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Abstract
Motivation: The rapid advance in single-cell RNA sequencing (scRNA-seq) technology over the past decade has provided a rich resource of
gene expression profiles of single cells measured on patients, facilitating the study of many biological questions at the single-cell level. One in-
triguing research is to study the single cells which play critical roles in the phenotypes of patients, which has the potential to identify those cells
and genes driving the disease phenotypes. To this end, deep learning models are expected to well encode the single-cell information and
achieve precise prediction of patients’ phenotypes using scRNA-seq data. However, we are facing critical challenges in designing deep learning
models for classifying patient samples due to (i) the samples collected in the same dataset contain a variable number of cells—some samples
might only have hundreds of cells sequenced while others could have thousands of cells, and (ii) the number of samples available is typically
small and the expression profile of each cell is noisy and extremely high-dimensional. Moreover, the black-box nature of existing deep learning
models makes it difficult for the researchers to interpret the models and extract useful knowledge from them.

Results: We propose a prototype-based and cell-informed model for patient phenotype classification, termed ProtoCell4P, that can alleviate problems
of the sample scarcity and the diverse number of cells by leveraging the cell knowledge with representatives of cells (called prototypes), and precisely
classify the patients by adaptively incorporating information from different cells. Moreover, this classification process can be explicitly interpreted by
identifying the key cells for decision making and by further summarizing the knowledge of cell types to unravel the biological nature of the classifica-
tion. Our approach is explainable at the single-cell resolution which can identify the key cells in each patient’s classification. The experimental results
demonstrate that our proposed method can effectively deal with patient classifications using single-cell data and outperforms the existing approaches.
Furthermore, our approach is able to uncover the association between cell types and biological classes of interest from a data-driven perspective.

Availability and implementation: https://github.com/Teddy-XiongGZ/ProtoCell4P.

1 Introduction

As the basic unit of biological functions, the single cell is an
ideal object to reveal personal characteristics and account for
individuals’ differences in their phenotypes (e.g. race, disease
state, etc.). Meanwhile, single-cell RNA sequencing (scRNA-
seq) data possess powerful and high-resolution signatures
which can be useful for precision medicine (He et al. 2021).
Thus, it is tempting to use scRNA-seq data for the study of
patients’ phenotypes, which may reveal the connection be-
tween patients’ phenotypes and gene expression data at the
single-cell level and help researchers gain a deep understand-
ing of the phenotype mechanisms.

Numerous studies have used scRNA-seq data to investigate
the functions and types of different cells, revealing their inter-
actions within humans and thereby providing an in-depth un-
derstanding of human health (Jovic et al. 2022). Powerful
statistical and machine learning (ML) approaches have been
developed for the analysis of scRNA-seq data, such as im-
proving inference of gene expression (Breda et al. 2021), cell
type identification (Huang and Zhang 2021), batch correction
(Li et al. 2020), and clustering (Grønbech et al. 2020,

Petegrosso et al. 2020). However, very little work has been
done on the use of scRNA-seq data for the automatic classifi-
cation of patients’ phenotypes, as the small number of patient
samples in scRNA-seq datasets will prevent the classifiers
from being well trained. Moreover, most of the classification
methods cannot be applied since the samples collected in the
same dataset contain a variable number of cells. In addition,
the large amount of cells and high-dimensional gene expres-
sion data in an individual make modeling difficult and the
predictions hard to explain, even if the classification results
can be provided. Figure 1 illustrates the information con-
tained by each sample (patient) in scRNA-seq datasets. For
each sample, there is a class label that indicates the phenotype
of the sample, such as healthy control. Also, each sample con-
tains a set of cells and their cell types as well as the expres-
sions of different genes in cells. In the same dataset, the genes
selected for observation should be constant for different cells
and different samples. However, the selection of cells may not
be the same for samples, and even the number of cells
recorded in them can be variable.

To tackle the aforementioned problems, we propose an in-
terpretable Prototype-based and Cell-informed model for
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Patient classification tasks (termed ProtoCell4P) that lever-
ages the knowledge of scRNA-seq data to predict individual
phenotypes, where the prototypes are representatives of cells.
The proposed model consists of a cell embedding module which
encodes the cells into the latent space and learn a group of cell
prototypes that can be representatives of cell subpopulations,
and a classification module that adaptively evaluates the rele-
vance of prototypes in the classification for each cell and com-
bines the prototype-related information from all cells to make
the final prediction. We propose to use cell-level encoders and
relevance scorers to address the problem of few patient samples,
as the large number of cells of each sample enables the model to
fine tune the parameters of the cell-level neural networks even
though the number of patient samples is small. Specifically, by
pretraining the cell embedding module (Section 3.1) using a cell-
level task, ProtoCell4P is able to capture concise and accurate
cell information with the abundant single cells in scRNA-seq
datasets, which allows the classification module to tune to the
classifier well with a limited number of samples. The adaptive
relevance estimation in the classification module (Section 3.2)
will then help the model to fully leverage the classification
knowledge contained in each cell by making cell-level predic-
tions of the patients’ phenotypes. By averaging the cell-level pre-
dictions as the final results, ProtoCell4P is capable of processing
a variable number of cells and can achieve accurate classification
for the patient samples.

