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Abstract
In this paper, we introduce a new, open-source software developed in Python for analyzing
Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous
neural activity generated by the auditory fibers in the ear in response to sound, and used to study
acoustic neural information traveling along the ascending auditory pathway. Common ABR data
analysis practices are subject to human interpretation and are labor-intensive, requiring manual
annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem
Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by
supporting batch data import/export, waveform visualization, and statistical analysis. Techniques
implemented in this software include algorithmic peak finding, threshold estimation, latency
estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus
frequencies and decibels. The excellent performance on a large dataset of ABR collected from
three labs in the field of hearing research that use different experimental recording settings
illustrates the efficacy, flexibility, and wide utility of ABRA.
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Introduction
Auditory brainstem response (ABR) recordings provide an objective measurement of electrical
activity along the ascending auditory neural pathway, starting from the afferent fibers

innervating the inner hair cells in the cochlea

through the brainstem nuclei (Eggermont 2019; Kim ABR Waves 1-5 (Mouse)

SGNs NN 50

et al. 2022; Burkard and Don 2012; Ingham et al. . SOC L. LL
2011; Mgller and Jannetta 1985; Xie et al. 2018). i 2 J\ /\_ic/\
ABRs are widely used in auditory research to study ED 0 \/J g /‘\v
acoustic neural information transmission and to s, \/
diagnose and distinguish different forms of hearing =~ A
loss and synaptopathy in animal models of human 0 3 10
otologic and neurologic conditions (Sininger 1993; Time (ms)
Burkard and Sims 2001; Fernandez et al., 2015; Figure 1: Example of an ABR waveform
Brambhall et al., 2018; Bao et al., 2022; Young, recorded from a mouse showing its

. : . characteristic features or waves. Wave 1 is
Cornejo, and Spl.nner 2023). In m1c§, _ABR generated by the spiral ganglion neurons (SGNs)
waveforms consist of five characteristic peaks and auditory nerve (AN), Wave 2 by the

(Figure 1), each approximately corresponding to the ~ cochlear nl‘\}CIGUS (CN)I’ W;‘SVS é)bB\’Nthe Cfbanclil
. . . . superior olivary complex , Wave 4 by the
sound-induced electrical signal traveling through the SOC, lateral lemniscus (LL) and inferior
different structures along the auditory pathway colliculus (IC), and Wave 5 by the LL and IC

Ficure 1. Riitticer et. al. 2017. Melcher et al. 1996 (Riittiger et. al. 2017, Melcher et al. 1996, Henry
(Figu » uttiger ’ ’ 1979, Land et al. 2016). Peaks of these waves are

Henry 1979, Land et al. 2016). denoted by red dots, and troughs with blue dots.

A key goal of ABR threshold analysis in mice is to generate quantitative measures of hearing
function, defined as the minimum sound intensity (in decibels) at a given frequency that elicits a
repeatable neural response. Traditionally, threshold identification is performed by visually
inspecting waveforms at decreasing sound intensities until a waveform is no longer
distinguishable from baseline noise. ABR thresholds in anesthetized mice are typically ~10dB
higher than behavioral perceptual responses in awake mice (Radziwon et al. 2009). While
pragmatic, this method is time-consuming for larger studies and prone to inconsistency and bias
between labs and examiners (Suthakar and Liberman 2019, Schrode 2022). To address these
limitations, heuristic and machine learning computational approaches have been explored for
automated ABR analysis. Supervised learning models (i.e. models which learn from data with
ground truth labels) like convolutional neural networks (CNN), gradient boosting machines, and
others have been used to accurately analyze suprathreshold ABR waveforms (Wimalarathna et
al. 2021, McKearney and MacKinnon 2019, Kamerer et al. 2020) and to assess the degree of
synaptopathy in humans (Buran et al. 2022). The utility of unsupervised learning models (i.e.
models which learn from data without ground truth labels) for ABR analysis remains relatively
unexplored to date. Assuming a similar amount of training data, unsupervised models often have
a harder task than supervised models since they cannot learn from true labels. However,
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application of unsupervised methods often comes with reduced human labor requirements, since
they do not require manually annotated ground truth data from which to learn.

In this paper, we introduce the Auditory Brainstem Response Analyzer (ABRA), a novel open-
source software that implements a collection of supervised and unsupervised machine learning
models trained on a diverse range of mouse ABR datasets from multiple labs for comprehensive

and maximally generalizable mouse ABR analysis. ABRA is a user-friendly, browser-based
application that supports batch data import/export, waveform visualization, automated peak

detection, threshold estimation, latency quantification, time warping for curve alignment, and
interactive 2D/3D plotting. By integrating these diverse functionalities into a unified platform,

ABRA aims to streamline ABR data processing and analysis, reduce manual labor, and facilitate

standardization and reproducibility across labs. We demonstrate ABRA's flexibility and

generalizability by benchmarking its performance on ABR datasets collected from three different

hearing research labs using distinct experimental protocols and recording settings.

Methods

Data Collection
To test for the generalizability and flexibility of developed open-source ABR software, we used
three distinct datasets from different labs to train and evaluate ABRA’s models (Tables 1 - 2).
Each dataset used in the analysis was collected under unique experimental conditions and

protocols. All three labs used a similar overarching methodology, including the use of anesthesia,

electrodes, and sound decibel (dB) ranges. However, there were also differences in the specifics
of these procedures, as outlined in Table 1. These differences underscore the flexibility of
ABRA in accommodating diverse experimental setups and protocols. Further details on data

collection conditions are available in the Supplementary Information.

Methods Lab A Lab B Lab C
Anesthesia | Ketamine (90 mg/kg) + Xylazine | Ketamine (100 mg/kg) + Ketamine (100 mg/kg) +
(10 mg/kg) Xylazine (10 mg/kg) Xylazine (10 mg/kg)
Environme | Soundproof chamber, heating pad | Soundproof chamber, Soundproof chamber,
nt (37°C) heating pad (37°C) heating pad (37°C)
Electrode | Subcutaneous recording electrode | Subdermal electrodes Needle electrodes: vertex to
Placement | at vertex, reference behind right behind pinna (reference and | ipsilateral pinna (recording),
pinna, ground on left leg ground), vertex (active) ground near tail
Sound 5-ms tone pips (0.5 ms cos2 rise- | 5-ms pips (1.0-ms rise-fall 5-ms pips (0.5-ms rise-fall
Stimuli fall), 21/sec with cos2 onset envelope), with cos2 onset envelope),
42.6/sec 30/sec
Recording | Filtered (300 Hz - 3 kHz), Customized software Amplified (10,000X),
averaged using BioSigRZ (Ingham et al., 2011), RZ6 filtered (100 Hz - 3 kHz),
software, 512 responses averaged | auditory processor, 256 averaged with A-D board in
responses averaged LabVIEW system, 1024
responses averaged
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Sound Decreased from 90 dB SPL to 0-95 dB SPL in 5 dB steps Raised from ~10 dB below

Intensity 10/20 dB SPL in 5 dB steps threshold to 80 dB SPL in 5
dB steps

Speaker Open-field - 10 cm from ear Open-field - 10 cm from ear | Closed-field - ~3 cm from

distance the eardrum

Mouse 3-month SAMPS8 (Senescence- 1-month C57BI/6N with and | 7-week C57B1/6]

age/strains | Accelerated Mouse-Prone 8) without corrected CDH23

used (Takeda et al. 1981)

Table 1: Summary of the experimental recording conditions used by the three labs. The datasets are described
in the following order: Anesthesia, Preparation, Electrode Placement, Sound Stimuli, Recording, Sound Intensity,
and Distance of the Speaker. The specific methods employed by each lab—Manor Lab (Lab A), Marcotti Lab (Lab
B), Liberman Lab (Lab C)—are detailed in the supplementary information section.

