2

t+5 . It is easy to check H(x, \theta c) = x2 - 5.5x+25,
and the true optimal decision is taken at x\ast = 2.75. At each time t, the gradient esti-
mator in Algorithm 2.1 is \nabla xh(xt, \xi t) = 2xt  - 10+0.5\xi . In Algorithm 2.1, we use the
uniform distribution on \Theta as the prior distribution and set the initial solution x1 = 0.

As a benchmark, we assume the true parameter \theta c is known and use the plain
SGD algorithm on the true problem (2.1). Obviously, with the knowledge of the
true parameter value this algorithm should provide a lower bound on the objective
value that can be achieved. We also compare this with the MLE method (cf. [57]),
which uses the MLE \^\theta t at each time stage to replace the unknown \theta c in the objective
function (2.1) and then solves the corresponding optimization problem by SGD. For
fair comparison, we use the same number of SGD iterations at each time stage for
all three algorithms. We run all three algorithms (Algorithm 2.1, benchmark, MLE)
for 100 times on the problem. The mean and standard deviation of the solution error
| xt  - x\ast | over time are shown in Figure 1. The observations from Figure 1 can be
summarized as follows.

\bullet With decreasing step size, the solution sequence in Algorithm 2.1 converges
to the true optimal solution.

\bullet The benchmark algorithm (without parameter uncertainty) performs better
than the proposed algorithm and the MLE algorithm, but in the long run
(e.g., t > 1000 to be shown in a multivariate setting) the three algorithms
behave similarly.

\bullet In the initial time stages our algorithm performs slightly better than the MLE
algorithm. This is due to the better estimation of the objective function by
the Bayesian average in our algorithm than the point estimate in the MLE
algorithm, when the data are limited.

We then carry out numerical experiments on a quadratic problem in a multivariate
setting, h(x, \xi ) = (x1  - 1)2 + (x2  - 2)2 + \xi (x1 + x2), where \xi follows an exponential
distribution with mean \theta c. The parameter values are as follows: \theta c = 4, D= 1, K = 1,
\Theta = \{ 1,2, . . . ,20\} , at = 2

t+5 . It is easy to check H(x, \theta c) = (x1 + 1)2 + x2
2 + 4, and the

true optimal decision is taken at x\ast = ( - 1,0). At each time t, the gradient estimator
in Algorithm 2.1 is \nabla xh(xt, \xi t) = (2x1  - 2 + \xi ,2x2  - 4 + \xi ). We use the uniform
distribution on \Theta as the prior distribution and set the initial solution x1 = (5,5). We
again run all three algorithms (Algorithm 2.1, benchmark, MLE) for 100 times on

Fig. 1. Mean and standard deviation of | xt - x\ast | of 100 runs of Algorithm 2.1 (Bayesian-SGD),
MLE, and the benchmark algorithm in a univariate example. Note: color appears only in the online
article.
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BAYESIAN STOCHASTIC GRADIENT DESCENT 405

Fig. 2. Mean and standard deviation of | | xt  - x\ast | | 2 of 100 runs of Algorithm 2.1 (Bayesian-
SGD), MLE, and benchmark algorithm in a multivariate example. Note: color appears only in the
online article.

the problem. The mean and standard deviation of the solution error | | xt  - x\ast | | 2 over
time are shown in Figure 2, from which we can draw the same conclusion as in the
univariate setting.

4.1.2. Decision-dependent uncertainty. We carry out numerical experiments
on a simple quadratic problem in a univariate setting: h(x, \xi ) = (x  - 5)2 + 0.5\xi x,
where \xi \sim N (x+ \theta c, \sigma 2). The parameters are as follows: \sigma = 4, \theta c = 4, D= 1, K = 1,
\Theta = \{ 1,2, . . . ,30\} , at = 2

t+5 . It is easy to check H(x, \theta ) = (x - 5)2 + 0.5(x+ \theta c)x =

1.5x2  - 8x + 25 and the true optimal decision is x\ast = 8
3 . The gradient estima-

tor in Algorithm 2.2 at each time t is \nabla xh (xt, \xi t) + h (xt, \xi t)
\nabla x

\widehat ft(\xi t;xt)\widehat ft(\xi t;xt)
, which can

be computed as (2xt  - 10 + 0.5\xi ) + ((xt  - 5)2 + 0.5\xi txt)
\sum 

\theta \pi t(\theta )\cdot \nabla xf(\xi t;xt,\theta t)\sum 
\theta \pi t(\theta )\cdot f(\xi t;xt,\theta t)

, where

f(\xi ;x, \theta ) = 1\surd 
2\pi \sigma 

exp ( - (\xi  - (x+\theta ))2

2\sigma 2 ).
We use the uniform distribution on \Theta as the prior distribution and set the initial

solution x1 = 0. We run Algorithm 2.2 and the benchmark algorithm for 100 times
on the problem. Note that the MLE method in [57] is not applicable for the decision-
dependent case. The mean and standard deviation of the solution error | xt  - x\ast | 
over time are shown in Figure 3. We further show the convergence of the posterior
distribution under different data batch sizes D in Figure 4. Note that the benchmark
algorithm (without parameter uncertainty) can be viewed as Algorithm 2.2 with D=
\infty . The observations from Figures 3 and 4 are summarized as follows.

