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Abstract— Distributed Data Fusion (DDF) methods which pos-
sess guaranteed performance for ad-hoc and arbitrarily connected
networks empower more scalable, flexible and robust informa-
tion fusion for multi-robot sensor networks. This paper proposes
a novel distributed Bayesian data fusion algorithm, which en-
sures uniform consistency, i.e., all the locally estimated distribu-
tions converge to the true distribution, for arbitrary periodically
connected communication graphs. Conservative fusion via the
Weighted Exponential Product (WEP) rule is utilized to combat
inconsistencies that arise from double-counting common infor-
mation between fusion agents, and the WEP fusion weight is
chosen based on the dynamic communication network topology.
The uniform consistency of the proposed algorithm is rigorously
proved, and the cooperative consistency conditions that guarantee
uniform consistency have been explicitly identified. The perfor-
mance and convergence properties of the proposed algorithm are
validated through simulations.

Index Terms— Bayesian Learning, Bayesian Consistency,
Distributed Data Fusion

I. INTRODUCTION

Fusing information from an ensemble of noisy data streams in
a scalable, flexible and robust way is critical to many multi-robot
systems operating in uncertain dynamic environments, especially
for applications such as collaborative mapping for exploration, tar-
get search/tracking for surveillance, and futuristic unmanned urban
transport systems [1]–[7]. In those systems, the communication
between networked robots can be highly variable due to time-varying
environmental factors: sensor nodes could fail, or be added, or
perhaps the network could be reconfigured as sensors move around
and communication proximity changes. Hence, the feasibility of
any centralized data fusion method reliant on full communication
graph connectivity is compromised, rendering it fragile over extended
real-world operations. As a sequel, effective distributed data fusion
methods should possess guaranteed performance for ad-hoc and
arbitrarily connected networks, which provide scalability for fusion
agents to join and drop off the network, flexibility to allow agents to
join at any point, and robustness to ensure connectivity of the network
even when there are multiple failures of links or agents [8]–[17].

In general network topology, specifically circular topology, there
may exist unknown redundant information that is propagated through
the network. For example, in a circular topology, information can be
passed in both directions around the circle, but as it comes back to the
original node, that node cannot infer the difference because of the
underlying assumption of unique information between nodes. This
concept is called rumor propagation where nodes have common in-
formation [1]. The double-counting of common information between
fusion agents may harm the statistical consistency during the data
fusion process in the network. Consider a worst-case scenario, if an
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outlier measurement is propagated through a circular network and
accounted for infinitely number of times, all the estimators in the
network will be polluted. To avoid such inconsistencies due to rumor
propagation in general network topology, conservative data fusion
techniques are developed via the Weighted Exponential Product
(WEP) rule, which can maintain consistent estimates for arbitrary
probability distributions with unknown correlation. [18]–[25].

The most critical component in WEP rule based distributed data
fusion approach is the choice of the fusion weights, which deter-
mines the performance of the data fusion process. Many different
information-theoretic metrics have been proposed to determine the
optimal WEP fusion weight, for example, Chernoff Fusion, Shan-
non Fusion, Bhattacharyya Fusion [26], Generalized Information
Weighted Chernoff Fusion, and Minimum Information Loss Weight
Fusion [18]. However, those information-based methods assume
the homogeneity of different data streams in the distributed sensor
network, and thus lack the flexibility to incorporate any unique
properties of individual sensor models or communication network
topology. Furthermore, none of those approaches can provide any
guarantees pertaining to the consistency of the data fusion process,
i.e., whether the fused estimation can effectively distill the ground
truth from a complex mixture of noisy information streams.

In this paper, we proposed a novel strategy for choosing the
WEP fusion weights that offers the flexibility to explicitly take
various facets of sensor network properties into consideration. In this
approach, the information exchange protocol between an agent and
all of its neighbors on the network is encoded by the trust that one
sensor places on the estimates of the other, and the WEP fusion
weights are determined based on the dynamic trust between sensors.
The introduction of a dynamic trust network, whose adjacent matrix
represents the mutual trust between nodes, provides the opportunity
to integrate distinct attributes of individual sensor models or commu-
nication network topologies by deploying different strategies when
determining trust. For example, in a heterogeneous sensor network,
the trust can depend on the relative reliability of different types of
sensors. Sensors that have more accurate or frequent measurements
should contribute more to the whole network. It is also possible to
reject faulty sensors by diminishing the trust in the sensors that show
dramatic disparity with other sensors.

