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1. Introduction
1.1. Hamiltonian Floer theory

In his study of the Arnol’d conjecture [15], Floer associated a cohomology group
to each non-degenerate Hamiltonian H: M x S' — R on a closed symplectic mani-
fold, based on the gradient flow of the action functional on the free loop space of M.
Such gradient flow lines correspond to cylinders satisfying a deformation of the holomor-
phic curve equation. The fact that one can study analogous equations on more general
Riemann surfaces was first observed by Donaldson, leading to the construction of an
associative product on Floer cohomology associated to pairs of pants, which was later
shown by Piunikhin—Salamon—Schwartz [39] to yield a ring that is isomorphic to the
quantum cohomology ring for those manifolds satisfying the property that the class of
the symplectic form is a positive multiple of the first Chern class. Separately, and in
the technically different context of exact symplectic manifolds with contact boundary,
Viterbo [54] introduced a circle action in Floer theory, which takes the form of a degree
—1 operator

A: SH*(M) — SH* (M), (1.1)

on a variant of Hamiltonian Floer cohomology, called symplectic cohomology, which goes
back to Hofer and Floer’s work [14] on the symplectic topology of open subsets of C™.

In this paper, we consider a version of Floer cohomology [46,24,52,53], which we call
symplectic cohomology with prescribed support, in a change from the previous terminol-
ogy, which vastly generalises both of these frameworks, but we shall temporarily suppress
this point.

The pair of pants product makes sense in the context of symplectic cohomology as
well and, together with the operator A introduced by Viterbo, is known to satisfy the

relation
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A(zyz) = Alzy)z + (-1)"lzA(yz) + (—1) DA (2y)
— Ax)yz — (=D)"zA(y)z — (1) WlayAz), (1.2)

which implies that symplectic cohomology forms a Batalin- Vilkovisky algebra; this is a
folklore result, whose proof appears, for example, in [2, §2.5].

The geometry giving rise to Equation (1.2) can be expressed in terms of the homology
of the moduli space fMOA of framed stable genus O curves, where the notion of framing
corresponds to a choice of tangent ray at each marked point; the left hand side corre-
sponds to the class in the first homology of fﬂgﬂ associated to rotating the tangent
ray at a specific marked point which is distinguished as output, and the right hand side
expresses this class as a sum of the classes associated to rotating each input and those
associated to breaking the domain into two components (each with three marked points)
glued along the node, and rotating the tangent ray on one side of the node.

This geometric picture suggests that the correct chain-level structure that gives rise to
the Batalin-Vilkovisky structure on symplectic cohomology is that of an algebra over the
operad formed by the moduli spaces fﬂ]sk 41 (the case of k =1 is exceptional, and we
set it to be equal to the circle S'). The operad structure arises from the concatenation of
Riemann surfaces with marked points to nodal Riemann surfaces, which induces a map
of chain complexes

—R —R —R —R
CeafMp gy 41) @ @ Cu(fMp g 1) ® Cu( fMg 41) = C*(fMo,z kit1)s (1.3)
whereas the algebra structure on symplectic cochains is a collection of operations

SC* (M) @ -+ ® SC* (M) @C.(f My y41) — SC*(M), (1.4)
k

— R —R

for some model C,(f M ;1) of the singular chains on fM ;. , and some chain complex
SC*(M) whose homology is symplectic cohomology, satisfying the following properties
(we suggest [33] as a reference for operads and algebras over operads):

(1) Invariance under the action of the symmetric group on k-letters, acting by permuting

the first £ marked point of elements of fﬂ](likﬂ, and the copies of SC*(M) in the
domain of (1.4).

(2) Compatibility with the operations associated to concatenation of the moduli spaces
of framed curves (discussed in Appendix A.2), in the sense that the map

"L —R —R —R
SCH(M)®Xim ki @ Ci(fMp g 41) @ @ Cu(f Mo g, 11) @ Cu(f Mg 1 11)
l (1.5)
n _R
SC*(M)® Y ki ® C*(fMOxZ?:1 ki+1)
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obtained either by first separately applying the maps in Equation (1.4) for k = k;,
then applying it for k = n, agrees with the map obtained by first applying Equation
(1.3), followed by Equation (1.4) for the sum k = > k;.

The main result of the paper establishes the existence of such a structure, which we
moreover show to satisfy the following fundamental properties:

o Independence of auxiliary choices.
o Strict functoriality under restriction maps.
e Compatibility with quantitative structures.

We shall give a precise formulation of our main result in Theorem 1.4 below, which we
precede by a necessary overview of the notion of support for symplectic cohomology.
Afterwards, we shall discuss our strategy for the proof of these results, as well as the
relationship between the operad formed by the moduli spaces fﬂ?i x+1, and the framed
F5 operad mentioned in the title, which is more extensively studied in the literature.

Remark 1.1. It will be apparent from our methods that one can construct a model for
symplectic cochains, satisfying the above list of properties, and carrying an action of
the operad formed by the chains of the union of the moduli spaces of framed Riemann
surfaces fﬂﬂik 41 of arbitrary genus (more precisely, one has to shift the chains by a
function of the genus to account for the degree of the corresponding operations). We
leave the details of such an extension to the reader largely because it is orthogonal
to the interesting operations in higher genus, which require one to consider gluing at
multiple points (the operadic structure only allows operations with one output, which
corresponds to gluing at one point). We expect that such an extension would require a
more significant use of methods of homotopical algebra than the present paper.

Remark 1.2. There is a natural analogy between the chain structures we are constructing,
and those which appear in Lagrangian Floer theory, leading to the question of why one
cannot construct the operations in Equation (1.4) by a procedure which follows the exist-
ing steps in that context. To explain the essential difficulty, recall that, notwithstanding
the technicalities in resolving questions of anomaly and obstruction which are required
to define the Floer cohomology groups of a Lagrangian L, it is by now well-established
[17,45] that one obtains an A, structure on the Lagrangian Floer chain complex, which
can be written as a consistent collection of operations

CF* (L) ® - ® CF*(L) ® C(Ro k1) — CF*(L), (1.6)

where ﬁ07k+1 is the moduli space of stable discs with k£ + 1 marked points.
The fundamental difference between Equations (1.4) and (1.6) is that the moduli
spaces Ro ,+1 have a particularly simple topology: they can be realised as polytopes (the
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Stasheff associahedra), and the operadic structure maps which control the consistency of
the operations are given by inclusions of products of these polytopes as boundary faces.
This leads to the algebraic structure being controlled by relatively simple combinatorics:
there is a collection of operation indexed by the natural numbers, one for each moduli
space R i1, satisfying the familiar A, relation, which is the way that Equation (1.6)
is implemented in the literature, with the model for C,(Rq+1) given by the cellular
chains of the polytope structure.

