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Abstract
We propose a non-stationary spatial model based on a normal-inverse-Wishart
framework, conditioning on a set of nearest-neighbors. The model, called
nearest-neighbor Gaussian process with random covariance matrices is devel-
oped for both univariate and multivariate spatial settings and allows for fully
flexible covariance structures that impose no stationarity or isotropic restric-
tions. In addition, the model can handle duplicate observations and missing
data. We consider an approach based on integrating out the spatial random
effects that allows fast inference for the model parameters. We also consider a
full hierarchical approach that leverages the sparse structures induced by the
model to perform fast Monte Carlo computations. Strong computational effi-
ciency is achieved by leveraging the adaptive localized structure of the model
that allows for a high level of parallelization. We illustrate the performance of
the model with univariate and bivariate simulations, as well as with observations
from two stationary satellites consisting of albedo measurements.

K E Y W O R D S
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1 INTRODUCTION

The land surface albedo is the ratio between the upward and downward reflected solar radiation at the Earth’s surface
(NOAA, 2018). Quantifying the amount of light that hits the surface of the Earth without being reflected is essential for
understanding climate change and its potential impact on human health. Missions such as the National Oceanic and
Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellites (GOES) East and West have
been designed to target specifically the forecasting of extreme weather events (e.g., floods) and the monitoring of land
process analysis (NOAA, 2016). In light of being a sensitive indicator of environmental changes, surface albedo has been
classified an essential climate variable (ECV) by the global climate observing system.

Surface albedo can be measured by a variety of instruments including ground-based stations and satellites. Of partic-
ular importance are the observations gathered from agency participants in an international network called SCOPE-CM
(http://www.scope-cm.org/) (“Sustained and COordinated Processing of Environmental satellite data for Climate Mon-
itoring”). The near-global coverage of participating geostationary missions is illustrated in Figure 1. This effort has so
far produced a land surface albedo dataset that contains more than 12.5 million files at a total size of more than 270 TB.
In addition to albedo, other ECVs currently observed from the geostationary platform include: aerosol properties, cloud
characteristics, wind speed and direction, radiation budget, wildfires, temperature profiles, precipitation, and snow cover.
The analysis of these observations presents a number of statistical challenges, including the need to handle very large
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F I G U R E 1 Illustration of the 70◦viewing angle limit of the five world satellites. Blue: GOES from NOAA. Green: Meteosat satellites
from EUMETSAT. Red: Geostationary Meteorological Satellite (GMS) from JMA. Figure adapted from Govaerts et al. (2008).

spatial domains with massive numbers of observations corresponding to heterogeneous spatial fields and different sources
of information. Those challenges motivate the development of the methods presented in this article. Here we propose a
model-based approach for multivariate non-stationary spatial surfaces that scales to large amounts of data.

The last couple of decades have seen an explosion in the development of geostatistical methods producing a solid body
of literature and software, see, for example, the books by Cressie (1993), Gelfand et al. (2010), Cressie and Wikle (2011),
and Banerjee et al. (2014). Modern geostatistical approaches provide flexible probabilistic models, coupled with learn-
ing methods, that are used to investigate inferential questions related to geographically-referenced data. Traditionally,
model-based spatial models have relied on the Gaussian process (GP). GPs capture the dependence due to proximity
through a covariance function. For a likelihood-based approach to GPs, the bottleneck lies in the computation of the
determinant and the inverse of the covariance matrix induced by the locations of the available observations. To tackle
this problem most current methods take one of two approaches: exploit sparsity in the structure of the covariance matrix
(e.g., Du et al., 2009; Furrer et al., 2006; Kaufman et al., 2008; Shaby & Ruppert, 2012) or reduce the dimensionality of
the problem by seeking representations of GPs on lower dimensional subspaces (e.g., Banerjee et al., 2008; Cressie &
Johannesson, 2008; Higdon, 1998; Katzfuss & Cressie, 2011; Lemos & Sansó, 2009). In both cases the goal is to speed up
calculations, as well as reduce the size of the objects that need to be handled and stored in memory when performing com-
putations. For further information about the state of the art model-based geostatistics methods suitable for large data sets
see Banerjee (2017) and Heaton et al. (2019). Nearest-neighbor GP (NNGP) Datta et al. (2016) are a particularly intrigu-
ing class of models, as they blend features of both the dimension reduction and the sparsity approaches, formalizing to a
Gaussian process framework the popular likelihood approximation proposed in Vecchia (1988).

In addition to the challenge of dealing with very large datasets, variables such as land surface albedo, observed over
very large regions, exhibit a behavior that is incompatible with the common assumption of stationarity of the underlying
spatial field. Many of the approaches for large spatial fields result in non-stationary processes, even though they are not
built specifically to deal with such a property. One of the first attempts to deal explicitly with non-stationary spatial fields
is the deformation approach in Sampson and Guttorp (1992) and Schmidt and O’Hagan (2003). In Brown et al. (1994b),
non-stationarity occurs from the choice of using an inverse Wishart prior for the covariance matrix within the general
multivariate normal framework. Using a different approach, Paciorek and Schervish (2006) create a new general class
of non-stationary covariance functions. Partition models like the ones introduced in Gramacy and Lee (2008) and Kim
et al. (2005) construct non-stationary models by averaging over locally stationary processes. Further examples include
Fuentes (2001) and Fuentes and Smith (2003) where the non-stationary process is a discrete or continuous weighted
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average of stationary models for subregions of the space. Also, like any reduced rank representation of a Gaussian process,
process convolutions result in non-stationary processes. An explicit model to capture the heterogeneous nature of the
spatial field is developed in Higdon (1998) and Lemos and Sansó (2009), where the shape of the kernels is modeled as
spatially-varying. A different approach is taken in Kirsner and Sansó (2020), that build a multi-resolution model with
spatially-varying resolution. Finally, more recently, a nonparametric and non-stationary approach that looks at inferring
the sparse elements of the Cholesky factor of an inverse covariance matrix has been presented in Kidd and Katzfuss (2022).

In this article, we start by considering a multivariate normal framework for the observations. We assume a fully
unknown covariance and leverage the inverse Wishart prior to set our focus on developing a non-isotropic covari-
ance structure. Then, we extend the model to a spatial process that is suitable for large spatial datasets by including a
nearest-neighbors idea. We denote the resulting multivariate process as nearest-neighbors Gaussian processes with ran-
dom covariance matrices (NN-RCM). We develop two inferential approaches. The first version leverages the marginal
posterior distribution of the model and allows to obtain posterior inference of the covariance parameters efficiently. The
second version builds a hierarchical structure which includes fixed effects and an observational error. Computations for
both versions are naturally geared to leverage parallelization and multi-threading.