\bullet With decreasing step size, the solution sequence in Algorithm 2.2 converges
to the true optimal solution.

\bullet Figure 4 shows that as we observe more data at each time stage, the Bayesian
posterior distribution converges faster to the delta function concentrated on
the true parameter \theta c.

\bullet There is no significant difference in the convergence rate of Algorithm 2.2
under different data batch sizes, even though the posterior distribution con-
verges faster with larger data batch size. It implies that the Bayesian average
of the objective function (2.7) in this example is a good estimate of the true
objective function despite the inaccuracy of the posterior distribution at the
beginning time stages.

We then carry out numerical experiments on a quadratic problem in a multivariate
setting, h(x, \xi ) = (x1  - 1)2 + (x2  - 2)2 + \xi , where x = (x1, x2) and \xi follows an
exponential distribution with mean (x1  - x2)

2 + \theta c. The parameters are as follows:
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406 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

Fig. 3. Mean and standard deviation of | | xt  - x\ast | | 2 of 100 runs of Algorithm 2.2 (Bayesian-
SGD) and the benchmark algorithm in a univariate example. Note: color appears only in the online
article.

Fig. 4. Mean and 95\% confidence interval of \pi t(\theta c) of 100 runs of Algorithm 2.2 (Bayesian-
SGD) under different data batch sizes. Note: color appears only in the online article.

\theta c = 4, D= 1, K = 1, \Theta = \{ 1,2, . . . ,20\} , at = 2
t+5 . It is easy to check H(x, \theta c) = 2x2

1+

2x2
2 - 2x1x2 - 2x1 - 4x2+9, and the true optimal decision is taken at x\ast = ( 43 ,

5
3 ). The

gradient estimator in Algorithm 2.2 can be computed as (2x1 - 2,2x2 - 4)+((x1 - 1)2+

(x2 - 2)2+ \xi )
\sum 

\theta \pi t(\theta )\cdot \nabla xf(\xi t;xt,\theta t)\sum 
\theta \pi t(\theta )\cdot f(\xi t;xt,\theta t)

. Recall that f(\xi ;x, \theta ) = 1
(x1 - x2)2+\theta exp - 

\xi t
(x1 - x2)2+\theta .

We use the uniform distribution on \Theta as the prior distribution and set the initial
solution x1 = (5,5). We run Algorithm 2.2 and the benchmark algorithm for 100 times
on the problem. The mean and standard deviation of the solution error | | xt  - x\ast | | 2
over time are shown in Figure 5, from which we can draw the same conclusion as the
univariate setting.

4.2. Multi-item newsvendor problem. We consider a multi-item newsven-
dor problem and its variant with decision-dependent uncertainty. In the multi-item
newsvendor problem, there are d = 3 different kinds of newspapers, and a newsboy
orders x\in Rd

\geq 0 units of newspaper to replenish the inventory at the beginning of a sell-
ing season. We assume 0\leq xi \leq Mi, where Mi is the inventory capacity for newspaper
i\in [d]. During the selling season, the newsboy observes customer demands, which are
observations of a random vector \xi \in ( - \infty ,\infty )d following an unknown joint distribution
F . Negative demand implies that some customers may have bought the newspaper
somewhere else and drop it off after reading. The cost of purchasing a newspaper is c
per unit, and the selling price is p per unit. At the end of the selling season the unsold
newspaper has a salvage value of s per unit. Note that c, p, s are all 3-dimensional

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BAYESIAN STOCHASTIC GRADIENT DESCENT 407

Fig. 5. Mean and standard deviation of | | xt  - x\ast | | 2 of 100 runs of Algorithm 2.2 (Bayesian-
SGD) and the benchmark algorithm in a multivariate example. Note: color appears only in the
online article.

vectors. Also note that there is no replenishment of newspaper during the selling sea-
son. The cost function is given by h(x, \xi ) = cTx - pT min(x,max(0, \xi )) - sT max(0, x - 
\xi ). Both min and max are elementwise operators. The newsboy aims to choose the
amount x that minimizes the expected cost, where the expectation is taken w.r.t. the
distribution of \xi .