Beyond patient classifications, our design of the model makes
it able to identify the key cells that play a crucial role in the clas-
sification task, and we also incorporate the fusion of cell type
knowledge into the model during training to enhance the mod-
el’s interpretability from the perspective of cell types. By regular-
izing the latent space to be cell-type informative and
encouraging the model to provide cell-type specific relevance es-
timation for cells, we are able to link the classification of un-
known phenotypes of patients to our existing knowledge of cell
types, thus uncovering the associations between them, which
can facilitate both clinical diagnosis and biological research. Our
contributions can be summarized as follow:

1) We propose a new approach to utilize scRNA-seq data
for patient classifications, which overcomes the problem
of sample scarcity by fully leveraging the knowledge of
each cell.

2) Our approach is explainable at the single-cell resolution
which can identify the key cells in each patient’s
classification.

3) We generalize the information of cells with their cell type
information, and make the model able to provide higher-
level interpretation of its effective reasoning process.

4) Our model can be used for the discovery of unknown
associations between cell types and phenotypes, which
can be enlightening for biological research.

2 Related work

ML on scRNA-seq data. Since the invention of scRNA-seq
technology, many ML-based approaches have been proposed
for single-cell analysis. Research questions such as imputation
(Xu et al. 2020), batch effect correction (Johnson et al. 2019),
and cell-type identification (Lopez et al. 2018) based on
scRNA-seq data have received a lot of attention, and a large
number of ML approaches have been implemented on these
scRNA-seq based problems. However, these approaches only
focus on the study of single cells and do not address the pa-
tient classification from whom the cells are derived, likely be-
cause of limited patient sample size and it is difficult to
determine what roles different cells play when classifying indi-
viduals into different classes.

CloudPred (He et al. 2021) was proposed to predict patient
phenotypes based on scRNA-seq data using a Gaussian
Mixture Model, which encodes each cell and takes their aver-
age as the feature for the individual. This approach, however,
does not consider the cell differences in their relevance to the
classification task, and it is hard to identify the contribution
of each cell since this information is entangled in CloudPred’s
quadratic classifier. In contrast, our method can adaptively es-
timate the importance of each cell in the classification, which
can increase both the performance of the model and the inter-
pretability of each cell’s role in the classification.

Prototype-based neural network. Prototype-based classifi-
cation is a classic way to perform case-based reasoning
(Kolodner 1992), which learns to classify a given input by
comparing it to the typical examples that the system has seen
before. There are already some works that tried to incorpo-
rate prototypes in ML models for interpretable classification
(Bien and Tibshirani 2011, Kim et al. 2014). Using the
autoencoder to encode and decode image data, Li et al.
(2018) proposed to learn prototypes in the latent space and
classify the input image based on its distances to different pro-
totypes in the latent space, thus making their DNN model in-
terpretable by looking at the model’s learned weights on
different prototypes for the classification task. Following up
on this work and the idea from Alvarez Melis and Jaakkola
(2018) and Huai et al. (2022) proposed to learn the weights
on the prototypes dynamically for different inputs, which they
called importance scores. However, a big issue with these
approaches is that the interpretation of their models’ effective
reasoning processes remains unclear with the distances to pro-
totypes as classification features, since the small distance and

Figure 1. Illustration of one sample in a scRNA-seq dataset
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the high weight will obscure the contribution of a prototype
in the final prediction. In ProtoCell4P, we propose to calcu-
late the similarity between the input and the prototype instead
of the distance, which avoids the problem in the above meth-
ods. Our preliminary experiments also show that if we use
their distance metrics instead of our similarity, it is always
those points distant from the prototypes that have a signifi-
cant impact on the classification.

Prototype-based approaches are normally applied to tasks
on image data, since the prototypes of images can be conve-
niently visualized with the decoder to see what has been
learned by the model. However, single-cell data are not nearly
as human interpretable as image data. Instead of trying to de-
code the latent prototypes, Brbi�c et al. (2020) visualized what
the model has learned in the latent space by reducing the di-
mension of the learned embeddings and plotting them on a
2D figure using t-SNE (Van der Maaten and Hinton 2008)
and UMAP (McInnes et al. 2018). In their work, they let the
model learn prototypes of cells in order to predict cell types
for cells from different datasets. Cao et al. (2021) also imple-
mented their prototype-based approach on single-cell data by
making the model learn prototypes of gene concepts and per-
form few-shot cell type classification on that basis. These
approaches have demonstrated that it is feasible to learn pro-
totypes of cells and use them in downstream tasks. However,
they are not applicable to our patient classification task since
they only considered tasks on single cells just like other ML
approaches for the scRNA-seq data.