Because the geometry of the moduli spaces fﬂ]s k41 is much more complicated such
an approach is not adequate for Equation (1.6). This is already apparent for the case
of operations with only one input, which we recall are given by a copy of S!, with
composition map S! x S' — S given by the usual multiplication. Evidently, this map is
not given by a cellular inclusion. In fact, in the standard model for symplectic cochains,
the chain level structure corresponding to the circle action is given [44] by a sequence of
operations A’, indexed by the natural numbers, satisfying dA™ = >~ ATA"¢,

1.2. Support conditions for symplectic cohomology

A standard construction associates to each compact subset K of a space M the in-
dicator (characteristic) function Hy which is 0 on K and is infinite away from it. This
construction is functorial with respect to inclusions in the sense that, whenever K is a
subset of K’, we have a pointwise inequality

Hy < Hyg. (1.7)

When M is a symplectic manifold (which we now assume to be closed for simplic-
ity), symplectic cohomology with support K can be thought of as a lift of the above
construction to cohomology groups: since Floer cohomology is not defined for discontin-
uous functions (nor those which take infinite value), one considers instead a sequence
of (non-degenerate) Hamiltonians H* converging to Hg, to which one associates the
Floer cochain groups CF*(H?,J%) for an auxiliary sequence of almost complex struc-
tures J°. It is crucial at this stage to be careful with the choice of coefficients: a modern
interpretation of Floer’s invariance result [15] is that the isomorphism type of the Floer
cohomology groups does not depend on the choice of Hamiltonian when the coefficient
ring is the Novikov field," whose elements are series Y .o a; T with a; lying in a cho-
sen ground ring k, and \; real numbers with the property that lim; A\; = +oc0. In order
to retain dynamical information about the functions H?, one works instead with the
smaller Novikov ring whose elements consists of series for which the exponents \; are
non-negative. The category of modules inherits a natural completion functor associated

1 Because we allow the ground ring k to be an arbitrary ring, rather than a field, using the term Novikov
field in this context is an abuse of terminology. Similarly, the Novikov ring is not strictly speaking a valuation
ring, even though we shall use the term.
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to the T-adic filtration, which is defined as the inverse limit of the tensor product with
quotients of the Novikov ring by powers of T', which is essential to the following:

Definition 1.3. The symplectic cohomology SH7,;(K) with support a compact subset K of
a closed symplectic manifold is the homology of the completion of the (homotopy) direct
limit of the chain Floer complexes of a monotone sequence of Hamiltonians converging
to the indicator functor Hg:

SC%,(K) = hocolim CF* (Hi, Ji). (1.8)

In the above definition, the fact that we assume the sequence { H'} of Hamiltonians to
be monotone is essential in realizing the maps in the direct limit as maps of Floer com-
plexes over the Novikov ring, which is what allows us to define the symplectic cochains
supported on K by completion. Geometrically, this is a consequence of the fact that
monotone continuation maps always have non-negative (topological) energy, which is a
property that fails for general continuation maps.

As we shall discuss in Section 1.5 below, the specific model for the homotopy colimit
used in [52] is the mapping telescope, which is a complete chain complex receiving a map
from each Floer group CF*(H?,J%) in the chosen sequence, together with a homotopy
in each triangle

CF*(H',J?) —— CF*(H*+1, Jitl)

\ l (1.9)
SO (K

where the horizontal map is the continuation map. In fact the underlying homotopy type
of the mapping telescope can be characterised by a universal property associated to this
data. This more abstract point of view will be useful to understand our construction.

Symplectic cohomology supported on K is independent of the choice of approximat-
ing Hamiltonians, recovers ordinary homology when M = K, and is functorial under
inclusions in the sense that there is a restriction map

SHi, (K') — SH, (K) (1.10)

whenever K is a subset of K’, which is strictly compatible for triple inclusions. In ad-
dition, it satisfies a remarkable Mayer-Vietoris property, for a class of coverings which
include those that are arise from a covering of the base of an coisotropic fibration. This
property is crucial for recent applications both to symplectic topology [10] and to mirror
symmetry [26]. The last reference includes an extension of the definition of symplec-
tic cohomology with support given by compact subsets to the case where the ambient
symplectic manifold M is geometrically bounded, incorporating all the classes of open
symplectic manifolds for which Floer theory is expected to be defined.
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1.8. Statement of results
We now state the main result of this paper, which is proved in Section 4:

Theorem 1.4. Associated to any compact subset K of a closed symplectic manifold is

a complete torsion free chain complex SC’I’L SR (K) over the Novikov ring, called the
) 0

operadic symplectic cochains with support K, which is equipped with the following struc-

tures:

(1) An action of the operad whose kth chain complez, for 2 < k, is given by the (sym-
metric normalised) cubical chains on fﬂ§k+1, and whose first chain complex is the
cubical chains of the circle.

(2) A restriction map for each inclusion K C K’ of compact subsets

SC*

A (K') — SC*

e (), (1.11)

which is compatible with the operadic action, so that the composition of the restriction
maps associated to a pair of inclusions K C K' C K" strictly agrees with the
restriction map for K C K".

(3) An action of the symplectomorphism group of M, i.e. an isomorphism

SCL,fﬂE} (K) = SC;/I,fﬂPf (Y(K)) (1.12)
for each symplectomorphism v of M, which is compatible with composition, preserves
the operadic action, and commutes with restriction maps.

Remark 1.5. In Appendix C, we extend the above result (as well as the other main
results of the paper), to the setting of geometrically bounded manifolds, which includes
in particular the class of Liouville manifolds on which most of the literature on symplectic
cohomology is formulated. We opt to segregate the discussion of geometrically bounded
manifolds because it adds an additional level of technical complexity to a paper that is
already quite technical.

Remark 1.6. Theorem 1.4 may appear suspiciously strong to experts, who might expect
to see the compatibility property in its statement to involve higher homotopies, rather
than being strict as asserted. These homotopies arise from the need to interpolate be-
tween various choices of data for defining the Floer complexes, as well as operations on
them. An essential point of our approach is that all possible choices of Floer-theoretic
data are incorporated in the definition of the operadic symplectic cochains with support
a compact set K; in this way, the restriction maps associated to inclusions are straight-
forward to define, because they correspond to the fact that the space of data that arise
in the definition of the operadic symplectic cochains for a compact set in M is a strict
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subset of the data that arise in the definition for a subset thereof. Similarly, the action
of the symplectomorphism group arises directly from its action on the space of data
defining the operadic symplectic cochains. We shall presently give a more technically
precise description of these ideas in Sections 1.5 and 1.6 below.

In the statement of the theorem, we are implicitly working with a Novikov ring whose
coefficients are a field of characteristic 0, e.g. the rational numbers k = Q, and referring
to Z/2-graded chain complexes. The proof of the above result thus relies on techniques
of virtual counts, specifically on the results of [3]. The present paper separately contains
a complete proof that is independent of any theory of virtual counts, for Floer complexes
with coefficient ring the Novikov ring over the integers Z, under the assumption that the
ambient symplectic manifold M is exact, Calabi-Yau, or monotone. Restricting to the
subcomplex formed by contractible orbits one can work more generally on symplectic
manifolds that are spherically Calabi-Yau or monotone, i.e. for which the first Chern class
and symplectic class, evaluated on w9 (M), are non-negatively proportional to each. Under
the standard extra assumptions our results give chain complexes with finer gradings as
well.

Remark 1.7. In the literature on Hamiltonian Floer theory [37, Definition 6.4.1], the
ad hoc notion of semi-positivity is introduced as a condition under which the Floer
complex is defined integrally, for a generic choice of almost complex structure. However,
in this context, the standard methods do not associate higher homotopies to (generic)
families of paths of almost complex structures. One is thus led to choose a generic almost
complex structure, and to change the definition of the chain complex SCLJM?]{ (K) so
that all pseudoholomorphic curves are defined with respect to this fixed almost complex
structure, and the Hamiltonian data are chosen generically to achieve transversality. In
this way, the first two parts of Theorem 1.4 can be lifted to the integral Novikov ring in
the semi-positive case. We do not know, however, how to prove the last part, regarding
invariance under the action of the symplectomorphism group, using such methods.

We expect that Fukaya and Ono’s proposal [16] for extracting integral counts from
moduli spaces of pseudo-holomorphic curves whose locus of non-trivial isotropy virtually
has both strictly positive codimension and a stable complex normal bundle, will lead to a
construction of the desired integral lift in general. A version of this proposal was realised
by Bai and Xu [8] and Rezchikov [40] in a context which is sufficient to conclude the
well-definedness of the Floer complexes, but which is not currently sufficient to define
operations on it.