4.2.1. Decision-independent uncertainty. We first consider the multi-item
newsvendor problem with the decision-independent input uncertainty. We assume \xi 
follows a multivariate normal distribution with mean \theta c\mu and covariance matrix \theta c\Sigma .
Note that in this problem we have 9 unknown parameters, i.e., 3 mean parameters
\theta c\mu , 3 variance parameters, and 3 correlation parameters \theta c\Sigma := (\theta cvar, \theta 

c
corr). At each

time t, the gradient estimator in Algorithm 2.1 is \nabla xh(x, \xi ) =

\biggl\{ 
c - p,x\leq \xi 
c - s,x > \xi 

. The

parameters are as follows, \theta c\mu = (10,15,20), \theta cvar = (3,6,9), \theta ccorr = (0.1,0.3,0.5), thus
the true covariance matrix is ((3,0.42,1.56), (0.42,6,3.67), (1.56,3.67,9)); parameter
space \Theta \mu = \{ 5,10,15,20,25\} 3, \Theta var = \{ 1,3,6,9,12\} 3, \Theta corr = \{ 0.1,0.2,0.3,0.4,0.5\} 3;
D= 2, K = 1, M = (100,100,100), c= (2,4,6), p= (4,6,8), s= (1,2,3), at =

2
t+5 . We

denote by x\ast the optimal decision under the true parameters. We use the uniform
distribution on \Theta as the prior distribution and set the initial solution x1 = (15,15,15).
We run all three algorithms (Algorithm 2.1, benchmark, MLE) for 100 times on the
problem. The mean and standard deviation of the solution error | | xt - x\ast | | 2 over time
are shown in Figure 6. We have similar observations as for the synthetic quadratic
problem.

4.2.2. Decision-dependent uncertainty. We then consider the multi-item
newsvendor problem with the decision-dependent input uncertainty, where the cus-
tomer demand depends on the order amount x of the inventory. We follow the setting
in [3], in which high inventory stimulates demand. We assume the demand \xi follows a
multivariate normal distribution with mean \theta c\mu +\alpha x\beta and covariance matrix \theta c\Sigma , where
\alpha > 0,0< \beta < 1 are vectors and (\cdot )\beta is an elementwise operator. Note that the mean
function admits diminishing marginal utility, which says that the marginal increase in
the mean demand diminishes as the inventory level increases. The gradient estimator
in Algorithm 2.2 at each time stage t is given by

\nabla xh (xt, \xi t) + h (xt, \xi t)

\sum 
\theta \pi t(\theta ) \cdot \nabla xf(\xi t;xt, \theta t)\sum 
\theta \pi t(\theta ) \cdot f(\xi t;xt, \theta t)

.
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408 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

Fig. 6. Mean and standard deviation of | | xt  - x\ast | | 2 of 100 runs of Algorithm 2.1 (Bayesian-
SGD), MLE, and the benchmark algorithm in the multi-item newsvendor problem with decision-
independent data. Note: color appears only in the online article.

Fig. 7. Mean and standard deviation of | | xt  - x\ast | | 2 of 100 runs of Algorithm 2.2 (Bayesian-
SGD) and the benchmark algorithm in the multi-item newsvendor problem with decision-dependent
data. Note: color appears only in the online article.

f(\xi ;x, \theta ) =
exp( - 1

2 (\xi  - (\theta \mu +\alpha x\beta ))T \theta  - 1
\Sigma (\xi  - (\theta \mu +\alpha x\beta )))\surd 

(2\pi )d| \theta \Sigma | 
, \nabla xf(\xi ;x, \theta ) = f(\xi ;x, \theta )\theta  - 1

\Sigma (\xi  - (\theta \mu +

\alpha x\beta ))\alpha \beta x\beta  - 1. The parameters are as follows: \theta c\mu = (10,15,20), \theta cvar = (3,6,9), \theta ccorr =
(0.1,0.3,0.5), the true covariance matrix is ((3, 0.42,1.56), (0.42,6,3.67), (1.56,3.67,9)).
\Theta \mu = \{ 5,10,15,20,25\} 3, \Theta var = \{ 1,3,6,9,12\} 3, \Theta corr = \{ 0.1,0.2,0.3,0.4,0.5\} 3. D = 2,
K = 1, M = (100,100,100), c = (2,4,6), p = (4,6,8), s = (1,2,3), \alpha = 1, \beta = 0.5,
at =

2
t+5 . We denote by x\ast the optimal decision under the true parameters. We use

the uniform distribution on \Theta as the prior distribution and set the initial solution
x1 = (15,15,15). We run Algorithm 2.2 and the benchmark algorithm for 100 times
on the problem. The mean and standard deviation of the solution error | | xt  - x\ast | | 2
over time are shown in Figure 7. We have similar observations as for the synthetic
quadratic problem.

As a final note, the good performance of our proposed algorithms on the multi-
dimensional newsvendor problem shows promise of the applicability of our proposed
approaches to large-scale problems. However, it should be noted that most of the
computational time is devoted to the posterior updating, especially for the high-
dimensional problem where there is no conjugate prior. It would be interesting to
adapt our algorithms to such a high-dimensional setup, where we could leverage the
recent theoretical results of Bayesian procedures in high dimensions (cf. [19, 12]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

5/
24

 to
 1

30
.2

07
.9

5.
2 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



BAYESIAN STOCHASTIC GRADIENT DESCENT 409

5. Conclusions. In this paper, we propose a Bayesian-SGD approach to stochas-
tic optimization with streaming input data, and present two algorithms for decision-
independent and decision-dependent uncertainty, respectively. We show the asymp-
totic convergence of both algorithms, and derive the convergence rate in the decision-
independent case based on the nonasymptotic analysis of the Bayesian estimate. Our
consistency result of Bayesian posterior distribution with decision-dependent input
data could be of independent interest to Bayes estimation. Note that our approach
can be viewed as an online extension of the BRO framework [72, 64], and it would be
interesting to adapt our approach to other risk functionals (such as value-at-risk and
conditional value-at-risk) with respect to the unknown distributional parameter.

