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In many real-world problems, we are faced with the problem of selecting the best among a finite number of

alternatives, where the best alternative is determined based on context specific information. In this work, we

study the contextual Ranking and Selection problem under a finite-alternative-finite-context setting, where

we aim to find the best alternative for each context. We use a separate Gaussian process to model the reward

for each alternative and derive the large deviations rate function for both the expected and worst-case contex-

tual probability of correct selection. We propose the GP-C-OCBA sampling policy, which uses the Gaussian

process posterior to iteratively allocate observations to maximize the rate function. We prove its consistency

and show that it achieves the optimal convergence rate under the assumption of a non-informative prior.

Numerical experiments show that our algorithm is highly competitive in terms of sampling efficiency, while

having significantly smaller computational overhead.
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1 INTRODUCTION

Ranking and Selection (R&S) studies the problem of identifying the best among a finite number
of alternatives, where the true performance of each alternative is only observed through noisy
evaluations. The settings of R&S can be typically categorized into fixed confidence and fixed budget.
In the fixed-confidence setting, the goal is to achieve a target probability of correct selection

(PCS) of the best alternative using as few evaluations as possible, while in the fixed-budget setting
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one aims to achieve a PCS as high as possible with the given sampling budget. The R&S problem
has been studied extensively over past few decades, and we refer the reader to References [2, 20]
for an overview.
In certain applications, the best alternative may not be the same across the board, and may

depend on the underlying context. The benefit ofmaking context-dependent decisions is easily seen
by a simple application of Jensen’s inequality: Ec [maxk F (k ; c )] ≥ maxk Ec [F (k ; c )], where F (k ; c )
represents the reward of selecting alternative k for the context c , and Ec [·] denotes the expectation
with respect to (w.r.t.) c . Examples of context-dependent decision making include personalized
medicine, where the best drug and dose may depend on the patient’s age, gender, and medical
history, and recommender systems, where personalized decisions have been the focus of study for
over a decade [24]. Context-dependent decision making also arises in R&S. For example, based on
a set of forecasted market conditions (contexts), we can identify a set of alternative configurations
of a complex manufacturing system, which can be simulated under any given context to determine
the most profitable configuration to use when the market conditions are realized.
In this work, we study the contextual R&S problem, in which the rewards are a function of

the context. Our goal is to identify the best alternative for each context under a fixed budget.
Much like the classical R&S problem, at each iteration, the decision maker selects an alternative-
context pair to evaluate and observes a noisy evaluation of the true reward. With a finite sampling
budget and noisy observations, it is not possible to identify the best alternative with certainty,
and we need to design a sampling policy, which takes in the current estimate of rewards and
outputs the next alternative-context pair to sample, to achieve the highest possible “aggregated”
PCS when the budget is exhausted. The aggregation is needed, because in the contextual R&S,
for any sampling policy, PCS is also context dependent, i.e., for each context c there is a PCS (c ).
This defines multiple objectives to consider when designing the sampling policy. In this work, we
consider two approaches to aggregate PCS (c )’s to a scalar objective. The first one is the expected
PCS [9, 29], denoted as PCSE , which is the expectation or the weighted average of PCS (c ) given a
set of normalized weights, and the second one is the worst-case PCS [21], denoted as PCSM , which
is the minimum PCS (c ) obtained across all contexts.
The contextual R&S problem has seen an increasing interest in past few years. Notable

works that study this problem under finite alternative-context setting include but not limited to
References [13, 16, 19, 21, 28, 29]. Reference [21] focuses on worst-case PCS , uses independent
normal random variables to model rewards, and proposes a one-step look-ahead policy with an
efficient value function approximation scheme to maximize PCSM . Reference [29] assumes that
the reward for each alternative is a linear function of the context and proposes a two-stage al-
gorithm based on the indifference zone formulation for optimizing the expected PCS . Reference
[28] considers an online framework, where the contexts arrive sequentially and real-time decision
is needed for each arriving context. Reference [16] also considers real-time decision making but
further integrates machine learning predictions for the performance estimates. The most closely
related work to ours is Reference [9]. They model the rewards using independent normal random
variables, extend the analysis in Reference [15] to derive the large deviations rate function for
the contextual PCS , and propose an algorithm that obtains the asymptotically optimal allocation
ratio for both the worst-case and expected PCS . In contrast, we use a Gaussian process, model
correlations between contexts, and extend the large deviations approach to leverage the efficient
inference brought in by our statistical model. Reference [19] also follows a large deviations ap-
proach similar to that of Reference [9]; however, their algorithm does not perform well when only
the observed data is used to make decisions.
In this work, we use a separate Gaussian process (GP) to model the reward function for

each alternative. By leveraging the hidden correlation structure within the reward function, GPs
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offer significant improvements in posterior inference over independent normal random variables,
which are commonly used in the R&S literature. Due to the finite solution space we focus on, when
compared to a simpler multi-variate Gaussian prior, GPs may appear to complicate things by in-
troducing kernels, which are typically used in continuous spaces. We prefer GPs, since they can be
characterized by a small number of hyper-parameters with the introduction of the kernel function.
In contrast, a multi-variate Gaussian prior needs specification of its covariance matrix entry by
entry, which is difficult based on limited domain knowledge. The contributions of our article are
summarized as follows:

— Using the posterior mean of the GP as the predictor of the true rewards and leveraging a
novel decomposition of the GP update formulas, we derive the large deviations rate function
for the contextual PCS, and show that it is identical for both PCSE and PCSM .

—We propose a sequential sampling policy that aims to maximize the rate function, and uses
the GP posterior mean and variance to select the next alternative-context to sample. Our
sampling policy, GP-C-OCBA, is based on the same idealized policy as the C-OCBA policy
[9], and mainly differs in the statistical model and the predictors used.

— Under a set of mild assumptions, we show that GP-C-OCBA almost surely identifies the best
alternative for each context and the sampling allocations produced by GP-C-OCBA converge
to the optimal static allocation ratio as the sampling budget goes to infinity.

—We build on this to establish, to the best of our knowledge, the first convergence rate result
for a contextual R&S procedure in the literature, We show that the resulting contextual PCS
converges to 1 at the optimal exponential rate.

— Finally, we demonstrate the performance of GP-C-OCBA in numerical experiments. We
show that GP-C-OCBA achieves significantly improved sampling efficiency when compared
with C-OCBA [9], DSCO [21], TS, and TS+ [29]; and is highly competitive against the in-

tegrated knowledge gradient (IKG) algorithm [26], which uses the same GP model but
requires significantly larger computational effort to decide on the next alternative-context
to evaluate.

2 PROBLEM FORMULATION

We consider a finite set of alternatives {k ∈ K } and a finite set of contexts {c ∈ C ⊂ Rd }, where
d is the dimension of the context variable. The assumption of finite context set is common in
the literature of contextual R&S (for example, see References [9, 19, 21, 29]). A finite set can also
be used to represent general (continuous) context spaces, where a fixed set of contexts are sampled
to discretize the space. We assume thatK is a set of categorical inputs, i.e., that there is no metric
defined over K .
The observations of the reward function, F (k, c ), is subject to noise, and the decision maker is

given a total budget of B function evaluations. The aim is to identify the true best alternative for
each context,

π ∗ (c ) := argmaxk ∈K F (k, c ),

so that a decision can be made immediately once the final context is revealed. Since F (k, c ) is
unknown and the observations are noisy, π ∗ (c ) cannot be identified with certainty using a finite
budget. If we let μB (k, c ) denote the estimate of F (k, c ) obtained using B function evaluations, then
we can write the corresponding estimated best alternative as

πB (c ) := argmaxk ∈K μB (k, c ).

Note that πB (c ) is determined by the outcome of the B function evaluations, as well as the sam-
pling policy used to allocate those B evaluations. Thus, for any given sampling policy, πB (c ) is a
random variable. We can measure the quality of the given sampling policy, for any context c, by
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the corresponding probability of correct selection (PCS) after exhausting the budget B:

PCSB (c ) = P (πB (c ) = π ∗ (c )).

As discussed in the introduction, PCSB (c ) for all contexts define multiple objectives to consider
while designing a sampling policy, with each PCS becoming larger as we allocate more samples
to the corresponding c . Since we have a total sampling budget B rather than individual budgets
for each context, it makes sense to work with a scalar objective instead. In the literature, there are
two common approaches for constructing a scalar objective from [PCSB (c )]c ∈C . The first approach
assumes that we are given a set of normalized weightsw (c ) for each c ∈ C or the context variable
follows a probability distribution {w (c ), c ∈ C}, and uses the expected PCS [9]

PCSBE = Ec∼w (c )[PCS
B (c )]

as the objective to be maximized. The other alternative takes a worst-case approach and aims to
maximize the worst-case PCS [21]

PCSBM = min
c ∈C

PCSB (c ).