Taking advantage of the well-established properties in matrix
theory, algebraic graph theory, and control theory [13], [27], the
proposed algorithm also demonstrates its merits by providing the
assurance of uniform consistency, i.e., all the locally estimated dis-
tributions converge to the true distribution, for arbitrary periodically
connected communication graphs. To the best of our knowledge, this
guarantee hasn’t appeared in the existing literature on distributed data
fusion methods. In this paper, we explicitly identify the cooperative
consistency conditions which guarantee uniform consistency. Com-
pared to the consistency conditions for a single agent, which was
stated in our previous work [28], they are weaker conditions since
it is easier for the unknown parameter to satisfy the distinguishable
requirement within the joint sampled dataset for all the agents than
for a single agent. The cooperative consistency conditions greatly
reduce the burden of computation and mobility for each agent, since
the requirement of the richness in sampled data is now distributed to
multiple agents.
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II. BACKGROUND ON BAYESIAN DATA FUSION

Consider a network of N heterogeneous sensors simultaneously
collecting information to estimate an unknown parameter θ∗ ∈ Θ
in a workspace X . For example, a group of robots search for a
target whose location θ∗ is unknown to the robots. Assume that the
parameter space Θ and workspace X are all finite and discrete. A
Bayesian estimation of θ∗ can be represented by a random variable
θ ∈ Θ which obeys a probability distribution π : X → [0, 1] such
that π(θ) is the probability that θ = θ∗.

A. Measurement Model
Let xik denote the location of the ith sensor at the kth time

instant, and zik is the measurement taken by the ith sensor at its
current location xik. The collected measurement zik of each sensor is
modeled as a noisy observation of the unknown parameter θ, which
depends on the sensor’s type and its current location xik. Then the
probability distribution of zik can be described by the measurement
model pi(zik|θ, x

i
k).

We assume that the sensors in the network are memoryless and
independent, which implies that the measurements collected by dif-
ferent sensors at different time instants are conditionally independent
given the current location and time.

Assumption II.1 (Memoryless and independent sensors). Let zi1:k
be the measurements collected by the ith sensor at locations xi1:k .
Then p(z1:Nk |θ, z1:N1:k−1, x

1:N
1:k ) =

∏N
i=1 p

i(zik|θ, z
1:N
1:k−1, x

1:N
1:k ) =∏N

i=1 p
i(zik|θ, x

i
k).

The likelihood function pi(zik|θ, x
i
k) can be obtained from the ith

sensor’s known measurement model.

B. Centralized Bayesian Data Fusion
The centralized multi-sensor Bayesian data fusion algorithm up-

dates the probability distribution of the unknown parameter using
the measurements collected from all the sensors.

Define πk(θ) = p(θ|z1:N1:k , x
1:N
1:k ) as the centralized posterior dis-

tribution of the unknown parameter after k time instants. According
to the Bayes theorem:

πk(θ) = p(θ|z1:N1:k , x
1:N
1:k )

=
p(θ|z1:N1:k−1, x

1:N
1:k )p(z1:Nk |θ, z1:N1:k−1, x

1:N
1:k )∑

θ p(θ|z1:N1:k−1, x
1:N
1:k )p(z1:Nk |θ, z1:N1:k−1, x

1:N
1:k )

=
p(θ|z1:N1:k−1, x

1:N
1:k )

∏N
i=1 p

i(zik|θ, x
i
k)∑

θ p(θ|z1:N1:k−1, x
1:N
1:k )

∏N
i=1 p

i(zik|θ, x
i
k)
,

where the last equality holds according to the assumption of memo-
ryless and independent sensors (Assumption II.1).

Since sensors moving to new locations does not affect their
information on the unknown parameter until new measurements are
taken, we have

p(θ|z1:N1:k−1, x
1:N
1:k ) = p(θ|z1:N1:k−1, x

1:N
1:k−1) = πk−1(θ).

Therefore, the recursive Bayesian update rule simplifies as

πk(θ) =
πk−1(θ)

∏N
i=1 p

i(zik|θ, x
i
k)∑

θ πk−1(θ)
∏N
i=1 p

i(zik|θ, x
i
k)
, (1)

which means that the computation of the posterior distribution of
the current iteration πk(θ) requires the posterior distribution of the
previous iteration πk−1(θ) and all the measurements collected at the
current iteration k.

The centralized multi-sensor Bayesian data fusion algorithm is con-
sidered Bayesian-optimal since the centralized posterior distribution

integrates all the available information expressed by probabilities,
which can be utilized as a benchmark to make performance compar-
isons with distributed Bayesian data fusion algorithms.

C. Distributed Bayesian Data Fusion

If all the sensors in the network are perfectly connected on a
complete communication graph (i.e., each agent could communicate
instantaneously with every other agent without any loss of informa-
tion in the communication links), then all the sensors can exchange
their local likelihood functions and deploy the centralized multi-
sensor Bayesian data fusion algorithm to estimate the Bayesian-
optimal posterior probability distribution of the unknown parameter.
However, communication between networked mobile sensors can
be highly variable and brittle due to dynamic and unstructured
environmental factors. Therefore, for ad-hoc and arbitrary network
topologies, we resort to distributed Bayesian data fusion approaches
where information exchanges only happen among neighbors.