3 Methodology

Our model for patient classification, ProtoCell4P, consists of
two components. First, it has a cell embedding module, which
encodes the input gene expression data of a single cell into a
low-dimensional latent space and learns embedded cell proto-
types automatically. Second, it has a classification module,
which classifies an individual by estimating dynamic relevance
scores of prototypes for each cell and integrating the informa-
tion from all cells in a sample. The overall architecture of
ProtoCell4P is shown in Fig. 2.

3.1 The cell embedding module

Cell and prototype embeddings. As the architecture shows,
the autoencoder structure (Ballard 1987) is used to encode the
information of cells into the latent space. Given the genetic
profile of an input cell, the encoder f will return a latent em-
bedding that will then be received by the decoder g to recover
the original input. In order to encourage the encoder to fully
extract useful information from the cell data, the reconstruc-
tion loss term is penalized during the training of ProtoCell4P.
For a batch input with m samples, the reconstruction loss is
defined as

Lrecon ¼
1
N

Xm
i¼1

Xni

j¼1

jjxj
i � gðf ðxj

iÞÞjj
2
2; (1)

where xj
i stands for the gene expression data for the jth cell of

the ith sample in the batch and ni is the number of cells con-
tained in the data of the ith sample. N is the total number of
cells in the batch, which is computed by N ¼

Pm
i¼1 ni.

To increase the model’s interpretability in patient classifica-
tion, we adopt the concept of prototypes and introduce cell-
prototypes for patient classification, which are considered to be
representatives of cell subpopulations. In our implementation,
the prototypes are initiated by the model as random vectors,
which are then updated according to the training objectives us-
ing gradient descent.

To encourage the cells to cluster around the prototypes, we
add a constraint to the latent space that promotes the embedding
of a cell close to at least one cell-prototype. This constraint can be
formalized as the minimization of the cell-to-prototype distances

Lc2p ¼
1
N

Xm
i¼1

Xni

j¼1

min
k2½1;M�

jjf ðxj
iÞ � pkjj22; (2)

where M is the number of cell-prototypes in ProtoCell4P and
p1; . . . ;pM are the cell-prototypes learned by the model.

In addition to shortening the distance between cells and
cell-prototypes to learn meaningful subpopulation repre-
sentatives, we also maximize the prototype-to-prototype
distance to disperse the cell-prototypes and thus distinguish

Figure 2. Architecture of ProtoCell4P
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different cell subpopulations in the latent space. The loss
term for the prototype-to-prototype distance penalty is for-
mulated as

Lp2p ¼
2

MðM� 1Þ
XM�1

k¼1

XM
l¼kþ1

maxð0;dmin � jjpk � pljj2Þ
2; (3)

where dmin is the minimum acceptable pairwise distance be-
tween two cell-prototypes.

Cell type knowledge fusion. Since the cell types represent the
existing knowledge of cells, the latent space will be interpretable
if the learned cell subpopulations can be related to the cell types
that people have already known. As the cell type labels are easily
accessible from human-annotated datasets or automatic annota-
tion tools (Ianevski et al. 2022), we take them as the given infor-
mation in the scRNA-seq datasets and include them as parts of
the training data. To encourage the model to learn cells of the
same type as cell subpopulations and take the cell-prototypes as
the representatives, we propose to add constraints on the distance
from prototypes to groups of cells of the same type. Specifically,
for cells with the same cell type label, we take the average of their
cell embeddings as the latent representation of that cell type. By
penalizing the distance from each cell-prototype to the closest cell
type embedding, we can encourage the cell-prototype to learn the
knowledge of cell types and be the corresponding representative.
The penalty term can be formulated as

1
M

XM
k¼1

min
t2½1;T�

�����pk �
Pm

i¼1

Pni
j¼1 1tðxj

iÞf ðx
j
iÞPm

i¼1

Pni
j¼1 1tðxj

iÞ

�����
2

2

; (4)

where T is the total number of cell types and 1tðxj
iÞ is an indi-

cation function defined as

1tðxj
iÞ ¼

1 if cell xj
i is of the tth type;

0 if cell xj
i is not of the tth type:

(
(5)