Appendix A. Proof of Lemma 3.10.

Proof. Define the Hellinger distance between \theta 1 and \theta 2 as

d(\theta 1, \theta 2) =

\sqrt{} 
1

2

\int 
Y

(
\sqrt{} 
f(y;\theta 1) - 

\sqrt{} 
f(y;\theta 2))2.

One can easily verify that there exists a constant A such that \| \theta 1  - \theta 2\| \leq Ad(\theta 1, \theta 2),
where | | \cdot | | is the Euclidean norm. Let Bt

k =B(\theta c, k/
\surd 
Dt) be a ball centered at \theta c with

radius k/
\surd 
Dt under distance d. Since \Theta is finite, we can directly apply Proposition

1 in [8]. Then for t\leq T, \epsilon , \delta \in (0,1) with probability at least 1 - 6\delta 
\pi 2t2 with respect to

Pt
\theta c , we have

\pi t(B
t
k(t))\geq 1 - \epsilon ,

where

k(t) = inf

\left\{   j \geq 1
\bigm| \bigm| \bigm| \sum 
i\geq j

| \Theta | e - i2 \leq 6\delta 

\pi 2t2

\sqrt{} 
\epsilon \pi 0(\theta c)

\right\}   .

Note that since
\sum 

i\geq j e
 - i2 \leq e

e - 1e
 - j2 , we can set k(t) to be the solution of the next

equation:

e

e - 1
| \Theta | e - k(t)2 =

6\delta 

\pi 2t2

\sqrt{} 
\epsilon \pi 0(\theta c).

By a simple calculation, we have k(t) =

\sqrt{} 
log e| \Theta | \pi 2t2

6\delta (e - 1)
\surd 

\epsilon \pi 0(\theta c)
. Now we are ready to

bound the bias in the gradient estimator:

\| E\pi t\nabla xH(x, \theta ) - E\pi t\nabla xH(x, \theta c)\| 22

=

\bigm\| \bigm\| \bigm\| \bigm\| \int (\nabla xH(x, \theta ) - \nabla xH(x, \theta c))\pi t(\theta )d\theta 

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\leq 
\int 

\| (\nabla xH(x, \theta ) - \nabla xH(x, \theta c))\| 22 \pi t(\theta )d\theta 

\leq 
\int 

L2
H | | \theta  - \theta c| | 22\pi t(\theta )d\theta 

=

\int 
Bt

k(t)

L2
H | | \theta  - \theta c| | 22\pi t(\theta )d\theta +

\int 
(Bt

k(t)
)c
L2
H | | \theta  - \theta c| | 22\pi t(\theta )d\theta 
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410 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

\leq A2L2
H

k(t)2

Dt

\int 
Bt

k(t)

\pi t(\theta )d\theta +L2
H max

\theta \in \Theta 
\| \theta  - \theta c\| 22

\int 
(Bt

k(t)
)c
\pi t(\theta )d\theta 

\leq A2L2
H

k(t)2

Dt
+L2

H max
\theta \in \Theta 

\| \theta  - \theta c\| 22\epsilon .

Recall that D is the data batch size. Take \epsilon = 1
Dt and note that k(t) =\sqrt{} 

log e| \Theta | \pi 2t2
\surd 
Dt

6\delta (e - 1)
\surd 

\pi 0(\theta c)
. We further have

\| E\pi t\nabla xH(x, \theta ) - E\pi t\nabla xH(x, \theta c)\| 22 \leq A2L2
H

k(t)2

Dt
+L2

H max
\theta \in \Theta 

\| \theta  - \theta c\| 22\epsilon 

\leq 2A2L2
H max

\theta \in \Theta 
\| \theta  - \theta c\| 22

log e| \Theta | \pi 2t2
\surd 
Dt

6\delta (e - 1)
\surd 

\pi 0(\theta c)

Dt

=O

\biggl( 
logDt+ log 1

\delta 

Dt

\biggr) 
.

Let Et denote the event that the above inequality holds, and E c
t denote the com-

plement event. Then we have P(E c
t )\leq 6\delta 

\pi 2t2 . Therefore,

P(\cap \infty 
t=1Et) = 1 - P

\Biggl( \infty \bigcup 
t=1

E c
t

\Biggr) 

\geq 1 - 
\infty \sum 
t=1

P(E c
t ) (union bound)

\geq 1 - 
\infty \sum 
t=1

6\delta 

\pi 2t2

= 1 - \delta .

Appendix B. Proof of Theorem 3.11.

