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Abstract 
In this paper, we introduce a new, open-source software developed in Python for analyzing 
Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous 
neural activity generated by the auditory fibers in the ear in response to sound, and used to study 
acoustic neural information traveling along the ascending auditory pathway. Common ABR data 
analysis practices are subject to human interpretation and are labor-intensive, requiring manual 
annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem 
Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by 
supporting batch data import/export, waveform visualization, and statistical analysis. Techniques 
implemented in this software include algorithmic peak finding, threshold estimation, latency 
estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus 
frequencies and decibels. The excellent performance on a large dataset of ABR collected from 
three labs in the field of hearing research that use different experimental recording settings 
illustrates the efficacy, flexibility, and wide utility of ABRA. 
 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


 

Introduction 
Auditory brainstem response (ABR) recordings provide an objective measurement of electrical 
activity along the ascending auditory neural pathway, starting from the afferent fibers 
innervating the inner hair cells in the cochlea 
through the brainstem nuclei (Eggermont 2019; Kim 
et al. 2022; Burkard and Don 2012; Ingham et al. 
2011; Møller and Jannetta 1985; Xie et al. 2018). 
ABRs are widely used in auditory research to study 
acoustic neural information transmission and to 
diagnose and distinguish different forms of hearing 
loss and synaptopathy in animal models of human 
otologic and neurologic conditions (Sininger 1993; 
Burkard and Sims 2001; Fernandez et al., 2015; 
Bramhall et al., 2018; Bao et al., 2022; Young, 
Cornejo, and Spinner 2023). In mice, ABR 
waveforms consist of five characteristic peaks 
(Figure 1), each approximately corresponding to the 
sound-induced electrical signal traveling through the 
different structures along the auditory pathway 
(Figure 1, Rüttiger et. al. 2017, Melcher et al. 1996, 
Henry 1979, Land et al. 2016). 
 
A key goal of ABR threshold analysis in mice is to generate quantitative measures of hearing 
function, defined as the minimum sound intensity (in decibels) at a given frequency that elicits a 
repeatable neural response.  Traditionally, threshold identification is performed by visually 
inspecting waveforms at decreasing sound intensities until a waveform is no longer 
distinguishable from baseline noise. ABR thresholds in anesthetized mice are typically ~10dB 
higher than behavioral perceptual responses in awake mice (Radziwon et al. 2009).  While 
pragmatic, this method is time-consuming for larger studies and prone to inconsistency and bias 
between labs and examiners (Suthakar and Liberman 2019, Schrode 2022). To address these 
limitations, heuristic and machine learning computational approaches have been explored for 
automated ABR analysis. Supervised learning models (i.e. models which learn from data with 
ground truth labels) like convolutional neural networks (CNN), gradient boosting machines, and 
others have been used to accurately analyze suprathreshold ABR waveforms (Wimalarathna et 
al. 2021, McKearney and MacKinnon 2019, Kamerer et al. 2020) and to assess the degree of 
synaptopathy in humans (Buran et al. 2022). The utility of unsupervised learning models (i.e. 
models which learn from data without ground truth labels) for ABR analysis remains relatively 
unexplored to date. Assuming a similar amount of training data, unsupervised models often have 
a harder task than supervised models since they cannot learn from true labels. However, 

Figure 1: Example of an ABR waveform 
recorded from a mouse showing its 
characteristic features or waves. Wave 1 is 
generated by the spiral ganglion neurons (SGNs) 
and auditory nerve (AN), Wave 2 by the 
cochlear nucleus (CN), Wave 3 by the CN and 
superior olivary complex (SOC), Wave 4 by the 
SOC, lateral lemniscus (LL) and inferior 
colliculus (IC), and Wave 5 by the LL and IC 
(Rüttiger et. al. 2017, Melcher et al. 1996, Henry 
1979, Land et al. 2016). Peaks of these waves are 
denoted by red dots, and troughs with blue dots.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


 

application of unsupervised methods often comes with reduced human labor requirements, since 
they do not require manually annotated ground truth data from which to learn.  
 
In this paper, we introduce the Auditory Brainstem Response Analyzer (ABRA), a novel open-
source software that implements a collection of supervised and unsupervised machine learning 
models trained on a diverse range of mouse ABR datasets from multiple labs for comprehensive 
and maximally generalizable mouse ABR analysis. ABRA is a user-friendly, browser-based 
application that supports batch data import/export, waveform visualization, automated peak 
detection, threshold estimation, latency quantification, time warping for curve alignment, and 
interactive 2D/3D plotting. By integrating these diverse functionalities into a unified platform, 
ABRA aims to streamline ABR data processing and analysis, reduce manual labor, and facilitate 
standardization and reproducibility across labs. We demonstrate ABRA's flexibility and 
generalizability by benchmarking its performance on ABR datasets collected from three different 
hearing research labs using distinct experimental protocols and recording settings. 
 
Methods 
Data Collection  
To test for the generalizability and flexibility of developed open-source ABR software, we used 
three distinct datasets from different labs to train and evaluate ABRA’s models (Tables 1 - 2). 
Each dataset used in the analysis was collected under unique experimental conditions and 
protocols. All three labs used a similar overarching methodology, including the use of anesthesia, 
electrodes, and sound decibel (dB) ranges. However, there were also differences in the specifics 
of these procedures, as outlined in Table 1. These differences underscore the flexibility of 
ABRA in accommodating diverse experimental setups and protocols. Further details on data 
collection conditions are available in the Supplementary Information.  
Methods Lab A Lab B Lab C 

Anesthesia Ketamine (90 mg/kg) + Xylazine 
(10 mg/kg) 

Ketamine (100 mg/kg) + 
Xylazine (10 mg/kg) 

Ketamine (100 mg/kg) + 
Xylazine (10 mg/kg) 

Environme
nt 

Soundproof chamber, heating pad 
(37°C) 

Soundproof chamber, 
heating pad (37°C) 

Soundproof chamber, 
heating pad (37°C) 

Electrode 
Placement 

Subcutaneous recording electrode 
at vertex, reference behind right 
pinna, ground on left leg 

Subdermal electrodes 
behind pinna (reference and 
ground), vertex (active) 

Needle electrodes: vertex to 
ipsilateral pinna (recording), 
ground near tail 

Sound 
Stimuli 

5-ms tone pips (0.5 ms cos2 rise-
fall), 21/sec  

5-ms pips (1.0-ms rise-fall 
with cos2 onset envelope), 
42.6/sec 

5-ms pips (0.5-ms rise-fall 
with cos2 onset envelope), 
30/sec 

Recording Filtered (300 Hz - 3 kHz), 
averaged using BioSigRZ 
software, 512 responses averaged 

Customized software 
(Ingham et al., 2011), RZ6 
auditory processor, 256 
responses averaged 