The remainder of the article is organized as follows: In Section 2, we present the methodological framework of the
NN-RCM model. In Section 3, we discuss the different features of the model through a number of simulated examples
and comparisons with existing methods. We first consider univariate cases. We then detail the implementation of the
bivariate NN-RCM models and discuss the many questions regarding multivariate nearest-neighbor spatial processes that
were unanswered by current methods. In particular, we first describe the creation of multivariate neighborhoods, and
then touch on the issue of misaligned sources of information. Finally, in Section 4, we apply the developed methodology
to the land surface albedo dataset. We focus on the BHRiso, which stands for bihemispherical reflectance, or white sky
albedo. We look at datasets of various sizes and corresponding to different areas within the continental United States
(CONUS), fitting a bivariate hierarchical NN-RCM model to the two dimensional vectors obtained from the retrievals
of the GOES-East and GOES-West satellites. The goal is to extract the common surface between the two satellites and
quantify the discrepancy surface in the process. We then illustrate the ability of our proposed model to handle a massive
bivariate dataset by considering the two dimensional vectors where the first components correspond to BHRiso and the
second to DHR30, which stands for directional hemispherical reflectance, or black sky albedo. This analysis covers data
over the whole CONUS and amounts to about 800,000 observations for each component.

2 NEAREST-NEIGHBOR GP WITH RANDOM COVARIANCE MATRICES

We define a nearest-neighbors GP with random covariance matrix (NN-RCM) based on the normal inverse-Wishart (NIW)
framework. Let  = {s1, … ,sk} be a set of locations in a spatial domain for which we have spatially dependent q-variate
observations y(si), i = 1, … ,k stacked in the vector y ∈ Rkq. Assume that

y |Σ ∼Nkq(0, Σ), Σ ∼IWkq( ,𝛼  (𝛼 −kq −1)C𝜽), (1)

where N n(a,V) denotes a n-dimensional normal distribution with mean vector a and covariance matrix V, IWn( ,𝛼 V)
denotes an n×n-dimensional inverse-Wishart distribution with shape parameter𝛼and scale parameter V, and C𝜽 is a kq×
kq covariance matrix obtained from a valid cross-covariance function with parameters 𝜽. Recall that a cross-covariance
function K 𝜽 takes two locations, s i and s j and returns a q ×q covariance matrix where each element is the covariance
between the respective components:

K𝜽(si, sj) =

⎛
⎜
⎜
⎜
⎝

cov(y1(si), y1(sj))   · · · cov(y1(si), yq(sj))

⋮ ⋱ ⋮

cov(yq(si), y1(sj))   · · · cov(yq(si), yq(sj))

⎞
⎟
⎟
⎟
⎠

.

Notice that that E(Σ) =C𝜽 and that, as𝛼 → ∞, Σ concentrates around its mean. Thus, in the limit, the model corresponds
to a regular GP. Our approach leverages the inverse-Wishart distribution ofΣ to obtain a non-stationary, locally adaptive
model.
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To introduce sparsity and perform conditional inference we consider an ordering of the locations based on their index.
We can then write the joint multivariate normal density as the product of conditional normal densities, thus

p(y ) =
k∏

i=1
p(y(si)|y(s1), … ,y(si−1)).

Normality implies that the recursive conditional representation of y (si) can be obtained as a linear combination of
y(s1), … ,y(si−1). Thus for a lower triangular matrix L and a diagonal matrix Λ, both of size kq ×kq, we have that
(Ikq −L)y = e, e ∼Nkq(0, Λ),where Ikq is the identity matrix and Σ = (Ikq −L)−1Λ(Ikq −L)−T . To induce sparsity most
of the elements of L can be set to zero. Vecchia’s approximation is an increasingly popular approach (Datta et al., 2016;
Vecchia, 1988) that consists of reducing the size of the conditioning set to a small number, say m, of variables. Denote
N(si) as the m closest neighbors of s i in {s1, … ,si−1} ∈  when i ≥m, and as the set {s1, … ,si−1} when i < m. Denote
as yN(si) the vector obtained by stacking all the observations corresponding to N (si). Then

p(y ) ≈p̃(y ) =
k∏

i=1
p(y(si)|yN(si)),

which corresponds to setting the elements of the matrix L outside of N (s) to zero. For small sample sizes, the impact of
the ordering of the locations can be relevant and depend on the choice of covariance function and on the specific data at
hand. Guinness (2018) proposes optimal ordinal strategies based on Kullback–Leibler divergence and Datta et al. (2016)
consider root mean square predictive error to score models with different orderings. For large datasets the common choice
of fully randomizing the locations is a reasonable default option.

2.1 Linearization of the NIW model

The fundamental component of our proposed model is the linearization of the the distribution of y(si), i = 1, … ,k given
its m neighbors. Let (y(si), yN(si)) be the vector obtained by stacking the vector of observations at location s i with those at
the neighboring locations within  . Its covariance is denoted as Σ{si,N(si)} and is equal to

(
Σsi,si Σsi,N(si)

ΣN(si),si ΣN(si),N(si)

)

=

(
Φ(si) + Γ′(si)ΣN(si),N(si)Γ(si) Γ(si)′ΣN(si),N(si)

ΣN(si),N(si)Γ(si) ΣN(si),N(si)

)

,

where the subindexes indicate the corresponding subvectors, Γ(si) = Σsi,N(si)Σ
−1
N(si),N(si)

, and Φ(si) = Σsi|N(si) = Σsi,si −
Σsi,N(si)Σ

−1
N(si),N(si)

ΣN(si),si . This equality is known as the Bartlett decomposition (Le & Zidek, 2006). Denote N h,l(M,A,B) as
the distribution of a k ×l matrix of normal elements with mean M, and such that within any column the covariance
matrix is A ∈ Rh×h, and within any row the covariance matrix is B ∈ Rl×l. Using the results in Brown et al. (1994a) we
have the following lemma:

Lemma 1. For i = 1, … ,k, suppose that Σ{si,N(si)} is a matrix of size (m + 1)q × (m + 1)q that
follows an inverse-Wishart distribution IW (m+1)q( ,𝛿 V). Then: ΣN(si),N(si) is independent of Γ(si) and
Φ(si); ΣN(si),N(si) ∼ IWmq( ,𝛿 VN(si),N(si)); Φ(si) ∼IWq(𝛿 +m,Vsi|N(si)); and Γ(si)|Φ(si) ∼Nm,q(V−1

N(si),N(si)
VN(si),si ,

V−1
N(si),N(si)

, Φ(si)).

From Equation (1), and using the properties of the normal and the inverse Wishart distributions, we have that
(y(si), yN(si))|Σ ∼N(m+1)q(0, Σ{si,N(si)} ) with Σ{si,N(si)} ∼ IW(m+1)q(𝛼 −kq + (m + 1)q, (𝛼 −kq −1)C𝜽,{ si,N(si)} ), as a sub-vector
of a multivariate normal is normal and a sub-matrix of an inverse-Wishart is inverse-Wishart. Thus, the follow-
ing corollary is obtained by using the definition of the conditional distribution of two normal vectors together with
Lemma 1.

Corollary 1. For i = 1, … k,

y(si)|(yN(si), Γ(si), Φ(si)) ∼Nq(Γ′(si)yN(si), Φ(si))
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Γ(si)|Φ(si) ∼Nmq,q

(
C−1𝜽,N(si)

C𝜽,N(si),si ,
1

(𝛼 −kq −1)
C−1𝜽,N(si)

, Φ(si)
)

Φ(si) ∼IWmq
(𝛼 −kq + (m + 1)q, (𝛼 −kq −1)C𝜽,si|N(si)

)
,

where C𝜽,si|N(si) =C𝜽,si −C𝜽,si,N(si)C−1𝜽,N(si)
C𝜽,N(si),si .