We refer to either of PCSBE and PCSBM as the contextual PCS . We aim to design a sampling policy
that maximizes the contextual PCS with the given sampling budget B. We propose an iterative
approach that repeats the following steps at each iteration until the sampling budget is exhausted.

— Use the reward observations collected so far to update the statistical model of the reward
function.

—With the objective of maximizing the large deviations rate function, use the sampling policy
to decide on next alternative-context, from which to sample one more observation.

In the following sections, we introduce our statistical model, which builds on a GP that leverages
the hidden correlation structure in the reward function for more efficient posterior inference, de-
rive the large deviations rate function using the posterior mean of the GP as the predictor of the
rewards, and introduce our sampling policy, which aims to maximize the large deviations rate
function.

3 STATISTICAL MODEL

Gaussian processes are a class of non-parametric Bayesian models that are highly flexible for mod-
eling continuous functions. By restricting to a discrete subset of the solution space, they also
provide a powerful alternative to a multi-variate Gaussian prior for modeling a discrete set of
designs. In this work, we use Gaussian processes to model the reward function. We use a separate
GP for each alternative, which allows modeling the correlations between the reward function cor-
responding to each context for that alternative. As discussed at the beginning of the Section 2,
the fixed context set can be regarded as a discretized approximation of the original context space.
Although we restrict R&S only on the discretized context set, we can still estimate the reward
function F (k, c ′) with c ′ possibly outside the finite setC , using the same GP on the whole context
space. Under a mild assumption that the original context space is compact and the reward function
F (k, c ) is continuous in terms of c , the error caused by such discretization will diminish as the set
C becomes more dense in the original context space.

Let Fn (k ) = {Dn (k ),Yn (k )} denote the history of observations corresponding to alternative k up
to time n (i.e., n total observations across all alternatives), where Dn (k ) and Yn (k ) denote the set
of contexts that have been evaluated and the corresponding observations, respectively. Given the
history Fn (k ) and a set of hyper-parameters θ , the GP implies a multi-variate Gaussian posterior
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distribution on the reward function, given by

F (k,C) | Fn ,θ ∼ N (μn (k,C), Σn (C,C;k )),

where μn (k,C) and Σn (C,C;k ) are the posterior mean vector and covariance matrix, which, as-
suming Gaussian observation noise with known standard deviation σ 2 (·, ·), can be computed in
closed form as

μn (k,C) = μ0 (k,C) + Σ0 (C,Dn (k );k )A
−1
n (k ) (Yn (k ) − μ0 (Dn (k )))

	,

Σn (C,C;k ) = Σ0 (C,C;k ) − Σ0 (C,Dn (k );k )A
−1
n (k )Σ0 (Dn (k ),C;k ),

with An (k ) = Σ0 (Dn (k ),Dn (k );k ) + diaд(σ
2 (k,Dn (k ))). The prior mean, μ0, is commonly set to a

constant, e.g., μ0 (·, ·) = 0, and the prior covariance, Σ0, is commonly chosen from popular covari-
ance kernels such as squared exponential, Σ0 (c, c

′;k | θ ) = θ0 exp(− 1
2dist

2), and Matèrn,

Σ0 (c, c
′;k | θ ) = θ0

21−ν

Γ(ν )

(√
2νdist

)ν
Kν

(√
2νdist

)
,

where dist =
√
〈θ1:d (c − c ′), c − c ′〉 is the coordinate-wise scaled Euclidean distance, Γ(·) is the

gamma function, Kν (·) is the modified Bessel function of second kind, ν is a shape parameter that
is commonly set to ν = 5/2. θ0 and θ1:d denote the output-scale and the length-scale parameters,
respectively, and they are collectively referred to as the hyper-parameters of the GP. Throughout,
we keep the dependence on the hyper-parameters θ = {θ0,θ1:d } implicit in the notation. The
observation noise level, σ 2 (·, ·), is commonly unknown and gets replaced with a plug-in estimate,
which is optimized jointly with the hyper-parameters θ , using maximum likelihood or maximum
a posteriori estimation. In addition to μn (k, c ) and Σn (c, c

′;k ) to denote the posterior mean and
covariance, we use Σn (k, c ) := Σn (c, c ;k ) to denote the posterior variance.

In this work, we model the rewards for each alternative using an independent GP model, which
is defined over the context space C and trained using only the observations corresponding to
that alternative. The literature has examples of papers using both independent GP models (e.g.,
References [8, 25]) as well as a single GP defined over the whole design space (i.e., the product
space of alternative and contexts) (e.g., References [10, 27]). In any application, problem specifics
should be taken into account while choosing the model. In the setting of this article, there are a
couple of reasons for using an independent GP model for each alternative.

—With K as a set of categorical inputs, we do not have a metric defined over K . Thus, we
cannot use a covariance kernel with the categorical alternative values as the inputs. It is pos-
sible to define a latent embedding ofK into a Euclidean space and apply a covariance kernel
in the embedded space (see, e.g., References [10, 18]). However, this introduces additional
hyper-parameters to the model, resulting in a non-convex optimization problem with many
local optima for training the model. We found the predictive performance of such models to
be highly sensitive to initial values of these hyper-parameters.

— The complexity of the GP inference is dominated by the inversion of matrix An , which has
a O (n3) cost for an n × n matrix using standard techniques. If we use use a single GP fit on
all n observations, then this results in an n × n matrix An . In contrast, when using K := |K |
independent GP models, each with Nn (k ) training inputs, we have K matrices An (k ), each
of size Nn (k ) ×Nn (k ), with

∑
k Nn (k ) = n. The GP inference with independent models has a

total cost of O (∑k n
3
k
). If we assume that the samples are evenly distributed across alterna-

tives, i.e., Nn (k ) = n/K , then this results in a O (n3/K2) cost of inference for K independent
models, which is much cheaper than O (n3) for a single GP model.
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Fig. 1. Comparison of the GP predictions with those of an independent frequentist model. Left to right, the

plots show the true performances of the two alternatives (y-axis) as a function of the contexts (x-axis), the GP

predictions and the independent predictions after sampling each alternative-context pair 10 times. The error

bars denote the two standard deviations of the predictive variance. It is seen that the GP model smooths out

the errors and leads to much more reliable predictions and lower predictive variance.

However, if the set of alternatives belongs to a metric space, then using a single GP model with a
well defined covariance kernel over alternatives could lead to better sampling efficiency, and may
be preferable when the samples are expensive or the sampling budget is severely limited. Although
our derivation utilizes the independence of the models across different alternatives, the resulting
GP-C-OCBA algorithm presented in this work is agnostic to the specifics of the GP model, and
it can be used with either a single GP defined over the alternative-context space or a GP model
with the latent embedding as discussed in the first point, whenever such models are found to be
appropriate.
In Figure 1, we see a comparison of the predictions of the GP model used in this article, and

the independent model used by Reference [9] where the performance of each alternative-context
pair is modeled by a normal random variable. Both models are fitted on identical data, and the
posterior mean is plotted along with error bars denoting two standard deviations of the predic-
tive variance. The GP model smooths out the errors in the observations and leads to significantly
more accurate predictions. In addition, we see that the error bars for the GP predictions are sig-
nificantly smaller, which is attributed to the model using neighboring observations to lower the
predictive uncertainty.

4 THE LARGE DEVIATIONS RATE FUNCTION

In this section, we derive the large deviations rate function corresponding to the contextual PCS
measures. In particular, we calculate the rate at which the probability of false selection,

PFSnE = 1 − PCSnE or PFSnM = 1 − PCSnM ,

approaches zero as the number of samples n → ∞. The main result is summarized in the following
theorem.