Lab/Model Peak Detection Automatic Thresholding
.. Test .. Test ABRA vs.
Training Data Data Training Data Data EPL-ABR
Lab A 40 mice 34 mice 65 mice 16 mice -
(286 ABRs) (72 ABRs) (5,419 ABRs) (2,031 ABRs)
Lab B 4 mice 4 mice 83 mice 21 mice —
(327 ABRs) (82 ABRs) (12,948 ABRs) (3,276 ABRs)
Lab C - - 29 mice 7 mice 27 mice
(319 ABRs) (77 ABRs) (292 ABRs)
Total 44 mice 38 mice 177 mice 44 mice 27 mice
[Relevant (613 ABRs) (154 ABRs) (18,686 ABRs) (5,384 ABRs) (292 ABRs)
Figures & [Fig. 3] [Fig. 6; Table 3] [Fig. 4] |Figs. 8-10; [Table 6]
Tables] Tables 4, 5]

Table 2: Breakdown of mouse and ABR waveform data by lab, model, and train and test splits. Figures and
Tables relevant to a given dataset are enumerated in brackets in the last row.

The ABRA Graphical User Interface

The proposed Auditory Brainstem Response Analyzer (ABRA) software was built to facilitate
the examination and analysis of ABR waveforms. ABRA was developed in Python using the
Streamlit framework (“Streamlit” n.d.) and provides an interactive platform for researchers to
visualize ABR data. The app is hosted at https://ucsdabranalysis.streamlit.app/ and all

documentation can be found on our Github: https://github.com/ucsdmanorlab/abranalysis. ABRA

allows users to import multiple ABR data files stored in either .arf or .csv files obtained from
BioSigRZ software from Tucker Davis Technologies (TDT). Upon import, the data is
preprocessed to extract frequency, dB level, and the waveform data itself.

At its simplest functionality, ABRA allows the user to select which frequencies and decibel
levels they wish to examine. The ABR plots are shown through the Plotly framework in Python
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and can be downloaded as .png files. ABRA displays metrics under the plots related to the
displayed waveforms, including Wave 1 amplitude, and latency to the first peak. These metrics
can be downloaded into a .csv file. ABRA also allows the user to view all the waveforms for a
single frequency, highlights the automatically detected peaks and troughs, and automates
thresholding so that analysis can be performed more efficiently (Figure 2).
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Figure 2: Screenshots from the ABRA app highlighting the different functionalities of ABRA (A) visualizing
several ABR waveforms from one 1 mo male C57Bl/6N mouse across different togglable dBs at 18 kHz with
predicted peak locations (red points) and predicted threshold (thick black line). (B) plotting a single ABR waveform
at a specific sound frequency and intensity (dB SPL) with peaks and troughs labeled. (C) 3D plotting of all ABR
waveforms at a given frequency with the predicted threshold (20dB) highlighted in black (can be rotated in the app).
(D) stacks of ABR waveforms as a function of increasing dB SPL from the same frequency with the predicted
threshold (20 dB) highlighted in black.

sy 18,000 8 61954 1.6803

For those seeking a comprehensive view of the variations in the waveform over several dB levels
at the same frequency for thresholding, ABRA provides the option to implement time warping
which registers the peaks of the waveforms of multiple dBs in response to the same frequency of
stimulation (see Figure 5). The app also provides a 3D surface plot of waveforms which is
interactive and allows the user to view the series of ABR waveforms as cross-sections of the
ABR voltage surface over the decibel and time domains. ABRA’s different functionalities can
provide the user the tools to visually threshold for themselves and compare their threshold with
our model’s prediction. ABRA also allows users to conduct these analyses for multiple data files
in batches at the same time.
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ABRA Peak Detection

ABRA incorporates a two-step peak finding algorithm that leverages Pytorch’s deep learning
library and the Scikit-learn library. The first step involves deploying a pre-trained Convolutional
Neural Network (CNN) to retrieve a prediction for the location of the Wave 1 peak. We had 767
ABRs with ground truth labeled Wave 1 latencies and amplitudes (358 ABR waveforms from
Lab A, 40 mice; 409 ABR waveforms from Lab B, 4 mice). We included 409 ABRs from Lab B
to have a diversity of ABRs so that the model can be more thoroughly generalizable. Before
training the CNN, the dataset was split into two sets with 80% of data from each lab going into
the training set and 20% of data from each lab going into the testing set. The CNN was trained
on 613 ABRs (286 ABRs from Lab A, 40 mice; 327 ABRs from Lab B, 4 mice) of length 244
(representing 10 ms) labeled with ground truth data related to the Wave 1 peak. The CNN
optimizes squared error loss for the regression task which returns a prediction for the Wave 1
peak timepoint. A sparse representation of the network architecture is shown in Figure 3.

@
ABR Prediction for
. . the Index of
(input=244 point Wave | peak
1D array) First Second First Second
Convolutional Convolutional Fully Fully
Layer + Layer + Connected Connected
MaxPool + MaxPool + Layer Layer
Dropout Dropout

Figure 3: Model architecture for Wave 1 Peak Finding Algorithm. The ABR waveform recorded over 10 ms is
input into two sequential layers of Convolution, Maxpool, and Dropout. The dimensionality of the output is reduced
through two consecutive fully-connected layers which returns the prediction of the time point of the Wave 1 peak.