In our preliminary experiments, we found that the model
sometimes assigned more than one cell-prototype to the same
cell type, and they would overlap each other when we visualized
the latent space on a 2D figure. To diversify the cell types associ-
ated with the learned cell-prototypes and to make the prototype
learning process robust, we propose to add randomness in deter-
mining the closest cell type population for each prototype in
Formula (6). Specifically, the distance from a cell-prototype to a
cell type embedding will have the probability of a large value
being added, which prevents the cell-prototype from always
binding to a specific cell type, thus increasing the chance that
these cell-prototypes have diverse related cell types. In our
experiments, the loss term in Formula (4) is updated as

Lp2ct ¼
1
M

XM
k¼1

min
t2½1;T�

109dtk þ
�����pk �

Pm
i¼1

Pni
j¼1 1tðxj

iÞf ðx
j
iÞPm

i¼1

Pni
j¼1 1tðxj

iÞ

�����
2

2

8<
:

9=
;;

(6)

where

dtk � BernoulliðbÞ; (7)

and b is set as 0.3 in our experiments.

Additionally, we need to encourage the cells of the same
type to be close to each other, because even under all of the
above constraints, the type of cells surrounding the learned
prototype is not necessarily the same as the type represented
by the prototype. We realize this by adding a cell type identi-
fier to the module, which takes the information on the similar-
ity of a cell to each cell-prototype as the input feature. To be
specific, we can obtain a cell’s similarity vector by first com-
puting its distance to different cell-prototypes in the latent
space and then transforming it into the inverse to describe the
cell’s similarity to different subpopulations

sj
i ¼

1

jjf ðxj
iÞ � p1jj22 þ �

; . . . ;
1

jjf ðxj
iÞ � pMjj22 þ �

" #>
; (8)

where � ¼ 0:5 in our experiments. We introduce a linear clas-
sifier F to make predictions about cell types based on the simi-
larity vector calculated in the previous step. The linear
classifier is chosen because we expect that the cell-prototypes
will contain enough information to enable the basic classifier
to make accurate cell type predictions. Training of the cell
type identifier will in turn prompt the model to learn critical
cell-prototypes that can be used to differentiate different types
of cells according to their locations in the latent space. The
loss for the cell type identification is

Lct1 ¼ �
1
N

Xm
i¼1

Xni

j¼1

XT

t¼1

1tðxj
iÞ log Fðsj

iÞ½t�; (9)

where Fðsj
iÞ½t� stands for the tth element of the output predic-

tion Fðsj
iÞ.

3.2 The classification module

In the above subsection, we described how to compute the
similarity vector of a cell over all cell-prototypes to classify its
cell type. However, such an approach cannot be directly ap-
plied to our patient classification of interest, since numerous
cells can be included within one individual. To precisely pre-
dict the phenotype of an individual, we need to integrate in-
formation from all its cells to make a final prediction. We
propose a cell-informed patient classification method, which
combines the well-trained embeddings of all cells using an
adaptive relevance scorer to effectively retrieve useful infor-
mation from the cells for the classification task.

Adaptive relevance scorer. It is crucial to estimate the rele-
vance of each cell-prototype for patient classification since the
cell-prototypes may have different effects and should be given
different weights in the classification task. Moreover, it is also
necessary to take into account the possible differences be-
tween individuals and between cells. According to Perez et al.
(2022), in some scenarios, not all types of cells have signifi-
cantly different behaviors in cohorts with different pheno-
types. To cope with these situations, we propose an adaptive
relevance scorer to control the contribution of each cell to the
final prediction, thus personalizing the precise diagnosis for
each patient.

A neural network U is proposed as the relevance scorer,
which aims to output an estimated relevance score matrix for
each cell to show the relevance of that cell’s similarity to each
cell-prototype for classifying the patient’s phenotype. In other
words, the relevance scores will indicate how much the
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similarities between the cell and the cell-prototypes contribute
to categorizing the individual into each target class. Given the
data of ni cells from a patient, the scorer U will return ni dif-
ferent importance matrices, each of size M� K, where M and
K are the numbers of cell-prototypes and target classes,
respectively.