As stated, Theorem 1.4 makes no reference to Floer theory. In Section 1.7 below, we
will explain the way in which all the structures are determined, in a universal way, from
Floer-theoretic operations, but for concreteness, it is useful to separate the following
result, regarding the chain complex underlying the operadic symplectic cochains:
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Theorem 1.8. For each Hamiltonian H which is negative on K, there is a map

CF*(H,J) = SC}, o (K), (1.13)

and for each monotone continuation map, there is a homotopy in the diagram

CF*(H(),J() *>CF Hl,Jl)

\ l (1.14)

SC* & (K).
M,fME

Note that the conclusions of Theorems 1.4 and 1.8 are satisfied by many examples
of rather trivial nature which do not record any deep information about symplectic
topology. For example, by the constant assignment of a fixed algebra over the chains of
the moduli spaces fﬂ? x+1 to each compact subset of K, with a trivial morphism from
each Hamiltonian Floer group. A more interesting example arises from the fact that one
can equip the ordinary cochains of each topological space with the structure of an algebra
over the F, operad, functorially with respect to all maps. Via the homotopically unique
map from the operad fMgRi k1 to the E operad (induced by the fact that the latter is
terminal), this gives rise to another example satisfying the conclusions of Theorems 1.4
and 1.8.

The following result, proved in Section 5, provides a comparison with the known
constructions (and computations) of symplectic cohomology with support:

Theorem 1.9. The map from Hamiltonian Floer cochains to the operadic symplectic
cochains with support K induces a quasi-isomorphism
* *
SCy(K) = SCM R r (K) (1.15)
from the homotopy colimit model of the symplectic cochains with support K. This map
s a homotopy equivalence whenever the base ring k is a field, and it is compatible with

restrictions maps, in the semse that the following diagram commutes up to prescribed
homotopy:

SCH(K') ——— SC/(K)

l J (1.16)

SCx r(K') —— SC* o (K).
M, fME M, f M
Remark 1.10. We expect that the stronger conclusion that Equation (1.15) is a homotopy
equivalence holds in general, but the proof that we provide relies on abstract properties
of the category of chain complexes over rings of finite global dimension, which do not
seem to apply to the integral Novikov ring.
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1.4. Framed E5 structures

The space of operations fﬂ? k41 that arises in Theorem 1.4 is known to be homotopy
equivalent to the space of (disjoint) embeddings of k discs in the unit disc D?: the key
point is that, for each genus 0 curve with one marked point (the output) which is equipped
with a choice of tangent ray, there is a contractible choice of identifications of the domain
with CPP!, mapping the marked point to oo, the tangent ray to the positive real axis,
and all other marked points to the complement of the unit disc. In order to extract the
desired homotopy equivalence from this construction, one uses the further contractible
choice of a sufficiently small positive real number for each other marked point (input),
which extends the remaining choices of tangent rays to disjoint embedded discs.

The fact that this construction is compatible with the stable compactification, as well
as with the operadic structure maps is encoded by the following result, due to Kimura,
Stasheff, and Voronov [32, Section 3.4 and 3.7], who use the notation .4 for fﬂg{ and
Z for the framed E5 operad:

Proposition 1.11. There is an operad &, which is equipped with operad maps
Ef" Mq
5 — P = M, (1.17)
that are level-wise homotopy equivalences. O

This result immediately implies that the homology of the framed F5 operad acts on
symplectic cohomology with support any compact set, and that this action is compati-
ble both with restriction maps and with the action of symplectomorphism groups. The
homology of this operad was shown by Getzler [20] to be generated by two operations,
an associative and commutative product and a degree 1-operator squaring to 0, subject
only to the relation encoded by Equation (1.2). We conclude:

Corollary 1.12. The symplectic cohomology group SHy (K) is equipped a natural BV -
algebra structure, which is preserved by restriction maps, and by the isomorphism
SH;(K)= SH;,(¢K) associated to a symplectomorphism 1 of M. O

Restricting to the product, this construction recovers the product constructed in [51].

In order to formulate an explicit chain level structure on the telescope model of the
symplectic cochains, we restrict to characteristic 0, in which case there is a replacement
of the framed Es operad, called the BV, operad, consisting of explicit operations [19,
Theorem 20] for which a homotopy transfer result is known [19, Theorem 33] (the cited
result is formulated for a characteristic 0 field but an inspection of the proof shows that
it suffices to work over a commutative Q-algebra). This allows us to conclude:
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Corollary 1.13. Assuming that the ground ring k contains the rational numbers, the tele-
scope model SC%;(K) of symplectic cohomology with support K can be equipped with the
structure of a BV, algebra, lifting the BV structure on homology. O

The list of operations on BV, algebras include those of an L., algebra, and we
expect that these operations will recover those introduced by Siegel [47], without referring
specifically to symplectic cohomology with support, and which he showed define new
symplectic capacities.

Remark 1.14. The explicit description of BV, as a cofibrant replacement of the framed
E5 operad in characteristic 0 strongly relies on the formality of the latter, i.e. on the
existence of a homotopy equivalence between the rational homology of the framed Fo
operad (which is the BV operad by Getzler’s result) and its rational chains. This was
established in [25,55], building on Tamarkin’s result establishing the formality of the
ordinary Es operad [50]. Such a result is known to fail integrally as proved by Salvatore
for the non-symmetric part of the operations in characteristic 2 [43], and by Cirici and
Horel for the symmetric part in general [9, Remark 6.9].

1.5. A strictly functorial cochain model for SH}3;(K)

As a final preparatory step to explaining the proof of our main results, we consider a
toy problem, namely the construction of a model SC7, L(K) for the symplectic cochains
with support K, which is strictly functorial under inclusions, i.e. so that the restriction
maps for a triple of inclusions K C K’ C K" give rise to a commutative diagram

SCi(K") —— SO (K7)

\ l (1.18)

SChy . (K).

We start by noting that the choices made in the definition of the existing model for
SH;,(K) are (i) a sequence H* of Hamiltonians converging to the indicator function of
K, (ii) almost complex structures J* used to define the Floer complexes CF*(H?, J%),
and (iii) continuation equations defining chain maps

CF*(H',J") — CF*(H""', 1. (1.19)

From these data, the complex SC3%,(K) is then defined in [52] as the completion of the
(total complex) given by the mapping telescope

CF*(H°,.J°) CF*(H', J')

T / T / (1.20)

CF*(H°, .J°) “(HY,JY)
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following the method originating in [6].

The advantage of the mapping telescope definition is that it is essentially as small as
possible, so that the construction of explicit algebraic operations on it requires the least
effort. But the construction of restriction maps require making an interpolation between
the choices made for K and K’, and there is no reason to expect that the interpolations
for a triple of inclusions agree.

‘We resolve this as follows: first, we interpret the construction of the sequence of Floer
complexes CF*(H®, J*) and of the continuation maps between them as a functor

CF: N = Ch (1.21)

from the natural numbers (thought of as a category with an arrow from 4 to j if and only
if # < j) to the category of chain complexes over the Novikov ring. Next, we sacrifice the
small size of the mapping telescope for the larger model of the homotopy colimit given
by the bar construction:

hocolim CF*(H*, J*) = B(N, CF). (1.22)

Finally, we replace the domain category N by the category Fk (1) of all pairs (H,J)
for which Floer theory is defined, so that the Hamiltonian H is negative on K, and
morphisms given by monotone continuation maps between them. It is important in this
last stage to remember that there is a natural notion of a family of continuation maps,
and we thus have to consider Fg (1) as an enriched category, which turns out to have the
particularly simple feature that the space of morphisms between objects are either empty
or contractible. We make the technical choice of considering only families of continuation
maps parametrised by cubes, thus modelling homotopy theory using (symmetric) cubical
sets as discussed in Appendix B.1. There are alternative methods, such as grappling with
the definition of a topology on the (infinite) dimensional space of continuation maps
(allowing for breaking), or using simplicial sets, or even going all the way to formulate
our construction using quasi-categories.