Proof. By the update (3.1), we know that for any t\leq T ,

xt+1 = xt  - at\nabla xH(xt, \theta 
c) - at[E\pi t

\nabla xH(xt, \theta ) - \nabla xH(xt, \theta 
c)]

 - at[\nabla xh(xt, \xi t) - E\pi t
\nabla xH(xt, \theta )]

= xt  - at\nabla xH(xt, \theta 
c) - atBt  - atNt,

where Bt is the bias and Nt is the noise. By Lemma 3.10, we know E[\| Bt\| 22] \leq 
C1

logDt+log 1
\delta 

Dt . From Assumption 3.9 we have E[\| Nt\| 22]\leq \sigma 2. By the proof of Lemma
2 in [2], we know that

E[H(xt+1, \theta 
c)] - H(xt, \theta 

c)\leq  - at
2
\| \nabla xH(xt, \theta 

c)\| 22 +
at
2
C1

logDt+ log 1
\delta 

Dt
+

a2t
2
Lh\sigma 

2.

Rearranging the terms in the inequality above, summing over t from 1 to T , and
noting that H(xt, \theta 

c)\leq minx\in X H(x, \theta c) \forall t, we have

T\sum 
t=1

atE[\| \nabla xH(xt, \theta 
c)\| 22]\leq 2(H(x1, \theta 

c) - min
x\in X

H(x, \theta c)) +C1

T\sum 
t=1

at
logDt+ log 1

\delta 

Dt

+Lh\sigma 
2

T\sum 
t=1

a2t .
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BAYESIAN STOCHASTIC GRADIENT DESCENT 411

Dividing both sides of the above inequality by
\sum T

t=1 at, and noting that

E[\| \nabla xH(zT , \theta 
c)\| 22] =

1\sum T
t=1 at

T\sum 
t=1

atE[\| \nabla xH(xt, \theta 
c)\| 22],

we have

E[\| \nabla xH(zT , \theta 
c)\| 22]\leq 

1\sum T
t=1 at

\Biggl[ 
2(H(x1, \theta 

c) - min
x\in X

H(x, \theta c))

+ C1

T\sum 
t=1

at
logDt+ log 1

\delta 

Dt
+Lh\sigma 

2
T\sum 

t=1

a2t

\Biggr] 
.

(i) at =
a\surd 
T

\forall t \leq T for some constant a <
\surd 
T

Lh
. Note that

\sum T
t=1

1
t \leq logT + 1 and\sum T

t=1
log t
t \leq log(logT + 1). Then

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 2(H(x1, \theta 
c) - minxH(x, \theta c))

a
\surd 
T

+
C1(logD - log \delta )(logT + 1)

LhDT
+

C1 logT (logT + 1)

LhDT

=
2(H(x1, \theta 

c) - minxH(x, \theta c))

a
\surd 
T

+
C1(logD - log \delta )

LhDT
+

C1(logD - log \delta ) logT

LhDT

+
C1 log

2 T

LhDT
+

Lha\sigma 
2

\surd 
T

.

(ii) at =
a
t \forall t\leq T for some constant a< 1

Lh
. Let MT =

\sum T
t=1

1
t . Note that

T\sum 
t=1

log t

t2
<

\infty \sum 
t=1

log t

t2
=

\pi 2

6
(12 lnA - \gamma  - ln 2\pi )< 1,

where A\approx 1.28 is the Glaisher--Kinkelin constant and \gamma \approx 0.58 is the Euler--Mascheroni
constant. Then we have

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 2(H(x1, \theta 
c) - minx\in X H(x, \theta c))

aMT
+

C1

MT

T\sum 
t=1

logDt+ log 1
\delta 

Dt2
+

T\sum 
t=1

Lha\sigma 
2

MT t2

\leq 
\biggl[ 
2(H(x1, \theta 

c) - minx\in X H(x, \theta c))

a
+

6C1 + \pi 2C1(logD - log \delta )

6D

+
\pi 2Lha\sigma 

2

6

\biggr] 
1

logT
.

(iii) at = a\surd 
t
\forall t \leq T for some constant a < 1

Lh
. Let Qt =

\sum T
t=1

1\surd 
t
. Note that\sum \infty 

t=1
1

t
\surd 
t
= \zeta (1.5) \approx 2.61 < 3,

\sum \infty 
t=1

log t

t
\surd 
t
< 4,

\sum T
t=1

1\surd 
t
\geq 

\surd 
T , where \zeta (\cdot ) is the

Riemann's zeta function. Then we have
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412 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

E[\| \nabla xH(zT , \theta 
c)\| 22]

\leq 2(H(x1, \theta 
c) - minxH(x, \theta c))

aQT
+

C1(logD - log \delta )

DQT

T\sum 
t=1

1

t
\surd 
t

+
C1

DQT

T\sum 
t=1

log t

t
\surd 
t
+

Lha\sigma 
2

QT

T\sum 
t=1

1

t

\leq 
\biggl[ 
2(H(x1, \theta 

c) - minxH(x, \theta c))

a
\surd 
T

+
3C1(logD - log \delta ) + 4C1

D
\surd 
T

+
Lha\sigma 

2

\surd 
T

\biggr] 
+

Lha\sigma 
2 logT\surd 
T

.

Appendix C. Proof of Lemma 3.13.