Theorem 4.1. Suppose that the observations are given as yn (k, c ) = F (k, c ) + ϵn (k, c ) where
ϵn (k, c ) ∼ N (0,σ 2 (k, c )) and ϵn (k, c ) are independent across n,k, c ; and the best alternative, π ∗ (c ),
is unique for all c ∈ C. Using μn (k, c ) to predict the rewards, the large deviations rate function for

both PCSn
E
and PCSn

M
is given by

lim
n→∞

1

n
log PFSn∼ = −min

c ∈C
min

k�π ∗ (c )

(F (π ∗ (c ), c ) − F (k, c ))2
2(σ 2 (π ∗ (c ), c )/p (π ∗ (c ), c ) + σ 2 (k, c )/p (k, c ))

, (1)
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where PFSn∼ is either of PFS
n
E
or PFSn

M
, and p (k, c ) denotes the fraction of samples allocated to k, c .

The derivation of the result follows the ideas originating in Reference [15], withmodifications to
accommodate the use of the posterior mean μn (k, c ) instead of the sample mean.We first show that
the PFSn (c ) can be upper and lower bounded by a constant multiple of maxk�π ∗ (c ) P (μn (π

∗ (c ), c ) <
μn (k, c )). Then, if we can identify a rate function for P (μn (π

∗ (c ), c ) < μn (k, c )), then we can extend
this with a minimum over the contexts and alternatives to find the rate function of the contextual
PFS . The rest of the derivation is focused on analyzing the log of the moment generating function
of μn (k, c ), which requires a novel decomposition of the GP update formulas, and showing that it
is asymptotically equivalent to that of the sample mean. This connects us back to the derivation in
Reference [15], and we follow the steps therein to obtain the final result. The full proof is presented
in the Appendix.
It is worth remarking that the large deviations rate function presented in Theorem 4.1 is iden-

tical to the rate function derived in Reference [9] using the sample mean estimator, which is the
same as the rate function originally derived in Reference [15] with an additional minimum over
the contexts. Our analysis shows that the same rate function is still applicable when the indepen-
dent Gaussian distribution is replaced with a Gaussian process. This is not that surprising, since,
as we see in the analysis, the effects of correlations in the model disappear as more observations
are added, and two estimators are asymptotically equivalent. As a result, using a GP enables effi-
cient inference by learning the similarities between contexts, resulting in significantly improved
performance with small sampling budgets, while retaining similar asymptotical properties.

5 SAMPLING POLICY

In this section, we introduce the GP-C-OCBA policy, which aims to maximize the rate function
presented in Theorem 4.1, adapt the IKG policy from the literature to our problem setting, and
present a comparison of the computational cost of the two policies.

5.1 GP-C-OCBA

In classical R&S literature, optimal computing budget allocation (OCBA) [4] is a popular ap-
proach for maximizing the PCS asymptotically with independent Gaussian noise. Reference [9]
later extended the OCBA approach [4, 5] to the contextual R&S problem, where the author derives
theKarush-Kuhn-Tucker (KKT) conditions for maximizing the rate function (Equation (1)), and
proposes an idealized sampling policy that iteratively realizes the KKT conditions. The idealized
policy derived by Reference [9] (see Section III C of the article for derivation) relies on F (k, c ),
σ 2 (k, c ), and π ∗ (c ), which are not known in practice, as well as p̂ (k, c ), which denotes the fraction
of total samples allocated to (k, c ) so far and is different thanp (k, c ) used in the derivation to denote
the idealized asymptotic allocation rate. For a practical algorithm, Reference [9] replaces F (k, c )
and σ 2 (k, c ) with the sample mean and variance, respectively, and π ∗ (c ) with the corresponding
estimate to define the C-OCBA policy.
As shown in Theorem 4.1, using the GP model yields the same rate function as using the sample

mean predictors in Reference [9], so we take a similar approach and use the posterior mean μn (k, c )
and the posterior variance Σn (k, c ), which are our estimates based on n observations collected so
far, in place of F (k, c ) and σ 2 (k, c )/p̂ (k, c ) in the idealized policy. The resulting GP-C-OCBA policy
is presented in Algorithm 1.
Our experiments (in Section 7) show that using the GP model with the GP-C-OCBA sampling

strategy leads to significantly higher contextual PCS using the same sampling budget, thanks to
the improvements in the posterior inference from using a statistical model that leverages the hid-
den correlation structure in the reward function, i.e., correlation between reward functions under
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ALGORITHM 1: GP-C-OCBA for Contextual R&S

1: Use a pre-determined rule to allocate initial samples to each alternative. Let N0 be the total
number of initial observations used.

2: for n = N0, . . . ,B − 1 do
3: Update the GP model with the available observations, calculate μn (k, c ), Σn (k, c ),π

n (c ).
4: For all c ∈ C and k � πn (c ), calculate

ζ (k, c ) =
(μn (π

n (c ), c ) − μn (k, c ))2

Σn (πn (c ), c ) + Σn (k, c )
;

and set

ψ (1) (c ) =
p̂ (πn (c ), c )

Σn (πn (c ), c )
; ψ (2) (c ) =

∑
k�πn (c )

p̂ (k, c )

Σn (k, c )
.

5: Solve for (k̃∗, c̃∗) = argmink�πn (c ),c ∈Cζ (k, c ), and draw an additional sample from

(πn (c̃∗), c̃∗), ifψ (1) (c̃∗) < ψ (2) (c̃∗), and draw an additional sample from (k̃∗, c̃∗) otherwise.
6: end for

7: Return: πB (c ) = argmaxk μB (k, c ), c ∈ C as the set of predicted best alternatives.

different contexts. An additional benefit of our approach over Reference [9] is in its applicability
when the initial sampling budget is too small to draw multiple samples from each alternative. Us-
ing normal random variables to model each alternative-context pair requires a small number of
samples from each pair for the initial estimate of the variance, which may limit the applicability of
the algorithm when the sampling budget is limited. The GP prior, however, can be trained using
very few samples for each alternative, rather than each alternative-context pair, thus the modified
algorithm can be used even with a limited sampling budget.
A final remark about the GP-C-OCBA is that in the extreme case where there is only

a single context, the sampling policy is equivalent to the OCBA-2 algorithm presented in
Reference [22], which has been shown to achieve the optimal convergence rate in the standard
R&S setting. Thus, GP-C-OCBA can be viewed as a principled extension of a rate optimal R&S
algorithm to the contextual R&S setting.

5.2 Integrated Knowledge Gradient

On a related note, another applicable method for the contextual R&S problem is the IKG algorithm,
which has been developed for the closely related problem of contextual Bayesian optimization. In
this section, we adapt the IKG algorithm to our setting, and compare it with GP-C-OCBA. IKG
offers a strong benchmark for our method, since it is based on the same GP model and has demon-
strated superior sampling efficiency in prior work [26, 27].

Knowledge Gradient (KG) [11] is a value-of-information type policy that was originally pro-
posed for the R&S problem and later expanded to global optimization of black-box functions. It is
well known for its superior sampling efficiency, which comes at a significant computational cost.
For a given context c ′, we can write the KG factor, which measures the expected improvement in
value of the maximizer for context c ′ from adding an additional sample at (k, c ), as

KG(k, c ; c ′) = En[max
k ′ ∈K

μn+1 (k
′, c ′) | (kn+1, cn+1) = (k, c )] − max

k ′ ∈K
μn (k

′, c ′).

In the classical R&S setting, where c and c ′ are redundant (i.e., there is only a single context),
the KG policy operates by evaluating the alternative k∗ = argmaxk KG(k, c ; c ). To extend this to
the contextual Bayesian optimization problem, References [8, 26, 27] each study an integrated (or
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summed) version of KG, under slightly different problem settings, where either the context space
or both alternative-context spaces are continuous. Themain differences between these three works
are in how they approximate and optimize the integrated KG factor in their respective problem
settings. For our problem setting, these approaches are equivalent, and we refer to the sampling
policy as IKG. We use IKG as a benchmark to evaluate the sampling efficiency of our proposed
algorithm.
The IKG factor is simply a weighted sum of KG factors corresponding to each context. It mea-

sures the weighted sum of the improvement in value of maximizers, and is written as

IKG(k, c ) =
∑
c ′ ∈C

KG(k, c ; c ′)w (c ′).

At each iteration, the IKG policy samples the alternative-context pair thatmaximizes the IKG factor,

(k̃∗, c̃∗) = argmaxk ∈K ,c ∈C IKG(k, c ). The IKG policy is summarized in Algorithm 2.

ALGORITHM 2: IKG for Contextual R&S

1: Use a pre-determined rule to allocate initial samples to each alternative. Let N0 be the total
number of initial observations used.