The essential point at this stage is that the functor of Floer cochains extends to an
enriched functor

CF*: C,Fk., — Ch. (1.23)

This means that we assign to each pair (H, J) its associated Floer complex, and to each
n-cube of continuation maps a degree —n map of Floer cochains, which is compatible
with restriction to boundary strata (and vanishes for degenerate cubes). The homotopy
colimit of the corresponding functor is the dashed arrow in the diagram of differential
graded categories
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CoFir £ Ch.
A

lﬁ L (1.24)

s
where the vertical map is the projection map to a point, and we have a prescribed
(homotopy) natural transformation between CF* and the composition of this arrow
with the projection. This natural transformation is the structure map appearing in the
formulation of the universal property of the (homotopy) colimit, namely the existence
of a map

CF*(H, J) — hocolim CF* (1.25)
«F K, x
for each object (H, J) of Fi . that commutes up to prescribed homotopy with the action
of morphisms in the category C.Fx ..
We find it convenient to use a specific model of the homotopy colimit given by the
bar construction (see [30]), and we denote its completion by:

SCip 1 (K) = B(CF", Fie.(1)). (1.26)

With this definition at hand, establishing the existence of a commutative Diagram
(1.18) is straightforward: an inclusion K C K’ induces an inclusion of categories

Frrx(1) = Fr (1), (1.27)

because the only condition, that is not a global condition independent of K, which is
imposed on the objects and morphisms of Fx (1) is the requirement that the Hamil-
tonian H be non-negative on K, and this condition is inherited under inclusions. Given
a nested triple K € K’ C K", the construction yields a nested inclusion of categories
Frr (1) C Frr +(1) C Fi (1), so that the functoriality of the bar construction yields
the desired commutative triangle.

The last thing to check is that this construction defines a complex which is homotopy
equivalent to the usual symplectic cochains with support K. The essential point in this
case is that the elements of the sequence { H'}2°, eventually dominate any Hamiltonian
H on M which is strictly negative on K, hence that the space of morphisms from
any object of Fg (1) to the chosen sequence eventually become contractible (this is
Proposition 2.20). A standard comparison result for homotopy colimits (cf. Section 5.7)
then implies:

Proposition 1.15. The map
SCy(K) — SCy . (K) (1.28)

induced by the inclusion of the sequence {(H', J*)}3°, as a subcategory of Fi (1) is a
quasi-isomorphism. Assuming that k is a field, it is also a homotopy equivalence. O
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1.6. Strategy for the proof of Theorem 1.}

We now explain how to adapt the strategy outlined in the previous section in order
to obtain a model which is equipped with the structure of an algebra over the operad of
chains on fﬂ?k +1- As indicated earlier, this means that our definition should include
all possible choices not just for defining the Floer complexes, but also for constructing
multiplicative operations on it.

A convenient formalism for recording all this data is that of a multicategory, which si-
multaneously extends the notions of category and operad: as in a category one is given a
collection of objects, but in addition to morphisms between such objects, multimorphisms
which have multiple inputs and a single output are included. Such multimorphisms corre-
spond to the higher spaces of an operad, and indeed an operad is exactly a multicategory
with one object.

Multicategories arise naturally in Floer theory because the product map on Floer
cochains

CF*(H',J') ® CF*(H?,J?) — CF*(H°, J%) (1.29)

is defined by considering equations of Floer type on a pair of pants with 3 marked points,
whose restriction to neighbourhoods of the three marked points respectively agree, under
a local biholomorphism of a half-cylinder with the pair of pants, with the Floer equations
associated to the pair (H?, J*). There is no canonical choice for such a map, and our goal
therefore is to identify a space F((H',J'), (H?,J?); (H",J°)) (associated to K = 0,
which is the universal case for our construction) of Floer data with two inputs and one
output, so that we have a map

CF*(H',J") @ CF*(H?,J*) ® C,.F((H",J", (H?, J?);(H°,J%) — CF*(H°, J°),
(1.30)

as well as composition maps associated to changing the inputs and outputs. More gener-
ally, we need to define spaces F((H, J1),---, (H*, J*); (H?, J°)) for each input sequence
of objects of F, and (multi)-composition maps realising the structure of a multicategory,
which we formally recall in Appendix B.2.

The essential difficulty in this task is to ensure that the notion of Floer data that we
use (i) has a well-defined notion of composition, (ii) induces maps of Floer complexes
over the Novikov ring, and (iii) satisfies the property that, for each input sequence
((Hl, JY, e (HY, Jk)) and output data (HY, J°), the projection map from the space
of multimorphisms to the moduli space fﬂlfik. 41 is a homotopy equivalence whenever
the function H? is sufficiently close to the indicator function of K.

Remark 1.16. The importance of the third condition above may not be immediately
apparent to the reader, but it is essential in proving that our construction yields a model
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for the symplectic cochains. The following analogy may be helpful: consider fibre bundles
X1 — B and Xy — B with fibres F, and F5, and assume that we have a map X; — X
which also a fibre bundle, through which the first fibre bundle projection factors. From
these data, we obtain a map on B between the local systems with fibres F; and F5, and
we would like a natural condition that implies that this map is an isomorphism of local
systems. Such a condition is provided by the assumption that the map X; — X5 induces
a homotopy equivalence F; — F5.

In our setting, the data of X; — B and Xy — B are ultimately used to construct the
model of symplectic cochains defined in this paper, and the standard one. The space X3
consists of the data of multimorphisms, and the map to X5 only remembers their domain
and their output. By requiring that the forgetful map be a homotopy equivalence, we
shall be able to conclude that the map between the two models is an isomorphism.

The most general way to achieving (i) and (ii) is to define Hamiltonian data on a
framed Riemann surface to consist of a 1-form $ valued in the space of Hamiltonians
on the target symplectic manifold, with prescribed restriction to a neighbourhood of the
punctures. In this context, the positive energy condition that is required in order for
operations to be defined over the Novikov ring is the non-linear equation

dH+{9,9}>0. (1.31)

Unfortunately, we have been unable to prove that this choice satisfies the third condition
above.

Instead, we introduce a notion of split-monotone Floer data on a framed Riemann
surface ¥; this consists of a closed 1-form on ¥, and a function H on ¥ x M, subject to
several conditions, of which the most important is the requirement that, for each point
x € M, the wedge product of the differential of H(x) with « is a non-negative 2-form
on X

dH(z) Na > 0; (1.32)

this condition is the specialisation of Inequality (1.31) to the case $$ = H ® . When X
is a cylinder R x S* with coordinates (s,t), and a = dt, it is clear that we recover the
condition of monotonicity %—IZ > 0 for continuation maps, which underlies Definition 1.3.

An additional feature worth mentioning is that our 1-forms « are required to be of
the form o = w,dt near each puncture p for some positive real weight w, (subject to the
constraint in Equation (2.4)). The need for real weights is clarified in Fig. 1. Namely, for
contractibility to hold we need to interpolate between different assignments of weights
for given asymptotic data (there are other approaches where contractibility is achieved
entirely using continuation maps, cf. [6]).

A split Floer datum on X defines an element of the space of multimorphisms with
inputs ((Hl, JY, - (HY, Jk)) and output (H°, J°), when there is a choice of cylindrical



16 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755
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Fig. 1. Breaking of curves with integral weights.

ends at the ¢th puncture so that H ® a and J pull back to H; ®dt and to J;. The topology
on this space is straightforward to derive from the topology on the moduli space of framed
Riemann surfaces and the C'*° topologies on function spaces.

Unfortunately, this construction is not closed under compositions. For example, we
would need to have a (continuous) composition map

F(HY, JY, (H?, J%); (H°, J%) @ F((H°, J°); (H", J"))
— F((HY, T, (H?, J%);(H", 7)), (1.33)

which is compatible with the actions on Floer cochains, and more generally we need com-
position maps of multimorphisms with other multimorphisms. If we restrict attention to
Floer data on (smooth) Riemann surfaces, this is impossible, because the composition of
these operations is geometrically associated to the pre-stable Riemann surface obtained
by attaching a cylinder to a pair of pants at one end. The definition of the multicategory
F thus involves split Floer data on pre-stable Riemann surfaces. This makes a straight-
forward definition of a topology more tricky, and we choose to bypass this, as discussed
earlier, by working with cubical sets as our model for homotopy types.