The CNN’s prediction of the Wave 1 peak time point serves as a reasonable initial estimate but
ABRA further performs some fine-tuning in order to ensure that it is not sitting at a point
neighboring the peak. To retrieve the correct point of the peak of Wave 1, a second fine-tuning
step was implemented as follows. First, the ABR was smoothed using Gaussian smoothing to
attenuate or remove nuisance peaks to identify peak indices. Then the find peaks method from
Scikit-learn was used to identify the remaining Wave 2-5 peak/trough locations and voltages by
searching for all local maxima and minima by simple comparison of neighboring values of the
wave starting from the CNN predicted Wave 1 peak index. Afterwards, the unsmoothed
waveforms are utilized to quantify the amplitudes at the previously identified indices. The
parameters for these methods were optimized using ground truth Wave 1 latency from 154 ABR
waveforms (72 ABR waveforms from Lab A, 34 mice; and 82 ABR waveforms from Lab B, 4
mice) and ground truth Wave 4 amplitude from 211 labeled ABRs from Lab A. These
parameters include the following:
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a. Window size for the start point for the smoothed waveform being inputted into the
find_peaks function (optimized to 0.3689 ms before the CNN prediction for Wave 1 peak).

b. Time between peaks such that the correct peaks are identified (optimized to 0.7377 ms).

Bandwidth parameter for the Gaussian smoothing step was set to g = 1.0.

d. Time between troughs such that the correct troughs are identified (optimized to 0.5738 ms).

e

Supervised Threshold Estimation with ABRA

The threshold estimation method used a binary machine learning classifier to identify individual
ABR waveforms as either above or below threshold. Once individual waveforms were identified,
the hearing threshold for a given frequency was determined as the quietest stimulus level (in dB
SPL) for which a subject’s ABR waveform suggested a hearing response (i.e. was above
threshold). Three candidate supervised binary classifiers were trained and evaluated: A CNN, an
XGBoost classifier, and a Logistic Regression Classifier.

The dataset comprised 23,352 ABR waves from 221 mice (Lab A = 48 mice; Lab B = 104 mice;
Lab C = 36 mice), with each wave characterized by its frequency, decibel level, and amplitudes
at 244 uniformly distributed sampling points over a 10 ms time window. ABRs not initially
sampled at 244 samples per 10 ms were resampled using linear interpolation. The ABRs were
grouped by subject and frequency, then 80% of these groups were randomly allocated for
training (Lab A = 34 mice; Lab B = 83 mice; Lab C = 27 mice) and the remaining 20% were
designated for testing (Lab A = 14 mice; Lab B = 21 mice; Lab C = 9 mice). This method
ensures a representative distribution of ABRs from various subjects and frequencies across the
training and testing sets. Accordingly, the training input matrix had dimensions of 18,686 x 246,
where 18,686 is the total number of training samples and 246 is the number of features, including
244 voltage recordings for each ABR, the decibel level, and the frequency of the stimulus.

For the Logistic Regression Classifier and XGBoost Classifier, time warping was used on the
ABR trajectories as an additional preprocessing step to align waveform features such as peaks
and troughs (see section below: ABR Curve Alignment with Time Warping). For the CNN, no
additional preprocessing steps were used. The architecture of the CNN is described in Figure 4.

1st Convolutional Layer 3rd Convolutional Layer  1st Fully-Connected o Biq‘f’ryt.
+MaxPool +MaxPool Layer assification
Above
_w  Hearing
- Threshold
W e > | R — — — < -
~ - Below
"N Hearing
ABR, Threshold
Frequency,
Decibel Level 2nd Convolutional Layer Flatten 2nd Fully-Connected
(246 point, 1D array) +MaxPool Layer Layer

Figure 4: Model architecture for CNN ABR Classifier. The ABR waveform recorded over 10 ms and its frequency
and decibel level are input into three sequential layers of convolution and max pooling. The dimensionality of the
output is reduced through two consecutive fully-connected layers before returning the classification.
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ABR Curve Alignment with Time Warping

As previously discussed, ABRs from mice often exhibit a characteristic structure with 5 distinct
peaks (Figure 1). However, a common challenge in analyzing these ABR waveforms is the non-
uniform latency across different frequencies and decibel levels. This variability in latency can
distort the time-based comparison of these responses, as the peaks do not occur at the same time
instances across different ABRs. To address this, we provide an option to employ time warping
to align these ABRs, which standardizes the position of peaks and other salient features of the
ABRs across time. This alignment serves dual purposes. First, it decouples amplitude and phase
variation, facilitating the visual comparison of amplitudes of ABR waveforms. Second, the
encoding of time alignment parameters into individual-specific warping functions provides the
option of incorporating these features into machine learning models, which in some cases
improves the models’ performance and predictive power. It is important to emphasize that the
optional time warping as a preprocessing step should only be used when analyzing amplitude,
but not latency variability.

To conduct the time warping step, we used the fdasrsf package in Python (Tucker 2020). This
package implements elastic time warping, a method that allows for alignment of key signals in
waveforms. This technique is particularly useful in our case, as it allows us to align the ABRs
despite the non-uniform latency across different frequencies and decibel levels.

Before Time Warping After Time Warping

1.00
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0.50

0.25
0.00

Voltage (uV)

-0.25

-0.50

-0.75
-1.00

6 8 10 6 8 10
Time (ms) Time (ms)

Figure 5: ABRs before (left) and after (right) Time Warping. The depicted transformation of waveforms, both
before and after applying elastic time warping using the fdasrsf package (Tucker 2020), illustrates clear registration
of waveform features. Associated with each waveform is also an estimated time warping function which is useful in
quantifying changes between the original unaligned latencies to the aligned latencies for all wave peaks and troughs.

Unsupervised Threshold Estimation

ABRA also provides an optional method to implement an unsupervised ABR threshold
estimation, which uses ABR waveforms at a specific frequency across multiple dB levels.
Following the optional time alignment of waveforms (see above section: ABR Curve
Alignment with Time Warping), Functional Principal Component Analysis (FPCA) (Kleffe
1973) is used to identify and quantify what an eigenanalysis determines to be the most
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significant patterns of variation in the ABR waveforms (e.g. averages and contrasts in wave
peaks, troughs, and amplitudes, etc.). The waveforms are then projected onto their first and
second principal components (PCs). This projection serves to reduce dimension, separate signal
from noise, and cluster waveforms with similar salient ABR features, thereby simplifying the
high-dimensional waveform data into a simple 2-dimensional representation. Only the first two
PCs were used because they captured 95% of the variance in a set of typical ABRs, which
indicates most of the signal can be represented using just these two components. Truncating at
two components also discards later components which tend to be associated with noise.

Finally, ABRA employs a k-means clustering algorithm with 2 clusters on the projected data.
The underlying assumption is that ABR waveforms above hearing threshold have higher
principal component scores and will be clustered together, while the ABR waveforms below
hearing threshold will form a separate cluster of near-zero principal component scores. This
unsupervised approach allows users to identify natural groupings in the data without any prior
assumptions about the number or characteristics of these groups.

Results

Peak Amplitude and Latency Estimation

To benchmark ABRA’s performance in peak amplitude and latency estimation, we fed a test set
of 154 ABRs with human-labeled “ground truth” Wave 1 amplitude and latency values from Lab
A (72 waveforms from 34 mice) and Lab B (82 waveforms from 4 mice) into ABRA. The
ground truth values for Lab A data were obtained by using visual examination from two
observers, while the ground truth values for Lab B data were obtained from manual labeling
using custom software. Though it is possible to make manual adjustments to ABRA, we compare
here only the absolute differences resulting from the automated (i.e. unadjusted) estimates
generated from ABRA vs their corresponding human-labeled ground truth values in order to
fairly assess its underlying model.