Combining the computed similarity vector (Formula (8))
and the estimated relevance score matrix given by Uðxj

iÞ,
ProtoCell4P can calculate the importance scores of a cell xj

i in
identifying the individual xi’s phenotype via

qj
i ¼ sj>

i Uðxj
iÞ: (10)

By summing up the results from each cell, ProtoCell4P can
give a final estimation of the classification probability as

qi ¼ Softmax
Xni

j¼1

qj
i

 !
: (11)

The error for the patient classification is defined as the
cross entropy between the true labels and the estimated label
distributions, defined as

Lclf ¼ �
1
m

Xm
i¼1

XK

r¼1

1
0
rðxiÞ log qi½r�; (12)

where qi½r� is the rth element of the prediction qi for the ith in-
dividual, and 1

0
rðxiÞ is an indication function defined as

10rðxiÞ ¼
1 if sample xi is of the rth class;
0 if sample xi is not of the rth class:

�
(13)

Besides, to improve the interpretability of ProtoCell4P in
terms of cell types, we encourage the estimated relevance
score matrices for the same type of cells to have similar pat-
terns so that, given their prototype-related information should
be close based on our design of the cell embedding module,
these cells will have similar contributions to the classification,
which helps to explore the association between phenotype
classes and cell types. To be specific, we introduce a new cell
type classifier in the classification module, which takes the es-
timated relevance scores as the input. Different from the cell
type identifier in the cell embedding module, this classifier
does not predict the cell types based on the embeddings but
on the relevance only, in order to regulate the behavior of the
same type of cells in the patient classification task. Noting the
cell type classifier as G, we need to penalize the following clas-
sification error

Lct2 ¼ �
1
N

Xm
i¼1

Xni

j¼1

XT

t¼1

1tðxj
iÞ log GðUðxj

iÞÞ½t�; (14)

where T is the number of cell types in total and GðUðxj
iÞÞ½t�

denotes the tth element of the prediction GðUðxj
iÞÞ.

3.3 Training procedure and interpretability

Overall training procedure. The overall model is trained with
a two-step approach using the same training set. First, we pre-
train the cell embedding module in ProtoCell4P to learn ex-
plicit and identifiable cell embeddings and cell-prototypes in

the latent space. The well-encoded cell embeddings and proto-
types will then facilitate the second module to quickly learn
how to classify patients in the face of sample scarcity.

In the pretraining phase, sequencing data and cell type
labels of single cells from patient samples in the training set
are used to train the cell embedding module with the cell type
classification as the task (Formula (9)). Meanwhile, we in-
clude the optimization of the reconstruction loss (Formula
(1)) and the distance-based penalty of embeddings (Formulae
(2), (3), and (6)) to encourage the learning of informative cell
embeddings and prototypes. The training objective of the
model in this phase should be the combination of all loss
terms mentioned in Section 3.1

L1 ¼ k1Lrecon þ k2Lc2p þ k3Lp2p þ k4Lp2ct þ k5Lct1; (15)

where k1; . . . ; k5 are the weights we put on different loss
terms, guiding the model to give different attention to the op-
timization objectives.

The optimal parameters of the cell encoder which provide
the best cell type classification accuracy on the validation set
will be kept for further training. In the tuning of the patient
classification module, we fix the learned parameters in the
previous phase and update the relevance scorer for better pa-
tient classification performance. Specifically, the model opti-
mizes the patient classification objective with the scRNA-seq
data and the phenotype labels of patient samples (Formula
(12)), and learns to identify cell type information from the es-
timated relevance scores (Formula (14)) to encourage homo-
geneity of prediction patterns of cells of the same type. The
objective of the second training stage is

L2 ¼ Lclf þ k6Lct2; (16)

where k6 is the hyperparameter for the cell type classification
loss in the training of the relevance scorer U.

Interpretability of patient classification. The estimated rele-
vance score matrix can be used to show the role each cell
plays in determining the phenotype class of the patient. If the
relevance score of one prototype is high for a target class
according to a given single cell, then the closer the cell is to
the prototype, the more likely the patient will be assigned to
the corresponding class. Moreover, by combining the similar-
ity information on prototypes and corresponding relevance
scores, we can obtain the importance of each cell which shows
how much influence a cell has on the categorization of the
sample into each phenotype. It is worth noting that if a cell is
important for all phenotypes, then it will make no contribu-
tion to the final classification. By calculating the difference be-
tween the importance score of a cell for one category and its
score for other categories, we can quantify how much the cell
contributes to classifying the patient into that specific class.
The contribution that the jth cell of the ith sample makes to
classifying the patient into the jth class can be formulated as

cj
i½j� ¼ qj

i½j� �
1

K� 1

XK

r¼1

qj
i½r� � qj

i½j�
 !

(17)

where qj
i½r� stands for the rth element of qj

i which is defined in
Formula (10). Comparing the contribution scores of different
cells, we can figure out which cells or cell subpopulations are
more important for the patient classification tasks.
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4 Experiment
4.1 Datasets

We have chosen the lupus dataset (Mandric et al. 2020) since
the method we compare with, CloudPred (He et al. 2021),
used this dataset. The cardio (Chaffin et al. 2022) dataset and
the covid dataset (Ziegler et al. 2021) are also used in our
study. Table 1 provides a summary of real-world datasets
that we use to evaluate ProtoCell4P on patient classification
tasks.