2: for n = N0, . . . ,B − 1 do
3: Update the GP model with the available observations, calculate μn (k, c ) and Σn (c, c

′;k ).
4: For all c, c ′ ∈ C and k ∈ K , use Algorithm 1 of Reference [26] to calculate KG(k, c ; c ′) and

set
IKG(k, c ) =

∑
c ′ ∈C

KG(k, c ; c ′)w (c ′).

5: Solve for (k̃∗, c̃∗) = argmaxk ∈K ,c ∈CIKG(k, c ), and draw an additional sample from (k̃∗, c̃∗).
6: end for

7: Return: πB (c ) = argmaxk μB (k, c ), c ∈ C as the set of predicted best alternatives.

The main difficulty with using the IKG policy is its computational cost. In the finite
alternative-context setting that we are working with, the KG(k ; c ) can be computed exactly using
Algorithm 1 from [11], which has a cost of O (K logK ) for any pair (k, c ), given μn (·, ·) and Σn (·, ·).
This translates to an O ( |C|K logK ) cost for calculating the IKG factor for a given (k, c ). In total, to
find the next pair to sample using IKG costs O ( |C|2K2 logK ) for calculating the IKG factors, and
an additional O (n3

k
+ |C|2nk + |C|n2k ) (when the unchanged posterior terms are re-used between

iterations) to calculate posterior mean and covariance matrices, wherenk denotes the total number
of samples allocated to alternative k .
However, the cost of GP-C-OCBA is dominated by the cost of calculating the posterior mean

and variance for each alternative-context pair, which has a total cost of O (n3
k
+ |C|n2

k
) (when

the unchanged posterior terms are re-used between iterations). Note that we avoid the |C|2nk
term, since our algorithm only requires the posterior variance, as well as the O ( |C|2K2 logK ) cost
of IKG calculations. This puts GP-C-OCBA at a significant advantage in terms of computational
complexity.

6 CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of the GP-C-OCBA algorithm, and show that
it identifies π ∗ (c ) almost surely as the simulation budget B → ∞. In addition, under the assumption
of an independent prior distribution, we show that the allocation ratio produced by GP-C-OCBA
converges almost surely to the optimal allocation ratio obtained by maximizing the rate function
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in Theorem 4.1. Finally, we build on this result to show that the contextual PFS converges to zero
at the optimal exponential rate.

6.1 Consistency of GP-C-OCBA

We prove the result under a set of mild assumptions.

Assumption 6.1.

(1) The best alternative, π ∗ (c ), is unique for all c ∈ C.
(2) The observation noise is normally distributed with known variance, i.e., ϵn (k, c ) ∼
N (0,σ 2 (k, c )) with known σ 2 (k, c ), and ϵn (k, c ) are independent across n,k, c .

(3) The GP prior is fixed across iterations.
(4) The prior correlation coefficient between any two contexts for any given alternative,

Corr0 (c, c
′;k ) :=

Σ0 (c,c
′;k )√

Σ0 (k,c )Σ0 (k,c ′)
, is strictly between [−1, 1], i.e., −1 < Corr0 (c, c

′;k ) < 1.

In other words, Σ0 (C,C;k ) is a strictly positive definite matrix.

The first three points are common assumptions from the literature that simplify the analysis.
The known observation noise level is needed for exact GP inference, and the assumption of a fixed
prior eliminates the need to study the hyper-parameters in the analysis. In practice, the form of
the GP prior is kept fixed, however, the hyper-parameters of the GP are periodically updated to
better fit the data, which is typically done via maximum likelihood estimation. Though showing
this rigorously for an adaptive sampling policy is a daunting task, the hyper-parameters of the GP
prior typically converge to some final value and remain fixed after that. The last point is merely
technical, since in practice it would not make sense to consider two contexts that are assumed to
be perfectly correlated. The following lemma shows that this implies that Σn (C,C;k ) must remain
strictly positive definite. Note that since the posterior variance is a deterministic function of the
sampling decisions (i.e., it is independent of the observations) the following statement holds for
any sequence of sampling decisions.

Lemma 6.2. If −1 < Corr0 (c, c
′;k ) < 1, then −1 < Corrn (c, c

′;k ) < 1,∀n ≥ 0.

The proofs of this and the following statements are included in the online supplement. The
posterior variance of a GPmodel at a given point decreases monotonically as we add more samples
to the model. Thus, for a given alternative-context, the posterior variance in the limit is 0 if that
pair gets sampled infinitely often, and is a strictly positive value otherwise. The lemma below
shows this rigorously.

Lemma 6.3. Under Assumption 6.1, Σn (k, c ) → 0 almost surely if and only if Nn (k, c ) → ∞.

The intuitive interpretation of Lemma 6.3 is that, despite modeling correlations between con-
texts, we cannot drive the uncertainty about the reward function of an alternative-context to zero,
unless we collect infinitely many observations for that pair. This rules out the pathological cases
where the statistical model treats a reward estimate as certain purely based on observations of
other alternative-context pairs.
We will build on these results to show that GP-C-OCBA policy samples each alternative-context

pair infinitely often. We will first establish that if a given context gets sampled infinitely often, all
alternative-context pairs corresponding to that context must get sampled infinitely often.

Lemma 6.4. Under Assumption 6.1, using the GP-C-OCBA policy, for any c ∈ C,

lim
n→∞

∑
k ∈K

Nn (k, c ) = ∞ =⇒ lim
n→∞

Nn (k, c ) = ∞,∀k ∈ K , almost surely.
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If we only had a single context, then Lemma 6.4 would be sufficient to prove the consistency
of the algorithm. However, with multiple contexts, we need to ensure that a strict subset of con-
texts cannot consume all observations after a certain iteration. The following theorem extends
Lemma 6.4 to show that, as the budget goes to infinity, all alternative-context pairs are sampled
infinitely often by GP-C-OCBA.

Theorem 6.5. Under Assumption 6.1, the GP-C-OCBA policy samples each alternative and each

context infinitely often, i.e.,

lim
n→∞

Nn (k, c ) = ∞,∀k ∈ K , c ∈ C, almost surely. (2)

Allocating infinitely many samples to each alternative-context pair would have been sufficient
to prove consistency if we did not model any correlation between contexts. However, we are not
aware of any general consistency results regarding the GP posterior mean, so we need to ensure
that the predictions converge to the true reward function. The following lemma establishes this
result.

Lemma 6.6. Under Assumption 6.1, if limn→∞ Nn (k, c ) = ∞, then μn (k, c ) → F (k, c ) almost surely.

Coupled with Theorem 6.5, Lemma 6.6 shows that using GP-C-OCBA to allocate the observation
budget, the posterior mean converges almost surely to the true reward for all alternative-context
pairs. Thus, it follows that the predicted best alternative must almost surely converge to the correct
best alternative for all contexts. The following corollary summarizes the result.

Corollary 6.7. Under conditions of Theorem 6.5, GP-C-OCBA policy is strongly consistent, i.e.,

πB (c ) → pi∗ (c ),∀ c almost surely as the observation budget B → ∞.

6.2 Convergence to the Optimal Allocation Ratio and the Convergence Rate

The results of the previous subsection show that, given enough samples, GP-C-OCBA is guaran-
teed to identify the optimal policy, π ∗ (c ). However, these are asymptotic results, and they do not
provide any insight into how fast this convergence occurs. Under certain conditions on the prior
covariance matrix, we can show that the allocation ratio produced by GP-C-OCBA converges to
the optimal static allocation ratio, which is obtained by maximizing the rate function given in
Theorem 4.1.

Let

η(k, c ) =
(F (π ∗ (c ), c ) − F (k, c ))2

σ 2 (π ∗ (c ), c )/p∗ (π ∗ (c ), c ) + σ 2 (k, c )/p∗ (k, c )
and

η̂n (k, c ) =
(F (π ∗ (c ), c ) − F (k, c ))2

σ 2 (π ∗ (c ), c )/p̂n (π ∗ (c ), c ) + σ 2 (k, c )/p̂n (k, c )
.

The work of Reference [9] shows that the optimal static allocation ratio, i.e., the allocation ratio
maximizing the large deviations rate function, satisfies the following conditions.

Lemma 6.8. (Lemma 1 of Reference [9]) The optimal static allocation ratio, p∗ (k, c ), satisfies the
following:

p∗ (π ∗ (c ), c )2

σ 2 (π ∗ (c ), c )
=
∑

k�π ∗ (c )

p∗ (k, c )2

σ 2 (k, c )
,∀c ∈ C,

η(k, c ) = η(k ′, c ),∀c ∈ C,k � k ′ � π ∗ (c ),

η(k, c ) = η(k ′, c ′),∀c � c ′,k � π ∗ (c ),k ′ � π ∗ (c ′).