For each ABR waveform in the sample, let ‘L'i(GT) denote the corresponding ground truth latency
and let aEGT) denote the corresponding ground truth amplitude, with waveforms indexed by i =
1, ... ,n. Then, let Ti(ABRA) denote the Wave 1 latency estimates generated by each software;

similarly let aEABRA) denote ABRA’s generated Wave 1 amplitude estimates.
Errors are then defined as the differences between a given software’s estimate and the ground

truth value. We define errors for Wave 1 latencies and amplitudes, respectively, as follows:
i(ABRA) — Ti(GT), i =1,..,nand
(ABRA) (GT)

i -4

e,’i =T
€qi =a i=1..,n
Side-by-side swarmplots of the distributions for error are shown for latency and amplitudes in

Figure 6A and 6B, respectively; summary statistics for errors are displayed in Table 3.
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Figure 6: Swarmplots displaying spreads of error for detected Wave 1 Latency (A) and Amplitude (B) vs.
ground truth for each software. Testing failed to find evidence that mean absolute errors were significantly greater
than zero for both Wave 1 Latency and Amplitude estimates. 90.26% of all ABRA-generated estimates of Wave 1
Latency were within 0.1ms of the corresponding true human-labeled latency; 91.56% of all ABRA-generated Wave
1 amplitude were within 0.05 pV of the corresponding true human-labeled peak amplitude. n = 154 represents the
number of ABRs tested. Related statistics are listed in Table 3.

Testing whether the centers of these distributions differed from zero showed that the average
Wave 1 Latency errors produced by ABRA did not detect a significant deviation from zero (e, =
0.0452, SE = 0.0230, p = 0.0512) which suggests that ABRA is on average closely aligned with
the human-labeled ground truth latencies. In a parallel comparison for amplitude estimates,
hypothesis testing on the Wave 1 amplitude error distributions found that the average Wave 1
Amplitude error produced by ABRA did not deviate significantly from zero (e, =-0.015, SE =

0.0192, p = 0.9357) which suggests that ABRA amplitude estimates are on average closely
aligned with the human-labeled ground truth amplitudes.

Wave 1 Latency

Wave 1 Amplitude

Mean Difference (= S.E.M.)

ABRA vs. Ground Truth (ms)

ABRA vs. Ground Truth (uV)

Lab A (nwaveforms=72, Nmice=34) 0.0978 (+0.0467) 0.0008 (£0.0405)
Lab B (nwaveforms=84, Nmice=4) -0.0010 (£0.0117) -0.0036 (+ 0.0071)
Overall Test Set 0.0452 (£0.0230) -0.0015 (+0.0192)

Table 3 (related to Figure 6): Table showing the Mean Error Difference and their Standard Errors between
ABRA-detected Wave 1 Latency and Amplitude and corresponding ground truth values detected by human
reviewers. Testing failed to find evidence that mean error differences were significant for both Wave 1 Latency and
Amplitude estimates. The peak finding method seems to be better for Wave 1 estimates in Lab B data (84 ABRs),

but overall (154 ABRs) the errors are very low.

These comparisons show that ABRA-generated estimates generally agree with human-labeled
ground truth latency and amplitude estimates, and when adjustments are needed they are small in
magnitude. Figure 7 displays a few visual examples of how errors from the ABRA software may
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arise, with the most common source of errors arising from ABRs with very low signal-to-noise
ratios (SNR).

A Frequency (kHz)=16, Decibel (dB SPL)=90 B Frequency (kHz)=4, Decibel (dB SPL)=90

151 —e— ABRA Detected Latency LS
1.0, —< Ground Truth 1.0
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Figure 7: Examples of error cases in peak detection. (A) and (B) display examples of multiple peaks that may be
identified as Wave 1 by different softwares and different sets of eyes, which are more difficult for ABRA to
correctly detect. (C) and (D) are examples of ABR waveforms with larger signal to noise ratios for which ABRA
matches the ground truth.

ABR Classification and Threshold Estimation Results

The performance of our ABR classifiers for threshold detection was assessed on the testing set of
5,384 ABR waveforms. Performance metrics are shown in Figure 8 and a pairwise comparison
for significance is provided in Table 4. As a simple and interpretable model, logistic regression
was used as a baseline for the binary classification task. Despite its simplicity, it achieved an
accuracy of 85.56%, a True Positive Rate (TPR), sometimes referred to as recall or sensitivity, of
90.27%, and an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.84.
However, its performance was significantly outperformed by both the CNN and XGBoost
models. The CNN model demonstrates superior performance in terms of accuracy (95.08%) and
TPR (95.36%). These metrics surpass those of both the XGBoost and the baseline Logistic
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Regression models, indicating the CNN’s enhanced ability in correctly identifying ABR
thresholds. However, it is noteworthy that the XGBoost model exhibits a slightly lower False
Positive Rate (FPR) of 5.10%, compared to the CNN model’s 5.49%. This suggests that the
XGBoost model may be more effective in reducing false positives. Both the CNN and XGBoost
models achieved similar AUROC and Area Under the Precision-Recall Curve (AUPRC) of 0.99
(Figure 9). These metrics indicate promising sensitivity and precision.

Model Comparison

Figure 8: Comparative Analysis of
Accuracy E==E Machine Learning Models.
— Horizontal bar chart illustrating the
performance of three machine
AUCROC EEE% learning models: Convolutional
Neural Network (CNN), XGBoost,
and Logistic Regression (baseline).
AUCPR The metrics used for comparison are
---— Accuracy, True Positive Rate, False
Positive Rate, Area Under the
True Positive Rate ===ﬁ Receiver Operating Characteristic
Curve (AUCROC), and Area Under
the Precision-Recall Curve
L (AUCPR). The CNN model exhibits
the highest accuracy, while the
Logistic Regression model serves as

the baseline for comparison. Related
statistics are listed in Table 4.