Proof. Define wt = - log\pi t(\theta 
c). One can easily verify that wt \geq 0. Then we have

E[wt+1] =E [E[wt+1| Ft, xt+1]]

=E
\biggl[ 
E
\biggl[ 
 - log

\pi t(\theta 
c)f(yt+1;xt+1, \theta 

c)\sum 
\theta \pi t(\theta )f(yt+1;xt+1, \theta )

| Ft, xt+1

\biggr] \biggr] 
=E

\biggl[ 
 - log\pi t(\theta 

c) - E
\biggl[ 
log

f(yt+1;xt+1, \theta 
c)\sum 

\theta \pi t(\theta )f(yt+1;xt+1, \theta )
| Ft, xt+1

\biggr] \biggr] 
=E[wt] - E[DKL(f

\ast (\cdot ;xt+1)| | \^ft(\cdot ;xt+1))].

This implies that E[dt] =E[wt] - E[wt+1]. For any T > 0, we have

T\sum 
t=0

E[dt] =
T\sum 

t=0

E[wt] - E[wt+1] =w0  - E[wT+1]\leq w0 <\infty .

Then we have
\sum \infty 

t=0E[dt]\leq w0. \forall \epsilon > 0, we have

\infty \sum 
t=0

P(dt \geq \epsilon )\leq 1

\epsilon 

\infty \sum 
t=0

E[dt]<\infty .

By the Borel--Cantelli lemma, we know that P(dt \geq \epsilon , i.o.) = 0, where i.o. stands for
infinitely often. It then implies limt\rightarrow \infty dt = 0, w.p.1 (P\infty 

\theta c ). Moreover, since dt \geq 0, by
Tonelli's theorem, we have

E

\Biggl[ \infty \sum 
t=0

dt

\Biggr] 
=

\infty \sum 
t=0

E[dt]\leq w0.

Since
\sum \infty 

t=0 dt has bounded expectation, it must be finite w.p.1 (P\infty 
\theta c ).

Appendix D. Proof of Proposition 3.16.

Proof. Without loss of generality, we assume that \theta c = \theta 1. Recall that f
\ast (\xi ;xt+1) =

f\ast (\xi ;xt+1, \theta 1) and \^ft(\xi ;xt+1) =
\sum 

i \pi t(\theta i)f(\xi ;xt+1, \theta i). Then we have

f\ast (\xi ;xt+1) - \^ft(\xi ;xt+1) = (1 - \pi t(\theta 1))f(\xi ;xt+1, \theta 1) - 
\sum 
i>1

\pi t(\theta i)f(\xi ;xt+1, \theta i).(D.1)

Note that for any t > 0, (\pi t(\theta 1), \pi t(\theta 2), . . .) is an infinitely dimensional bounded vector
with all components in the interval [0,1] and sum up to 1 (normalized), we can take a
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BAYESIAN STOCHASTIC GRADIENT DESCENT 413

subsequence \{ \pi tk\} such that for each component j, \pi tk(\theta j) converges to a limit which
is denoted by \pi \infty (\theta j), which is also known as weak convergence (of a deterministic
sequence). Next, we will show that \pi \infty (\theta ) is a normalized vector. For any j \in N,
limtk\rightarrow \infty \pi tk(\theta j) = \pi \infty (\theta j), which is equivalent to

\forall \epsilon j > 0,\exists N \in N, s.t.\forall n\geq N, | \pi \infty (\theta j) - \pi n(\theta j)| \leq \epsilon .

Therefore, we have

 - \epsilon j <\pi \infty (\theta j) - \pi n(\theta j)< \epsilon j , j = 1,2, . . . .(D.2)

According to the Bayesian update rule, we know
\sum \infty 

j=1 \pi n(\theta j) = 1. It then follows
that \forall \epsilon > 0, taking \epsilon j =

\epsilon 
2j and summing over (D.2) for all j \in N, we get

 - 
\Bigl( \epsilon 

21
+

\epsilon 

22
+ \cdot \cdot \cdot 

\Bigr) 
<

\infty \sum 
j=1

\pi \infty (\theta j) - 1<
\Bigl( \epsilon 

21
+

\epsilon 

22
+ \cdot \cdot \cdot 

\Bigr) 
,

which indicates \forall \epsilon > 0, | 
\sum \infty 

j=1 \pi \infty (\theta j) - 1| < \epsilon , and it implies that
\sum \infty 

j=1 \pi \infty (\theta j) = 1. So
the limit is also a valid probability simplex. Since every weakly convergent sequence
in L1 is strongly convergent (cf. Chapter 2 in [50]), we can take any convergent
subsequence of \{ \pi tk\} with limit (p\ast 1, p

\ast 
2, . . .). Since X is also bounded, from this

subsequence, we could take a further subsequence \{ \pi \tau k\} with time stage \tau 1, \tau 2, . . .,
such that \{ x\tau k\} converges to some x\prime . Then taking the limit over (D.1) along \tau 1, \tau 2, . . .,
we have

f\ast (\xi ;x\tau k) - \^f\tau k(\xi ;x\tau k)\rightarrow (1 - (p\ast 1))f(\xi ;x
\prime , \theta 1) - 

\sum 
i>1

p\ast i f(\xi ;x
\prime , \theta i).