The WEP rule [12], also known as the normalized weighted
geometric mean or logarithmic opinion pool, is a popular conservative
data fusion technique that is ideal for fusing arbitrarily distributed
estimates in ad-hoc communication network topologies. It is consid-
ered conservative since it is able to efficiently prevent the double-
counting of common information. To illustrate this point in a clear
way, consider two information sources Y 1 and Y 2 with associated
conditional PDFs pi(θ) = p(θ|Y i) for i = 1, 2. In general, the
collective information set Y 1 ∪ Y 2 can be decomposed into the
union of three disjoint (independent) information sets as follows
Y 1 ∪ Y 2 = (Y 1 ∩ Y 2)∪ (Y 1\Y 2)∪ (Y 2\Y 1). Hence, the optimal
fusion of p1(θ) and p2(θ) is given as

p12(θ) ∝ p(θ|Y 1 ∪ Y 2)

∝ p(θ|Y 1 ∩ Y 2)p(θ|Y 1\Y 2)p(θ|Y 2\Y 1),

if the conditional PDF p(θ|Y 1 ∩ Y 2) were known.
However, in general network topology, since the nodes usually do

not have full knowledge of the network topology, it is difficult to
discriminate the common information p(θ|Y 1 ∩ Y 2). If we combine
the two conditional PDFs naively as

p̃12(θ) ∝ p(θ|Y 1)p(θ|Y 2)

∝ p2(θ|Y 1 ∩ Y 2)p(θ|Y 1\Y 2)p(θ|Y 2\Y 1),

this combination leads to a double-counting of p(θ|Y 1 ∩ Y 2).
Instead, the WEP fusion rule can provide a principled way to

combine two general distributions in a statistically consistent way
despite the fact that their mutual dependency is unknown:

p̄12(θ) ∝ [p1(θ)]ω[p2(θ)]1−ω

∝ p(θ|Y 1 ∩ Y 2)[p(θ|Y 1\Y 2)]ω[p(θ|Y 2\Y 1)]1−ω,

where ω ∈ [0, 1] is the fusion parameter. Note that the common
information p(θ|Y 1 ∩ Y 2) was handled correctly for any choice of
ω ∈ [0, 1], implying that the nodes can be connected in any network
topology, and p(θ|Y 1 ∩ Y 2) does not have to be tracked locally.

However, this conservative fusion also loses at least some new
exclusive information from p(θ|Y 1\Y 2) and p(θ|Y 2\Y 1) during
the process. Thus, while WEP fusion has the advantage of working
for arbitrary networks and distributions, this flexibility comes at the
expense of conservative information loss. As a result, the selection of
the WEP fusion parameter ω is of great importance to balance this
tradeoff. For example, different choice of the WEP fusion parameter
decides how much partial of the exclusive information from each
local estimate will be preserved.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3375254

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2024 at 19:14:46 UTC from IEEE Xplore.  Restrictions apply. 



Let πik(θ) be the locally estimated posterior distribution of sensor
i at time instant k. Taking advantage of the WEP rule, the distributed
Bayesian data fusion approach updates the local estimation of each
sensor based on its own measurement pi(zik|θ, x

i
k), as well as all the

local estimations from its neighbors:

πik(θ) =
pi(zik|θ, x

i
k)

∏N
j=1[πjk−1(θ)]α

i,j
k∑

θ p
i(zik|θ, x

i
k)

∏N
j=1[πjk−1(θ)]α

i,j
k

; (2)

where the fusion weights satisfy
∑N
j=1 α

i,j
k = 1, αi,jk ≥ 0, ∀j ∈

{1, 2, . . . , N}.

III. PROBLEM FORMULATION

The most critical component in WEP rule based distributed data
fusion approach is the choice of the fusion weights αi,jk . Most
existing approaches determine the WEP fusion weights by optimizing
various information-theoretic metrics, for example, Chernoff Fusion,
Shannon Fusion, Bhattacharyya Fusion, Generalized Information
Weighted Chernoff Fusion, and Minimum Information Loss Weight
Fusion. However, those methods lack the flexibility to integrate any
distinct attributes of individual sensor models or communication
network topologies, nor can they provide any convergence guarantees
of the data fusion process.

Therefore, the objective of this paper is to devise a novel strategy
for choosing the WEP fusion weights that (i) offers the flexibility to
explicitly take various facets of sensor network properties into con-
sideration, and also (ii) provides theoretically assured performance
guarantees.
Dynamic Trust Network: The time-varying communication network
topology of the sensor network is denoted by the directed graph Gk =
(V,Ek) with the set of nodes V = {1, 2, . . . , N} and edges Ek ⊆
V × V . The edge (i, j) ∈ Ek if and only if the ith sensor receives
information from the jth sensor at the kth time instant. The neighbors
of the ith sensor are denoted by N ik = {j ∈ V : (i, j) ∈ Ek}. The
trust that one sensor places on the estimates of the other is encoded
by the adjacency matrix Ak ∈ RN×N of the communication network
topology Gk, which can also be reckoned as the trust matrix. In this
paper, we utilize M [i, j] to infer the element at the ith row and jth
column of a matrix M . Then Ak[i, j] 6= 0 if and only if j ∈ N ik.