Amplified (10,000X), 
filtered (100 Hz - 3 kHz), 
averaged with A-D board in 
LabVIEW system, 1024 
responses averaged  
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Sound 
Intensity 

Decreased from 90 dB SPL to 
10/20 dB SPL in 5 dB steps 

0-95 dB SPL in 5 dB steps Raised from ~10 dB below 
threshold to 80 dB SPL in 5 
dB steps 

Speaker 
distance  

Open-field - 10 cm from ear Open-field - 10 cm from ear Closed-field - ~3 cm from 
the eardrum 

Mouse 
age/strains 
used 

3-month SAMP8 (Senescence-
Accelerated Mouse-Prone 8) 
(Takeda et al. 1981) 

1-month C57Bl/6N with and 
without corrected CDH23 

7-week C57Bl/6J 

Table 1: Summary of the experimental recording conditions used by the three labs. The datasets are described 
in the following order: Anesthesia, Preparation, Electrode Placement, Sound Stimuli, Recording, Sound Intensity, 
and Distance of the Speaker. The specific methods employed by each lab—Manor Lab (Lab A), Marcotti Lab (Lab 
B), Liberman Lab (Lab C)—are detailed in the supplementary information section. 
 
 

Lab/Model Peak Detection Automatic Thresholding 

 Training Data Test 
Data Training Data Test 

Data 
ABRA vs. 
EPL-ABR 

Lab A 40 mice 
(286 ABRs) 

34 mice 
(72 ABRs) 

65 mice 
(5,419 ABRs) 

16 mice 
(2,031 ABRs) 

– 

Lab B 4 mice 
(327 ABRs) 

4 mice 
(82 ABRs) 

83 mice 
(12,948 ABRs) 

21 mice 
(3,276 ABRs) 

– 

Lab C – – 29 mice 
(319 ABRs) 

7  mice 
(77 ABRs) 

27 mice 
(292 ABRs) 

Total 
[Relevant 
Figures & 
Tables] 

44 mice 
(613 ABRs) 
[Fig. 3] 

38 mice 
(154 ABRs) 

[Fig. 6; Table 3] 

177 mice 
(18,686 ABRs) 
[Fig. 4] 

44 mice  
(5,384 ABRs) 
[Figs. 8-10; 
Tables 4, 5] 

27 mice 
(292 ABRs) 
[Table 6] 

Table 2: Breakdown of mouse and ABR waveform data by lab, model, and train and test splits. Figures and 
Tables relevant to a given dataset are enumerated in brackets in the last row.  
 
The ABRA Graphical User Interface 
The proposed Auditory Brainstem Response Analyzer (ABRA) software was built to facilitate 
the examination and analysis of ABR waveforms. ABRA was developed in Python using the 
Streamlit framework (“Streamlit” n.d.) and provides an interactive platform for researchers to 
visualize ABR data. The app is hosted at https://ucsdabranalysis.streamlit.app/ and all 
documentation can be found on our Github: https://github.com/ucsdmanorlab/abranalysis. ABRA 
allows users to import multiple ABR data files stored in either .arf or .csv files obtained from 
BioSigRZ software from Tucker Davis Technologies (TDT). Upon import, the data is 
preprocessed to extract frequency, dB level, and the waveform data itself. 
 
At its simplest functionality, ABRA allows the user to select which frequencies and decibel 
levels they wish to examine. The ABR plots are shown through the Plotly framework in Python 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


 

and can be downloaded as .png files. ABRA displays metrics under the plots related to the 
displayed waveforms, including Wave 1 amplitude, and latency to the first peak. These metrics 
can be downloaded into a .csv file. ABRA also allows the user to view all the waveforms for a 
single frequency, highlights the automatically detected peaks and troughs, and automates 
thresholding so that analysis can be performed more efficiently (Figure 2). 

 
For those seeking a comprehensive view of the variations in the waveform over several dB levels 
at the same frequency for thresholding, ABRA provides the option to implement time warping 
which registers the peaks of the waveforms of multiple dBs in response to the same frequency of 
stimulation (see Figure 5). The app also provides a 3D surface plot of waveforms which is 
interactive and allows the user to view the series of ABR waveforms as cross-sections of the 
ABR voltage surface over the decibel and time domains. ABRA’s different functionalities can 
provide the user the tools to visually threshold for themselves and compare their threshold with 
our model’s prediction. ABRA also allows users to conduct these analyses for multiple data files 
in batches at the same time. 
 
 

Figure 2: Screenshots from the ABRA app highlighting the different functionalities of ABRA (A) visualizing 
several ABR waveforms from one 1 mo male C57Bl/6N mouse across different togglable dBs at 18 kHz with 
predicted peak locations (red points) and predicted threshold (thick black line). (B) plotting a single ABR waveform 
at a specific sound frequency and intensity (dB SPL) with peaks and troughs labeled. (C) 3D plotting of all ABR 
waveforms at a given frequency with the predicted threshold (20dB) highlighted in black (can be rotated in the app). 
(D) stacks of ABR waveforms as a function of increasing dB SPL from the same frequency with the predicted 
threshold (20 dB) highlighted in black. 
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ABRA Peak Detection 
ABRA incorporates a two-step peak finding algorithm that leverages Pytorch’s deep learning 
library and the Scikit-learn library. The first step involves deploying a pre-trained Convolutional 
Neural Network (CNN) to retrieve a prediction for the location of the Wave 1 peak. We had 767 
ABRs with ground truth labeled Wave 1 latencies and amplitudes (358 ABR waveforms from 
Lab A, 40 mice; 409 ABR waveforms from Lab B, 4 mice). We included 409 ABRs from Lab B 
to have a diversity of ABRs so that the model can be more thoroughly generalizable. Before 
training the CNN, the dataset was split into two sets with 80% of data from each lab going into 
the training set and 20% of data from each lab going into the testing set. The CNN was trained 
on 613 ABRs (286 ABRs from Lab A, 40 mice; 327 ABRs from Lab B, 4 mice) of length 244 
(representing 10 ms) labeled with ground truth data related to the Wave 1 peak. The CNN 
optimizes squared error loss for the regression task which returns a prediction for the Wave 1 
peak timepoint. A sparse representation of the network architecture is shown in Figure 3. 
  

 
Figure 3: Model architecture for Wave 1 Peak Finding Algorithm. The ABR waveform recorded over 10 ms is 
input into two sequential layers of Convolution, Maxpool, and Dropout. The dimensionality of the output is reduced 
through two consecutive fully-connected layers which returns the prediction of the time point of the Wave 1 peak. 
 