The following result states that the allocation ratio produced by GP-C-OCBA converges to
p∗ (k, c ), i.e., that GP-C-OCBA asymptotically obtains the optimal static allocation ratio.
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Theorem 6.9. Suppose that Assumption 6.1 holds. Then,

p̂n (π
∗ (c ), c )2

σ 2 (π ∗ (c ), c )
−
∑

k�π ∗ (c )

p̂n (k, c )
2

σ 2 (k, c )
→ 0,∀c ∈ C,

η̂n (k, c ) − η̂n (k ′, c ) → 0,∀c ∈ C,k � k ′ � π ∗ (c ),

η̂n (k, c ) − η̂n (k ′, c ′) → 0,∀c � c ′,k � π ∗ (c ),k ′ � π ∗ (c ′),

almost surely as n → ∞. In other words, p̂n (k, c ) satisfies the conditions of Lemma 6.8 and converges

to p∗ (k, c ) as n → ∞.
The proof is borrowed from the proof of Theorem 4 in Reference [9], where the authors pro-

posed a similar algorithm as GP-C-OCBA. The difference between the two algorithms is that in
Reference [9] they used sample mean and sample variance to estimate the true expected perfor-
mance and observation noise variance, whereas we replace the sample mean with the posterior
mean μn (k, c ) and replace the sample variance with Nn (k, c )Σn (k, c ) for alternative k and context
c . The validity of the proof relies on the convergence of the two posterior estimators. While the
Gaussian posterior mean μn (k, c ) is guaranteed to converge to the true value F (k, c ) almost surely
as long as Nn (k, c ) goes to infinity (see Reference [11]), the convergence of Σn (C,C ;k ) is more
subtle, since the different components converge at different rates. This may be of independent in-
terest for sequential sampling with GP model. We summarize the convergence result of posterior
covariance matrix in Lemma 6.10.

Lemma 6.10. Suppose that Assumption 6.1 holds. Then, Σn (k, c ) =
σ (k,c )2

Nn (k,ci )
+ O ( 1

Nn (k,ci )2
) ∀k ∈

K , c ∈ C, almost surely.

Lemma 6.10 is a stronger result of Lemma 6.3, since asNn (k, c ) tends to infinity, Lemma 6.10 tells
us that Σn (k, c ) converges to 0 at the rate

1
Nn (k,c )

as well as the limit it converges to after dividing

the rate. With the convergence of posterior estimators, we have the following Lemma 6.11, which
guarantees that all the budget ratio assigned to any context-alternative p̂n (k, c ) is positive in the
long run.

Lemma 6.11. Suppose that Assumption 6.1 holds. Then, lim
n→∞

inf p̂n (k, c ) > 0, ∀k ∈ K , c ∈ C
almost surely.

Proof. We borrow the same proof of Lemmas 6–9 in Reference [9], where the estimator for
μ (k, c ) and σ 2 (k, c ) is replaced by μn (k, c ) and Nn (k, c )Σn (c, c ;k ), respectively. �

Although Theorem 6.9 shows that the sample allocation ratio of GP-C-OCBA converges to
the optimal allocation ratio, this, by itself, does not say much about the actual convergence rate
of the contextual PCS . In the following, we extend the convergence rate result presented by
Reference [22] for the OCBA algorithm to the contextual setting. We show that the contextual
PFS converges to 0 at the optimal exponential rate. To the best of our knowledge, this is the first
convergence rate result in the literature for a contextual R&S algorithm.

Theorem 6.12. Under the conditions of Theorem 6.9, and using an uninformative prior, i.e.,

Σ0 (k, c ) = ∞, the contextual probability of false selection produced by GP-C-OCBA policy decreases

at the optimal exponential rate, i.e.,

PFSn∼ � e−η
∗n/2, where η∗ = min

c ∈C
min

k�π ∗ (c )
η(k, c ),

where PFSn∼ is either of PFS
n
E
or PFSn

M
, and � denotes logarithmic equivalence, i.e., for two sequences

an � bn ⇐⇒ limn→∞
1
n
log an

bn
= 0.
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Proof. Recall from the proof of Theorem 4.1 that PFSn∼ can be lower and upper bounded by a
constant (1 and |C|( |K | − 1), respectively) multiple of

max
c ∈C

max
k�π ∗ (c )

P (μn (π
∗ (c ), c ) < μn (k, c )).

With the prior as specified, the posterior mean is equal to the sample mean. In which case [3],

P (μn (π
∗ (c ), c ) < μn (k, c )) = Φ

(
−
√
η̂n (k, c )n

)
,

where Φ(·) denotes the cumulative distribution function of the standard Gaussian distribution.
Since for x < 0, Φ(x ) � exp(−x2/2) [17], we get

P (μn (π
∗ (c ), c ) < μn (k, c )) � exp (−η̂n (k, c )n/2) .

By Theorem 6.9, p̂n (k, c ) → p∗ (k, c ), which implies that η̂n (k, c ) → η(k, c ) as n → ∞. Thus, putting
it all together, we get

PFSn∼ � exp

(
−
(
min
c ∈C

min
k�π ∗ (c )

η(k, c )

)
n/2

)
. �

Note that Theorem 6.9 is an extension of the result originally proved for C-OCBA [9] and the
convergence rate result in Theorem 6.12 also applies to C-OCBA under the assumption of known
observation noise. This can be interpreted as saying that GP-C-OCBA and C-OCBA are asymptot-
ically equivalent. A natural question in this case is whether GP-C-OCBA can be shown to have an
advantage over C-OCBA under a finite budget setting. Though it is difficult to show this rigorously,
we can argue for it in an informal way. Bymodeling the performance of an alternative-context with
a Gaussian process, we implicitly assume that the contexts that are similar will have similar per-
formances, with the particular measure of similarity being learned from the data. As a result, for
a given alternative-context, by learning about the contexts that are similar to this context, we can
refine our model of the contexts without having to evaluate the context itself. This is similar to
the linearity assumptions that we see in the literature, e.g., in Reference [29]. In their case, there
is an explicit assumption of linearity, which, if holds true, allows for evaluating only the extreme
contexts to determine the policy for all contexts. Due to the assumed linearity, the performance
of any given context can be estimated by solving the regression equations. There are many cases
where linearity provides a good approximation, but there are many others where it does not hold
true at all. Our modeling of similarity, as opposed to linearity, works in a similar way. It does
not eliminate the need to evaluate all contexts. However, by allowing inference on one context’s
performance via other similar contexts’ evaluations, it reduces the number of evaluations needed,
leading to a better finite time performance. An example of this was shown in Figure 1, where we
saw that the GP posterior mean produced predictions that resembled the true rewards much more
closely, while the sample mean predictor required many more samples to refine the estimates.

6.3 Estimation for Contexts Outside C
In this section, we briefly discuss if a context c ′ � C is given, how we estimate F (k, c ′) and what
statistical guarantee we can say about this estimate. As discussed in Section 3, we can use the same
GP model by incorporating the point c ′ in the context set. Then, we can calculate the posterior
estimator for any alternative-context pair (k, c ′) in the same way as

μn (k, c
′) = μ0 (k, c

′) + Σ0 (c
′,Dn (k );k )A

−1
n (k ) (Yn (k ) − μ0 (Dn (k )))

	

and

Σn (c
′, c ′;k ) = Σ0 (c

′, c ′;k ) − Σ0 (c
′,Dn (k );k )A

−1
n (k )Σ0 (Dn (k ), c

′;k ).
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Since no simulation is run under context c ′, μn (k, c
′) cannot converge to F (k, c ′). This can also be

reflected in the posterior variance Σn (c
′, c ′;k ), which represents the confidence level for reward

estimation. The following result quantifies such confidence level in the asymptotic sense. It is a
byproduct from the proof of Lemma 6.10.

Corollary 6.13. Suppose Assumption 6.1 holds. Given any context c ′, not necessarily in C,

lim
n→∞

Σn (c
′, c ′;k ) = Σ0 (c

′, c ′;k ) − Σ0 (c
′,C;k ) (Σ0 (C,C;k ))−1Σ0 (C, c ′;k ) almost surely.