Continuing along the outline of the simpler problem discussed in Section 1.5, we have
by now explained the construction of an algebraic object that encodes all possible choices
for constructing genus 0 operations, with one output, in Hamiltonian Floer theory. The
next step is to apply the usual Floer theoretic procedure to associate to each n-cube in
F((HY, JY), (H?,J%); (H®,JY)) an operation of degree n in Equation (1.29), and more
generally a chain map

CF*(H',J") ® - @ CF*(H", J¥)
@ CF(HY, JY,. .., (H" J*); (H°,J%) = CF*(H°, J°). (1.34)
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The compatibility of these maps with (multi)-compositions in F amount to asserting
that they assemble to a differential graded multi-functor

C,F — Ch, (1.35)

whose target is the category of chain complexes equipped with its monoidal structure
given by the tensor product, which we consider as multicategory whose objects are Zo-
graded chain complexes and whose multimorphisms with source a sequence (C, ..., Cy)
of chain complexes and target a chain complex Cy, given by the chain complex of maps

- C, — Cy. (136)

At this stage, we recall that each compact subset K of M determines the subset of
objects of F consisting of those pairs (H,J) for which the Hamiltonian H is strictly
negative on K. We write Fx C F for the full multicategory on these objects, and abuse
notation by writing CF* for the restriction of the Floer functor to this multicategory.
It now remains to extract, from Equation (1.35), and the projection map from Fg to
fﬂﬂs, a total complex which carries an action of the chain operad associated to fﬂ]g. In
order to do this, we need one final piece of abstraction. In the diagram of multicategories

C.Fx — Ch,
lw e (1.37)
O fMy

we shall consider a diagonal arrow that we refer to as the operadic (homotopy) left Kan
extension of CE* along w. This is a natural generalisation, in two different ways, of the
notion of a homotopy colimit which arose in Diagram (1.24): (i) we pass from categories
to multicategories, and (ii) we work over the operad C. fﬂﬂs rather than over the point.
We note at this stage that, from the point of view of operads as multicategories with
one object, the diagonal arrow distinguishes a chain complex (the image of this unique
object), together with an action of the operad of chains on fME)R.

Instead of characterising the Kan extension by its universal property discussed in
Section 1.7 below, we choose to work with a specific model, analogous to the bar con-
struction, which we describe explicitly in Section 4 and denote by L, CF* and whose
completion defines the operadic symplectic cochains with support K that we refer to in
Theorem 1.4.

The structural results in Theorem 1.4, regarding restriction and the action of the
symplectomorphism group follow rather directly from the good functorial properties of
the model which we have chosen for the left Kan extension. On the other hand, our con-
struction of the comparison map in Equation (1.15) requires some explicit computations,
because it is a comparison between a categorical and an operadic Kan extension.
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1.7. The universal property of the operadic model

While we use an explicit construction of the Floer algebra S C;kw —_r (K) in this paper,
> 0

fM

we complete this introduction by briefly indicating the universal property that it enjoys.
—R

We have already used the fact that an operad such as C.fM, is the same thing as

—R
a multicategory with a single object while an C, fM, -algebra is the same thing as a

— R
multifunctor from C,fM, to Ch. Thus we take SC’X/[ fﬂR(K ) to denote not merely a
’ 0
chain complex with operations but a multifunctor. We then denote by S C;\‘/[ R (K)om
’ 0

the composition with the forgetful map.
The essential point at this stage is that there is a homotopy natural transformation
of multifunctors

oa:CF* = SC*

o (K)o (1.38)

whose component at the object (H,J) € F is the inclusion map CF*(H,J) <
SC;/I,fﬂgR (K). It would take us too far afield to formally define such a notion, but one
way to formulate it as the data of a collection of homotopies for each operadic structure
map, together with higher homotopies associated to compositions thereof. Alternatively,
the reader can find a discussion in the quasi-categorical setting in [5, Lemma 2.16].

The homotopy universal property is as follows: given any fﬂf algebra D together
with a homotopy natural transformation o : CF = D o« there exists, uniquely up to
__»(K) — D such that
fMO

contractible choice, a homotopy natural transformation [ : SCJ";{[

o =poa.

Theorem 1.8 can be interpreted as the first non-trivial datum extracted from the nat-
ural transformation in Equation (1.38), at the level of morphisms. In order to formulate
the analogous data for multimorphisms, fix a sequence {H;} f:o of non-degenerate Hamil-
tonians which are strictly negative on K, and a sequence {Jo} of S'-families of almost
complex structures. Consider a family of framed genus-0 Riemann surfaces parametrised
by an manifold (more generally, a cycle in f/\_/l](lik +1), equipped with split Floer data as
described above. Such data determine a map

CF*(Hl,J1)®®CF*(Hk,Jk) —)CF*(Hk,Jk) (139)

obtained from the moduli spaces of virtual dimension 0 solutions of the family of the
associated Cauchy-Riemann equation. We omit the proof of the following result.

Proposition 1.17. There is a prescribed homotopy in the diagram

CF*(Hl, Jl) R R CF*(Hk, Jk) e CF*(Hk, Jk)

l l (1.40)

(K)®---®8C* (K) —— SC* (K),

5C M, f M MMy

M, fMy
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in which the bottom horizontal map is defined applying the operadic structure map to the

—R
cycle in fMg 1 associated to the chosen family of Floer data.

We propose to the reader that the above result should be interpreted as follows: given
a sequence of elements of SH;,(K) arising as the image of cycles in the Floer cohomology
of Hamiltonians H;, the image of these elements under any operation parametrised by a
cycle in the operad fﬂ? can be computed by first lifting this cycle to the multicategory
FK, then applying the associated Hamiltonian Floer-theoretic operation, and finally
composing with the map from Floer cohomology to symplectic cohomology with support
K. The main subtlety with this viewpoint is that, because of the chain-level completion,
an arbitrary element of the symplectic cohomology group with support K may not arise
as the image of an element of Floer cohomology for any choice of Hamiltonian. This is
one reason for formulating the above result at the chain-level.

1.8. Outline

In Section 2, we construct the canonical Hamiltonian indexing multicategory H of
a symplectic manifold. The objects of H are all non-degenerate Hamiltonians and for a
compact K C M we consider the full sub-multicategory H i with the additional condition
on objects that they be negative on K. The multimorphisms are very roughly given
by families of Hamiltonians parametrised by a genus-0 Riemann surface, satisfying a
monotonicity condition, i.e. that they are non-decreasing along some oriented singular
one dimensional foliation on the surface (which is not a priori fixed and is part of the
data), see Definition 2.1. In particular, recording the biholomorphism type of the surface
defines a forgetful multifunctor

H— My (). (1.41)

In order to be able to encode the homotopy type of multimorphism sets, we construct H
as a multicategory enhanced over symmetric cubical sets, see Definition 2.10. The main
result in this section (referred to as contractibility) is Proposition 2.20 which says that if
Hj is sufficiently larger than Hy, ..., H,, the symmetric cubical set H(Hq, ..., Hy,; Ho)
is homotopy equivalent to fﬂ? (n); without such an assumption, we have little control
over the homotopy type of the multimorphism spaces, which could for example be empty.