False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
Value

Models
I CNN 3 XGBoost [ Logistic Regression (baseline)

Difference 95% ClIs for

Metric Comparison | Estimate differences p-value Significance
Accuracy CNN vs. XGB 0.0196 (0.0107, 0.0285) 1.59x107 dekek
CNN vs. LR 0.0952 (0.0842, 0.1062) 1.21x10°2 (~0) Hekek
XGB vs. LR 0.0756 (0.0640, 0.0872) | 5.18x1077 (~0) Hekek
AUCROC CNN vs. XGB 0.0000 (-0.0038, 0.0038) 1.00 NS
Area Under the
Receiver Operating | CNNvs. LR 0.1500 (0.1399, 0.1601) | 2.21x10""" (~0) wk
Characteristic Curve
XGB vs. LR 0.1500 (0.2452,0.2748) | 2.21x10""" (~0) Fkk
AUCPR CNN vs. XGB 0.0000 (-0.0038, 0.0038) 1.00 NS
(Area Under the
Precision- CNNvs. LR 0.2200 (0.2084,0.2316) | 2.71x107%° (~0) dekek
Recall Curve)
XGB vs. LR 0.2200 (0.2084, 0.2316) | 2.71x10%"° (~0) *k

TPR CNN vs. XGB 0.0051 (-0.0031, 0.0133) 0.22 NS
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(True Positive Rate) | CNN vs. LR 0.0510 (0.0412, 0.06006) 1.51x10*(~0) Fkk
XGB vs. LR 0.0458 (0.0359, 0.0557) 1.36x10°" (~0) ke
FPR CNN vs. XGB 0.0039 (-0.0046, 0.0124) 367 NS

(False Positive Rate)
CNN vs. LR -0.1870 | (-0.2000, -0.1740) | 5.20x107'** (~0) Heek
XGB vs. LR -0.1909 | (-0.2038,-0.1780) | 1.08x107'"* (~0) Feek

Table 4: Comparative analysis of performance metrics between the Convolutional Neural Network (CNN),
XGBoost (XGB), and Logistic Regression (LR) models (related to Figure 8). The CNN model shows
comparable performance to the XGB model across all metrics, except accuracy for which it outperforms. Both CNN
and XGB show significantly better performance than the LR model across most metrics. The p-values indicate the
statistical significance of these differences, with smaller values indicating stronger evidence of a difference.
Significance level notation after applying Bonferroni correction for multiple testing: 0.05 (*), 0.01 (**), 0.001(***).

Figure 9: Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic

10, ——— - = Curves and Areas Under Curves (AUC) for
o /" Convolutional Neural Network (CNN), XGBoost, and
Eo.s //’ Logistic Regression Classifiers. A ROC curve demonstrates
o o the performance of an ABR classifier at all classification
206 L thresholds. The area under the ROC curve represents the
'g /" ABR classifier's overall ability to distinguish between ABR
004 Y 4 responses that are above the hearing threshold and those that
g ,/' are not under varying model settings. The ROC curves for
0.2 ,," CNN: AUC=0.99 the CNN and XGBoost classifiers are nearly identical, while
’,/' Logistic Regression: AUC=0.77 the Logistic Regression classifier shows relatively inferior
0.0 02 0.4 0.6 0.8 19 performance.

False Positive Rate

In Figure 10, we compare the performance of three classifiers: Convolutional Neural Network
(CNN), XGBoost, and Logistic Regression. We also include an Inter-Rater comparison, which
reflects the proportion of ABRs for which two experts agree on a threshold within some
envelope (within 5dB SPL, 10dB SPL, etc.), providing a real-world benchmark for performance.

Figure 10: Threshold Estimation Metrics for Machine
Learning Models and Human Expert Inter-Rater
Comparison (statistics in Table 5). Bar chart comparing
the performance of three machine learning models:

81 Convolutional Neural Network (CNN), XGBoost, and
Logistic Regression, as well as an Inter-Rater comparison
based on their ability to estimate thresholds within 5dB
SPL and 10dB SPL. The Inter-Rater comparison was
conducted by comparing 100 threshold estimates of two
experts. The CNN and XGBoost models demonstrate
superior performance compared to the Logistic
Regression model, with the CNN outperforming
XGBoost at higher levels of precision. The Inter-Rater
comparison provides a benchmark for human expert
performance in the task.

Threshold Estimation Accuracy

Logistic Regression
| XGBodst

Inter-Rater

Within 5 dB (SPL)

Logistic Regression
| XGBoost .89

Inter-Rater

Within 10 dB (SPL)
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The classifiers are evaluated based on their ability to estimate hearing thresholds, defined as the
minimum sound intensity (in decibels) at a given frequency that elicits a repeatable neural
response. The evaluation accuracy considers how frequently the estimated threshold falls within
5dBs or 10dBs of the single-rater ground truth threshold. Table S provides inferential statistics
for the differences between each model and inter-rater assessment at both accuracy envelopes.
The CNN was the only model which performed comparably to human-rater assessment at the
10dB accuracy window; however no model could reach such accuracy at the 5dB envelope.

Accuracy Accuracy 95% ClIs for Accuracy
Envelope | Comparison Difference Difference p-value Significance
Within CNN vs. IRR 0.02 (-0.0852, 0.1252) 0.7062 NS
5dB SPL
XGB vs. IRR 0.09 (-0.0154, 0.1955) 0.0545 NS
LR vs. IRR 0.35 (0.2443, 0.4558) 7.992x10712 | ww
Within CNN vs. IRR 0.01 (-0.0673, 0.0874) 0.8628 NS
10dB SPL
XGB vs. IRR 0.03 (-0.0476, 0.1075) 0.4300 NS
LR vs. IRR 0.26 (0.1814, 0.3387) 8.718x10% | w*x

Table 5: Inference for differences in accuracy between inter-rater accuracy and the Convolutional Neural
Network (CNN), XGBoost (XGB), and Logistic Regression (LR) models (related to Figure 10). Within both the
5dB and 10dB envelopes, no significant difference between the CNN and XGB models and baseline inter-rater
accuracy was detected, suggesting CNN and XGB are performing at a comparable level as a human reviewer;
however LR did show significantly worse performance than inter-rater assessment. Significance level notation after
applying Bonferroni correction for multiple testing: 0.05 (*), 0.01 (**), 0.001(***).

The CNN demonstrates superior performance across both metrics compared with the Logistic
Regression and XGBoost models. Furthermore, the temporal nature of the data is well-suited to
the architecture of CNNs. Unlike traditional machine learning models, CNNs can effectively
capture temporal dependencies in the data, which is crucial for tasks involving time-series data,
such as our case of audio signal processing. The CNN model's superior performance at the SdB
and 10dB envelopes along with its ability to handle the temporal nature of the data makes it the
optimal choice for this task. Moreover, the CNN achieves similar performance as the Inter-Rater
comparison, indicating that its ability to estimate hearing thresholds is on par with the consensus
of two human experts using standard visual threshold inspection methods. This suggests that the
CNN model can function as a reliable tool for estimating hearing thresholds, providing a
machine learning-based approach that matches human expert performance.
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Metric \ Software EPL-ABR

Accuracy 93.12 (£1.476)%

True Positive Rate

90.00 (+1.749)%

False Positive Rate 14.52 (£2.055)%

Within 5dB SPL 57.14 (£2.886)%

Within 10dB SPL 91.43 (x1.633)%

Within 15dB SPL

Table 6: Performance Comparison of Threshold Estimation Algorithms on Lab C data only (292 ABR
waveforms from 27 mice). This table presents a side-by-side comparison of two threshold estimation algorithms:
EPL-ABR and ABRA. The metrics used for comparison include Accuracy, True Positive Rate, False Positive Rate,
and the ability to estimate thresholds within 5dB, 10dB, and 15dB. The values are presented as mean (+ standard
error). ABRA demonstrates superior performance (bolded) in terms of accuracy and estimating thresholds within
5dB, while EPL-ABR has a higher True Positive Rate.