Definition III.1 (Periodically Connected Graph). The dynamic graph
is periodically connected with a period T ≥ 1 if the union of all
graphs over a sequence of intervals [k, k+T ) is a connected graph,
i.e., Gk:k+T =

⋃T−1
t=0 Gk+t is connected for all time instants k ∈ N.

Uniform Consistency: In statistics, a consistent estimator is one for
which, when the estimate is considered as a random variable indexed
by the number n of items in the data set, as n increases the estimates
converge in probability to the value that the estimator is designed to
estimate. For multiple estimators that formulate a network, we define
the uniform consistency of networked estimators as:

Definition III.2 (Uniform Consistency). The Bayesian estimators in
a sensor network are uniformly consistent if each agent’s locally
estimated distribution of θ, πik(θ), ∀i ∈ {1, 2, . . . , N}, all converge
to the true distribution π∗(θ), with probability 1 (w.p.1).

Problem Statement:

Problem 1 (Uniformly Consistent Distributed Bayesian Data Fusion).
Given any periodically connected sensor network, find a distributed
strategy to dynamically decide the fusion weight αi,jk between
any neighboring sensors based on the time-varying communication
network topology Gk, which ensures uniform consistency of the
networked estimators.

IV. UNIFORMLY CONSISTENT DISTRIBUTED BAYESIAN
DATA FUSION

A. Algebraic Graph Theory

In order to derive and analyze the distributed Bayesian data fusion
algorithm, we first introduce some important concepts and results in
the field of algebraic graph theory [27].

Definition IV.1 (Laplacian Matrix). The Laplacian matrix of a graph
G is defined as L = D − A, where A is the adjacency matrix of
G, and D = diag(d1, d2, . . . , dN ) is the degree matrix of G with
elements di =

∑
j 6=iA[i, j] and zero off-diagonal elements.

Definition IV.2 (Perron Matrix). The Perron matrix of a graph G
with parameter ε is defined as P = I − εL, where I is the identity
matrix, L is the Laplacian matrix of the graph G, and ε ≥ 0 is the
discrete step size.

Therefore, the Perron matrix can be written as P = (I−εD)+εA,
where (I − εD) is a diagonal matrix. Each non-zero element in the
diagonal matrix 1 − εdi encodes the weight that each node i puts
on its self-information, and εA[i, j] represents its reliance on the
information from another node j. It possesses numerous favorable
properties in the field of algebraic graph theory.

Three important types of non-negative matrices are irreducible,
stochastic, and primitive (or ergodic) matrices. A matrix is irreducible
if its associated graph is strongly connected. A non-negative matrix is
called row (or column) stochastic if all of its row-sums (or column-
sums) are 1. An irreducible stochastic matrix is primitive if it has
only one eigenvalue with maximum modulus.

Lemma IV.1. Let G be a directed graph with N nodes and maximum
degree ∆ = maxi(

∑
j 6=iA[i, j]). Then the Perron matrix P with

parameter ε ∈ (0, 1/∆] satisfies the following properties:
(i) P is a row stochastic non-negative matrix with a trivial eigen-

value of 1;
(ii) All eigenvalues of P are in a unit circle;

(iii) If G is strongly connected and 0 < ε < 1/∆, then P is a
primitive matrix.

Proof. See the proof of Lemma 3 in [27].

Moreover, for periodically connected graphs, there exists a similar
property to (iii):

Lemma IV.2. Let {t1, t2, . . . , tm} be a set of indices for which the
union of Gt1 , Gt2 , . . . , Gtm is a connected graph. Then the Perron
matrix product Pt1Pt2 · · ·Ptm is primitive.

Proof. See the proof of Lemma 1 in [15].

B. Uniformly Consistent Distributed Bayesian Data Fusion

Taking advantage of the well-established properties of the WEP
fusion rule and algebraic graph theory, we design a uniformly con-
sistent distributed Bayesian data fusion algorithm, as demonstrated
in Algorithm 1.