Corollary 1 allows for the transformation of a model based on a covariance matrix likelihood into a collection of spa-
tially localized hierarchical linear models. This series of local models provides adaptive weights to associate the vector
of observations at each location with its nearest neighbors within  . It also provides locally varying covariance matrices.
This structure is coherent with a global model for all locations featuring a fully unstructured covariance matrix. In addi-
tion, it intrinsically suggests a methodology to parallelize the calculations needed for posterior inference of the model, as
the distributions of the matrix of weights Γ(si), and the covariance matrix Φ(si), depend only on location s i. This offers
strong computational efficiency potential.

2.1.1 Extension to a stochastic process

The model introduced in Corollary 1 can be extended to a valid stochastic process over the whole spatial domain
by showing that it produces properly defined multivariate distributions for any collection of locations in  . To
this end we first consider an arbitrary set  = {u1, … ,ub} ⊂ ⧵ and let N(ui) denote the neighborhood of
ui in  . Then

p̃(y |y , Σ , ) =
n∏

i=1
p(y(ui)|yN(ui), Σui,N(ui)) =

n∏

i=1
N(Γ(ui)yN(ui), Φ(ui)).

This expression is multiplied by p (y |Σ ), which is a multivariate normal. Integrating y  out of the resulting product
of normals, yields p̃(y |Σ , ). For a fully general extension, consider  = {v1, … ,vb} ⊂  and let  = ⧵ . The joint
conditional density for the vector y( )is

p̃(y |Σ, ) =∫
p̃(y |y , Σ , )p̃(y |Σ )

∏

s∈⧵
d(y(s)),

where we integrate out the locations in  that do not appear in  . Since p̃(y |y , Σ , ) and p̃(y |Σ ) are multivariate
Normal distributions, the resulting distribution p̃(y |Σ ) is also a multivariate normal. The covariance for two locations
v1, v2 ∈ , conditional on Σ, , is,

Σv1,v2 =

⎧
⎪
⎨
⎪
⎩

Σv1,v2 , if v1, v2 ∈ 

Γ(v1)ΣN(v1),v2 , if v1 ∉ , v2 ∈ ,
Γ(v1)ΣN(v1),N(v2)Γ

′(v2) +1(v1=v2)Φ(v1), if v1, v2 ∉ .

In summary, we have developed a multivariate nearest-neighbor non-stationary stochastic process with a tremendous
potential for parallel computations. The NN-RCM model creates a dedicated non-isotropic framework that leverages the
advantages of multivariate linear regression in terms of computational efficiency. As will be demonstrated in the next
section, the possibility to marginalize the spatial random effects furthers even more the ability of obtaining fast posterior
inference.

2.2 Marginal NN-RCM model

To facilitate the estimation of 𝜽, the parameters that define the prior cross-covariance function, we obtain a marginal
model where the random coefficients Γ(s) and random covariances Φ(s) are integrated out. The result is obtained in the
following lemma.
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Lemma 2. The marginal distribution of y(si), i = 1, … ,k conditional on its m neighbors in  and 𝜽 is

m(y(si)|yN(si), 𝜽) =√ 1𝜋 Γ
( 𝛼−kq+mq+2

2

)

Γ
( 𝛼−kq+mq+1

2

)
|V𝜽,{ si,N(si)} |

𝛼−kq+mq+1
2

|(V𝜽 + S){si,N(si)} |
𝛼−kq+mq+2

2

×
|(V𝜽 + S)N(si)|

𝛼−kq+mq+1
2

|V𝜽,N(si)|
𝛼−kq+m

2

,

where V𝜽 = (𝛼 −kq −1)C𝜽 and S = y() y() ′.

Proof. Recall that m(y(si)|yN(si), 𝜽) =m(y(si), yN(si)|𝜽)∕ m(yN(si)|𝜽). As (y(si), yN(si))|Σ, 𝜽 ∼N(m+1)(0, Σ{si,N(si)} )
and Σ{si,N(si)} follows an inverse-Wishart distribution, the result can be obtained using the properties of NIW
densities. ▪

Further simplification of the expression in Lemma 2 can be obtained with the approximation

Γ
( 𝛼−kq+mq+2

2

)

Γ
( 𝛼−kq+mq+1

2

) ≈

√ 𝛼 −kq + mq + 2
2 −1,

that is important for numerical stability for large k. On the other hand, To obtain an approximation to the marginal
distribution for all the available observations we let

m(y |𝜽) ≈m̃(y |𝜽) = k∏

i=1
m(y(si)|yN(si), 𝜽).

m̃(y()|𝜽) can be used as a likelihood for𝜽. Multiplication by a prior density𝜋(𝜽) yields an approximate posterior distribu-
tion for 𝜽 that can be explored through sampling or maximization. Notice that computing the marginal involves, for each
location, the determinants of four matrices of dimensions no larger than (m + 1)q × (m + 1)q. Such local computations
can be performed concurrently, enabling the possibility of important speed gains through straightforward parallelization.
As with the implementation of NNGP, the algorithm is linear in the number of observations k but cubic in terms of the
number of neighbors m. Additionally, the order of computation ( km3q3) is cubic in terms of the number of variables q,
making the model most appropriate for small dimensions.

2.2.1 Prior distribution of 𝛼 and 𝜽
The parameters that constitute 𝜽 depend on the choice of cross-correlation function used for the model. We delay the
discussion of the prior cross-covariance model to Section 3.2. In the univariate setting the Matérn family has become the
most popular choice of spatial covariance function due to its flexibility. The Matérn family depends on two parameters,
the range parameter 𝜈 and the smoothness parameter 𝜅 :

C𝜈,𝜅 (d) =2𝜅−1

Γ(𝜅) ( √
2𝜅 d𝜈 ) 𝜅

K𝜅 ( √ 2𝜅 d𝜈 ) ,
where Γ is the gamma function and K𝜅 is the modified Bessel function of the second kind. In addition, we also include a
nugget 𝜉2 to account for the initial lag at the zero distance. Finally, we multiply by the partial sill 𝜎2 to obtain the prior
covariance function C𝜽(d) = 𝜎2(C𝜈,𝜅 (d) + 𝜉2), where 𝜽 = ( , , , 𝜈 𝜅 𝜉 𝜎2).

The difficulty in imposing valid priors for the range parameter 𝜈 in a GP setting is discussed in Berger et al. (2001)
and Kazianka and Pilz (2012) whose focus is to use priors that produce a proper posterior distribution. The maximization
aspect of the marginal model also requires attention, as there is no guarantee that the maximum of the marginal will
not occur with 𝜈 tending to zero or ∞ . Following a similar argument as in Gu and Berger (2016), we take p (𝜈) such that
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p(𝜈) → 0 when 𝜈 → 0 or 𝜈 → ∞. In fact, our default choice of prior for 𝜈 a is a gamma distribution with mean equal to
the smallest observed distance between two datapoints and shape parameter greater than 1. For 𝜉2 and 𝜎2 we consider
independent diffuse inverse gamma distributions. Finally, a natural choice for the prior distribution of the degrees of
freedom 𝛼 is the Pareto (xm, p) distribution which has a truncated domain and has very thick tails. By setting the scale
parameter xm at the minimum possible value for the degrees of freedom, we ensure that the distribution is only valid on
the proper interval. For the shape parameter p, a value of p= 1 is recommended as it results in a distribution with infinite
variance.