The multicategory H (or H) is used as an intermediate step to introduce, in Sec-
tion 3, the Floer data indexing multicategory F, whose objects are pairs consisting of a
Hamiltonian and an almost complex structure, and whose multimorphisms also include
the data of families of almost complex structures. There is a canonical forgetful multi-
functor F — H. Since the monotonicity condition does not involve the almost complex
structures, the construction of F does not present any new significant difficulties, nei-
ther does the analogous contractibility result. We appeal to the results of [3] to obtain a
dg-functor called the Floer functor:
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CF*: C,F — Ch,

which extends the assignment of the Hamiltonian Floer complex to each object (H, J) of
F, by assigning a degree —n map to each n dimensional cubical chain in a multimorphism
space. While the construction the Floer functor in full generality uses virtual techniques,
we also explain how it is constructed in the non-negatively monotone case using genericity
arguments. The Floer functor might be of some independent interest as it is in some sense
the universal diagram of Hamiltonian Floer complexes defined using split-monotone Floer
data.
In Section 4, we construct a canonical dashed arrow

O Fre —<2 Ch,
|7 e (1.42)
C.f My

using an operadic bar construction. This gives the proof of Theorem 1.4. The diagram
does not commute, but there is also a canonical homotopy natural transformation from
the Floer functor to the composition of the other two maps. We explicitly describe only
a very small part of this structure which constitutes our proof of Theorem 1.8.

Section 5 is devoted to a proof of Theorem 1.9. We first prove that our operadic bar
construction is chain homotopy equivalent to a categorical bar construction. To pass
to categories we use the PROP functor from multicategories to categories. Up to a
difference in how the symmetric group actions enter in the construction, this passage is
almost formal. On the other hand, it does take a considerable amount of work for us
to settle this difference. This part concludes with Section 5.5. Then we show that we
can pass to much smaller models (such as the telescope model) using standard cofinality
arguments and contractibility.

X - del involvi

Mg gec 5255 big Sec 5.6:5.7 | oo VONInE A

operadic categorical cofinal sequence,
model model e.g. telescope
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2. The Hamiltonian indexing multicategory

We fix a closed symplectic manifold M. The purpose of this section is to define a mul-
ticategory H, whose objects are Hamiltonians H € C*°(R/Z x M) with non-degenerate
1-periodic orbits, and whose multimorphisms are spaces (more precisely, symmetric cu-
bical sets as described in Appendix B.1) of Riemann surfaces with additional data which
we shall presently specify. This multicategory will carry a forgetful map to the singular
cubical chains (see Example B.2) of the framed KSV operad fﬂg{. The reader who finds
this section overwhelming on first reading may benefit from first consulting Section 1.5
which discusses a simpler setting, as well as Section 1.6, from which the role of the
constructions of this section in the overall strategy should become clearer.

2.1. Multimorphisms of dimension 0

The essential point of our approach is the construction of a set of multimorphisms
associated to each sequence (H',..., H") of Hamiltonian inputs, and each choice H® of
output. This will correspond to the 0-cubes of the symmetric cubical set of multimor-
phisms associated to these data. All higher cubes will later turn out to be expressible in
term of maps from the cube to this set.

Since the data that determine a multimorphism will involve a choice of Riemann
surface, and we would like to identify the data supported on biholomorphic Riemann
surfaces, it is convenient, as is familiar from many similar Floer-theoretic constructions,
to define the desired space as a space of equivalence classes of a larger set which we now
introduce (our conventions for trees and Riemann surfaces are prescribed in Appendix A):

Definition 2.1. A pre-multimorphism with input a sequence of Hamiltonians (H?, ..., H")
and output a Hamiltonian H° consists of the following data:

(1) A pre-stable rational curve ¥ with n inputs and one output (in particular, equipped
with a cylindrical end e;t on every puncture p of each component).

(2) A labelling of each edge e of the tree underlying ¥ by an element H¢ € H. The i-th
input edge, for i > 0, is labelled by H* and the output by H°. We denote by T the
given tree together with the labelling of the edges by Hamiltonians. We refer to T
as a Hamiltonian labelled tree.

(3) For each vertex v € T a choice of a pair (H", ) where H : ¥, x M — R is a
smooth function, and «, is a closed 1-form on %,.

These are required to satisfy the following conditions:
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(1) On a bivalent vertex v, we have H¢wut # H¢n.

(2) For all x € M we have the monotonicity inequality
dH; Aoy, > 0. (2.1)

(3) For any vertex v and any puncture p of X, there is a positive real number w, called
the weight, such that we have

e;,t’*ozv = wpdt (2.2)
eff’*(H”av) = Hedt. (2.3)

(4) For each internal edge of T" with endpoints v_ and vy, the weights of a,,_ and o,
at the punctures associated to e agree.
(5) For any vertex v, if pyy is the positive puncture of ¥, and is p a negative puncture
of X,:
Wy, 1

2 B 1 (24)

Wp

out

In Equation (2.1), we use the notation
H)(:)=H"(,"):%, = R. (2.5)

Observe that by closedness of the 1-forms a,, the output weight is the sum of the
input weights at every vertex. The essential point in this definition is that, while one can
define operations in Floer theory using Hamiltonian data of more general type than the
split data that we choose (for example, one may consider a 1-form valued in the space
of Hamiltonians), imposing the analogue of the monotonicity constraints in Equation
(2.1) in such a general context results in a space whose homotopy type seems difficult to
describe (even allowing for varying the choice of output Hamiltonian).

Remark 2.2. The condition H®wt £ H¢" can be omitted at the cost of allowing arbi-
trarily long compositions of the constant continuation map with itself. Imposing it thus
corresponds, in a certain way, to working with a reduced version of the theory.

Similarly, Inequality (2.4) is imposed for convenience to obtain compactness of the
space of allowable weights for fixed inputs and outputs. It could be omitted at the cost
of changing the definitions so that the homotopy type of the spaces H(H?!,..., H"; H")
is accurately reflected by the homotopy type of a sequence of exhausting subsets.

The remaining conditions are unavoidable consequences of needing to ensure that,
when we choose almost complex structure in Section 3.1, the resulting moduli spaces
give rise to operations from the Floer complexes of the input Hamiltonian to that of the
output Hamiltonian.
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Definition 2.3. Two pre-multimorphisms are equivalent if there is an isomorphism of the
underlying pre-stable rational curves which intertwines the choices of cylindrical ends,
the data of H¢, and finally the data of {(H", «,)} up to the equivalence relation

{(e"H", e ")} ~ {(H", o)} VreR. (2.6)
This leads to the following notion:

Definition 2.4. A multimorphism of dimension 0 is an equivalence class of pre-
multimorphisms. We denote by Ho(H?!,..., H"; H°) the set of all multimorphisms of
dimension 0. For a Hamiltonian labelled tree T with n inputs and one output we de-
note by Hor(H?, ..., H"; H°) the set of multimorphisms defined on pre-stable rational
curves modelled on 7T

Remark 2.5. For each fixed T, the set Ho 7 (H?, ..., H*; H°) has a natural smooth struc-
ture as an infinite dimensional Fréchet manifold. Namely, when T consists of a single
vertex, it a fibre bundle over the manifold of smooth framed curves with k£ 4+ 1 marked
points; the fibre is analyzed in detail in Lemma 2.21. For general T" we may write a
description as fibre products of variants of these bundles in which the Hamiltonian is
not fixed at some of the punctures. We shall avoid introducing a topology on the space
Ho(H?, ..., H*; H) of all multimorphisms of dimension 0, and instead will construct a
cubical set of which these are the 0-cubes.

Part of the structure of a multicategory is an action, by relabelling, on multimor-
phisms. Concretely, the means that, given a permutation p of the sequence (1,...,k),
we need an isomorphism

Ho(HY, ..., H*; H°) — Ho(HPD, ..., H'®); HO), (2.7)

satisfying the property that the composition of the maps associated to permutations p;
and po to agree with the map associated to p; o ps. This is in fact given by an elementary
relabelling procedure on the set of pre-multimorphisms: we assign to 3 the pre-stable
rational framed curve p,Y with the same underlying curve and framing, but with the
input labels permuted by p. Since the sequence of inputs is also permuted by p, the rest
of the data in the right hand side of Equation (2.7) (of labelling of trees, and choices of
1-form, Hamiltonians, weights, and cylindrical ends), are canonically determined by this
choice, and the imposed properties are preserved.