The CNN’s prediction of the Wave 1 peak time point serves as a reasonable initial estimate but 
ABRA further performs some fine-tuning in order to ensure that it is not sitting at a point 
neighboring the peak. To retrieve the correct point of the peak of Wave 1, a second fine-tuning 
step was implemented as follows. First, the ABR was smoothed using Gaussian smoothing to 
attenuate or remove nuisance peaks to identify peak indices. Then the find_peaks method from 
Scikit-learn was used to identify the remaining Wave 2-5 peak/trough locations and voltages by 
searching for all local maxima and minima by simple comparison of neighboring values of the 
wave starting from the CNN predicted Wave 1 peak index. Afterwards, the unsmoothed 
waveforms are utilized to quantify the amplitudes at the previously identified indices. The 
parameters for these methods were optimized using ground truth Wave 1 latency from 154 ABR 
waveforms (72 ABR waveforms from Lab A, 34 mice; and 82 ABR waveforms from Lab B, 4 
mice) and ground truth Wave 4 amplitude from 211 labeled ABRs from Lab A. These 
parameters include the following: 
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a. Window size for the start point for the smoothed waveform being inputted into the 
find_peaks function (optimized to 0.3689 ms before the CNN prediction for Wave 1 peak). 

b. Time between peaks such that the correct peaks are identified (optimized to 0.7377 ms). 
c. Bandwidth parameter for the Gaussian smoothing step was set to ! = 1.0. 
d. Time between troughs such that the correct troughs are identified (optimized to 0.5738 ms).  

 
Supervised Threshold Estimation with ABRA 
The threshold estimation method used a binary machine learning classifier to identify individual 
ABR waveforms as either above or below threshold. Once individual waveforms were identified, 
the hearing threshold for a given frequency was determined as the quietest stimulus level (in dB 
SPL) for which a subject’s ABR waveform suggested a hearing response (i.e. was above 
threshold). Three candidate supervised binary classifiers were trained and evaluated: A CNN, an 
XGBoost classifier, and a Logistic Regression Classifier.  

The dataset comprised 23,352 ABR waves from 221 mice (Lab A = 48 mice; Lab B = 104 mice; 
Lab C = 36 mice), with each wave characterized by its frequency, decibel level, and amplitudes 
at 244 uniformly distributed sampling points over a 10 ms time window. ABRs not initially 
sampled at 244 samples per 10 ms were resampled using linear interpolation. The ABRs were 
grouped by subject and frequency, then 80% of these groups were randomly allocated for 
training (Lab A =  34 mice; Lab B = 83 mice; Lab C = 27 mice) and the remaining 20% were 
designated for testing (Lab A = 14 mice; Lab B = 21 mice; Lab C = 9 mice). This method 
ensures a representative distribution of ABRs from various subjects and frequencies across the 
training and testing sets. Accordingly, the training input matrix had dimensions of 18,686 x 246, 
where 18,686 is the total number of training samples and 246 is the number of features, including 
244 voltage recordings for each ABR, the decibel level, and the frequency of the stimulus. 

For the Logistic Regression Classifier and XGBoost Classifier, time warping was used on the 
ABR trajectories as an additional preprocessing step to align waveform features such as peaks 
and troughs (see section below: ABR Curve Alignment with Time Warping). For the CNN, no 
additional preprocessing steps were used. The architecture of the CNN is described in Figure 4. 

 

Figure 4: Model architecture for CNN ABR Classifier. The ABR waveform recorded over 10 ms and its frequency 
and decibel level are input into three sequential layers of convolution and max pooling. The dimensionality of the 
output is reduced through two consecutive fully-connected layers before returning the classification. 
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ABR Curve Alignment with Time Warping 
As previously discussed, ABRs from mice often exhibit a characteristic structure with 5 distinct 
peaks (Figure 1). However, a common challenge in analyzing these ABR waveforms is the non-
uniform latency across different frequencies and decibel levels. This variability in latency can 
distort the time-based comparison of these responses, as the peaks do not occur at the same time 
instances across different ABRs. To address this, we provide an option to employ time warping 
to align these ABRs, which standardizes the position of peaks and other salient features of the 
ABRs across time. This alignment serves dual purposes. First, it decouples amplitude and phase 
variation, facilitating the visual comparison of amplitudes of ABR waveforms. Second, the 
encoding of time alignment parameters into individual-specific warping functions provides the 
option of incorporating these features into machine learning models, which in some cases 
improves the models’ performance and predictive power.  It is important to emphasize that the 
optional time warping as a preprocessing step should only be used when analyzing amplitude, 
but not latency variability.  
To conduct the time warping step, we used the fdasrsf package in Python (Tucker 2020). This 
package implements elastic time warping, a method that allows for alignment of key signals in 
waveforms. This technique is particularly useful in our case, as it allows us to align the ABRs 
despite the non-uniform latency across different frequencies and decibel levels. 

 
Figure 5: ABRs before (left) and after (right) Time Warping. The depicted transformation of waveforms, both 
before and after applying elastic time warping using the fdasrsf package (Tucker 2020), illustrates clear registration 
of waveform features. Associated with each waveform is also an estimated time warping function which is useful in 
quantifying changes between the original unaligned latencies to the aligned latencies for all wave peaks and troughs. 
 
Unsupervised Threshold Estimation  
ABRA also provides an optional method to implement an unsupervised ABR threshold 
estimation, which uses ABR waveforms at a specific frequency across multiple dB levels.  
Following the optional time alignment of waveforms (see above section: ABR Curve 
Alignment with Time Warping), Functional Principal Component Analysis (FPCA) (Kleffe 
1973) is used to identify and quantify what an eigenanalysis determines to be the most 
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significant patterns of variation in the ABR waveforms (e.g. averages and contrasts in wave 
peaks, troughs, and amplitudes, etc.). The waveforms are then projected onto their first and 
second principal components (PCs). This projection serves to reduce dimension, separate signal 
from noise, and cluster waveforms with similar salient ABR features, thereby simplifying the 
high-dimensional waveform data into a simple 2-dimensional representation. Only the first two 
PCs were used because they captured 95% of the variance in a set of typical ABRs, which 
indicates most of the signal can be represented using just these two components. Truncating at 
two components also discards later components which tend to be associated with noise.  
 
Finally, ABRA employs a k-means clustering algorithm with 2 clusters on the projected data. 
The underlying assumption is that ABR waveforms above hearing threshold have higher 
principal component scores and will be clustered together, while the ABR waveforms below 
hearing threshold will form a separate cluster of near-zero principal component scores. This 
unsupervised approach allows users to identify natural groupings in the data without any prior 
assumptions about the number or characteristics of these groups.  
 
Results 
Peak Amplitude and Latency Estimation  
To benchmark ABRA’s performance in peak amplitude and latency estimation, we fed a test set 
of 154 ABRs with human-labeled “ground truth” Wave 1 amplitude and latency values from Lab 
A (72 waveforms from 34 mice) and Lab B (82 waveforms from 4 mice) into ABRA. The 
ground truth values for Lab A data were obtained by using visual examination from two 
observers, while the ground truth values for Lab B data were obtained from manual labeling 
using custom software. Though it is possible to make manual adjustments to ABRA, we compare 
here only the absolute differences resulting from the automated (i.e. unadjusted) estimates 
generated from ABRA vs their corresponding human-labeled ground truth values in order to 
fairly assess its underlying model.  
 