2.2.2 Posterior predictive distribution

The approximate posterior marginal likelihood model results in samples or point estimates of the cross-covariance
parameters, say𝜽∗. Inference for the random field y(s), is performed by drawing samples from the posterior predictive dis-
tribution for any location, say s∗ in  . To obtain a sample of the posterior predictive distribution of y(s∗) recall the results
in Corollary 1 and sample Φb(s∗) as

Φb(s∗) ∼IWmq
(𝛼∗−kq + (1 + m)q, (𝛼∗−kq −1)C𝜽∗,s∗|N(s∗)

)
,

where b = 1, … ,B, denotes the sample replicate. We then sample the matrix Γb(s∗) as

Γb(s∗)|Φb(s∗) ∼Nmq,q

(
C−1𝜽∗,N(s∗)C𝜽∗,N(s∗),s∗,

1
(𝛼∗−kq −1)

C−1𝜽∗,N(s∗), Φb(s∗)
)
,

for b = 1, … ,B. Finally, using the two former sets of samples, together with the neighboring observations, we generate
a set of predictions at location s∗ as,

yb(s∗)|(Φb(s∗), Γ′(s∗)) = Γ′(s∗)yN(s∗) + 𝜖(s∗), 𝜖(s∗) ∼Nq(0, Φb(s∗)).

Consequently, the samples y1(s∗), … ,yB(s∗) provide inference for the random field of interest, together with quantifica-
tion of the predictive variability. Notice that, thanks to the definition of N(s∗), the predictive distribution does not depend
on the ordering of  .

2.3 Hierarchical NN-RCM model with covariates

The NN-RCM model considered so far assumes that the spatial observations have zero mean. To model the complexities
of realistic multivariate random fields we consider a hierarchical extension of the NN-RCM that incorporates fixed effects,
linear combinations of spatial random effects and observational errors. Thus we formulate the model

y(s) =X(s)𝜷 +Aw(s) + 𝝐(s),
where X (s) is a q ×p matrix of spatially varying covariates, 𝜷 is the p-dimensional vector of fixed effects coefficients,
A is a q ×q known nonsingular matrix and w (s) is a latent q-variate NN-RCM process, and 𝝐(s) is a q-variate vector of
observational errors. A hierarchical formulation of the model is given as:

y(s)|𝜷,w(s), 𝜏2 ∼Nq(X(s)𝜷 +Aw(s), 𝝉2Iq)

w(s)|Γ(s), Φ(s) ∼Nq(Γ(s)wN(s), Φ(s))

Γ(s)|Φ(s) ∼Nmq,q

(
C−1𝜽,N(s)C𝜽,N(s),s,

1𝛼 −kq −1 C−1𝜽,N(s), Φ(s)
)

Φ(s) ∼IWmq(𝛼 −kq + (1 + m)q, (𝛼 −kq −1)C𝜽,s|N(s)).

With priors 𝜷 ∼Np(0, s2𝛽I) and 𝝉2 ∼
∏ q

i=1IG(𝜏2
i |a𝜏 , b𝜏).
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8 of 22 GRENIER et al.

2.4 Posterior inference for 𝜶 and 𝜽
To sample 𝛼 and 𝜽, we leverage the marginal likelihood obtained for the marginal model. By following the same deriva-
tion, the marginal likelihood for w(s) can be used in the Metropolis step. Therefore, by removing the random effects, the
likelihood involving 𝛼 and 𝜃 is reduced to

m(w(s)|wN(s), 𝜽, 𝛼) ∝Γ
( 𝛼−k+m+2

2

)

Γ
( 𝛼−k+m+1

2

)
|V𝜽,{ si,N(si)} |

𝛼−k+m+1
2

|(V𝜽 + S){si,N(si)} |
𝛼−k+m+2

2

|(V𝜽 + S)N(si)|
𝛼−k+m+1

2

|V𝜽,N(si)|
𝛼−k+m

2

,

where V𝜽 = (𝛼 −k −1)C𝜽 and S =ww′.
It is worth noting that sampling 𝛼 and 𝜽 can be subject to slow mixing and result in a significant increase in compu-

tation time. A possible strategy to accelerate the inference is to sample 𝛼 and 𝜽 in only a fraction of the total number of
iterations. Taking this strategy to the extreme, this parameters can be held fixed at the point estimates obtained from the
marginal approach for the duration of the algorithm. The computational complexity of one iteration is identical to the
marginal approach, scaling in cubic terms with respect to the number of neighbors m and the number of variables q.

2.4.1 Misalignment of observations

In many practical problems involving multivariate observations we have to deal with incomplete or missing values at
some locations. An extreme case example is given in Section 4, where the observations from two different satellites are
slightly misaligned, implying that at most locations only one of the two components is observed. Missing observations
can readily be handled within the model, as it relies on a valid cross covariance structure. Thus, proximity of observations
from any component can be used for prediction of any other component. To achieve this is it is important to make sure
that a number of observations from all components are included in every neighborhood.

Our approach consists of introducing an ordering of the components of y(s). Let J(si) be the set of indexes correspond-
ing to components that are observed at location si. Let qi indicate the number of elements in J(si). We define neighbors as
we did previously based on the m closest locations for each variate. We denote the corresponding set for the jth component
as Nj(si). Thus,

p̃(y ) =
k∏

i=1

∏

j∈J(si)

p(yj(si)|yNj(si)).

Notice that the m neighbors from each q-variate need not come from the same set of m locations. Figure 2 illustrates
how the neighborhoods are created using a small example. Assuming that we have five observed locations with two
components shown in orange and purple. The ordering is from left to right and the components are ordered sequentially.
Therefore, to create a neighborhood of size 6 for the second component of location s 4, which is denoted in black in the
right plot of Figure 2, we would select the three closest previous observations from components 1 and 2 separately. We
denote these in red and together, they form the neighborhood of the observation. It is important to highlight that the
neighborhood does include the first component of the observed location.

3 SIMULATION STUDY

We present results of a simulation study in order to explore the performance of the marginal and the hierarchical version
of the proposed NN-RCM model. We obtain an assessment of the model fit by splitting the sample into a training set and
a validation set, and computing four different scores calculated for each component of the field.

The predictive mean squared error (PMSE) is defined as

PMSE = 1
v

v∑

i=1
(yj(si) −ŷj(si))2,
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GRENIER et al. 9 of 22

F I G U R E 2 Creation of a bivariate neighborhood using the same number of neighbors from each component. (a) Observations.
(b) Neighborhood for y2(s4).

where ŷj(si) corresponds to a sample of the predictive posterior distribution at the validation set location s i, i = 1, … ,v,
for the jth component. The continuous rank probability score (CRPS) (Gneiting & Raftery, 2007) is defined as

CRPS(s) =1
B

B∑

i=1
|ŷ(i)j (s) −yj(s)| −

1
2B2

B∑

i=1

B∑

l=1
|ŷ(i)l (s) −ŷ(l)j (s)|,

where ŷ(i)j (s) and ŷ(l)j (s) i, l = 1, … ,B are samples from the posterior predictive for the jth component at location s. The
CRPS is computed for all the locations in the validation set and then averaged. The posterior posterior predictive loss
criterion (PPLC) (Gelfand & Ghosh, 1998) is defined as

Dp =
v∑

i=1
var(ŷj(si)) +

p
p + 1

v∑

i=1
(yj(si) −E(ŷj(si)))2.