The expression on the right hand side provides us with some intuition. Let Z (C ′) be a multivari-
ate normal random vector following N (μ0 (k,C′), Σ0 (C′,C′;k )) , where C′ = C

⋃{c ′}. Then, the
posterior distribution for (k, c ′) converges to a normal distribution with variance being the same
as that of the conditional distribution Z (c ′) |Z (C). This is because as n → ∞, we gather sufficient
information for each (k, c ) with c ∈ C. The posterior distribution for (k,C) will concentrate on
the true value F (k,C), and hence the posterior distribution for (k, c ′) converges to the marginal
distribution of Z (c ′) |Z (C) as Z (C) = F (k,C). In particular, if c ′ ∈ C, then we have Σn (c

′, c ′;k )
converges to 0, which coincides with Lemma 6.2 and Lemma 6.10. If c ′ � C and Σ0 (C′,C′;k ) is
positive definite, then Σn (c

′, c ′;k ) cannot converge to 0, meaning the uncertainty level remains
positive, and the value of this uncertainty level is determined by the prior correlation, which usu-
ally depends on the distance from c ′ to C.

7 NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of our algorithm on a set of synthetic benchmark
problems. We compare our algorithmwith the algorithms by Reference [21] (DSCO), Reference [9]
(C-OCBA), and with the IKG algorithm as described in Section 5.2 as well as with its cheaper ap-
proximation LEVI as presented in Reference [25]. In addition, we also compare against a modified
version of the two-stage algorithms (TS and TS+) proposed by Reference [29]. Both TS and TS+
are designed for the fixed confidence setting under a linearity assumption on the reward function.
We adopt them by keeping the allocation ratios suggested by the algorithms but scaling down
the number of samples to the given budget. As recommended by the authors, we use the extreme
design for both TS and TS+, with the extreme design being restricted to the points in the context
set. We chose these benchmarks, since DSCO and C-OCBA were both proposed for the contextual
R&S with the finite alternative-context setting that is studied in this article and has demonstrated
superior performance in experiments; and IKG was chosen, since KG type algorithms, including
variants of IKG, have consistently demonstrated superior sampling efficiency under various prob-
lem settings.
We implemented the experiments in Python, and used the GPmodels from the BoTorch package

[1] with the default priors. We used the Matern 5/2 kernel in all experiments, and trained the GP
hyper-parameters every 10 iterations using the fit_gpytorch_mll routine, which uses the L-BFGS-
B algorithm to maximize the a posteriori likelihood. The code is available at https://github.com/
saitcakmak/contextual_rs.

7.1 Synthetic Test Functions

For the experiments, we generate the true rewards, F (k, c ), by evaluating common global opti-
mization test functions on randomly drawn points from the function domain. We use the first
dimension of the function input for the alternatives, i.e., each alternative corresponds to a fixed
value of x1, and spread the alternatives evenly across the corresponding domain. The remaining
input dimensions are used for the contexts, and thus contexts are d − 1 dimensional vectors for
a d dimensional test function. Put together, this corresponds to F (k, c ) = f (xk ,xc ) where xk and
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xc are fixed realizations of 1 and d − 1 dimensional uniform random variables, respectively. The

rewards are observed with additive Gaussian noise with standard deviation set as
fmax−fmin

100/3 , where

fmax and fmin are estimated using 1, 000 samples drawn uniformly at random from the function
domain. We use the following functions in our experiments:

— The 2D Branin function, evaluated on [−5, 10] × [0, 10]:
f (x ) = −(x2 − bx21 + cx1 − r )2 − 10(1 − t )cos (x1) − 10,

where b = 5.1/(4π 2), c = 5/π , r = 6, and t = 1/(8π ). We run two experiments using the
Branin function, both with 10 alternatives and 10 contexts. The first objective is the expected
PCS with weights set arbitrarily as [0.03, 0.07, 0.2, 0.1, 0.15, 0.2, 0.02, 0.08, 0.1, 0.05], and the
second objective is the worst-case PCS . We draw 2 samples from each alternative-context
pair for the initialization phase. For TS and TS+, the extreme design consists of the smallest
and largest context values, with each receiving 10 samples from each alternative for the
initialization phase.

— The 2D Griewank function, evaluated on [−10, 10]2:

f (x ) = −
d∑
i=1

x2i
4000

+

d∏
i=1

cos

(
xi√
i

)
− 1.

We run two experiments with the Griewank function, using 10 alternatives and 20 contexts.
We use the expected PCS with uniform weights and the worst-case PCS , and initialize with
2 samples from each alternative-context pair. For TS and TS+, the extreme design consists of
the smallest and largest context values, with each receiving 20 samples from each alternative
for the initialization phase.

— The 3D Hartmann function, evaluated on [0, 1]3:

f (x ) =
4∑
i=1

αi exp
���−

3∑
j=1

Ai j (x j − Pi j )2��� ,
where the constants α , A, and P are given in Reference [30]. We run a single experiment
with 20 alternatives and 20 contexts, using the expected PCS with uniform weights. Since
the number of alternative-context pairs is quite large in this experiment, we select only
6 contexts for each alternative, uniformly at random, and draw a single sample from these
contexts for the initial stage. Due to insufficient initial sampling budget, we do not run DSCO
and C-OCBA for this problem. Since it is difficult to define the extreme design over a discrete
set of points in two dimensions, we skip TS and TS+ as well and only run the GP-based
algorithms for this problem.

— The 8D Cosine8 function, evaluated on [−1, 1]8:

f (x ) = 0.1

8∑
i=1

cos (5πxi ) −
8∑
i=1

x2i .

We run a single experiment with the mean PCS objective with uniform weights. We use
20 alternatives and 40 contexts. For the initial stage, we randomly select 16 contexts for
each alternative, and draw a single sample from these contexts, which is again due to the
large number of alternative-context pairs in this experiment. Similar to the previous exper-
iment, due to insufficient initial sampling budget, we do not run DSCO and C-OCBA for
this problem. Since it is difficult to define the extreme design over a discrete set of points
in 7 dimensions, we skip TS and TS+ as well and only run the GP-based algorithms for this
problem.
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Fig. 2. Experiments using Branin function with PCSE and PCSM , Griewank function with PCSE and PCSM ,

Hartmann function with PCSE , and Cosine8 with PCSE . The plots show the empirical contextual PCS on the

y-axis, and the number of iterations/samples (post-initialization) on the x-axis. The shaded area denotes the

95% confidence interval.

7.2 Results of Synthetic Test Functions

The experiment results are plotted in Figure 2. We ran each experiment for 2, 000 iterations, except
for IKG in Hartmann and Cosine8 functions, which were run for 1, 000 iterations due to their exces-
sive cost. The plots show the empirical contextual PCS , estimated using 100 replications. The first
four plots compare all algorithms. However, the last two only compare GP-C-OCBA, LEVI and IKG,
due to small initial budget preventing drawing of multiple samples from each alternative-context
pair, which is necessary to form an initial estimate of sample mean and variance that is used by
DSCO and C-OCBA, as well as the difficulty of setting up the extreme design for the two-stage
algorithms. In all four of the experiments comparing all algorithms, we see that the algorithms
using the GP models achieve the highest contextual PCS , with the exception of LEVI, which per-
forms poorly on worst-case PCS . This demonstrates the benefit of using a statistical model that
leverages the hidden correlation structure in the reward function, and also highlights the impor-
tance of using a sampling strategy that provides a good coverage of the search space. In particular,
for the worst-case PCS , we see that the DSCO and C-OCBA perform significantly worse in both
problems, with the performance of TS and TS+ also diminishing significantly. For TS and TS+, this
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Table 1. Comparison of Computational Cost of IKG, LEVI, and GP-C-OCBA

Algorithm Branin PCSE /PCSM Griewank PCSE /PCSM Hartmann Cosine8

IKG 1,218 3,807 11,096 43,224
LEVI 295 433 576 683
GP-C-OCBA 249 293 441 544

We report the average wall-clock time, in seconds, for running 1,000 iterations of the given experiment.