For each sensor at each time step, the update of the locally
estimated probability distribution is composed of two steps:
(i) Fusion Step. Each sensor communicates its current locally
estimated probability distribution to its neighbors, and fuses all the
received distributions based on the WEP rule, where the fusion
parameters are chosen according to the Perron matrix Pk of the
current communication graph Gk:

π̂ik(θ) =

∏
j∈{i}∪N i

k
[πjk−1(θ)]Pk[i,j]∑

θ

∏
j∈{i}∪N i

k
[πjk−1(θ)]Pk[i,j]

; (3)
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(ii) Update Step. Each sensor takes a local measurement and updates
the local posterior distribution according to the likelihood function
of the new measurement:

πik(θ) =
pi(zik|θ, x

i
k)π̂ik(θ)∑

θ p
i(zik|θ, x

i
k)π̂ik(θ)

; (4)

Combining the two steps together, the update rule of each locally
estimated probability distribution can be written as:

πik(θ) =
pi(zik|θ, x

i
k)

∏N
j=1[πjk−1(θ)]Pk[i,j]∑

θ p
i(zik|θ, x

i
k)

∏N
j=1[πjk−1(θ)]Pk[i,j]

, (5)

since the Perron matrix Pk automatically selects the neighboring
nodes that communicate with node i, i.e. ∀i 6= j, Pk[i, j] 6= 0 if
and only if Ak[i, j] 6= 0.

Algorithm 1: Uniformly Consistent Distributed Bayesian
Data Fusion Algorithm
For each sensor i ∈ {1, 2, . . . , N}:
Initialize prior πi0(θ) with uniform probability distribution

over the discretized parameter space Θ;
Initialize sensor position xi1;
Initialize time instant k = 1;
while True do

Receive information from its neighbors and fuse to its
locally estimated probability distribution:

π̂ik(θ) =

∏
j∈{i}∪N i

k
[πjk−1(θ)]Pk[i,j]∑

θ

∏
j∈{i}∪N i

k
[πjk−1(θ)]Pk[i,j]

;

Take a measurement zik at the current location xik;
Update the local posterior distribution πik(θ) as:

πik(θ) =
pi(zik|θ, x

i
k)π̂ik(θ)∑

θ p
i(zik|θ, x

i
k)π̂ik(θ)

;

Move to the next location xk+1;
k := k + 1;

end

Remark 1. Note that no other side information, other than the
current locally estimated probability distribution, is needed to com-
municate through the network. This means that sensors with local
dynamics/states, even different types of sensors/dynamics/states, can
effectively cooperate in the network. No knowledge of the local
sensors/dynamics/states information is required to be sent across the
network, which makes the network more scalable.
Remark 2. Moreover, a key advantage of this algorithm is that it can
effectively deal with lost communication. For instance, sensors with
communication limitations may lose connection due to disturbances
in the environment and restore connection after a long period of
time. If a sensor makes several measurements and then comes into
contact with another sensor that has been out of contact for a long
time, sharing the entire history would be costly in terms of both
communication and computation required to fuse the measurements
into each sensor’s current estimation. Instead, with the proposed
algorithm, only the current estimation needs to be maintained and
shared across the network, since all the historical measurement
information has already been fused into the current estimation.
Remark 3. It is also worth pointing out that the proposed algorithm
does not require all the sensors to have the same frequency of
measurements. If a sensor does not take a measurement at a certain
time instant, then the likelihood function can be set as the uniform

distribution, i.e., pi(zik|θ, x
i
k) = 1. Then this agent’s likelihood

function does not change the locally estimated probability distribution
because of the geometric nature of the fusion rule. Thus, the update
of the estimation is only induced by receiving new information from
all its neighbors.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of the
proposed algorithm, whose proof relies on Wolfowitz’s Lemma:

Lemma V.1 (Wolfowitz’s Lemma [29]). Let P = {P1, P2, . . . , Pm}
be a finite set of primitive stochastic matrices such that for any
sequence of matrices Ps1 , Ps2 , . . . , Psk ∈ P with k ≥ 1, the product
Psk · · ·Ps2Ps1 is a primitive matrix. Then, for each infinite sequence
of matrices, there exists a row vector α such that

lim
k→∞

Psk · · ·Ps2Ps1 = 1α.

To facilitate the consistency proof, we assume that the true un-
known parameter is a deterministic value, rather than a stochastic
parameter sampled from a certain probability distribution:

Assumption V.1. The true probability distribution of the unknown
parameter is δθ∗(θ) where δθ∗(θ∗) = 1 and δθ∗(θ) = 0 for θ 6= θ∗.

Remark 4. Note that this assumption is introduced only for the
purpose of proving the consistency result since the estimated dis-
tribution can pinpoint the true parameter only if it is deterministic.
For example, in the context of source seeking, we can determine the
location of the source only if it is stationary. If the source has certain
random movements, the only thing that can be done is to infer the
probability distribution of the source rather than precisely identifying
its location.

We now state the cooperative consistency conditions, which ensure
uniform consistency for the proposed algorithm.

Theorem V.2 (Cooperative Consistency Conditions). The Bayesian
estimators in a sensor network are uniformly consistent if the
following cooperative consistency conditions are satisfied:

(i) The time-varying communication network topology of the sensor
network is periodically connected;

(ii) The local prior distributions πi0(θ), i ∈ {1, 2, . . . , N} have non-
zero probability at θ∗;

(iii) Let Θ = {θ1, θ2, . . . , θs}. If

c1p
i(z|θ1, x) + c2p

i(z|θ2, x) + · · ·+ csp
i(z|θs, x) = 0

holds for all sensors i ∈ {1, 2, . . . , N} and all sampled sensor-
location-measurement combinations (i, xi, zi), then c1 = c2 =
· · · = cs = 0.