Finally, we consider the 95% predicted interval coverage (Coverage), defined as.

Coverage = 1
v

v∑

i=1
1{yj(si)≥y(0.025v)

j (si)}
1{yj(si)≤y(0.975v)

j (si)}
,

where the boundaries of the interval are given by the 2.5% and 97.5% quantiles of the predictive sample at location s j for
the jth component.

3.1 Univariate simulation

We generate a dataset from a Gaussian process with a Matérn covariance function with smoothness parameter 𝜅 =1∕ 2.
We obtain n = 2500 observations y(si) in a 10 ×10 square using the covariance parameters 𝜽 = (𝜎2, 𝜈) = (1, 1), the partial
sill and the range. We add white noise according to a N (0, 0.52) distribution. Finally, we split the sample evenly into a
training set and a testing set.

We fitted the simulated data using the marginal model proposed in Section 2.2, as well as the hierarchical model
presented in Section 2.3. We used a neighborhood of size m = 10 and an inverse gamma prior with the partial sill 𝜎2.
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10 of 22 GRENIER et al.

F I G U R E 3 Scores comparison for the univariate simulation under the five studied models.

As suggested in Section 2.2.1 we use a gamma prior with hyperparameters based on the smallest observed distance of the
training dataset and a Pareto distribution with low information level is used on the degrees of freedom 𝛼. Using the base
R optim function, we obtain posterior estimates for 𝜃 and 𝛼. Starting the optimization at some default values where all
parameters are equal to 0.5, the process converges after 50 iterations. We compare our results to the ones obtained using
the R packages spNNGPand SpConjNNGP that implement Bayesian versions of the nearest neighbor Gaussian process
using, respectively, MCMC and cross-validation using a marginal model (Finley et al., 2017). We also compare our results
to the maximum likelihood implementation of nearest neighbor Gaussian process as available in the R package BRISC
(Saha & Datta, 2019).

Repeating the experiment 100 times, we obtain quantitative comparisons of the five models as presented in Figure 3.
Using the four proposed performance indicators as available for each method, we observe generally small differences
between the four predictive models. We should note that all methods have generally high coverage rate which can be an
indication of high uncertainty. Further specific tuning of each model for each replicate was not investigated but could
potentially lead to more reasonable coverage value.

The runtimes for the analysis performed using a Razer Blade 15 with Intel(R) Core(TM) i7-10750H Processor with
16.0 GB of RAM are detailed in Table 1. We notice that the runtime of the marginal NN-RCM model is affected by the
stopping rule of the optimization process. Using a very large convergence tolerance or limiting the number of iterations
can decrease the runtime artificially. For the results presented here we rely on the default stopping rule of the R pack-
age optim , which uses a convergence tolerance of 1e −08 and a total number of iterations of 100. Finally, we note that
the starting values can also have a small impact on the runtime of the marginal NN-RCM model. For the simulation, we
made an honest attempt at keeping the starting values within a reasonable guess, similar to the grid of values given to the
spConjNNGP function. In conclusion, the exploration of the univariate simulated dataset reveals that both implemen-
tations of NN-RCM are competitive with state of the art NNGP models, with some advantages in terms of showing less
local variability and faster runtime to obtain predictive surfaces.

A sensitivity analysis of the choice of the number of neighbors as well as the smoothness parameter of the covariance
function is presented in the supplementary material. For simulations with different range parameters, we see that the
model is not sensitive to the size of the neighborhood. Moreover, the predictive power of the model is not impacted by
the neighborhood size as well as the chosen smoothness parameter of the Matérn covariance function.
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GRENIER et al. 11 of 22

TA B L E 1 Runtime comparison for the univariate simulation under the five studied models.

Model Inference Prediction

Marginal NN-RCM 5 s 2 s

Hierarchical NN-RCM 4 s 2 s

Conjugate NNGP 50 s -

MCMC NNGP 3 s 9 s

BRISC 16 s 75 s

3.2 Bivariate simulation

The formulation of a NN-RCM requires the specification of a cross-covariance function. Genton and Kleiber (2015) gives
a thorough overview of multiple parametric models for spatial modeling. We consider three methods in detail and dis-
cuss their specific implementation. The first choice is a separable model where the cross-covariance matrix is the result
of the Kronecker product between an inter-component covariance matrix T and a spatial covariance matrix generated
from a covariance function C. That is, the covariance between the variate i and j for two locations s 1 and s2 can be writ-
ten as Cij(s1, s2) =tij ∗C(s1, s2). The second option corresponds to the linear model of coregionalization, consisting of the
combination of univariate random fields using a linear representation. Assuming the linear combinations can be repre-
sented by the nonsingular matrix A, the cross-covariance is then defined as A′C∗A, where C∗ is a block-matrix where each
block represents the covariance matrix obtained from the respective univariate covariance function C k. Any element of
the cross-covariance matrix follows the equation below,

Cij(s1, s2) =
q∑

k=1
Ck(s1, s2)aikajk.

Finally, we consider a multivariate extension of the Matérn covariance function. Gneiting et al. (2010) and Apanasovich
et al. (2012) define a flexible family of Matérn cross covariance functions that depend on correlation coefficients 𝜌ij, on
smoothness parameters𝜅ij and on range parameters𝜈ij. These are subject to constraints that present inferential challenges.
A parsimonious option is given by the case where the range parameter 𝜈 is the same for all components. This offers a
largely simplified implementation of the function that results in the cross-covariance being

Cij(s1, s2) = 𝜌ij𝜎i𝜎jM(s1, s2|(𝜅i + 𝜅j)∕ 2, 𝜈),
where M(⋅|⋅)is the univariate Matérn covariance function for two locations s 1 and s2, 𝜌i1 = 1. The only condition, that is
both sufficient and necessary, for the validity of this cross-covariance function is

|𝜌ij| ≤

(
Γ(𝜅i +

d
2 )

Γ(𝜅i)

) 1∕ 2(
Γ(𝜅j +

d
2 )

Γ(𝜅j)

) 1∕ 2
Γ(1

2 (𝜅i + 𝜅j)

Γ(1
2 (𝜅i + 𝜅j) +

d
2

,

where d is the dimension of the space. On the Euclidean plane, where d = 2, this condition reduces to

|𝜌ij| ≤
(𝜅i𝜅j)1∕ 2

1
2 (𝜅i + 𝜅j)

.

A slightly more general version, specific to the bivariate case, allows different range parameters per component, as long
as 𝜈1 + 𝜈2 ≥ 2𝜈12. Our default implementation assumes 𝜈1 + 𝜈2 = 2𝜈12.

3.2.1 Simulation 1

The first bivariate example that we discuss consists of two surfaces generated using a cross-covariance Matérn function.
We use the packageRandomFields to generate the datasets (Schlather et al., 2015, 2021). We use range and smoothness
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12 of 22 GRENIER et al.

TA B L E 2 Scores comparison between the four possible cross-covariance function choices for the bivariate marginal NN-RCM model.