4.2 Experimental setup

Baseline approaches. Due to its novel and complex nature,
classifying patients based on single-cell information has been
poorly explored. To the best of our knowledge, CloudPred
(He et al. 2021) is currently the only approach that performs
the single-cell based patient classification task using ML mod-
els. We apply CloudPred to all tasks we designed and com-
pare its performance of patient classification with our model.
In addition, to evaluate how much adaptive relevance scores
will contribute to patient classification, we design another
neural network based model, termed BaseModel. Following
Li et al. (2018)’s approach, BaseModel uses prototypes to ob-
tain the feature of each cell and uses a fully connected layer to
provide probability estimation based on this. The way we
train the model and combine the information from different
cells in ProtoCell4P is also applied to the training of
BaseModel and its classification of patients. The main differ-
ence between these two approaches is that BaseModel always
gives a static matrix of relevance scores, rather than a dy-
namic one as in ProtoCell4P. In addition to CloudPred and
BaseModel, we also test the baseline models that CloudPred
used on our designed tasks, the descriptions of which can be
found in the original paper (He et al. 2021).

4.3 Evaluation of performance

Comparison with baselines. Tables 2 and 3 show the results
of performance comparisons under different evaluation met-
rics, where the top three scores for each dataset are in bold.
The results demonstrate that ProtoCell4P can effectively uti-
lize single-cell information to identify the phenotype differ-
ence among patients, as evidenced by ROCAUC scores
consistently above 0.90. With the ROCAUC score as the eval-
uation metric, our model outperforms CloudPred and other
baseline models on all tasks.

While the ROCAUC score measures the area under the re-
ceiver operator characteristic curve (ROC) and takes the pre-
dicted probabilities as the input, the F1 score requires the
definition of probability thresholds of classes to obtain
the predicted classes and then measures the harmonic mean of
the precision and recall. Generally, a model with a dominant
curve in the ROC space should also have a dominant curve in
the precision–recall (PR) space (Davis and Goadrich 2006),
and the computed F1 score corresponds to a specific point on

the PR curve. As can be seen from the tables, though our
model still has state-of-the-art performance in terms of the
macro F1 score, the results are less exceptional with macro F1
scores <0.90 on the cardio and covid datasets. These results
show that while ProtoCell4P is able to differentiate pheno-
typic differences among samples using the single-cell informa-
tion, they may not always give the accurate label prediction of
the patient phenotypes, especially on small-size datasets such
as cardio and covid. The probability boundary of classes
should be more carefully determined when implementing
ProtoCell4P on these datasets.

Comparing ProtoCell4P with BaseModel, we see that the
adaptive relevance scorer does play a very significant role in
patient classification and dramatically increases the perfor-
mance of our model on the tasks. We also find that the opti-
mal number of prototypes for ProtoCell4P appears to be
different across tasks.

Analysis of interpretability. In addition to the good perfor-
mance of our model on patient classification tasks,
ProtoCell4P is also capable of showing its effective reasoning
process for classification. The relevance scores can tell us, for
each cell, the similarity to which prototype is more empha-
sized in the classification. By combining the information from
various prototypes and relevance scores, we can identify the
cells and cell types that are most important for classification,
thereby uncovering the association between cells and target
phenotype classes. Here we use case studies of the classifica-
tion tasks to show the interpretation that ProtoCell4P can
provide for its classification results.

For each task, we use t-SNE to visualize the cell embeddings
and prototypes in the latent space. In the visualization results,
cells of different types are reflected by different colors of the
points, and we use pentagons (black) to show where the
learned prototypes are located in the latent space. To visualize
the position of the most important cells for the patient being
classified, we first rank all cells according to their contribu-
tions using Formula (17). Then for each target class, we select
the top 20 most important cells and plot them on the figure
with the “þ” signs.

Case study of lupus classification. According to Fig. 3,
embeddings of the same type of cells in lupus tend to gather
as a cluster, and the prototypes are automatically learned to
represent different cell types. For example, from Fig. 3a and b
we can see that Prototypes 1, 2, 3, and 4 represent dendritic
cells (purple), NK cell (gray), CD14þ Monocytes (orange),
and B cells (blue), respectively. Though both CD8 T cells (red)
and NK cell (gray) are close to Prototype 2, their estimated
relevance scores show that the similarity to the prototype has
a different impact on the contribution of these two cell types
to the classification task. For the CD8 T cell subpopulation,
the mean relevance score of its cell is 0.19 to the healthy class
and 0.72 to the SLE class, while for the NK cell subpopula-
tion, they are 0.73 and 0.80, respectively. In other words,
CD8 T cells that are close to Prototype 2 will make the patient

Table 1. Datasets for the evaluation of patient classification (numbers in brackets indicate the distribution of labels).