The experiments were run on a shared cluster using four cores of the allocated CPU. To save on space, we

report the average run-time (in seconds) of the two objectives for Branin and Griewank.

clearly demonstrates the weakness of using a linear model when the underlying function is non-
linear, which leads to 0 worst-case PCS in the Griewank function. Similarly, the poor performance
of DSCO and C-OCBA in the worst-case PCS is explained by a total of 2, 400 samples being far
from sufficient to form reliable estimates for 200 alternative-context pairs using an independent
statistical model. On a related note, although a comparison with opportunity cost as the perfor-
mance measure is beyond the scope of this article, we include the result for opportunity cost in
Appendix B. Both IKG and LEVI were originally designed to minimize opportunity cost, and it is
not surprising that they outperform GP-C-OCBA when transitioning to the performance measure
of opportunity cost. It is worthwhile to use different methods for different performance measures.
Although in some experiments GP-C-OCBA is slightly trailing behind IKG, which attributes to

its asymptotic property, we see that GP-C-OCBA is highly competitive against IKG, while having
significantly smaller computational complexity. As a cheaper alternative to IKG, LEVI provides
good performance on two of the problems, while falling behind in others, particularly when con-
sidering the worst-case PCS . The wall-clock times for the experiments are reported in Table 1.
We see that even in the experiments with smallest number of alternatives and contexts, the IKG
algorithm takes about 5 times as long to run, with the ratio increasing significantly to about 75
times as we move to larger experiments. The run time of LEVI is slightly longer than that of GP-
C-OCBA, which makes it a good alternative in settings where it shows good performance. The
reported run times are for 1, 000 iterations of a full experiment, and include the cost of fitting the
GP model, which is identical for all algorithms. It is worth noting that the cost of evaluating the
test functions in these experiments is insignificant compared to the running time. As the cost of
function evaluation increases, the results would look nicer for IKG, though it would still remain
the more expensive alternative.
Overall, the experiments show that GP-C-OCBA is highly competitive in terms of sampling

efficiency and computational cost. We believe that this makes GP-C-OCBA an attractive option
for any practitioner that is faced with a contextual R&S problem.

7.3 Extension to Continuous Context Spaces

In this article, we have focused on the setting of discrete context spaces and developed the GP-C-
OCBA algorithm under this assumption. However, there are applications where a user might be
interested in using our approachwith a continuous context set. In this section, we describe a simple
extension of GP-C-OCBA to support continuous contexts, and present results comparing it with
random sampling and LEVI on several synthetic test problems. We use the same problems from
Section 7.2 with the Expected PCS objective. For each problem, we use the first input dimension
for the alternatives with the same number of alternatives as before, and use the remaining input
dimensions as the continuous context set.
As defined in Algorithm 1, GP-C-OCBA cannot be used with continuous contexts. The pres-

ence of an infinite number of contexts will lead to p̂ (k, c ) evaluating to zero with probability one,
preventing us from making a meaningful comparison in step 5. To overcome this issue, we use
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Fig. 3. Continuous context experiments using Branin, Griewank, Hartmann, and Cosine8 functions. The

plots show the empirical expected PCS on the y-axis, and the number of iterations/samples (post-

initialization) on the x-axis. The shaded area denotes the 95% confidence interval.

Table 2. Comparison of Computational Cost of Random Sampling,

LEVI, and GP-C-OCBA

Algorithm Branin Griewank Hartmann Cosine8

Random Sampling 267 281 618 523
LEVI 3050 2651 11510 19300
GP-C-OCBA 3084 1445 6802 4260

We report the average wall-clock time, in seconds, for running 1,000 iterations of

the given experiment. The experiments were run on a shared cluster using four

cores of the allocated CPU.

kernel density estimation, defined as p̂ (k, c ) =
∑n

i=1 e
−‖c−ci ‖21{k = ki }, which values each obser-

vation from a context proportional to its proximity to the context under consideration. With this
modification, the rest of the algorithm is followed as is. For optimizing both GP-C-OCBA (mini-
mizing ζ (k, c )) and LEVI in this finite alternative - continuous context space, we follow a two step
approach. First, we solve the continuous optimization problem minc [mink�πn (c ) ζ (k, c )] (and the
correspondingmaximization problem for LEVI) to find the context, thenwe find the corresponding
alternative by fixing the context.
The results are shown in Figure 3 with the run times reported in Table 2. Of the four problems,

we see LEVI and GP-C-OCBA performing quite similarly on the first two, and each one performing
better than the other in one of the remaining problems. Overall, we see the PCS curves flattening
out towards the end of the experiments, which is explained by both algorithms getting greedy and
allocating a large portion of the budget on the predicted best alternatives. In addition, for the higher
dimensional experiments, the expected PCS values are rather small, which highlights the difficulty
of learning the best alternative across a high dimensional context space. Except for the Branin
experiment, LEVI is considerably more expensive to run than GP-C-OCBA, which again highlights
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GP-C-OCBA as a low cost, sample effective algorithm. It is also worth noting that the extension
presented in this section is a very simple extension of GP-C-OCBA to continuous contexts. It
is quite possible that there are other extensions that work much better, however a theoretically
grounded study of such extensions is beyond the scope of this work.

8 CONCLUSION

We studied the contextual R&S problem under finite alternative-context setting, using a separate
GP to model the reward for each alternative. We derived the large deviations rate functions for
the contextual PCS , and proposed the GP-C-OCBA algorithm that aims to maximize the rate func-
tion using the information available in the GP posterior. We proved consistency of GP-C-OCBA.
We showed that its allocations converge to the optimal allocation ratio and the resulting contex-
tual PFS converges to 0 at the optimal exponential rate. In numerical experiments with both finite
and continuous contexts space, GP-C-OCBA was shown to achieve significant sampling efficiency,
while having a significantly smaller computational overhead compared to other competitive al-
ternatives. A simple extension of GP-C-OCBA to the continuous context space is also presented,
which shows promising results and motivates future work in this direction.

In this work, we have followed a common practice in the R&S literature of developing sampling
strategies with a focus on maximizing the large deviations rate function. An equally valuable ap-
proach, popular in the Bayesian optimization literature, is to develop algorithms based on amyopic
optimality criterion. Although most acquisition functions focus on maximizing a reward (or mini-
mizing regret), an acquisition function based on 0–1 loss could be developed to maximize the PCS.
Development of acquisition functions such as opportunity cost (see References [6, 12, 14]) presents
an interesting direction for future work.

APPENDICES

A PROOF OF THEOREM 4.1

With n denoting the total number of observations/samples, let p (k, c ) and Nn (k, c ) = np (k, c )
denote the fraction and the total number, respectively, of samples allocated to (k, c ). Both p (k, c )
and N (k, c ) are determined by the sampling policy and are assumed to be strictly positive. We
ignore the technicalities arising from N (k, c ) not being an integer. For the sake of simplicity, we
leave implicit the dependency of the probabilities and other quantities on the sampling policy. We
start with the following lemma, which is crucial in proving the theorem.

Lemma A.1. Under assumptions of Theorem 4.1, for k � π ∗ (c ),

lim
n→∞

1

n
log P (μn (π

∗ (c ), c ) < μn (k, c )) = −G (k,c ) (p (π
∗ (c ), c ),p (k, c )),

where

G (k,c ) (p (π
∗ (c ), c ),p (k, c )) =

(F (π ∗ (c ), c ) − F (k, c ))2
2(σ 2 (π ∗ (c ), c )/p (π ∗ (c ), c ) + σ 2 (k, c )/p (k, c ))

.

Proof. We will follow the analysis of Reference [15] and use the Gartner-Ellis Theorem [7]
to find G (k,c ) (p (π

∗ (c ), c ),p (k, c )), which requires understanding the distributional behavior of
μn (k, c ). In particular, we need to study the limiting behavior of the log moment generating

function (MGF):

Λn (λ;k, c ) = logE[exp(λμn (k, c ))].

Using the conjugacy property of GPs (under the assumption of Gaussian observation noise with
known variance) and updating the posterior using samples from one context at a time, we can
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decompose μn (k, c ) as

μn (k, c ) = μ0 (k, c ) +
|C |∑
i=1

[Σi−1n (c, ci ;k )]1×Nn (k,ci ) (A
i )−1 (Yn (k, ci ) − [μi−1n (k, ci )]Nn (k,ci )×1),

where μi−1n (k, ci ) is defined in the same way except with the summation being from 1 to
i − 1 with μ0n (·, ·) = μ0 (·, ·), [α]j×m denotes the j × m matrix where each element is α ,
Ai = [Σi−1n (ci , ci ;k )]Nn (k,ci )×Nn (k,ci ) +diaдNn (k,ci ) (σ

2 (k, ci )), with diaдN (β ) denoting the diagonal
matrix of size N × N with diagonals β , Yn (k, ci ) denotes the Nn (k, ci ) × 1 matrix of observations
corresponding to k, ci , and

Σin (c, c
′;k ) = Σi−1n (c, c ′;k ) − [Σi−1n (c, ci ;k )]1×Nn (k,ci ) (A

i )−1[Σi−1n (ci , c
′;k )]Nn (k,ci )×1,

with Σ0
n (·, ·;k ) = Σ0 (·, ·;k ). The inverse of Ai can be calculated in closed form using the Sherman-

Morrison formula [23]. After some algebra, we can rewrite μn (k, c ) as follows:

μn (k, c ) = μ0 (k, c ) +
|C |∑
i=1

Nn (k, ci ) (Yn (k, ci ) − μi−1n (k, ci ))Σ
i−1
n (c, ci ;k )

σ 2 (k, ci ) + Nn (k, ci )Σ
i−1
n (ci , ci ;k )

, (3)

where Yn (k, ci ) denotes the average of the observations. Similarly, we can rewrite Σin (c, c
′;k ) as

Σin (c, c
′;k ) = Σi−1n (c, c ′;k ) −

Nn (k, ci )Σ
i−1
n (c, ci ;k )Σ

i−1
n (ci , c

′;k )

σ 2 (k, ci ) + Nn (k, ci )Σ
i−1
n (ci , ci ;k )

.