Model Runtime Component PMSE CRPS PPLC Coverage

Coregionalization 49.01 s Component 1 0.0503 0.1674 115.66 1.0000

Component 2 0.6838 0.4658 418.68 0.9754

Parsimonious 6.98 s Component 1 0.0522 0.1680 116.42 1.0000

Component 2 0.6884 0.4657 415.16 0.9754

Flexible 8.05 s Component 1 0.0507 0.1673 116.77 1.0000

Component 2 0.6749 0.4617 417.37 0.9754

Separable 6.58 s Component 1 0.0643 0.1772 121.98 1.0000

Component 2 0.7063 0.4706 419.81 0.9815

Note: The scores are computed for each simulated surface individually.

parameters that vary greatly between the two surfaces. Moreover, we include a correlation of −0.5 between the two sur-
faces and spatially-independent noise to each observation. For the cross-validation, we use a 50–50 split on the 2500
simulated observations. We used four different cross-covariance functions to fit a marginal NN-RCM to the simulated data:
separable, co-regionalization, parsimonious Matérn, and flexible Matérn. As was the case for the univariate simulation,
we use the package optim to estimate the parameters of the cross-covariance functions. The size of the neighborhood
was chosen to be m = 20, where each observation has an equal number of neighbors (10) from each component. The
priors for the parameters also include an inverse gamma distribution for the partial sills and cross-covariance terms. We
use gamma distributions for the range parameters based on the smallest distance observed for each component. Finally,
we use a Pareto distribution for the degrees of freedom with scale parameter 1 which results in a prior with infinite
variance.

A quantitative comparison of the different approaches using the same scoring functions calculated for the univariate
simulation is reported in Table 2. We observe that the scores are very similar for all four approaches. We notice that the
coregionalization approach requires substantially longer time to converge than any of the other three approaches. The
runtimes reported in Table 2 only account for the optimization process to obtain the posterior estimates.

The extension to the multivariate case is more complex and worth noting that very few multivariate models are avail-
able for comparison. Such is the case of thespNNGPpackage which does not currently offer a multivariate implementation
of the NNGP model. We resort to comparing our results to the spBayes package which, given a set of knots, fits pre-
dictive Bayesian Gaussian processes for spatial regression models (Finley et al., 2015). The limitations of the knots was
apparent for the surface of the second component as the predictive process struggled to fully recover the true surface. This
is represented in the PMSE, CRPS, and PPLC scores of the replicated experiments in Figure 4. We note that the final indi-
cator, the coverage rate, is reasonable for both surfaces under both models. In terms of runtime, obtaining the posterior
inference, the spBayes package took 2.35 min compared to the bivariate NN-RCM model which took 6.98 s.

3.2.2 Simulation 2

Our second simulation consists of transforming the data previously simulated using the linear equation

y(s) =
(

1 0
1 1

)

w(s).

The objective of this second simulation is to demonstrate the ability of the hierarchical NN-RCM model to recover the spa-
tial random effects denoted by w(s). Using the same priors described for the first simulation and the posterior estimates as
starting values, we implement the hierarchical NN-RCM model with the parsimonious Matérn cross-covariance function.
For computational efficiency, we hold the degrees of freedom𝛼 and the range parameters fixed to the values obtained for
one of the simulation in Section 3.2.1. Figures 5 and 6 show the posterior mean of w1(s) and w2(s). This confirms that we
are able to recover the spatial random effects accurately given the two transformed surfaces y1(s) and y2(s).
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GRENIER et al. 13 of 22

F I G U R E 4 Scores comparison for the bivariate replicated simulations under the two studied models. (a) PMSE. (b) CRPS. (c) PPLC.
(d) Coverage.
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F I G U R E 5 Comparison of the first true surface (no noise) and predicted surfaces from the bivariate NN-RCM models. (a) True surface.
(b) Marginal NN-RCM. (c) Hierarchical NN-RCM.

4 ALBEDO APPLICATION

To illustrate the behavior of the NN-RCM model, we selected data from the GOES-East and GOES-West satellites for the
first day of the month of July 2000. The data are retrieved at a resolution of 4 km by 4 km. By restricting our analysis
to the continental United States (CONUS), the result is a dataset with approximately 665,000 observations per day. As
previously noted, the albedo product is captured by a percentage of the weight between upward and downward radiant
influxes. In order to transform the range to be applicable for the GP model, we use a logit transformation on the data,
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F I G U R E 6 Comparison of the second true surface (no noise) and predicted surfaces from the bivariate NN-RCM models. (a) True
surface. (b) Marginal predictions. (c) Hierarchical predictions.

F I G U R E 7 Subset of surface albedo observations from July 1, 2000.

after truncation of values above 0.5. Figure 7 shows a subset of size 10,000 for the July 1, 2000 data. Points colored bright
yellow are likely to correspond to areas with dense cloud covering.

As a first demonstration we apply the hierarchical bivariate spatial model developed in Section 2.3 to an area restricted
to the state of Colorado. The hierarchical bivariate model allows us to merge the observations from the two satellites using
a common surface w(s) and a differential surface d(s). Then, in light of the results obtained, we continue our analysis by
applying the univariate hierarchical NN-RCM model to the whole CONUS by stacking the information obtained from
both satellites. Finally, we conclude with an example of the application of the marginal bivariate NN-RCM model. We
again apply it to the whole CONUS area but focus on the joint learning of BHRiso and DHR30.

4.1 Bivariate surface albedo (Colorado)

The model that we seek to use to analyse the albedo observations relies on two spatial processes, a common surface and
a differential surface. Let s be any location in our space of interest, we denote the two possible observations from the
GOES-East and the GOES-West satellites as y E(s) and yW (s). We attempt to reconcile them to obtain a common surface
albedo represented by the spatial process w(s) and a discrepancy quantification from the process d (s). The model we use
is therefore denoted as

(
f (yE(s))
f (yW (s))

)

=X(s)𝜷 +( 1 0
1 1

)(
w(s)
d(s)

)

+

( 𝜖1(s)𝜖2(s)

)

,
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GRENIER et al. 15 of 22

TA B L E 3 Posterior mean of the fixed effects of the stacked albedo linear model for the state of Colorado.

Covariate Mean St. dev.

Intercept −2.4466 0.0820

Longitude −0.0017 0.0005

Latitude −0.0032 0.0015

where f is any appropriate transformation to the real line, X(s) and 𝜷 represent the covariates and fixed effects to be
included, and 𝜖i ∼N(0, 𝜏2i ), for i = 1, 2. The covariates included in X(s) are an intercept and the longitude and the latitude
of the location s. The choice of having common fixed effects 𝜷 for both sources of information reflects our assumption
that the effects of the longitude and latitude on the albedo assessments are not impacted by the satellite retrieval
process.

As an initial exploration, we focus our analysis on the state of Colorado where the satellites GOES-East and GOES-West
contain around 18,000 and 11,000 observations respectively. To capture the predictive fit of the model, we first split the
data into two equal subsets which we refer to as the training set and the testing set. We will first fit the model on the
training set only to evaluate the predictive power. Then, we will fit the model once more on the full 29,000 datapoints to
obtain high resolution posterior predictive surfaces. Note that despite the relatively small size of the data in this example,
the expected runtime of the multivariate predictive process as implemented in the SpBayes package prevented us from
performing a comparison analysis between available methods.