Dataset name No. of samples Avg. no. of cells per sample No. of cell types No. of genes No. of classes

Lupus (disease) (Mandric et al. 2020) 169 (119þ50) 4935 8 32 738 2
Lupus (race) (Mandric et al. 2020) 169 (106þ63) 4935 8 32 738 2
Cardio (Chaffin et al. 2022) 42 (11þ15þ16) 14 111 13 36 601 3
Covid (Ziegler et al. 2021) 58 (35þ23) 562 18 32 871 2
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Table 2. Comparison of performance with baselines (ROCAUC).

Method No. of prototypes Lupus (disease) Lupus (race) Cardio Covid

Independent – 0.98 0.80 0.64 0.86
Mixture (class) – 0.99 0.88 0.85 0.89
Mixture (patient) – 0.93 0.73 0.77 0.68
Deepset – 1.00 0.89 0.67 0.86
CloudPred – 1.00 0.90 0.86 0.81
BaseModel – 0.88 0.67 0.68 0.64

ProtoCell4P 4 1.00 0.98 0.93 0.86
8 1.00 0.97 0.95 0.86

16 1.00 0.97 0.96 0.90

Table 3. Comparison of performance with baselines (macro F1).

Method No. of prototypes Lupus (disease) Lupus (race) Cardio Covid

Independent – 0.89 0.65 0.40 0.41
Mixture (class) – 0.99 0.78 0.80 0.73
Mixture (patient) – 0.89 0.71 0.69 0.63
Deepset – 0.99 0.80 0.20 0.41
CloudPred – 0.97 0.79 0.65 0.72
BaseModel – 0.70 0.47 0.28 0.36

ProtoCell4P 4 0.94 0.86 0.79 0.72
8 1.00 0.91 0.79 0.62

16 1.00 0.90 0.82 0.69

Figure 3. Latent space of cells with (a) a healthy sample and (b) an SLE sample in lupus

Patient classification using single-cell RNA-seq 7
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Table 4. Average contribution scores of each cell type to the lupus classification.

B cells CD14þ monocytes CD4 T cells CD8 T cells Dendritic cells FCGR3AþMonocytes Megakaryocytes NK cells

Healthy �0.64 �3.89 0.44 �1.65 �1.47 �2.32 �2.15 0.01
SLE 0.64 3.89 �0.44 1.65 1.47 2.32 2.15 �0.01

Figure 4. Latent space of cells with (a) a normal sample and (b) a covid sample in covid dataset

Table 5. Average contribution scores of each cell type to the covid classification.

B cells Basal
cells

Ciliated
cells

Dendritic
cells

Deuterosomal
cells

Developing
ciliated cells

Developing
secretory
and goblet
cells

Enteroendocrine
cells

Erythroblasts

Normal �1.49 �1.20 0.83 �1.45 �0.95 �0.55 �0.35 �0.78 0.08
Covid 1.49 1.20 �0.83 1.45 0.95 0.55 0.35 0.78 �0.08

Goblet cells Ionocytes Macrophages Mast cells Mitotic basal cells Plasmacytoid DCs Secretory cells Squamous cells T cells

Normal �2.20 �1.67 �1.20 �3.25 �1.27 �1.07 �2.60 �1.40 �1.25
Covid 2.20 1.67 1.20 3.25 1.27 1.07 2.60 1.40 1.25
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more likely to be classified as SLE, while the distance from
NK cells to the prototype will not contribute much to differ-
entiating two target classes for the patient.

From Fig. 3b for the SLE sample, it is shown that the most
important cells for classifying the patient belonging to the
SLE group are mainly from the CD14þMonocyte subpopula-
tion (orange), while cells that make the most contribution to

Table 6. Ablation studies for ProtoCell4P (ROCAUC).

Component Lupus (disease) Lupus (race) Cardio Covid

ProtoCell4P 1.00 0.98 0.96 0.90
Pretraining 1.00 0.96 0.94 0.90
Cell type 1.00 0.98 0.98 0.89
Subsample 1.00 0.97 0.96 0.92

Figure 5. Cell embeddings of the same SLE sample learned by (a) ProtoCell4P, (b) ProtoCell4P without pretraining, and (c) ProtoCell4P without cell type

Patient classification using single-cell RNA-seq 9
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pushing it to the healthy group are from the NK cell (gray)
and CD4 T cell (green) subpopulations. Such patterns are also
shown in Fig. 3a for the healthy sample. Comparing the distri-
bution of cell types in both samples, we find that the SLE sam-
ple does have more CD14þ Monocytes (orange) and fewer
CD4 T cells (green), which may account for its classification
result as SLE. By averaging the contribution scores of all cells
in each subpopulation, we obtain Table 4, which explicitly
shows the association between cell types and different pheno-
type classes in the lupus classification task. In particular, we
mark in bold the cell types that contributed the most to differ-
ent phenotypes. The table shows that CD4 T cells and NK
cells are positive signals for individuals to be classified in the
healthy group, while CD14þ Monocytes and FCGR3Aþ
Monocytes will increase the likelihood of patients being clas-
sified as SLE. These are consistent with the findings of previ-
ous biological research (Sibbitt et al. 1983, Henriques et al.
2013, Perez et al. 2022, Zhang and Lee 2022).