Proof. The proof of Theorem V.2 is composed of two steps.
(Step 1). We first prove that the marginalized measurement model
qik(zik|x

i
k) :=

∑
θ p

i(zik|θ, x
i
k)

∏N
j=1[πjk−1(θ)]Pk[i,j] converges to

the true measurement model pi(zik|θ
∗, xik), w.p.1.

According to Eqn. (5), the estimated probability of the true
parameter θ∗ by agent i satisfies the following equation,

log πik(θ∗) =

N∑
j=1

Pk[i, j] log πjk−1(θ∗) + log
pi(zik|θ

∗, xik)

qik(zik|x
i
k)

. (6)

Let F ik = σ
{

(xit, z
i
t), t ≤ k

}
be the σ−algebra [30] generated

by the past sampled location-measurement pairs.
Since the collected noisy measurement zik is generated from the

true measurement model, i.e., zik ∼ p
i(zik|θ

∗, xik), taking expectation
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with respect to all possible sampled location-measurement pairs on
both sides of (6), we have

E[log πik(θ∗)] =

N∑
j=1

Pk[i, j]E[log πjk−1(θ∗)]

+ E

[
log

pi(zik|θ
∗, xik)

qik(zik|x
i
k)

]

=

N∑
j=1

Pk[i, j]E[log πjk−1(θ∗)]

+ E

[
E

[
log

pi(zik|θ
∗, xik)

qik(zik|x
i
k)
|xik,F

1:N
k−1

]]

=

N∑
j=1

Pk[i, j]E[log πjk−1(θ∗)] + E[dik],

where dik = DKL(pi(z|θ∗, xik)||qik(z|xik)) is the relative entropy
(Kullback–Leibler divergence) from pi(z|θ∗, xik) to qik(z|xik).

Let Πk(θ) = [E[log π1k(θ)],E[log π2k(θ)], . . . ,E[log πNk (θ)]]T ,
Qk = [E[d1k],E[d2k], . . . ,E[dNk ]]T . Viewing the sensor network as a
whole system, then the update rule of the locally estimated posterior
distributions can be written in a matrix form:

Πk(θ∗) = PkΠk−1(θ∗) +Qk. (7)

Expanding (7) iteratively along the time series, we get

Πk(θ∗) = PkΠk−1(θ∗) +Qk

= Pk(Pk−1Πk−2(θ∗) +Qk−1) +Qk

= · · ·

= (Pk · · ·P1)Π0(θ∗) +

k−1∑
t=1

[(Pk · · ·Pt+1)Qt] +Qk.

(8)

Based on condition (i), according to Wolfowitz’s Lemma V.1 and
Lemma IV.2, there exists a row vector αt for any t ∈ N, and k >
t, k ∈ N such that

lim
k→∞

PkPk−1 · · ·Pt+2Pt+1 = 1αt.

where 1 = [1, . . . , 1]T .
Furthermore, since Pt is non-negetive for all t ∈ N, αt is also

non-negetive for all t ∈ N. Since πik(θ∗) ≤ 1, log πik(θ∗) ≤ 0 is
upper bounded ∀i ∈ {1, 2, . . . , N}, which means that each element
of Πk(θ∗) is upper bounded, thus Πk(θ∗) is also upper bounded.
Moreover, since the right-hand side of (8) is non-decreasing due to
the fact that the relative entropy dik is non-negative, Πk(θ∗) is also
non-decreasing. Thus, the limit of Πk(θ∗) exists. Therefore, taking
k →∞ in (8), we obtain

Π∞(θ∗) = 1α0Π0(θ∗) +

∞∑
t=1

(1αtQt), (9)

which indicates that Πk(θ∗) converges to a vector where each
element of the vector is the same.

Then without losing generality, for any certain agent i, its locally
estimated probability of the true parameter θ∗ satisfies

E[log πi∞(θ∗)] =

N∑
j=1

αj0E[log πj0(θ∗)] +

∞∑
t=1

N∑
j=1

αjtE[djt ].

As a sequel, we get

∞∑
t=1

N∑
j=1

αjtE[djt ] = E[log πi∞(θ∗)]−
N∑
j=1

αj0E[log πj0(θ∗)]

≤ −
N∑
j=1

αj0E[log πj0(θ∗)] <∞,

where the last inequality holds according to condition (ii) and the
fact that α0 is non-negative.

Therefore, for any ε > 0 and i ∈ {1, 2, . . . , N}, by Markov
Inequality, we have

∞∑
k=0

P [dik ≥ ε] ≤
1

ε

∞∑
k=0

E[dik] <∞.