To fit this model as efficiently as possible, we proceed with a multi-tier approach. First, we discuss the transformation
f and the fixed effects. Second, we look at the univariate marginal nearest-neighbor Gaussian processes with random
covariance matrices (NN-RCM) models used to obtain point estimates for the covariance parameters and the degrees of
freedom. Since the bivariate marginal model does not output point estimates for linear combinations of the observations,
we use the univariate marginal NN-RCM model in a two-step process. Finally, we use the bivariate hierarchical NN-RCM
model to obtain the posterior inference on w (s) and d(s). Using these posterior samples, we obtain posterior predictive
samples for both w (s) and d(s) which help us understand the uncertainty of our predictions and the difference between
the two GOES satellites.

4.1.1 Univariate marginal model tiered approach

As we previously explained, the albedo observations are percentages and first need to be transformed. We used a logit
transformation to transform the percentages to the real line. We then use a univariate linear model on the stacked training
observations to remove the average fixed effects. Table 3 summarizes the posterior mean and standard deviation for the
fixed effects obtained using the lm function in R. From these, we can remove the predicted expected value from our
transformed observations and continue with our spatial analysis.

Denote the transformed and centered observations as y∗E(s) and y∗W (s). The bivariate marginal NN-RCM model is fitted
on two spatial processes that correspond to each source of information. Therefore, in this scenario, the point estimates
that the bivariate marginal NN-RCM model obtains do not correspond to the covariance parameters for w (s) and d(s).
Instead, we suggest using a two-step method to obtain an approximation of the those covariance parameters.

First, we fit the univariate marginal model using the observations from only the first satellite, GOES-East. To maintain
an acceptable runtime for each of the increasingly larger domain, we chose to fix the number of neighbors to 10. The
runtime for this first step was 19.75 s. Using the posterior inference obtained, we extract predictions y E(b)

W (s), for b =
1, … ,1000, for each the observed locations s of the second satellite, GOES-West. This second step took 3.08 s. Finally, we
fit a second univariate marginal NN-RCM model on the difference between the observed value and the average predicted
value for the second source:

yW (s) −
1000∑

b=1

yE(b)
W (s)
1000 ∼NN-RCM(0,C𝜃).

This last step took 9.89 s for an overall runtime of 33 s. Together, the two models supply us with approximates for𝜉2
w, 𝜉2d, 𝜎2w, 𝜎2d, 𝜈w, 𝜈d, 𝛼w, 𝛼d. We can therefore use the proxy nugget estimates and the partial sill estimates directly. For the
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16 of 22 GRENIER et al.

TA B L E 4 Point estimates for the covariance parameters obtained from the multi-tiered approach using the univariate marginal
NN-RCM models for the state of Colorado.

Parameter Notation w(s) d(s) Bivariate estimate

Degrees of freedom 𝛼w, 𝛼d, 𝛼 9028 5751 29,557

Range 𝜈w, 𝜈d, 𝜈 0.2274 0.3081 0.2678

Partial sill 𝜎2
w, 𝜎2d 0.1832 0.1054 -

Correlation 𝜌wd - - -0.0430

Nugget 𝜉2
w, 𝜉2d 0.1726 0.9117 -

Note: The last column shows the aggregated values which are used in the bivariate model.

TA B L E 5 Scores comparison for the hierarchical NN-RCM model and the univariate marginal NN-RCM model for the state of Colorado.

Satellite Model PMSE CRPS PPLC Coverage

GOES-E Bivariate NN-RCM 0.0424 0.1067 814.89 0.9826

Univariate NN-RCM 0.0365 0.1651 3567.11 1.0000

GOES-W Bivariate NN-RCM 0.0496 0.1506 1712.83 0.9967

Univariate NN-RCM 0.03401 0.1623 2205.35 1.0000

Note: The scores for the GOES-East and GOES-West testing sets are reported individually.

range parameter, since the bivariate model uses a common range, we have multiple options. We decided to use the aver-
age of the two estimates, but another choice was to use the smallest of the two ranges. Finally, for the degrees of freedom,
we can obtain the point estimate for 𝛼 by adding the two estimates. We therefore have 𝛼 =2 ∗ (𝛼w + 𝛼d), where the esti-
mate must be multiplied by 2 to account for the misalignment of the satellites. More precisely, the two satellites do not
share the same assessment grid which results in a bivariate dataset with exactly 50% missing data.

This methodology does not provide us with an estimate for the cross-covariance term of the Matérn covariance
function, 𝜌wd. A good approximation of the parameter is obtained by computing the empirical correlation between the
posterior predictive averages for the second satellite and the difference between the albedo assessments and the poste-
rior predictive means. Carrying this calculation and adjusting for the smoothness parameters, we obtain an estimate of𝜌wd = −0.0430. See Table 4 for the complete list of point estimates obtained from the univariate marginal NN-RCM models
approach.

4.1.2 Bivariate hierarchical model

The final step of our spatial inference analysis consists of fitting the bivariate hierarchical NN-RCM model to y ∗
E(s) and

y∗W (s). The first few steps have allowed us to reduce the model to the following,

(
y∗E(s)
y∗W (s)

)

=

(
1 0
1 1

)(
w(s)
d(s)

)

+

( 𝜖1(s)𝜖2(s)

)

,

where 𝜖i ∼N(0, 𝜏2i ), for i = 1, 2. Therefore, we seek to sample the spatial random effects w (s) and d(s) and the observa-
tional errors 𝜏2

i using the bivariate hierarchical NN-RCM model with the point estimates as outlined in Table 4 for the
parsimonious Matérn cross-correlation function. Overall, the posterior inference took 2.53 min to complete. Using these
posterior samples, we complete the final step of the cross-validation analysis by sampling the posterior predictive dis-
tribution of the testing set locations. With those, we can compute the four scoring values and compare them to using a
univariate NN-RCM model on the stacked dataset. Table 5 summarizes the results and shows that the bivariate model
does indeed outperform its univariate counterpart. While the PMSE is marginally smaller for the univariate model, we
reduce the predictive variability by using both sources of information.
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F I G U R E 8 Spatial random effects w(s) and albedo predictions from the bivariate hierarchical NN-RCM model for the state of
Colorado. (a) w(s). (b) Albedo predictions.

37

38

39

40

41

−108 −106 −104 −102
Longitude

La
tit

ud
e

−0.2

0.0

0.2

BHRiso

37

38

39

40

41

−108 −106 −104 −102
Longitude

La
tit

ud
e

−0.02

0.00

0.02

BHRiso

F I G U R E 9 Spatial random effects d(s) and posterior predictive mean of yE(s) −yW (s) from the bivariate hierarchical NN-RCM model
for the state of Colorado. (a) d(s). (b) yE(s) −yW (s).

4.1.3 High resolution predicted surface

Repeating the same steps but for the full state of Colorado dataset, we again obtain posterior samples for the bivariate
hierarchical NN-RCM model. Using these samples we generate posterior predictive samples for a high resolution grid.
Figure 8 shows the posterior mean for the spatial random effect w (s) and the albedo predictions on the original scale.