Moreover, since K-L divergence dominates total variation distance between two dis-
tributions, we have \int 

\Xi 

\bigm| \bigm| \bigm| f\ast (\xi ;xt+1) - \^ft(\xi ;xt+1)
\bigm| \bigm| \bigm| d\xi \leq dt.(D.3)

From (D.3) and Lemma 3.13, we know that
\int 
\Xi 

\bigm| \bigm| \bigm| f\ast (\xi ;xt+1) - \^ft(\xi ;xt+1)
\bigm| \bigm| \bigm| d\xi \rightarrow 0 w.p.1

(P\infty 
\theta c ). By the DCT, we have

\int 
\Xi 

\bigm| \bigm| \bigm| \bigm| \bigm| (1 - (p\ast 1))f(\xi ;x
\prime , \theta 1) - 

\sum 
i>1

p\ast i f(\xi ;x
\prime , \theta i)

\bigm| \bigm| \bigm| \bigm| \bigm| d\xi = 0,

which implies:

(1 - (p\ast 1))f(\xi ;x
\prime , \theta 1) - 

\sum 
i>1

p\ast i f(\xi ;x
\prime , \theta i) = 0 \forall \xi .

By linear independence, we know p\ast 1 = 1, p\ast 2 = p\ast 3 = \cdot \cdot \cdot = 0. Since every convergent
subsequence of \{ (\pi t(\theta 1), \pi t(\theta 2), . . .)\} t has the same limit, we have \pi t \Rightarrow \delta \theta c w.p.1\setminus break
(P\infty 

\theta c ).
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414 TIANYI LIU, YIFAN LIN, AND ENLU ZHOU

Appendix E. Derivation of unbiased estimator in decision-dependent
case.

\nabla xE\pi t
[H(x, \theta )] =E\pi t

\bigl[ 
\nabla xEf(\cdot ;x,\theta )[h(x, \xi )]

\bigr] 
=E\pi t

\biggl[ \int 
\Xi 

\nabla xh(x, \xi )f(\xi ;x, \theta )d\xi 

\biggr] 
+E\pi t

\biggl[ \int 
\Xi 

h(x, \xi )\nabla xf(\xi ;x, \theta )d\xi 

\biggr] 
=E\pi t

\bigl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi )]

\bigr] 
+

\int 
\Theta 

\biggl( \int 
\Xi 

h(x, \xi )\nabla xf(\xi ;x, \theta )d\xi 

\biggr) 
\pi t(\theta )d\theta 

=E\pi t

\bigl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi )]

\bigr] 
+

\int 
\Xi 

h(x, \xi )

\biggl( \int 
\Theta 

\pi t(\theta )\nabla xf(\xi ;x, \theta )d\theta 

\biggr) 
d\xi 

=E\pi t

\bigl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi )]

\bigr] 
+

\int 
\Xi 

h(x, \xi )\nabla x
\^f(\xi ;x)d\xi 

=E\pi t

\bigl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi )]

\bigr] 
+

\int 
\Xi 

h(x, \xi )
\nabla x

\^f(\cdot ;x)
\^f(\cdot ;x)

\^f(\cdot ;x)d\xi 

=E\pi t

\bigl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi )]

\bigr] 
+E \^f(\cdot ;x)

\Biggl[ 
h(x, \xi )

\nabla x
\^f(\cdot ;x)

\^f(\cdot ;x)

\Biggr] 

=E\pi t

\Biggl[ 
Ef(\cdot ;x,\theta )[\nabla xh(x, \xi ) + h(x, \xi )

\nabla x
\^f(\cdot ;x)

\^f(\cdot ;x)
]

\Biggr] 
.

From Assumptions 3.4 and 3.18, we know that both the objective function h(x, \xi )
and the density function f(\xi ;x, \theta ) are C1-smooth. The Lipschitz continuous gradient
implies both h(x, \xi ) and f(\xi ;x, \theta ) are integrable functions; \nabla xh(x, \xi ) and\nabla xf(x, \xi ) are
dominated by some integrable functions. Using the chain rule, we have \nabla xh(x, \xi )f(\xi ;
x, \theta ) =\nabla xh(x, \xi ) \cdot f(\xi ;x, \theta )+h(x, \xi ) \cdot \nabla xf(\xi ;x, \theta ), and thus \nabla xh(x, \xi )f(\xi ;x, \theta ) is dom-
inated by some integrable function. The second equality holds as the interchange
between expectation and differentiation is justified by the DCT. The first equality is
also justified by the DCT in a similar manner. Also note that since h(x, \xi )\nabla xf(\xi ;x, \theta )
is dominated by some integrable function, it is also absolutely integrable, hence the
fourth equality is justified by the Fubini--Tonelli theorem.

Appendix F. Proof of Lemma 3.23.