For each ABR waveform in the sample, let "!(#$) denote the corresponding ground truth latency 
and let #!(#$) denote the corresponding ground truth amplitude, with waveforms indexed by 	% =
1, …	 , ). Then, let "!(&'(&)	 denote the Wave 1 latency estimates generated by each software; 
similarly let #!(&'(&)  denote ABRA’s generated Wave 1 amplitude estimates.   
Errors are then defined as the differences between a given software’s estimate and the ground 
truth value. We define errors for Wave 1 latencies and amplitudes, respectively, as follows: 

     *t,! 	= "!(&'(&) − "!(#$),					%	 = 	1, …	 , ), #),		 
**,! 	= #!(&'(&) − #!(#$),					%	 = 	1, …	 , ). 

Side-by-side swarmplots of the distributions for error are shown for latency and amplitudes in 
Figure 6A and 6B, respectively; summary statistics for errors are displayed in Table 3.  
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Figure 6: Swarmplots displaying spreads of error for detected Wave 1 Latency (A) and Amplitude (B) vs. 
ground truth for each software. Testing failed to find evidence that mean absolute errors were significantly greater 
than zero for both Wave 1 Latency and Amplitude estimates. 90.26% of all ABRA-generated estimates of Wave 1 
Latency were within 0.1ms of the corresponding true human-labeled latency; 91.56% of all ABRA-generated Wave 
1 amplitude were within 0.05 µV of the corresponding true human-labeled peak amplitude. n = 154 represents the 
number of ABRs tested. Related statistics are listed in Table 3. 
 
Testing whether the centers of these distributions differed from zero showed that the average 
Wave 1 Latency errors produced by ABRA did not detect a significant deviation from zero (*+	 = 
0.0452, SE = 0.0230, p = 0.0512) which suggests that ABRA is on average closely aligned with 
the human-labeled ground truth latencies. In a parallel comparison for amplitude estimates, 
hypothesis testing on the Wave 1 amplitude error distributions found that the average Wave 1 
Amplitude error produced by ABRA did not deviate significantly from zero (**	  = -0.015, SE = 
0.0192, p = 0.9357) which suggests that ABRA amplitude estimates are on average closely 
aligned with the human-labeled ground truth amplitudes.  

 Wave 1 Latency Wave 1 Amplitude 
Mean Difference (± S.E.M.) ABRA vs. Ground Truth (ms) ABRA vs. Ground Truth (µV) 
Lab A (nwaveforms=72, nmice=34) 0.0978 (±0.0467) 0.0008 (±0.0405) 
Lab B (nwaveforms=84, nmice=4) -0.0010 (±0.0117) -0.0036 (± 0.0071) 

Overall Test Set 0.0452 (±0.0230) -0.0015 (±0.0192) 
Table 3 (related to Figure 6): Table showing the Mean Error Difference and their Standard Errors between 
ABRA-detected Wave 1 Latency and Amplitude and corresponding ground truth values detected by human 
reviewers. Testing failed to find evidence that mean error differences were significant for both Wave 1 Latency and 
Amplitude estimates. The peak finding method seems to be better for Wave 1 estimates in Lab B data (84 ABRs), 
but overall (154 ABRs) the errors are very low.  
 
These comparisons show that ABRA-generated estimates generally agree with human-labeled 
ground truth latency and amplitude estimates, and when adjustments are needed they are small in 
magnitude. Figure 7 displays a few visual examples of how errors from the ABRA software may 
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arise, with the most common source of errors arising from ABRs with very low signal-to-noise 
ratios (SNR).  
 

 
Figure 7: Examples of error cases in peak detection. (A) and (B) display examples of multiple peaks that may be 
identified as Wave 1 by different softwares and different sets of eyes, which are more difficult for ABRA to 
correctly detect. (C) and (D) are examples of ABR waveforms with larger signal to noise ratios for which ABRA 
matches the ground truth. 
 
ABR Classification and Threshold Estimation Results 
The performance of our ABR classifiers for threshold detection was assessed on the testing set of 
5,384 ABR waveforms. Performance metrics are shown in Figure 8 and a pairwise comparison 
for significance is provided in Table 4. As a simple and interpretable model, logistic regression 
was used as a baseline for the binary classification task. Despite its simplicity, it achieved an 
accuracy of 85.56%, a True Positive Rate (TPR), sometimes referred to as recall or sensitivity, of 
90.27%, and an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.84. 
However, its performance was significantly outperformed by both the CNN and XGBoost 
models. The CNN model demonstrates superior performance in terms of accuracy (95.08%) and 
TPR (95.36%). These metrics surpass those of both the XGBoost and the baseline Logistic 
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Regression models, indicating the CNN’s enhanced ability in correctly identifying ABR 
thresholds. However, it is noteworthy that the XGBoost model exhibits a slightly lower False 
Positive Rate (FPR) of 5.10%, compared to the CNN model’s 5.49%. This suggests that the 
XGBoost model may be more effective in reducing false positives. Both the CNN and XGBoost 
models achieved similar AUROC and Area Under the Precision-Recall Curve (AUPRC) of 0.99 
(Figure 9). These metrics indicate promising sensitivity and precision. 

 
  

Metric Comparison 
Difference  
Estimate 

95% CIs for 
differences  p-value  Significance  

Accuracy CNN vs. XGB  0.0196 (0.0107, 0.0285) 1.59x10-5  *** 

CNN vs. LR 0.0952 (0.0842, 0.1062) 1.21x10-62 (~0) *** 

XGB vs. LR 0.0756 (0.0640, 0.0872) 5.18x10-37 (~0) *** 

AUCROC  
Area Under the 

Receiver Operating 
Characteristic Curve 

CNN vs. XGB  0.0000 (-0.0038, 0.0038) 1.00 NS 

CNN vs. LR 0.1500 (0.1399, 0.1601) 2.21x10-171  (~0) *** 

XGB vs. LR 0.1500 (0.2452, 0.2748) 2.21x10-171 (~0) *** 

AUCPR  
(Area Under the 
Precision- 
Recall Curve) 