The performance of our threshold estimation technique was compared against that of EPL-ABR
(Suthakar & Liberman 2019) on a separate dataset of ABR waveforms from Lab C (Table 6).
This smaller set of ABR waveforms (N =292) was selected because EPL-ABR’s threshold
estimation software requires data in the custom ABR file format used by the Eaton Peabody
Laboratories. Our CNN method outperforms EPL-ABR’s threshold estimation method across all
metrics except for FPR. One benefit of CNN is that it can be continuously trained and improved
as more data is made available.

Time Cost Analysis

In order to quantify the time savings of using ABRA, we sent a random sample of 10 ABR files
from Lab B to two ABR raters from Lab A with a total of 90 frequencies to be analyzed. It took
both raters approximately 1 hour to manually analyze the ABR thresholds. However, using
ABRA, it took about 48 seconds to output the automated thresholds for each frequency,
corresponding to 75x increased efficiency. The automated thresholds were within 5 dBs of Lab
A inspection 73% of the time, 10 dBs 88% of the time, and 15 dBs 96% of the time. For
comparison, inter-rater assessment showed that a Lab A annotator was within 5 dB of a Lab B
annotator’s result 89% of the time, 10 dB 99% of the time, and 15 dB 100% of the time.

Discussion

The aim of this study is to illustrate ABRA’s versatility and additional benefits compared to
other available software such as ABRWAS and EPL-ABR (see Table 7). ABRA has been
designed to be a multi-purpose and versatile software with extended functionality and to be able
to handle input data acquired from different mouse strains, different laboratories, and recorded in
different formats, including the widely used standard .arf files from BioSigRZ Tucker Davis
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Technology recordings, or .csv files from any number of other systems given limited rules
related to file structure.

FEATURES

ABRA

ABRWAS

EPL-ABR

Threshold
Detection

Automated thresholding with
both supervised/unsupervised
machine learning methods

No automated threshold
estimation

Automated thresholding
using cross-covariance
calculations

Peak Detection

Automates peak and trough
detection

Suggests peak and trough
detection as a guide for
human revision

Automates peak and
trough detection and
allows for human
revision

Time Warping

Performs elastic time warping

No time warping

No time warping

Batch Processing

Supports batch processing

Supports batch processing

No batch processing

Data Extraction

Generate peaks, troughs, and a
metrics table with a single click

Generates peaks and
troughs with option to
manually adjust labels

Generates peaks and
troughs with option to
manually adjust labels

Metrics table only includes three

Comprehensive metrics

Metric Exports waveform metrics and the table Comp reh&:;l)sll;/e metrics
threshold for each frequency
Accessibility Free and open source Free and open source Free and open source

Image Exports

Can export .png and .pdf files

No functionality

No functionality

When errors arise, app can

Stability ; Errors require software When errors arise, app
recover easily relaunch can recover easily
Accepts .arfs and .csvs; only a
File Type Support | couple rules related to the file Each file must follow the Only supports EPL file
same structure type
structure
Operating System Windows/Mac/Linux Windows Windows/Mac

Web Support

Web-based application that can
also run locally

Run on local machines
only

Run on local machines
only

Table 7: Comparison of software features/capabilities. Functionality and aspects of ABRA, the Auditory

Brainstem Response Waveform Analyzer (ABRWAS) (Burke et al. 2023), and the EPL-ABR Peak Analysis App
(Suthakar and Liberman 2019).

The tests done in the Manor lab have shown that ABRA’s automated thresholding method
reduces the time costs of thresholding analyses by more than 50x, and can help streamline the
process of extracting ABR thresholds from multiple subjects. In addition, the results can be
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exported to a .csv file for post-processing by the experimenter, and plots can be directly exported
for publication if desired.

The deep learning techniques used in ABRA have some precedence not only in previous ABR
studies but in the field of electrophysiology in general. A recent study showed that convolutional
neural networks and long short-term memory architecture can automatically detect discrete
records of protein movement (Celik et. al. 2020). Another electrophysiological study introduced
a deep learning algorithm that infers latent dynamics from single-trial neural spiking data
(Pandarinath et. al. 2018). This study used data from non-overlapping recording sessions that
improved the inference of their model, similar to how our software accounts for a range of data
collection protocols for improved generalizability. Both studies were designed to automate
otherwise laborious and arduous tasks and simplify them such that future studies can be more
accurate, more reproducible, and less time-consuming. The deep learning techniques used in our
software have similar potential for ABR studies by streamlining the onerous task of labeling
peaks and identifying thresholds. We envision future ABR acquisition protocols that can be
guided by our software to avoid acquiring excess measurements after a threshold is reached.

While we have argued that ABRA is a powerful tool for ABR analysis, it is necessary to remark
that it also has its limitations and there exist areas for future improvements. Currently ABRA can
handle .csv and BioSigRZ .arf file inputs reliably, however functionality for analysis of
BioSigRP .arf files is still in development. Calculation of amplitude/latency results and
performing visualization when batch processing large numbers of ABR files (N>100 waveforms)
may take several minutes, especially if the user chooses to implement the time warping
functionality. ABRA developers are currently investigating the feasibility of moving
computation to cloud-hosted GPUs to accelerate data processing. Similarly, quality of life
improvements for manual relabeling of ABRA-generated peaks, latencies, and thresholds are
also an area for future work. As for model limitations, the CNN-based thresholding model was
trained only on mouse ABRs which had step sizes no larger than 20 dB SPL. Moreover, it was
validated for automated amplitude and latency measurements for only Wave 1, leaving the
remaining Waves 2-5 currently unvalidated, which can be pursued in future efforts as the model
continues to incorporate new data from our labs and others. Most importantly, the accuracy of
peak and threshold detection may not yet match that of the most seasoned experts in visual ABR
analysis. While the time saved by automation may still yet be a worthwhile tradeoff for certain
applications, an additional benefit is the deterministic nature of the model and therefore high
reproducibility. Most importantly, we anticipate significant improvements in performance as the
amount of training data is increased over time.