We can then apply Borel-Cantelli Lemma and show that P (dik ≥
ε, i.o.) = 0, which further implies limk→∞ dik = 0, ∀i ∈
{1, 2, . . . , N}, w.p.1.

Moreover, since dik ≥ 0, by Tonelli’s Theorem, we have

E

[ ∞∑
k=0

dik

]
=

∞∑
k=0

E[dik] <∞.

Then since
∑∞
k=0 d

i
k has bounded expectation, it must be finite w.p.1.

Note that the total variation distance between two distributions is
related to the relative entropy by Pinsker’s Inequality:

||pi(z|θ∗, xik)− qik(z|xik)||TV ≤
√

2dik,

where

||pi(z|θ∗, xik)− qik(z|xik)||TV = sup
z
|pi(z|θ∗, xik)− qik(z|xik)|.

Letting k →∞, by the convergence of dik, we have

lim
k→∞

∫
z
|pi(z|θ∗, xik)− qik(z|xik)|dz = 0, w.p.1.

According to Dominated Convergence Theorem, we further have∫
z

lim
k→∞

|pi(z|θ∗, xik)− qik(z|xik)|dz = 0, w.p.1.

Moreover, since |pi(z|θ∗, xik)−qik(z|xik)| ≥ 0 and pi(z|θ∗, xik)−
qik(z|xik) is continuous in z, then for any z,

lim
k→∞

|pi(z|θ∗, xik)− qik(z|xik)| = 0, w.p.1,

which means

lim
k→∞

qik(z|xik) = pi(z|θ∗, xik), w.p.1. (10)

(Step 2). We now prove that each agent’s locally estimated distri-
bution of the unknown parameter θ, πik(θ), ∀i ∈ {1, 2, . . . , N}, all
converge to the true distribution δθ∗(θ), w.p.1.

Let π̂ik(θ) =
∏N
j=1[πjk−1(θ)]Pk[i,j], then we have

pi(z|θ∗, xik)− qik(z|xik)

=pi(z|θ∗, xik)−
∑
θ

pi(z|θ, xik)π̂ik(θ)

=[1− π̂ik(θ∗)]pi(z|θ∗, xik) +
∑
θ 6=θ∗

π̂ik(θ)pi(z|θ, xik).

(11)

Since πik(θ) is bounded for any i ∈ {1, 2, . . . , N}, then by
Bolzano–Weierstrass theorem, there exists a convergent sub-sequence
{[π1k(θ), π2k(θ), . . . , πNk (θ)]T , k = t1, t2, · · · }, which converges to
[π1∞(θ), π2∞(θ), . . . , πN∞(θ)]T .
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Moreover, from (9) we know that the expected posterior distribu-
tions of each agent all converge to the same limiting distribution. Thus
we can take a further sub-sequence {τ1, τ2, · · · } from {t1, t2, · · · }
such that the sub-sequence {[π1k(θ), π2k(θ), . . . , πNk (θ)]T , k =
τ1, τ2, · · · } converges to [π∞(θ), π∞(θ), . . . , π∞(θ)]T . As a sequel,
the sub-sequence {π̂ik(θ), k = τ1, τ2, · · · } also converges to π∞(θ).

Finally, since for any i ∈ {1, 2, . . . , N}, xik is also bounded,
we could again take a further sub-sequence {m1,m2, · · · } from
{τ1, τ2, · · · } such that {xik, k = m1,m2, · · · } converges to xi∞.

Now we can take limit over (11) along {m1,m2, · · · } and accord-
ing to the convergence of qik(z|xik), we have

[1− π∞(θ∗)]pi(z|θ∗, x∞) +
∑
θ 6=θ∗

π∞(θ)pi(z|θ, x∞) = 0,

for any i ∈ {1, 2, . . . , N}, w.p.1. According to condition (iii), for any
convergent sub-sequence, 1−π∞(θ∗) = 0 and π∞(θ) = 0, ∀θ 6= θ∗,
which further implies

π∞(θ) = δθ∗(θ), w.p.1.

Therefore, for any i ∈ {1, 2, . . . , N},

lim
k→∞

πik(θ) = δθ∗(θ), w.p.1. (12)

Remark 5. When N = 1, the cooperative consistency conditions
reduce to the consistency conditions for a single agent that the
unknown parameter should be identifiable within the sampled dataset,
which was stated in our previous work [28], [31]. The cooperative
consistency conditions for multi-agent are actually weaker conditions
compared to single-agent, since they only require that the unknown
parameter be identifiable within the joint sampled dataset for all
the agents. For example, there may exist a certain subspace of the
parameter space that is not distinguishable for one agent with its
locally sampled dataset, and another subspace for another agent.
However, by combining the sampled datasets from all the agents,
the unknown parameter can become distinguishable within the joint
sampled dataset.