CNN vs. XGB  0.0000 (-0.0038, 0.0038) 1.00 NS 

CNN vs. LR 0.2200 (0.2084, 0.2316) 2.71x10-270 (~0) *** 

XGB vs. LR 0.2200 (0.2084, 0.2316) 2.71x10-270 (~0) *** 

TPR CNN vs. XGB  0.0051 (-0.0031, 0.0133) 0.22 NS 

Figure 8: Comparative Analysis of 
Machine Learning Models. 
Horizontal bar chart illustrating the 
performance of three machine 
learning models: Convolutional 
Neural Network (CNN), XGBoost, 
and Logistic Regression (baseline). 
The metrics used for comparison are 
Accuracy, True Positive Rate, False 
Positive Rate, Area Under the 
Receiver Operating Characteristic 
Curve (AUCROC), and Area Under 
the Precision-Recall Curve 
(AUCPR). The CNN model exhibits 
the highest accuracy, while the 
Logistic Regression model serves as 
the baseline for comparison. Related 
statistics are listed in Table 4. 
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(True Positive Rate) CNN vs. LR 0.0510 (0.0412, 0.0606) 1.51x10-24 (~0) *** 

XGB vs. LR 0.0458 (0.0359, 0.0557) 1.36x10-19 (~0) *** 

FPR 
(False Positive Rate) 

CNN vs. XGB  0.0039 (-0.0046, 0.0124) .367 NS 

CNN vs. LR -0.1870 (-0.2000, -0.1740) 5.20x10-164 (~0) *** 

XGB vs. LR -0.1909 (-0.2038, -0.1780) 1.08x10-172 (~0) *** 
Table 4: Comparative analysis of performance metrics between the Convolutional Neural Network (CNN), 
XGBoost (XGB), and Logistic Regression (LR) models (related to Figure 8). The CNN model shows 
comparable performance to the XGB model across all metrics, except accuracy for which it outperforms. Both CNN 
and XGB show significantly better performance than the LR model across most metrics. The p-values indicate the 
statistical significance of these differences, with smaller values indicating stronger evidence of a difference. 
Significance level notation after applying Bonferroni correction for multiple testing: 0.05 (*), 0.01 (**), 0.001(***). 

 

In Figure 10, we compare the performance of three classifiers: Convolutional Neural Network 
(CNN), XGBoost, and Logistic Regression. We also include an Inter-Rater comparison, which 
reflects the proportion of ABRs for which two experts agree on a threshold within some 
envelope (within 5dB SPL, 10dB SPL, etc.), providing a real-world benchmark for performance.  

Figure 9: Receiver Operating Characteristic (ROC) 
Curves and Areas Under Curves (AUC) for 
Convolutional Neural Network (CNN), XGBoost, and 
Logistic Regression Classifiers. A ROC curve demonstrates 
the performance of an ABR classifier at all classification 
thresholds. The area under the ROC curve represents the 
ABR classifier's overall ability to distinguish between ABR 
responses that are above the hearing threshold and those that 
are not under varying model settings. The ROC curves for 
the CNN and XGBoost classifiers are nearly identical, while 
the Logistic Regression classifier shows relatively inferior 
performance. 

Figure 10: Threshold Estimation Metrics for Machine 
Learning Models and Human Expert Inter-Rater 
Comparison (statistics in Table 5). Bar chart comparing 
the performance of three machine learning models: 
Convolutional Neural Network (CNN), XGBoost, and 
Logistic Regression, as well as an Inter-Rater comparison 
based on their ability to estimate thresholds within 5dB 
SPL and 10dB SPL. The Inter-Rater comparison was 
conducted by comparing 100 threshold estimates of two 
experts. The CNN and XGBoost models demonstrate 
superior performance compared to the Logistic 
Regression model, with the CNN outperforming 
XGBoost at higher levels of precision. The Inter-Rater 
comparison provides a benchmark for human expert 
performance in the task.  
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The classifiers are evaluated based on their ability to estimate hearing thresholds, defined as the 
minimum sound intensity (in decibels) at a given frequency that elicits a repeatable neural 
response. The evaluation accuracy considers how frequently the estimated threshold falls within 
5dBs or 10dBs of the single-rater ground truth threshold. Table 5 provides inferential statistics 
for the differences between each model and inter-rater assessment at both accuracy envelopes. 
The CNN was the only model which performed comparably to human-rater assessment at the 
10dB accuracy window; however no model could reach such accuracy at the 5dB envelope.  

 

Accuracy 
Envelope Comparison 

Accuracy 
Difference  

95% CIs for Accuracy 
Difference  p-value Significance 

Within 
5dB SPL 

CNN vs. IRR  0.02 (-0.0852,  0.1252) 0.7062 NS 

XGB vs. IRR 0.09 (-0.0154, 0.1955) 0.0545 NS 

LR vs. IRR 0.35 (0.2443, 0.4558) 7.992x10-12  *** 

Within 
10dB SPL 

CNN vs. IRR  0.01 (-0.0673,  0.0874) 0.8628 NS 

XGB vs. IRR 0.03 (-0.0476,  0.1075) 0.4300 NS 

LR vs. IRR 0.26 (0.1814, 0.3387) 8.718x10-8  *** 

Table 5: Inference for differences in accuracy between inter-rater accuracy and the Convolutional Neural 
Network (CNN), XGBoost (XGB), and Logistic Regression (LR) models (related to Figure 10). Within both the 
5dB and 10dB envelopes, no significant difference between the CNN and XGB models and baseline inter-rater 
accuracy was detected, suggesting CNN and XGB are performing at a comparable level as a human reviewer; 
however LR did show significantly worse performance than inter-rater assessment. Significance level notation after 
applying Bonferroni correction for multiple testing: 0.05 (*), 0.01 (**), 0.001(***). 

The CNN demonstrates superior performance across both metrics compared with the Logistic 
Regression and XGBoost models. Furthermore, the temporal nature of the data is well-suited to 
the architecture of CNNs. Unlike traditional machine learning models, CNNs can effectively 
capture temporal dependencies in the data, which is crucial for tasks involving time-series data, 
such as our case of audio signal processing. The CNN model's superior performance at the 5dB 
and 10dB envelopes along with its ability to handle the temporal nature of the data makes it the 
optimal choice for this task. Moreover, the CNN achieves similar performance as the Inter-Rater 
comparison, indicating that its ability to estimate hearing thresholds is on par with the consensus 
of two human experts using standard visual threshold inspection methods. This suggests that the 
CNN model can function as a reliable tool for estimating hearing thresholds, providing a 
machine learning-based approach that matches human expert performance. 
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Metric \ Software EPL-ABR ABRA 

Accuracy 93.12 (±1.476)% 93.42 (±1.446)% 

True Positive Rate 97.10 (±0.978)% 90.00 (±1.749)% 

False Positive Rate 14.52 (±2.055)% 0.00 (±0.0)% 

Within 5dB SPL 57.14 (±2.886)% 91.42 (±1.633)% 

Within 10dB SPL 91.43 (±1.633)% 94.29 (±1.353)% 

Within 15dB SPL 94.29 (±1.353)% 94.29 (±1.353)% 
Table 6: Performance Comparison of Threshold Estimation Algorithms on Lab C data only (292 ABR 
waveforms from 27 mice). This table presents a side-by-side comparison of two threshold estimation algorithms: 
EPL-ABR and ABRA. The metrics used for comparison include Accuracy, True Positive Rate, False Positive Rate, 
and the ability to estimate thresholds within 5dB, 10dB, and 15dB. The values are presented as mean (± standard 
error). ABRA demonstrates superior performance (bolded) in terms of accuracy and estimating thresholds within 
5dB, while EPL-ABR has a higher True Positive Rate.  
 