Overall, this study has shown that the ABRA interface is a flexible one-stop-shop software for
ABR amplitude/latency estimation, thresholding, visualization, and all plots can be exported for
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generating figures. ABRA’s ease-of-use, generalizability, and diverse functionality serve as
potential outlets to streamline data processing and resulting studies involving ABR analysis.
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Figure 1: Example of ABR waveform recorded from a mouse showing its characteristic features or waves. Wave 1 is generated by
the auditory nerve (AN), Wave 2 by the cochlear nucleus (CN), Wave 3 by the superior olivary complex (SOC), Wave 4 by lateral
lemniscus (LL), and Wave 5 by the inferior colliculus (IC) (Riittiger et. al. 2017). Peaks of these waves are denoted by red dots, and
troughs with blue dots.
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Figure 2: Screenshots from the ABRA app highlighting the different functionalities of ABRA (A) visualizing several ABR
waveforms from one 1 mo male C57BI/6N mouse across different togglable dBs at 18kHz with predicted peak locations (red points) and
predicted threshold (thick black line). (B) plotting a single ABR waveform at a specific sound frequency and intensity (dB SPL) with
peaks and troughs labeled. (C) 3D plotting of all ABR waveforms at a given frequency with the predicted threshold (20dB) highlighted
in black (can be rotated in the app) (D) stacks of ABR waveforms as a function of increasing dB SPL from the same frequency with the

predicted threshold (20dB) highlighted in black.
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Figure 3: Model architecture for Wave 1 Peak Finding Algorithm. The ABR waveform recorded over 10 ms is input into two

sequential layers of Convolution, Maxpool, and Dropout. The dimensionality of the output is reduced through two consecutive fully-
connected layers which returns the prediction of the time point of the Wave 1 peak.
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Figure 4: Model architecture for CNN ABR Classifier. The ABR waveform recorded over 10 ms and its tone’s frequency and decibel
level are input into three sequential layers of convolution and max pooling. The dimensionality of the output is reduced through two
consecutive fully-connected layers before finally returning the classification of the ABR.
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Figure 5: ABRs before (left) and after (right) Time Warping. The depicted transformation of waveforms, both before and after applying
elastic time warping using the fdasrsf package (Tucker 2020), illustrates clear registration of waveform features. Associated with each
waveform is also an estimated time warping function which is useful in quantifying changes between the original unaligned latencies to the
aligned latencies for all wave peaks and troughs.

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.20.599815; this version posted June 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made


https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/

A Wave 1 Latency Errors B Wave 1 Amplitude Errors
) by ABRA Software (n=154) by ABRA Software (n=154)
[ ] Nn

s 1 > .
= = il .
: m O sssssssnsansa L | Y O -
= = : n
S = ’ = -
% 1 . -1 Mean Error: 0.0008
g MAE: 0.0452 -0.05 < Errors < 0.05: 91.56%
5 -0.1 <Errors <0.1: 90.26% . .
: - ABRA Software ABRA Software

Figure 6: Swarmplots displaying spreads of error for detected Wave 1 Latency (A) and Amplitude (B) vs. ground truth for
each software. Testing failed to find evidence that mean absolute errors were significantly greater than zero for both Wave 1
Latency and Amplitude estimates. 90.26% of all ABRA-generated estimates of Wave 1 Latency were within 0.1ms of the

corresponding true human-labeled latency; 91.56% of all ABRA-generated Wave 1 amplitude were within 0.05 pV of the
corresponding true human-labeled peak amplitude.
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Figure 7: Examples of error cases in peak detection. (A) example of multiple peaks that may be identified as Wave 1 by different
softwares and different sets of eyes. (B) ABRA may identify the incorrect peak. (C) and (D) are examples of ABR waveforms with
larger signal to noise ratios for which ABRA matches the ground truth.
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Figure 8: Comparative Analysis of Machine Learning Models. Horizontal bar chart illustrating the performance of three machine
learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic Regression (baseline). The metrics used for comparison
are Accuracy, True Positive Rate, False Positive Rate, Area Under the Receiver Operating Characteristic Curve (AUCROC), and Area
Under the Precision-Recall Curve (AUCPR). The CNN model exhibits the highest accuracy, while the Logistic Regression model serves
as the baseline for comparison
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Figure 9: Receiver Operating Characteristic (ROC) Curves and Areas Under Curves (AUC) for Convolutional Neural
Network (CNN), XGBoost, and Logistic Regression Classifiers. A ROC curve demonstrates the performance of an ABR classifier
at all classification thresholds. The area under the ROC curve represents the ABR classifier's overall ability to distinguish between
ABR responses that are above the hearing threshold and those that are not under varying model settings. The ROC curves for the
CNN and XGBoost classifiers are nearly identical, while that of the Logistic Regression classifier suggests relatively inferior

performance.
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Figure 10: Threshold Estimation Metrics for Machine Learning Models and Human Expert Inter-Rater Comparison. Bar chart
comparing the performance of three machine learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic
Regression, as well as an Inter-Rater comparison based on their ability to estimate thresholds within 5dB and 10dB. The Inter-Rater
comparison was conducted by comparing 100 threshold estimates of two experts. The CNN and XGBoost models demonstrate
superior performance compared to the Logistic Regression model, with the CNN outperforming XGBoost at higher levels of precision.
The Inter-Rater comparison provides a benchmark for human expert performance in the task.
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Supplementary Information

Data Collection Methods

Detailed description of data collection methodology is described for each of the three labs as
follows:

Manor Lab Data (Lab A)

e Anesthesia: 3 month SAMP8 (Senescence-Accelerated Mouse-Prone 8) (Takeda et al.
1981) mice were anesthetized using an intraperitoneal injection of a mixture of ketamine
(90 mg/kg) and xylazine (10 mg/kg). If required to maintain anesthesia, mice received an
additional quarter of the original dose as a top-up.

e Preparation: Ophthalmic ointment (Dechra) was applied to the subjects’ eyes once
anesthetized. Animals were placed in a soundproof chamber (IAC Acoustics, IL) to
isolate them from exterior noise completely and a heating pad (Braintree Scientific Inc.)
was used to maintain the temperature at 37°C.

e FElectrode Placement: A recording electrode was inserted subcutaneously at the vertex and
a reference electrode was placed behind the right pinna, with the ground electrode placed
in the left leg.

e Sound Stimuli: Sound stimuli were presented via an MF1 Multi-field magnetic speaker
(Tucker-Davis Technologies, TDT, FL) situated 10 cm from the mouse’s right ear. Output
stimuli were calibrated with a one-quarter-inch microphone (model PCB-378C01; PCB
Piezotronics, NY) placed at the same distance from the speaker as the mouse ears would
be.

e Recording: Electrophysiological signals in response to each tone stimulus were recorded
for 10 ms starting at the onset of the tone. Stimuli were 5-ms tone pips (0.5 ms cos2 rise-
fall) delivered at 21s with alternating stimulus polarity. Recorded electrical responses
were filtered (300 Hz to 3 kHz) and averaged using BioSigRZ software (TDT, FL).

e Sound Intensity: The sound intensity level was decreased in 5 dB increments from 90 dB
SPL to 10 or 20 dB SPL. At each sound level, 512 responses were averaged.