For the next definition, we consider sequences H' € H" and H? € H*2 where the
notation indicates the Cartesian product on the object sets, and write

Hl O; FIQ (28)

for the sequence with k1 + k3 — 1 elements obtained by replacing the ith component of
H, with the vector H'.
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Given two Hamiltonian labelled trees T and T5 such that ith input label of Ts is the
same as the output label of T7, we can construct a new Hamiltonian labelled tree T7 o; T5
by taking the disjoint union of 77 and 75 and identifying the output edge of T7 with the
ith input edge of T5.

This operation extends to a multicomposition operation on multimorphisms.

Definition 2.6. The multicomposition
0; :Ho(ﬁl;Hgi) XHo([‘_jQ;H)%’Ho(ﬁl 0; ﬁg;H) (29)

takes (91,02) to the multimorphism defined by attaching the output of 9; to the ith
input of 0s.

The main point to check is the compatibility condition in Definition 2.1 between the
two data at the edge of T o; Ty along which the trees are attached. This is ensured by
choosing representatives of 07 and 02 such that the output weight of 9; agrees with the
ith input weight of 0. To avoid any confusion, we reiterate that this definition does not
involve any gluing of Riemann surfaces (or Hamiltonian data), but uses only attaching
pre-stable Riemann surfaces as in Definition A.3 (carrying, in addition, Hamiltonian
data).

2.2. Higher cubes of multimorphisms

Informally speaking, we shall define positive dimensional cubes of multimorphisms as
cube families of multimorphisms of dimension 0 which are obtained by gluing near the
boundary strata. We think of this as a replacement for the more naive strategy of defining
a smooth structure on the set of multimorphisms of dimension 0 and considering the
smooth singular cubes of this target. This alternative strategy appears to be technically
much more complicated because the space of choices is infinite dimensional, and there
seems to be no natural way to equip it with a manifold structure that is consistent with
the breaking of Riemann surfaces.

We now introduce some notation for the gluing operation that will be used in the
definition of higher dimensional cubes. We consider an element 0 € Ho(H?,..., H"; H°)
with underlying Hamiltonian labelled tree T', and refer the reader to Definition A.5 for
the precise way in which we formulate gluing of Riemann surfaces:

Definition 2.7. The gluing of d along parameters 7 € [0, 1]%¢(T) is the multimorphism
obtained by gluing the underlying framed pre-stable curves, equipped with the restriction
of the data (H"-,a"~) and (H"*, o, ) for each e € E;(T) connecting vertices v_ and
vy with r. > 0.

Note that the compatibility condition of weights along the two sides of the node,
which we imposed in Definition 2.1, ensures that the Hamiltonian data on the glued Rie-
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mann surface are well-defined after gluing (along the boundary identification in Equation
(A.8)). In addition, the equality 271 . 2™~ = 2(n+m=1)=1 ghows that Condition (2.4)
is satisfied.

Given 0 € Ho(ﬁ, H), which we stress can be broken, we call the triple (7,0',7) of a
Hamiltonian labelled tree T, o’ € 7—[07T(ﬁ, H) and 7: |Ejn(T)] — [0,1] such that

2= T,(0) (2.10)

a gluing decomposition of . A given element d of Ho(H, H) may have more than one
gluing decomposition, but the choice is fixed by choosing the tree labelling the decom-
position. We shall use the following weaker result, in which one fixes the source of the
gluing map:

Lemma 2.8. Any two gluing decompositions of 0 with the same underlying tree T and
Hamiltonian datum 0’ € 'HO,T(H*,H) have equal gluing parameters.

Proof. We must show that the gluing parameters can be reconstructed from 9. We shall
not do so directly, but rather, we show that, for each edge e of T, a strictly monotonic
function p. of the gluing parameter can be thus reconstructed. For the discussion below,
we shall use the fact that such an edge determines a (free) homotopy class of circles in
3.

We define p.(7) as the infimum of the product of quantities (p1,...,px) in (0,1) such
that there are disjoint holomorphic embeddings E : (log(p;),0) x R/27Z — £, for some
component ¥, of the target, in the specified homotopy class, satisfying the following
properties

E*a, = cdt for some ¢ > 0 (2.11)
E* (Ho,) = Hedt, (2.12)

assuming that such an embedding exists. Note that, since the gluing annulus associated
to e satisfies the above property, the only way for such an embedding to fail to exist is
if the gluing parameter equals 1 (and there is no way to extend it holomorphically so
that the stated properties hold), in which case we set p.(7) to be 1. The other extreme
case, with p.(7) = 0, corresponds to the case in which e is not collapsed. Let us call the
collection of maximal embeddings F..

Note that, since a does not vanish on FE., its restriction to it is a foliation, which by
the requirement that o pulls back to dt, has closed leaves. The condition that H® < H e
for any edge e’ that succeeds e’ along the arc to the output, with strict inequality at
some point, implies that the sets F. and E,./ are disjoint whenever e # ¢'.

The monotonicity condition further implies that F. is contained in the image, under
gluing, of the Riemann surfaces ¥,_ and ¥, which are associated to the endpoints of
e. This implies that p.(7) depends only on the gluing parameter r.. Since E, contains



26 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

the gluing annulus associated to e, we conclude that p.(7) is a monotonic function of r,
because the gluing region, which shrinks when the gluing parameter increases, while the
remaining regions do not change. O

The next definition describes the local models for the cubes of multimorphisms that
we will consider.

Definition 2.9. A local model for a codimension k corner of a family of multimorphisms
with input H and output H consists of the following data:

(1) (Domain of maximal breaking) a smooth manifold C,

(2) (Collar neighbourhood) an open neighbourhood U of the origin in [0, 1]* (in the case
k =0 we write U = {0}).

(3) (Choice of broken curves) A Hamiltonian labelled tree T, and a smooth map

b: C x U — Hor(H,H), (2.13)

where the target is smooth as in Remark 2.5.
(4) (Gluing data) A smooth map

g:C xU —[0,1)Ene(D)] (2.14)

whose components vanish identically on C x {0}. Moreover, for each face o of U,

any component g; of g either vanishes identically or is nowhere 0 on the interior of
Cxo.

We are now ready to define the cubes of multimorphisms in 4. For the definition we
fix once and for all a positive number ¢y < 1/2. For each n denote by F,, the set of
faces of the n-cube [0,1]" (we include the top stratum among them, so that F,, has 3™
elements). For each f € F),, denote by f°, the interior of f. For each f € F,, let Wy be
the image in the n-cube of the canonical affine embedding of

£° % [0, gp)codim{f), (2.15)

Denote by V,, the open cover of [0,1]" given by V, = {Wy}ser,. Note that there are
natural identifications F,, = (F1)" and V, = (V1)" where an n-tuple (Wy,,..., Wy, ) €
(V1)™ is identified with the Cartesian product (Wy, x--- x Wy, ) = Wy, «...xf,. Thus the
cover V,, is compatible with intersection with faces of the n-cube and is equivariant with
respect to the action by transposition of the coordinates on F,.

Definition 2.10. An n-cube 0 in ’H(ﬁ , H) consists of a family of Hamiltonian data given
by a choice (T,br,gyr)rer, of a local model for each face f of the cube, with domain
the set Wy, equipped with the decomposition from Equation (2.15) so that the following
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property holds: given an inclusion fo C fi, let E be the set of edges of Ty, that are
collapsed under the map Ty, — T, . Let gﬁ : V x U — [0,1)F be the composition of gy,
with the projection [0, 1)!Z(T)l — [0, 1)Z. Then we have

bfl |VVfO = Fgfﬂ (bfo)' (216)

To gain some intuition for this definition, the reader may want to note that from this
data we get, for each inclusion f; C fs of faces, a surjective map o2 : V(T ) — V(T%,).
If v1 and vy are adjacent vertices of T,, then whenever the corresponding components
are glued, we have 012(v1) = 012(v2). Alternatively, if the gluing parameter of the edge
connecting them vanishes, these vertices remain adjacent in T',.