The performance of our threshold estimation technique was compared against that of EPL-ABR 
(Suthakar & Liberman 2019) on a separate dataset of ABR waveforms from Lab C (Table 6). 
This smaller set of ABR waveforms (N = 292) was selected because EPL-ABR’s threshold 
estimation software requires data in the custom ABR file format used by the Eaton Peabody 
Laboratories. Our CNN method outperforms EPL-ABR’s threshold estimation method across all 
metrics except for FPR. One benefit of CNN is that it can be continuously trained and improved 
as more data is made available.  
 
Time Cost Analysis 
In order to quantify the time savings of using ABRA, we sent a random sample of 10 ABR files 
from Lab B to two ABR raters from Lab A with a total of 90 frequencies to be analyzed. It took 
both raters approximately 1 hour to manually analyze the ABR thresholds. However, using 
ABRA, it took about 48 seconds to output the automated thresholds for each frequency, 
corresponding to 75x increased efficiency. The automated thresholds were within 5 dBs of Lab 
A inspection 73% of the time, 10 dBs 88% of the time, and 15 dBs 96% of the time. For 
comparison, inter-rater assessment showed that a Lab A annotator was within 5 dB of a Lab B 
annotator’s result 89% of the time, 10 dB 99% of the time, and 15 dB 100% of the time.  
 
Discussion 
The aim of this study is to illustrate ABRA’s versatility and additional benefits compared to 
other available software such as ABRWAS and EPL-ABR (see Table 7). ABRA has been 
designed to be a multi-purpose and versatile software with extended functionality and to be able 
to handle input data acquired from different mouse strains, different laboratories, and recorded in 
different formats, including the widely used standard .arf files from BioSigRZ Tucker Davis 
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Technology recordings, or .csv files from any number of other systems given limited rules 
related to file structure.  
 

FEATURES ABRA ABRWAS  EPL-ABR 

Threshold 
Detection 

Automated thresholding with 
both supervised/unsupervised 
machine learning methods 

No automated threshold 
estimation 

Automated thresholding 
using cross-covariance 

calculations 

Peak Detection Automates peak and trough 
detection 

Suggests peak and trough 
detection as a guide for 

human revision 

Automates peak and 
trough detection and 
allows for human 

revision 

Time Warping Performs elastic time warping No time warping  No time warping  

Batch Processing Supports batch processing Supports batch processing No batch processing 

Data Extraction Generate peaks, troughs, and a 
metrics table with a single click  

Generates peaks and 
troughs with option to  
manually adjust labels 

Generates peaks and 
troughs with option to  
manually adjust labels  

Metric Exports 
Metrics table only includes three 
waveform metrics and the 
threshold for each frequency  

Comprehensive metrics 
table 

Comprehensive metrics 
table 

Accessibility Free and open source Free and open source Free and open source 

Image Exports Can export .png and .pdf files No functionality No functionality 

Stability When errors arise, app can 
recover easily  

Errors require software 
relaunch 

When errors arise, app 
can recover easily 

File Type Support 
Accepts .arfs and .csvs; only a 
couple rules related to the file 

structure 

Each file must follow the 
same structure 

Only supports EPL file 
type 

Operating System Windows/Mac/Linux Windows Windows/Mac 

Web Support Web-based application that can 
also run locally 

Run on local machines 
only 

Run on local machines 
only 

Table 7: Comparison of software features/capabilities. Functionality and aspects of ABRA, the Auditory 
Brainstem Response Waveform Analyzer (ABRWAS) (Burke et al. 2023), and the EPL-ABR Peak Analysis App 
(Suthakar and Liberman 2019). 

 
The tests done in the Manor lab have shown that ABRA’s automated thresholding method 
reduces the time costs of thresholding analyses by more than 50x, and can help streamline the 
process of extracting ABR thresholds from multiple subjects. In addition, the results can be 
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exported to a .csv file for post-processing by the experimenter, and plots can be directly exported 
for publication if desired. 
 
The deep learning techniques used in ABRA have some precedence not only in previous ABR 
studies but in the field of electrophysiology in general. A recent study showed that convolutional 
neural networks and long short-term memory architecture can automatically detect discrete 
records of protein movement (Celik et. al. 2020). Another electrophysiological study introduced 
a deep learning algorithm that infers latent dynamics from single-trial neural spiking data 
(Pandarinath et. al. 2018). This study used data from non-overlapping recording sessions that 
improved the inference of their model, similar to how our software accounts for a range of data 
collection protocols for improved generalizability. Both studies were designed to automate 
otherwise laborious and arduous tasks and simplify them such that future studies can be more 
accurate, more reproducible, and less time-consuming. The deep learning techniques used in our 
software have similar potential for ABR studies by streamlining the onerous task of labeling 
peaks and identifying thresholds. We envision future ABR acquisition protocols that can be 
guided by our software to avoid acquiring excess measurements after a threshold is reached. 
 
While we have argued that ABRA is a powerful tool for ABR analysis, it is necessary to remark 
that it also has its limitations and there exist areas for future improvements. Currently ABRA can 
handle .csv and BioSigRZ .arf file inputs reliably, however functionality for analysis of 
BioSigRP .arf files is still in development. Calculation of amplitude/latency results and 
performing visualization when batch processing large numbers of ABR files (N>100 waveforms) 
may take several minutes, especially if the user chooses to implement the time warping 
functionality. ABRA developers are currently investigating the feasibility of moving 
computation to cloud-hosted GPUs to accelerate data processing. Similarly, quality of life 
improvements for manual relabeling of ABRA-generated peaks, latencies, and thresholds are 
also an area for future work. As for model limitations, the CNN-based thresholding model was 
trained only on mouse ABRs which had step sizes no larger than 20 dB SPL. Moreover, it was 
validated for automated amplitude and latency measurements for only Wave 1, leaving the 
remaining Waves 2-5 currently unvalidated, which can be pursued in future efforts as the model 
continues to incorporate new data from our labs and others. Most importantly, the accuracy of 
peak and threshold detection may not yet match that of the most seasoned experts in visual ABR 
analysis. While the time saved by automation may still yet be a worthwhile tradeoff for certain 
applications, an additional benefit is the deterministic nature of the model and therefore high 
reproducibility. Most importantly, we anticipate significant improvements in performance as the 
amount of training data is increased over time. 
 