We are particularly interested in the spatial surface d (s) to learn about the differences between the two satellites
GOES-East and GOES-West. Figure 9 shows the posterior predictive mean for d(s) and the posterior predictive difference
between yE(s) and yW (s) on the original scale. That is, for a location s, we plot the average of the following quantity:

d∗
b(s) =f −1(wb(s) +db(s) +X(s)𝜷) −f −1(wb(s) +X(s)𝜷),

where b = 1, … ,1000.
We immediately notice that the discrepancy between the two satellites presents irregular spatial patterns that corre-

spond to the Colorado Rocky Mountains. These cannot be attributed to simple effects of longitude/latitude or the satellite
view angle. By looking at the 90% posterior predictive intervals at each location s, we note that, for over 99% of the loca-
tions, the estimated discrepancy field overlaps with 0. This indicates that any significant differences between the two
satellites are very localized. At a regional or global scale, those differences are dominated by the variability of the albedo
fields.

In the next section, taking into consideration the small global significance of the field d (s), we instead look at the
full CONUS area by stacking the information from both satellites. This will allow us to obtain a unified surface and
demonstrate the computational efficiency of the presented method.
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F I G U R E 10 Posterior predictive average over CONUS obtained from the univariate hierarchical NN-RCM model.

4.2 Univariate hierarchical model application

By stacking the albedo information from both satellites, we obtain a dataset with approximately 800,000 datapoints. Our
approach to obtain the posterior inference is to proceed in two steps. First, we will use the marginal NN-RCM model
to recover point estimates for the degrees of freedom and the spatial parameters of the model. Second, we apply the
hierarchical model to obtain the full posterior inference for the spatial random effects. The objective in using the two steps
is to reduce the overall computational burden of handling this large dataset. The total runtime for both steps was 17 min.
The optimization of the marginal likelihood took 14 min and the posterior inference for the spatial random effects took
3 min. In comparison, the spConjNNGP method ran in 15 min while the BRISC method returned a memory allocation
error. Therefore, we conclude that the proposed method is competitive in handling larger datasets efficiently.

We illustrate the inference obtained from the observations in Figure 10 which shows the posterior predictive mean
obtained from fitting the univariate hierarchical NN-RCM model.

4.3 Bivariate marginal model application

For the final application, we use the bivariate marginal model to reconcile two albedo measures: BHRiso and DHR30. In
this scenario, we are stacking the information from both the GOES-E and GOES-W satellites for each variable. Therefore,
we have no misaligned observations as both albedo assessments are available for the same set of locations for each source
of data. In total, we have about 800,000 locations, each with the BHRiso and DHR30 observations. The objective for this
case is to obtain the posterior predictive surfaces for each component while leveraging the additional knowledge of jointly
modeling both sources of highly correlated information.

Proceeding similarly as what was done in the example for the state of Colorado, we initially fit and subtract linear
fixed effects based on longitude and latitude. Next, the bivariate marginal model was implemented for the parsimonious
Matérn cross-covariance function using the available optimization routine in R. Starting with default values where each
parameter is 0.5, the runtime to obtain the point estimates was 1.65 h. Table 6 summarizes the point estimates obtained
from the bivariate marginal optimization routine.

After obtaining the inference for the cross-covariance function, we are able to sample the posterior predictive distri-
bution for both components. The runtime for the predictive step was around 1.5 h. It is worth noting that a non-negligible
portion of the runtime is spent building the neighborhoods for the high resolution predictive grid. Figures 11 and 12
show the posterior predictive means of each component after fitting the bivariate marginal model. As noted by the high
correlation between the components, on a global scale, the two albedo assessments are very similar.

The two quantities we have studied, BHRiso and DHR30, are integral to defining how light is reflected by an opaque
surface. BHRiso (white sky albedo) is the reflectance of the surface under diffuse illumination while DHR30 (black sky
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GRENIER et al. 19 of 22

TA B L E 6 Point estimates for the covariance parameters obtained from bivariate marginal NN-RCM models.

Parameter Notation w(s) d(s) Bivariate estimate

Degrees of freedom 𝛼 1,661,086

Common range 𝜈 1.2000

Partial sill 𝜎2
w, 𝜎2d 0.2417 0.2256 -

Correlation 𝜌wd - - 0.9865

Nugget 𝜉2
w, 𝜉2d 0.0456 0.0280 -

25

30

35

40

45

50

−120 −100 −80
Longitude

La
tit

ud
e

0.1

0.2

0.3

0.4

0.5

BHRiso

F I G U R E 11 Predictions of BHRiso for CONUS from bivariate marginal NN-RCM model.
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F I G U R E 12 Predictions of DHR30 for CONUS from bivariate marginal NN-RCM model.

albedo) is the reflectance of the surface under direct illumination at a 30 ◦ angle. However, both of these quantities are
merely theoretical, they do not quantify the true reflection of the land surface. The true “blue sky albedo,” 𝛼, may be
calculated by a simple linear relationship of these terms as 𝛼 =(1 − D) ⋅DHR30 + D ⋅BHRiso where the coefficient
D is the proportion of diffuse illumination. D may be estimated on a pixel by pixel basis utilizing a radiative transfer
simulation model driven by the bidirectional reflectance distribution function defined by BHRiso and DHR30 as well as
covariates such as solar angles determined by pixel time and location and aerosol load characteristics. The output from
the bivariate marginal model illustrated in this section will contribute to the accuracy of the downstream blue sky albedo
assessment.
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20 of 22 GRENIER et al.

5 CONCLUSIONS AND FUTURE WORK

We have demonstrated the pertinence of a non-isotropic nearest-neighbor hierarchical spatial model and discussed its
implementation for both univariate and multivariate observations. We presented simulated examples and real life cases
to illustrate how the model was implemented.

Our main application of the NN-RCM considered surface albedo observations from NOAA’s GOES East and West. The
importance of surface albedo stems from its potential to display the rate of climate change. The objective of the study was
to quantify the discrepancy between GOES-East and GOES-West and obtain a unified albedo field for the whole CONUS.
While the two satellites seem similar on a global level, for smaller areas, subtle differences are visible. We used the bivariate
hierarchical NN-RCM model to quantify such differences, using a common albedo surface w(s) and a discrepancy surface
denoted d(s). We found that d(s) is significant only for very localized areas. The conclusion is that the global variability of
the albedo observations is too large to effectively quantify the discrepancy between the two satellites.

The next stage of our analysis will be to expand the model to the entirety of the data available from both satellites.
This includes most of the Americas totaling over two millions observations each day. It is also of interest to understand
if the time of year has an impact on the discrepancy between the satellites. While we focused on the month of July for
CONUS, it will be interesting to see how surface albedo is impacted in the winter months.

The implementation of the bivariate model generates an important discussion on the handling of missing data and
neighborhoods in multivariate nearest-neighbor methods. The misalignment of multivariate observations is a key issue
for many datasets that had not yet been addressed. Similarly, the question of neighborhoods in multivariate models can be
answered with multiple different options. Our implementation for the bivariate model concatenates two neighborhoods
each based on one source of data.

Further advancement for the NN-RCM model include improving the distributed implementations. While the current
development relies on parallel methods, divide-and-conquer algorithms present stronger opportunities for computa-
tional efficiency compared the one currently implemented. Distributed methods can not only reduce the computing time
linearly, but also avoid redundancies when it comes to recurring data collection.
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