Marcotti Lab Data (Lab B)

e Anesthesia: Female C57BL/6N mice were anesthetized using intraperitoneal injection of
ketamine (100 mg/Kg body weight, Fort Dodge Animal Health, Fort Dodge, USA) and
xylazine (10 mg/Kg, Rompun 2%, Bayer HealthCare LLC, NY, USA).

e Preparation: Following the onset of anesthesia and the loss of the retraction reflex with a
toe pinch, mice were placed onto a heat mat (37°C) in a soundproof chamber (MAC-3
acoustic chamber, IAC Acoustic, UK).
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e Electrode Placement: Subdermal electrodes were placed under the skin behind the pinna
of each ear (reference and ground electrode) and on the vertex of the mouse (active
electrode) as previously described (Ingham et al., 2011).

e Sound Stimuli: Sound stimuli were delivered to the ear by calibrated loudspeakers (MF1-
S, Multi-Field Speaker, Tucker-Davis Technologies, USA) placed 10 cm from the
animal’s pinna. Sound pressure was calibrated with a low-noise microphone probe system
(ER10B+, Etymotic, USA).

e Recording: Experiments were performed using a customized software (Ingham et al.,
2011) driving an RZ6 auditory processor (Tucker-Davis Technologies). Auditory
thresholds were estimated from the resulting ABR waveform and defined as the lowest
sound level (measured in decibels, dB) where any recognizable feature of the waveform
was visible.

e Sound Intensity: Stimulus sound pressure levels were typically 0-95 dB SPL, presented in
steps of 5 dB SPL. The ABR response signal was averaged over 256 repetitions.

Liberman Lab Data (Lab C)

e Anesthesia: 7 week C57BI1/6J mice were anesthetized using ketamine/xylazine anesthesia
(Ketamine: 100 mg/kg, Xylazine: 10 mg/kg).
Preparation: subjects were placed in a closed acoustic system.
Electrode Placement: The response was recorded via needle electrodes inserted through
the skin (vertex to ipsilateral pinna near tragus with a ground on the back near the tail).

e Sound Stimuli: Stimuli were 5-ms pips (0.5-ms rise-fall with a cos2 onset envelope,
delivered at 30/sec).

e Recording: The response was amplified (10,000 X), filtered (100 Hz - 3 kHz), and
averaged with an A-D board in a LabVIEW-driven data-acquisition system.

e Sound Intensity: The sound level was raised in 5 dB steps from roughly 10 dB below the
threshold up to 80 dB SPL. At each sound level, 1024 responses were averaged (with
stimulus polarity alternated.
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Figure 1: Example of ABR waveform recorded from a mouse showing its characteristic features or waves. Wave 1 is generated by
the auditory nerve (AN), Wave 2 by the cochlear nucleus (CN), Wave 3 by the superior olivary complex (SOC), Wave 4 by lateral
lemniscus (LL), and Wave 5 by the inferior colliculus (IC) (Riittiger et. al. 2017). Peaks of these waves are denoted by red dots, and
troughs with blue dots.
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Figure 2: Screenshots from the ABRA app highlighting the different functionalities of ABRA (A) visualizing several ABR
waveforms from one 1 mo male C57B1/6N mouse across different togglable dBs at 18kHz with predicted peak locations (red points) and
predicted threshold (thick black line). (B) plotting a single ABR waveform at a specific sound frequency and intensity (dB SPL) with
peaks and troughs labeled. (C) 3D plotting of all ABR waveforms at a given frequency with the predicted threshold (20dB) highlighted

in black (can be rotated in the app) (D) stacks of ABR waveforms as a function of increasing dB SPL from the same frequency with the
predicted threshold (20dB) highlighted in black.
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Figure 3: Model architecture for Wave 1 Peak Finding Algorithm. The ABR waveform recorded over 10 ms is input into two
sequential layers of Convolution, Maxpool, and Dropout. The dimensionality of the output is reduced through two consecutive fully-
connected layers which returns the prediction of the time point of the Wave 1 peak.
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Figure 4: Model architecture for CNN ABR Classifier. The ABR waveform recorded over 10 ms and its tone’s frequency and decibel
level are input into three sequential layers of convolution and max pooling. The dimensionality of the output is reduced through two
consecutive fully-connected layers before finally returning the classification of the ABR.
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Figure 5: ABRs before (left) and after (right) Time Warping. The depicted transformation of waveforms, both before and after applying
elastic time warping using the fdasrsf package (Tucker 2020), illustrates clear registration of waveform features. Associated with each
waveform is also an estimated time warping function which is useful in quantifying changes between the original unaligned latencies to the

aligned latencies for all wave peaks and troughs.
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Figure 6: Swarmplots displaying spreads of error for detected Wave 1 Latency (A) and Amplitude (B) vs. ground truth for
each software. Testing failed to find evidence that mean absolute errors were significantly greater than zero for both Wave 1
Latency and Amplitude estimates. 90.26% of all ABRA-generated estimates of Wave 1 Latency were within 0.1ms of the
corresponding true human-labeled latency; 91.56% of all ABRA-generated Wave 1 amplitude were within 0.05 uV of the
corresponding true human-labeled peak amplitude.
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Figure 7: Examples of error cases in peak detection. (A) example of multiple peaks that may be identified as Wave 1 by different

softwares and different sets of eyes. (B) ABRA may identify the incorrect peak. (C) and (D) are examples of ABR waveforms with
larger signal to noise ratios for which ABRA matches the ground truth.
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Figure 8: Comparative Analysis of Machine Learning Models. Horizontal bar chart illustrating the performance of three machine
learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic Regression (baseline). The metrics used for comparison
are Accuracy, True Positive Rate, False Positive Rate, Area Under the Receiver Operating Characteristic Curve (AUCROC), and Area

Under the Precision-Recall Curve (AUCPR). The CNN model exhibits the highest accuracy, while the Logistic Regression model serves
as the baseline for comparison
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Figure 9: Receiver Operating Characteristic (ROC) Curves and Areas Under Curves (AUC) for Convolutional Neural
Network (CNN), XGBoost, and Logistic Regression Classifiers. A ROC curve demonstrates the performance of an ABR classifier
at all classification thresholds. The area under the ROC curve represents the ABR classifier's overall ability to distinguish between
ABR responses that are above the hearing threshold and those that are not under varying model settings. The ROC curves for the
CNN and XGBoost classifiers are nearly identical, while that of the Logistic Regression classifier suggests relatively inferior

performance.
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Figure 10: Threshold Estimation Metrics for Machine Learning Models and Human Expert Inter-Rater Comparison. Bar chart
comparing the performance of three machine learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic
Regression, as well as an Inter-Rater comparison based on their ability to estimate thresholds within 5dB and 10dB. The Inter-Rater
comparison was conducted by comparing 100 threshold estimates of two experts. The CNN and XGBoost models demonstrate
superior performance compared to the Logistic Regression model, with the CNN outperforming XGBoost at higher levels of precision.
The Inter-Rater comparison provides a benchmark for human expert performance in the task.
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