Overall, this study has shown that the ABRA interface is a flexible one-stop-shop software for 
ABR amplitude/latency estimation, thresholding, visualization, and all plots can be exported for 
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generating figures. ABRA’s ease-of-use, generalizability, and diverse functionality serve as 
potential outlets to streamline data processing and resulting studies involving ABR analysis.  
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Figure 1: Exam
ple of A

BR
 w
aveform

 recorded from
 a m

ouse show
ing its characteristic features or w

aves. W
ave 1 is generated by 

the auditory nerve (A
N
), W

ave 2 by the cochlear nucleus (CN
), W

ave 3 by the superior olivary com
plex (SO

C), W
ave 4 by lateral

lem
niscus (LL), and W

ave 5 by the inferior colliculus (IC) (Rüttiger et. al. 2017). Peaks of these w
aves are denoted by red dots, and 

troughs w
ith blue dots. 
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Figure 2: Screenshots from
 the A

BR
A
 app highlighting the different functionalities of A

BR
A
(A
)visualizing several A

BR 
w
aveform

s from
 one 1 m

o m
ale C57Bl/6N

 m
ouse across different togglable dBs at 18kH

z w
ith predicted peak locations (red points) and 

predicted threshold (thick black line). (B)plotting a single A
BR w

aveform
 at a specific sound frequency and intensity (dB SPL) w

ith 
peaks and troughs labeled. (C

)3D
 plotting of all A

BR w
aveform

s at a given frequency w
ith the predicted threshold (20dB) highlighted 

in black (can be rotated in the app)(D
)stacks of A

BR w
aveform

s as a function of increasing dB SPL from
 the sam

e frequency w
ith the 

predicted threshold (20dB) highlighted in black.
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Figure 5: A
BR
s before (left) and after (right) Tim

e W
arping.The depicted transform

ation of w
aveform

s, both before and after applying 
elastic tim

e w
arping using the fdasrsfpackage (Tucker 2020), illustrates clear registration of w

aveform
 features. A

ssociated w
ith each 

w
aveform

 is also an estim
ated tim

e w
arping function w

hich is useful in quantifying changes betw
een the original unaligned latencies to the 

aligned latencies for all w
ave peaks and troughs.
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Figure 7: Exam
ples of error cases in peak detection.(A

) exam
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ave 1 by different 
softw

ares and different sets of eyes. (B) A
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BR w
aveform

s w
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larger signal to noise ratios for w
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atches the ground truth.
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Figure 8: C
om
parative A

nalysis of M
achine Learning M

odels.H
orizontal bar chart illustrating the perform

ance of three m
achine 

learning m
odels: Convolutional N

eural N
etw
ork (CN

N
), X
G
Boost, and Logistic Regression (baseline). The m

etrics used for com
parison 

are A
ccuracy, True Positive Rate, False Positive Rate, A

rea U
nder the Receiver O

perating Characteristic Curve (A
U
CRO

C), and A
rea

U
nder the Precision-Recall Curve (A

U
CPR). The CN

N
 m
odel exhibits the highest accuracy, w

hile the Logistic Regression m
odel serves 

as the baseline for com
parison

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


Figure 9: R
eceiver O

perating C
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) C
urves and A
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egression C
lassifiers.A
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C curve dem

onstrates the perform
ance of an A

BR classifier 
at all classification thresholds. The area under the RO

C curve represents the A
BR classifier's overall ability to distinguish

betw
een 

A
BR responses that are above the hearing threshold and those that are not under varying m

odel settings. The RO
C curves for the 

CN
N
 and X

G
Boost classifiers are nearly identical, w

hile that of the Logistic Regression classifier suggests relatively inferior 
perform

ance.
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Figure 10: Threshold Estim
ation M

etrics for M
achine Learning M

odels and H
um
an Expert Inter-R

ater C
om
parison. Bar chart 

com
paring the perform

ance of three m
achine learning m

odels: Convolutional N
eural N

etw
ork (CN

N
), X
G
Boost, and Logistic 

Regression, as w
ell as an Inter-Rater com

parison based on their ability to estim
ate thresholds w

ithin 5dB and 10dB. The Inter-Rater 
com

parison w
as conducted by com

paring 100 threshold estim
ates of tw

o experts. The CN
N
 and X

G
Boost m

odels dem
onstrate 

superior perform
ance com

pared to the Logistic Regression m
odel, w

ith the CN
N
 outperform

ing X
G
Boost at higher levels of precision. 

The Inter-Rater com
parison provides a benchm

ark for hum
an expert perform

ance in the task.
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Supplementary Information 

Data Collection Methods 

Detailed description of data collection methodology is described for each of the three labs as 
follows: 

Manor Lab Data (Lab A) 

● Anesthesia: 3 month SAMP8 (Senescence-Accelerated Mouse-Prone 8) (Takeda et al. 
1981) mice were anesthetized using an intraperitoneal injection of a mixture of ketamine 
(90 mg/kg) and xylazine (10 mg/kg). If required to maintain anesthesia, mice received an 
additional quarter of the original dose as a top-up. 

● Preparation: Ophthalmic ointment (Dechra) was applied to the subjects’ eyes once 
anesthetized. Animals were placed in a soundproof chamber (IAC Acoustics, IL) to 
isolate them from exterior noise completely and a heating pad (Braintree Scientific Inc.) 
was used to maintain the temperature at 37°C. 

● Electrode Placement: A recording electrode was inserted subcutaneously at the vertex and 
a reference electrode was placed behind the right pinna, with the ground electrode placed 
in the left leg. 

● Sound Stimuli: Sound stimuli were presented via an MF1 Multi-field magnetic speaker 
(Tucker-Davis Technologies, TDT, FL) situated 10 cm from the mouse’s right ear. Output 
stimuli were calibrated with a one-quarter-inch microphone (model PCB-378C01; PCB 
Piezotronics, NY) placed at the same distance from the speaker as the mouse ears would 
be. 

● Recording: Electrophysiological signals in response to each tone stimulus were recorded 
for 10 ms starting at the onset of the tone. Stimuli were 5-ms tone pips (0.5 ms cos2 rise-
fall) delivered at 21s with alternating stimulus polarity. Recorded electrical responses 
were filtered (300 Hz to 3 kHz) and averaged using BioSigRZ software (TDT, FL). 

● Sound Intensity: The sound intensity level was decreased in 5 dB increments from 90 dB 
SPL to 10 or 20 dB SPL. At each sound level, 512 responses were averaged. 

Marcotti Lab Data (Lab B) 

● Anesthesia: Female C57BL/6N mice were anesthetized using intraperitoneal injection of 
ketamine (100 mg/Kg body weight, Fort Dodge Animal Health, Fort Dodge, USA) and 
xylazine (10 mg/Kg, Rompun 2%, Bayer HealthCare LLC, NY, USA). 