Proof. We bound | \beta t,1| as follows:

| \beta t,1| = | E \^ft(\cdot ;xt)
\nabla xh(xt, \xi ) - Ef\ast (\cdot ;xt)\nabla xh(xt, \xi )| 

\leq max
x,\xi 

| \nabla xh(x, \xi )| 
\int 
\Xi 

\bigm| \bigm| \bigm| f\ast (\xi ;xt) - \^ft(\xi ;xt)
\bigm| \bigm| \bigm| d\xi 

\leq L\prime 
h

\int 
\Xi 

| f\ast (\xi ;xt) - f\ast (\xi ;xt+1)| + | f\ast (\xi ;xt+1) - \^ft(\xi ;xt+1)| 

+ | \^ft(\xi ;xt) - \^ft(\xi ;xt+1)| d\xi .

From Assumption 3.4 we know h(x, \xi ) is continuously differentiable, which implies
it has a bounded gradient, such that | \nabla xh(x, \xi )| \leq L\prime 

h for some L\prime 
h > 0. From As-

sumption 3.18, we know f(\xi ;x, \theta ) is continuously differentiable, which implies it has a
bounded gradient, such that | \nabla xf(\xi ;x, \theta )| \leq L\prime 

f for some L\prime 
f > 0. Therefore, for every

\xi \in \Xi ,
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BAYESIAN STOCHASTIC GRADIENT DESCENT 415

| f\ast (\xi ;xt) - f\ast (\xi ;xt+1)| \leq L\prime 
f | xt  - xt+1| \leq L\prime 

fDfat,(F.1)

| \^ft(\xi ;xt) - \^ft(\xi ;xt+1)| \leq L\prime 
fDfat(F.2)

for some Df > 0. Let q\ast t (\xi ) = f\ast (\xi ;xt)  - f\ast (\xi ;xt+1). Since limt\rightarrow \infty at = 0, and by
(F.1), we have limt\rightarrow \infty | q\ast t (\xi )| = 0 for every \xi \in \Xi . By the absolute value theorem, we
have limt\rightarrow \infty q\ast t (\xi ) = 0 for every \xi \in \Xi , that is, q\ast t converges pointwise to 0. By the
DCT, we have

lim
t\rightarrow \infty 

\int 
\Xi 

| f\ast (\xi ;xt) - f\ast (\xi ;xt+1)| = 0.(F.3)

Similarly, let \^qt(\xi ) = \^ft(\xi ;xt) - \^ft(\xi ;xt+1). From Assumption 3.20, we have limt\rightarrow \infty at =
0 and, by (F.2), we have limt\rightarrow \infty | \^qt(\xi )| = 0 for every \xi \in \Xi . By the absolute value
theorem, we have limt\rightarrow \infty \^qt(\xi ) = 0 for every \xi \in \Xi , that is, \^qt converges pointwise to
0. By the DCT, we have

lim
t\rightarrow \infty 

\int 
\Xi 

| \^ft(\xi ;xt) - \^ft(\xi ;xt+1)| = 0.(F.4)

Moreover, since K-L divergence dominates total variation distance between two dis-
tributions, we have \int 

\Xi 

| f\ast (\xi ;xt+1) - \^ft(\xi ;xt+1)| d\xi \leq dt.(F.5)

From Lemma 3.13, we have limt\rightarrow \infty dt = 0 w.p.1 (P\infty 
\theta c ). Combining (F.3), (F.4), and

(F.5) together, we know that limt\rightarrow \infty | \beta t,1| = 0 w.p.1 (P\infty 
\theta c ).

Appendix G. Proof of Lemma 3.24.

Proof. We bound | \beta t,2| as follows. From Assumption 3.4 we know h(x, \xi ) is
continuously differentiable, which implies it is an integrable function of \xi for every
x \in X . Thus,

\int 
\Xi 
h(x, \xi )d\xi = Uh for some  - \infty < Uh <\infty . From Assumption 3.18 we

know f(\xi ;x, \theta ) is continuously differentiable, which implies it has a bounded gradient,
such that | \nabla xf(\xi ;x, \theta )| \leq L\prime 

f for some L\prime 
f > 0.

| \beta t,2| =
\bigm| \bigm| \bigm| \bigm| \int 

\Xi 

h(xt, \xi )\nabla x
\widehat ft (\xi ;xt)d\xi  - 

\int 
\Xi 

h(xt, \xi )\nabla xf
\ast (\xi ;xt)d\xi 

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int 
\Xi 

h(xt, \xi )
\Bigl( 
\nabla x
\widehat ft (\xi ;xt) - \nabla xf

\ast (\xi ;xt)
\Bigr) 
d\xi 

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Xi 

h(xt, \xi )

\Biggl( \sum 
\theta \in \Theta 

(\pi t(\theta ) - \delta \theta c(\theta ))\nabla xf(\xi ;xt, \theta )

\Biggr) 
d\xi 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | Uh| \cdot L\prime 

f

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
\theta \in \Theta 

\pi t(\theta ) - \delta \theta c(\theta )

\bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0,

w.p.1 (P\infty 
\theta c ) as t\rightarrow \infty , using the consistency of \pi t(\theta ) from Proposition 3.16.
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