For a Gaussian random variable N (μ̃, σ̃ 2), the log-MGF is given by μ̃λ + σ̃ 2λ2/2. Since the true
distribution of samples is y (k, c ) ∼ N (F (k, c ),σ 2 (k, c )) and the samples are independent of each
other, we can view μn (·, ·) as a linear combination of independent Gaussian random variables and
write the log-MGF

Λn (λ;k, c ) = μ0 (k, c )λ +
|C |∑
i=1

[
(F (k, ci ) − μi−1n (k, ci ))Cn (k, c, i )λ +

σ 2 (k, ci )Cn (k, c, i )
2λ2

2Nn (k, ci )

]
,

where

Cn (k, c, i ) =
Nn (k, ci )Σ

i−1
n (c, ci ;k )

σ 2 (k, ci ) + Nn (k, ci )Σ
i−1
n (ci , ci ;k )

.

Let Λn (λπ ∗ (c ), λk ; c ) denote the log-MGF of Zn = (μn (π
∗ (c ), c ), μn (k, c )). To use the Gartner-Ellis

Theorem, we need to establish the limiting behavior of 1
n
Λn (nλπ ∗ (c ),nλk ; c ).

lim
n→∞

1

n
Λn (nλπ ∗ (c ),nλk ; c ) =

∑
κ ∈(π ∗ (c ),k )

lim
n→∞
E[μn (κ, c )]λκ + lim

n→∞

nVar (μn (κ, c ))λ
2
κ

2
. (4)

Let us start with the variance term. In the following, we use → to denote the limit as n → ∞
and

≈−→ to denote equivalence in the limit. Note that

Var (μn (k, c )) =
|C |∑
i=1

σ 2 (k, ci )Cn (k, c, i )
2

Nn (k, ci )
.

Due to conjugacy of GPs, we can choose to process the summation in any order, as long as we
follow the same order for updating Σin (·, ·;k ). Let us analyzeVar (μn (π ∗ (c ), c )), for a given c , with
the summation and the update processed starting from c , i.e., using c1 = c with an appropriate
re-ordering of C. Note that

Σin (c
′, c ′′;k ) → Σi−1n (c ′, c ′′;k ) −

Σi−1n (c ′, ci ;k )Σ
i−1
n (ci , c

′′;k )

Σi−1n (ci , ci ;k )
,
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which implies that Σin (·, c1;k ) → 0, i ≥ 1, and Cn (k, c
′, i ) → Σ0 (c

′,ci ;k )
Σ0 (ci ,ci ;k )

if i = 1 and Cn (k, c
′, i ) → 0

otherwise. Thus, we can ignore the rest of the terms in the summation and write

Var (μn (k, c ))
≈−→ σ 2 (k, c )

Nn (k, c )
=

σ 2 (k, c )

np (k, c )
.

Similarly for the expectation term, using c1 = c , since Σin (·, c1;k ) → 0, i ≥ 1, in the limit
Equation (3) becomes

μn (k, c )
≈−→ μ0 (k, c ) + (Yn (k, c1) − μ0n (k, c1)) = Yn (k, c ),

which implies that limn→∞ E[μn (k, c )] = F (k, c ). We are now ready to continue from Equation (4).
Let Λt (λk ;k, c ) denote the log-MGF of the observation y (k, c ) ∼ N (F (k, c ),σ 2 (k, c )):

lim
n→∞

1

n
Λn (nλπ ∗ (c ),nλk ) =

∑
κ ∈(π ∗ (c ),k )

F (κ, c )λκ +
σ 2 (κ, c )λ2κ
2p (κ, c )

=
∑

κ ∈(π ∗ (c ),k )
p (κ, c )

(
F (κ, c )λκ
p (κ, c )

+
σ 2 (κ, c )λ2κ
2p (κ, c )2

)
=

∑
κ ∈(π ∗ (c ),k )

p (κ, c )Λt (λκ/p (κ, c );κ, c ),

which is the exact term in Lemma 1 of Reference [15]. Following the steps therein, we find that
the rate function of Zn is given by

I (xπ ∗ (c ),xk ) = p (π
∗ (c ), c )I t (xπ ∗ (c ) ;π

∗ (c ), c ) + p (k, c )I t (xk ;k, c ),

where I t (xk ;k, c ) =
(xk−F (k,c ))2
2σ 2 (k,c )

is the Fenchel-Legendre transform of Λt (λk/p (k, c );k, c ). With the

rate function of Zn established, Reference [15] shows that

G (k,c ) (p (π
∗ (c ), c ),p (k, c )) = inf

xπ ∗ (c ) ≥xk

[
p (π ∗ (c ), c )I t (xπ ∗ (c ) ;π

∗ (c ), c ) + p (k, c )I t (xk ;k, c )
]
,

where the infimum can be calculated via differentiation [9], giving us

G (k,c ) (p (π
∗ (c ), c ),p (k, c )) =

(F (π ∗ (c ), c ) − F (k, c ))2
2(σ 2 (π ∗ (c ), c )/p (π ∗ (c ), c ) + σ 2 (k, c )/p (k, c ))

. �

With the lemma established, the theorem can be proved as follows.

Proof of Theorem 4.1. For a given context c , the probability of false selection after n observa-
tions PFSn (c ) = 1 − PCSn (c ) is given by

PFSn (c ) = P (μn (π
∗ (c ), c ) < μn (k, c ),∃k � π ∗ (c )).

We can lower and upper bound this, respectively, by

max
k�π ∗ (c )

P (μn (π
∗ (c ), c ) < μn (k, c )) and ( |K | − 1) max

k�π ∗ (c )
P (μn (π

∗ (c ), c ) < μn (k, c )).

If for k � π ∗ (c ),

lim
n→∞

1

n
log P (μn (π

∗ (c ), c ) < μn (k, c )) = −G (k,c ) (p (π
∗ (c ), c ),p (k, c ))

for some rate functionG (k,c ) , then

lim
n→∞

1

n
log PFSn (c ) = − min

k�π ∗ (c )
G (k,c ) (p (π

∗ (c ), c ),p (k, c )).

Similarly, both the PFSn
E
and PFSn

M
can be lower and upper bounded by maxc PFS

n (c ) and
( |K | − 1)maxc PFS

n (c ) (or with an additional constant factor maxc w (c )/minc w (c ) if w (c ) are
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not uniform), respectively. Thus, we can extend this to write the rate function of contextual PCS
as

lim
n→∞

1

n
log PFSn∼ = −min

c ∈C
min

k�π ∗ (c )
G (k,c ) (p (π

∗ (c ), c ),p (k, c )),

where PFSn∼ is either of PFS
n
E
or PFSn

M
. Combining this with Lemma A.1, we get the result

lim
n→∞

1

n
log PFSn∼ = −min

c ∈C
min

k�π ∗ (c )

(F (π ∗ (c ), c ) − F (k, c ))2
2(σ 2 (π ∗ (c ), c )/p (π ∗ (c ), c ) + σ 2 (k, c )/p (k, c ))

. �

B ADDITIONAL NUMERICAL RESULT FOR OPPORTUNITY COST

Fig. 4. Experiments on Benchmark functions with opportunity cost.

When using Opportunity Cost as the performance measure, Figure 4 indicates IKG and LEVI
outperform GP-C-OCBA in most scenarios. It is worthwhile to use different methods for different
performance measures.
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