Case study of covid classification. Figure 4 and Table 5
show our experimental results on the covid dataset, with the
cell types that contribute most to the classification of covid
disease highlighted in Table 5. According to Table 5, our
model identifies mast cells, goblet cells, and secretory cells as
important indicators of the covid disease. The visualization
results of cases (Fig. 4) show that some developing ciliated
cells (red) and secretory cells (brown) play important roles in
the classification of the patients’ covid disease state. These cell
types are consistent with the recent research interest in
COVID-19 (Chua et al. 2020, Ahn et al. 2021, Wu et al.
2021).

4.4 Ablation studies

To fully understand how different components in ProtoCell4P
contribute to the model’s performance and interpretability,
we conduct ablation studies for ProtoCell4P on all datasets.
We test the performance of ProtoCell4P in the absence of
each component. The evaluation results are shown in Table 6.
By removing the pretraining component, the model does not
adopt the two-step training strategy as described in Section
3.3. Instead, it trains the entire model end-to-end, optimizing
all objectives simultaneously. In experiments without cell type
information, the model does not take the cell type annotations
as its input and discards all training objectives regarding cell
types in its training. We also test the model’s performance
when the subsampling is not implemented as described in
Section 4.2.

From the results, we can notice that the performance of
ProtoCell4P tends to be worse without the pretraining stage,
suggesting that the pretraining of ProtoCell4P on cells does
benefit its performance on patient classification. The results
also show that the model without cell type input can have
comparable performance compared to the original version,
which indicates the model can still learn how to perform pa-
tient classification from the scRNA-seq data without the
knowledge of cell types. Nevertheless, though the perfor-
mance of these two models is similar, the model without the
knowledge of cell type is less explainable than the original
ProtoCell4P model, because the high-level concepts of the key
cells in the task are difficult to generalize without predefined
knowledge such as cell types. Comparing the visualization
results of cases from the model variants (see Fig. 5), we can
see that different types of cells tend to be entangled with each
other if the cell embedding module is not pretrained or the

cell type information is not included, in which cases it will be
difficult to summarize knowledge of cells for the classification
task.

Table 6 also shows the performance of ProtoCell4P without
subsampling is comparable to the default version on most
tasks, indicating the model can manage to classify patients
with only partial information on all cells, and that it is our de-
sign of the cell-centered classification architecture rather than
data augmentation that allows the model to make precise pre-
dictions. However, the model without subsampling appears
to perform better than the original model on the covid task,
which is inconsistent with the results of other tasks. We attrib-
ute this to the fact that the average number of cells per sample
in the covid dataset is much lower than in other datasets,
which results in poorer quality of the subsamples when per-
forming subsampling.

5 Conclusion

In this article, we identified the great potential of performing
patient classifications based on single-cell data. Accordingly,
we proposed an explainable prototype-based model,
ProtoCell4P, to learn cell prototypes and collect prototype-
related information from all cells for the classification. By in-
cluding a cell embedding module, ProtoCell4P can leverage
the knowledge of cells in scRNA-seq data to facilitate the pa-
tient classification tasks, alleviating the problem of sample
scarcity. The design of an adaptive relevance scorer in the
classification module helps the model to flexibly assign appro-
priate weights to different cells for more precise patient classi-
fication. Our approach is shown to be effective on all three
classification tasks from real-world datasets and outperforms
the existing methods in this area. Moreover, we demonstrated
that the prediction result of our model can be interpreted by
identifying the key cells for the patient’s classification and by
summarizing the cell type knowledge on those discovered key
cells. Our model can further uncover the association between
cell types and the target phenotype classes of interest, which
can be enlightening for related biological research.
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Data availability

A cleaned version of the lupus dataset provided can be down-
loaded from https://github.com/yelabucsf/lupus_1M_cells_
clean. The cardio dataset can be downloaded from https://sin
glecell.broadinstitute.org/single_cell/study/SCP1303. The
covid dataset can be downloaded from https://singlecell.broad
institute.org/single_cell/study/SCP1289.
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