● Preparation: Following the onset of anesthesia and the loss of the retraction reflex with a 
toe pinch, mice were placed onto a heat mat (37°C) in a soundproof chamber (MAC-3 
acoustic chamber, IAC Acoustic, UK). 
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● Electrode Placement: Subdermal electrodes were placed under the skin behind the pinna 
of each ear (reference and ground electrode) and on the vertex of the mouse (active 
electrode) as previously described (Ingham et al., 2011). 

● Sound Stimuli: Sound stimuli were delivered to the ear by calibrated loudspeakers (MF1-
S, Multi-Field Speaker, Tucker-Davis Technologies, USA) placed 10 cm from the 
animal’s pinna. Sound pressure was calibrated with a low-noise microphone probe system 
(ER10B+, Etymotic, USA). 

● Recording: Experiments were performed using a customized software (Ingham et al., 
2011) driving an RZ6 auditory processor (Tucker-Davis Technologies). Auditory 
thresholds were estimated from the resulting ABR waveform and defined as the lowest 
sound level (measured in decibels, dB) where any recognizable feature of the waveform 
was visible. 

● Sound Intensity: Stimulus sound pressure levels were typically 0-95 dB SPL, presented in 
steps of 5 dB SPL. The ABR response signal was averaged over 256 repetitions. 

Liberman Lab Data (Lab C) 

● Anesthesia: 7 week C57Bl/6J mice were anesthetized using ketamine/xylazine anesthesia 
(Ketamine: 100 mg/kg,  Xylazine: 10 mg/kg). 

● Preparation: subjects were placed in a closed acoustic system. 
● Electrode Placement: The response was recorded via needle electrodes inserted through 
the skin (vertex to ipsilateral pinna near tragus with a ground on the back near the tail). 

● Sound Stimuli: Stimuli were 5-ms pips (0.5-ms rise-fall with a cos2 onset envelope, 
delivered at 30/sec). 

● Recording: The response was amplified (10,000 X), filtered (100 Hz - 3 kHz), and 
averaged with an A-D board in a LabVIEW-driven data-acquisition system. 

● Sound Intensity: The sound level was raised in 5 dB steps from roughly 10 dB below the 
threshold up to 80 dB SPL. At each sound level, 1024 responses were averaged (with 
stimulus polarity alternated. 
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Figure 1: Example of ABR waveform recorded from a mouse showing its characteristic features or waves. Wave 1 is generated by 
the auditory nerve (AN), Wave 2 by the cochlear nucleus (CN), Wave 3 by the superior olivary complex (SOC), Wave 4 by lateral
lemniscus (LL), and Wave 5 by the inferior colliculus (IC) (Rüttiger et. al. 2017). Peaks of these waves are denoted by red dots, and 
troughs with blue dots. 
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A
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D

Figure 2: Screenshots from the ABRA app highlighting the different functionalities of ABRA (A) visualizing several ABR 
waveforms from one 1 mo male C57Bl/6N mouse across different togglable dBs at 18kHz with predicted peak locations (red points) and 
predicted threshold (thick black line). (B) plotting a single ABR waveform at a specific sound frequency and intensity (dB SPL) with 
peaks and troughs labeled. (C) 3D plotting of all ABR waveforms at a given frequency with the predicted threshold (20dB) highlighted 
in black (can be rotated in the app) (D) stacks of ABR waveforms as a function of increasing dB SPL from the same frequency with the 
predicted threshold (20dB) highlighted in black.
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Figure 3: Model architecture for Wave 1 Peak Finding Algorithm. The ABR waveform recorded over 10 ms is input into two 
sequential layers of Convolution, Maxpool, and Dropout. The dimensionality of the output is reduced through two consecutive fully-
connected layers which returns the prediction of the time point of the Wave 1 peak.
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Figure 4: Model architecture for CNN ABR Classifier. The ABR waveform recorded over 10 ms and its tone’s frequency and decibel 
level are input into three sequential layers of convolution and max pooling. The dimensionality of the output is reduced through two 
consecutive fully-connected layers before finally returning the classification of the ABR.
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Figure 5: ABRs before (left) and after (right) Time Warping. The depicted transformation of waveforms, both before and after applying 
elastic time warping using the fdasrsf package (Tucker 2020), illustrates clear registration of waveform features. Associated with each 
waveform is also an estimated time warping function which is useful in quantifying changes between the original unaligned latencies to the 
aligned latencies for all wave peaks and troughs.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


A B

Figure 6: Swarmplots displaying spreads of error for detected Wave 1 Latency (A) and Amplitude (B) vs. ground truth for 
each software. Testing failed to find evidence that mean absolute errors were significantly greater than zero for both Wave 1 
Latency and Amplitude estimates. 90.26% of all ABRA-generated estimates of Wave 1 Latency were within 0.1ms of the 
corresponding true human-labeled latency; 91.56% of all ABRA-generated Wave 1 amplitude were within 0.05 µV of the 
corresponding true human-labeled peak amplitude.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.20.599815doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599815
http://creativecommons.org/licenses/by/4.0/


Figure 7: Examples of error cases in peak detection. (A) example of multiple peaks that may be identified as Wave 1 by different 
softwares and different sets of eyes. (B) ABRA may identify the incorrect peak. (C) and (D) are examples of ABR waveforms with 
larger signal to noise ratios for which ABRA matches the ground truth.
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Figure 8: Comparative Analysis of Machine Learning Models. Horizontal bar chart illustrating the performance of three machine 
learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic Regression (baseline). The metrics used for comparison 
are Accuracy, True Positive Rate, False Positive Rate, Area Under the Receiver Operating Characteristic Curve (AUCROC), and Area
Under the Precision-Recall Curve (AUCPR). The CNN model exhibits the highest accuracy, while the Logistic Regression model serves 
as the baseline for comparison
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Figure 9: Receiver Operating Characteristic (ROC) Curves and Areas Under Curves (AUC)  for Convolutional Neural 
Network (CNN),  XGBoost, and Logistic Regression Classifiers. A ROC curve demonstrates the performance of an ABR classifier 
at all classification thresholds. The area under the ROC curve represents the ABR classifier's overall ability to distinguish between 
ABR responses that are above the hearing threshold and those that are not under varying model settings. The ROC curves for the 
CNN and XGBoost classifiers are nearly identical, while that of the Logistic Regression classifier suggests relatively inferior 
performance.
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Figure 10: Threshold Estimation Metrics for Machine Learning Models and Human Expert Inter-Rater Comparison. Bar chart 
comparing the performance of three machine learning models: Convolutional Neural Network (CNN), XGBoost, and Logistic 
Regression, as well as an Inter-Rater comparison based on their ability to estimate thresholds within 5dB and 10dB. The Inter-Rater 
comparison was conducted by comparing 100 threshold estimates of two experts. The CNN and XGBoost models demonstrate 
superior performance compared to the Logistic Regression model, with the CNN outperforming XGBoost at higher levels of precision. 
The Inter-Rater comparison provides a benchmark for human expert performance in the task.
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