The cooperative consistency conditions provide great potential to
enhance the network’s sensing ability, since different types of sensors
can be utilized to collect different types of measurements, which
facilitates the richness of the sampled data. Furthermore, since the
burden of computation and mobility is distributed to each agent, fewer
constraints need to be put on the individual sensor’s type and ability.

VI. SIMULATION

We consider a source of chemical plume, which generates plume
particles in the 2D space. The field function is represented by the
rate of hits, which is defined as the average number of particles per
unit time measured by the sensor at a certain location. The rate of
hits for a chemical plume source can be given as:

Rθ(x) =
Rs

log γ
a

exp(−〈θ − x, V 〉
2D

)K0(
||θ − x||2

γ
), (13)

where Rs is the rate at which the plume source releases the plume

particles in the environment, γ =

√
Dτ/(1 +

||V ||2τ
4D ) is the average

distance traveled by a plume particle in its lifetime, a is the size of the
sensor detecting plume particles, V is the average wind velocity, D
is the diffusivity of the plume particles and K0 is the Bessel function
of zeroth order.

We model the measurement z as a Poisson random variable with
Rθ(x)∆t as the rate parameter. The measurement model is then

p(z|θ, x) =
exp(−Rθ(x)∆t)(Rθ(x)∆t)z

z!
.

Fig. 1: Graphical representation of the simulation scenario. A multi-
sensor network that consists of 5 sensors with periodically connected
communication is deployed to estimate the source location in a
stochastic source field.

The performance of the proposed algorithm is assessed by numer-
ical simulations. We perform the simulation for a model of chemical
plume where detectable particles are emitted at rate R = 10, have
a lifetime τ = 2500, propagate with diffusivity D = 10, and
V = [0, 0] in the absence of wind. We assume the sensor size a = 1,
and the sensor takes ∆t = 5s to take a measurement of the signal.
We consider a multi-sensor network that consists of 5 sensors and
the dynamic communication network is periodically connected, as
illustrated in Fig. 1. The time-varying communication topology has a
period of 3: t3k+1 : {1 ↔ 2, 1 ↔ 4, 3 ↔ 5}, t3k+2 : {1 ↔ 2, 3 ↔
5, 4 ↔ 5}, t3k+3 : {1 ↔ 2, 1 ↔ 3, 2 ↔ 3, 4 ↔ 5}, k ∈ N. The
adjacent matrix At[i, j] = 1 if i and j are connected at time t. The
discrete step size of the Perron matrix is chosen as ε = 0.5.

We compare the performance of our proposed distributed Bayesian
data fusion algorithm with other data fusion methods in both dis-
tributed and centralized conditions. For the centralized condition,
we compare it with the centralized Bayesian data fusion algorithm,
as well as a consensus-based non-Bayesian data fusion algorithm
that simply merges all local estimates together with the aim of
achieving consensus. For the distributed condition, we compare it
with another classic distributed data fusion approach, i.e., the naive
averaging approach, which combines all neighboring estimations by
calculating their algorithmic average. As demonstrated in Fig. 2,
with periodically connected communication, the proposed algorithm
converges at a slower rate than the centralized Bayesian algorithm
due to the incomplete communication of the sensor network and the
conservative WEP fusion rule. The convergence rate of the distributed
algorithm may depend on the communication topology, as well as the
choice of the adjacent matrix and the discrete step size ε. However,
the estimation of the distributed algorithm is smoother and more
robust than the centralized Bayesian algorithm, since the propagation
of the information through the conservative fusion rule naturally
serves as a function of filtering and smooths the noises of individual
measurements. Furthermore, the proposed method significantly out-
performs in terms of convergence rate than other non-Bayesian data
fusion approaches in both distributed and centralized conditions. It
is also worth noting that the distributed naive averaging approach
demonstrates evident instability during the process. This may be due
to its incapacity to consistently deal with the common information,
which further justified the advantages of the proposed approach.

To validate the cooperative consistency conditions, we also perform
the simulation for the same sensor network but without communica-
tion. Since each sensor is static, the consistency conditions for every
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single agent cannot be satisfied. Therefore, the unknown parameter is
not identifiable for every single agent, which is demonstrated in Fig. 2
that the TV distance of each local estimate cannot converge without
communication. However, when there exists periodically connected
communication, the weaker cooperative consistency conditions can
be satisfied despite the fact that the consistency conditions for each
individual agent are not satisfied. The demand for sufficient data is
distributed to multiple agents and the unknown parameter is now
distinguishable in the joint sample space.

Fig. 2: Comparison of Total Variation (TV) distance between the
estimated posterior distribution and the true distribution of the source
location for both distributed and centralized data fusion algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a uniformly consistent distributed
Bayesian data fusion algorithm and rigorously derived the cooper-
ative consistency conditions that guarantee uniform consistency. The
performance and convergence properties of the proposed algorithm
are validated through simulations. Future works will explore different
strategies for determining the trust matrix of the communication
network and analyze their convergence rates.
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