An n-cube determines a map of sets

b:[0,1)]" — Ho(H, H), (2.17)
which is given by the formula

b(p) = Fgf(x,y)(bf(x, y))a (2'18)

whenever p = (x,y) € Vy x Uy = W;. The compatibility condition in Equation (2.16)
implies that this expression is well-defined. The collection of local models (T, bs, gf) rer,
is called a gluing atlas. We may have some distinct n-cubes whose underlying map b is
the same if b contains broken rational curves.

Remark 2.11. It is tempting to try to simplify Definition 2.9 by making the family of
Riemann surfaces depend only on the space C' (which in the case of interest corresponds
to the interior of a face), and the gluing parameters only on the factor U (which corre-
sponds to its normal direction). This would require us to restrict the class of breakings
that are allowed to take place at a corner. For example, Fig. 2 shows a situation where the
Riemann surfaces break twice in the corner of a square, once along one of the adjacent
edges, and do not break along the other one. There is no gluing parameter associated
to the normal direction of the edge along which no breaking take place, but the family
of Riemann surfaces in a neighbourhood of the corner must depend on two parameters.
Using the notation from the definition, this forces us to allow b to depend on a tubu-
lar neighbourhood of the edge. An analogous argument, involving an edge of a square,
labelled by a tree with two internal edges, so that the adjacent edges are labelled by
non-isomorphic trees, shows that the parameter g also must in general depend on the
entire tubular neighbourhood.

One could imagine putting a stronger constraint on the set of allowed cubes in order
to avoid this, but this will result in the resulting cubical set failing to satisfy good
homotopical properties (in particular, the Kan property). Concretely, as soon as one
formulates a definition of 1-cubes in which the edges appearing in Fig. 2 are allowed, the
Kan property would require that these edges can appear as a corner of a 2-cube, and
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Fig. 2. An assignment of trees to a strata near a corner which requires the gluing atlas to depend on
neighbourhood of the strata.

the only possible combinatorial data underlying such a 2-cube is the one shown. While
we do not explicitly use the Kan property, our proof of Lemma 2.22 uses a construction
analogous to what would be required to establish it, and would fail for this reason if we
restricted the class of allowed cubes to avoid this issue.

Next, we note some basic consequences of the definition which will later be used:

Lemma 2.12. The following properties hold for each n-cube (Tf,b¢,g¢) fer, in ’H(ﬁ, H):

(1) If for x € f°, b(z) is smooth, then by(x) is also smooth and equal to b(x).
(2) If x € f°, then b(x) € ’Ho’Tf(ﬁ7H).

Given another n-cube (V', (T}, b}, g}) fer,), we have:

(1) Ifo=V, then Ty =Ty for all f € F,.
(2) Ifb=V and by = b} for all f € F,,, then gy = g} for all f € F,. O

The next result justifies the terminology of n-cube that we have been using.

Lemma 2.13. The collections of sets {”Hn(ﬁ, H)} are the underlying sets of n-cubes of a
symmetric cubical set.

Proof. We mention what happens to the part of the data consisting of the map b :
[0,1]" — Ho(H, H) and omit writing the natural operations on the gluing atlas. In order
to shorten the notation, denote by H,, the set of n-cubes in ’H(ﬁ, H).
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In the following Lii(f) : [0,1]® — [0,1]"*! is the standard embedding as the face
2 =1/2+1/2, mpp1, 00,17 — [0,1]™ is the projection forgetting the ith coordinate,
and 7,; : [0,1]™ — [0, 1]™ is the map which transposes the ith and (i 4+ 1)th coordinates.

Define the face maps

A, Ho(H,H) — Ho1(H, H) (2.19)
by b—bo Lii. Similarly, degeneracy maps
0i Hn(H, H) — Mt (H, H) (2.20)
are defined by composition b +— b o m;. Finally, transposition maps
Prsi : Ho(H, H) = H,(H, H) (2.21)

are defined by b — bor,, ;. It is readily verified that the face, degeneracy, and transposition
maps are well defined and satisfy Equations (B.5)—(B.11), yielding a symmetric cubical
set. O

The next definition is the generalisation of Definition 2.6:

Definition 2.14. For each integer i between 1 and the length of a sequence H? of Hamil-
tonians, define the multicomposition map

0; t Hoy (HY H?Y) X Hypy (H?*; H) = Hy, 4m, (Hy 0; Ha; H) (2.22)

to be the map determined by assigning to a pair (91, 02) the product n; 4+ ns-cube given
by mapping a point (z,y) to the composition d2(y) o; 91(x), and by taking the product
gluing atlas.

It is straightforward to check that Equation (2.22) is equivariant with respect to the
product action by ¥, x 3, on the left, and the restriction of the action by X, on the
right, since both of them simply act by permuting the coordinates of the corresponding
cubes. Similarly, boundaries and degeneracies are defined in the same way on the two
sides in terms of inclusions and projections of cubes. We conclude:

Lemma 2.15. The map given in Equation (2.22) determines a map of symmetric cubical
sets:

o; : He(H' H*") @ Ho(H? H) — Ho(Hy 0; Hy; H). O (2.23)

Remark 2.16. We warn the reader that the set of n-cubes of the tensor product
He(HY; H>') @ Ho(H?; H), which is described in detail in Appendix B.1.1, is not given
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by the union over n; + ny = n of the left hand sides of Equation (2.22), i.e. by pairs
(01,02) of ny and ng cubes. The problem is that only the product %, x ¥,, acts on
the set of such pairs, whereas an action of ¥, is required as part of a symmetric cube
structure.

Nonetheless, Equation (2.22) does determine, as asserted, a unique X,-equivariant
map from the n-cubes of ’H.(ﬁl; H?Y) @ He (I;TQ; H), to the n-cubes of the target. The
reason is that such cubes are in fact given by a pair (91,02) as above, together with the
additional datum of an element o of ¥,,, modulo the action of ¥,,, x ¥,,, (see Equation
(B.14)). Denoting by

T [0,1]" — [0, 1] (2.24)

the permutation of the n-cube corresponding to o, the assignment of Equation (2.22)
canonically extends to the map of symmetric cubical sets which takes [o, (91, 02)] to the
(ny1 + ng)-cube mapping the point 7,(z, y) to the composition 02(y) o; 91 ().

At this stage, one can easily check that the compositions we have just defined satisfy
the associativity relations from Equations (B.29)—(B.31), and that the permutation ac-
tion given as in Equation (2.7) by relabelling the underlying trees and Riemann surfaces,
satisfies Equations (B.33) and (B.34).

To complete the construction of the multicategory of Hamiltonians, recall that we im-
posed, in Definition 2.1, the condition that the input and output of each multimorphism
with domain a cylinder be different. This implies that our construction so far has the
property that morphisms from a Hamiltonian to itself are empty.

Definition 2.17. The multicategory H of Hamiltonian data is the following symmetric
multicategory enriched in symmetric cubical sets.

e The objects are the elements of H.

¢ The multimorphisms are obtained by considering the symmetric cubical sets
He (ﬁ, H), and formally adding units.

¢ The multicompositions given by Equation (2.23), with symmetric group action given
by Equation (2.7).

2.8. Multimorphisms and the forgetful map

—R
Denote by fM, (k)e the symmetric cubical set of maps from cubes to the kth space

—R
fMy (k) of the Kimura-Stasheff-Voronov operad, as defined in Section A.2. Given any
sequence of Hamiltonians He HF, there is a natural map

7w Ho(H, H) = fMe (k) (2.25)
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which forgets the Hamiltonian data and collapses the unstable components of the under-
lying framed curve. We refer the reader to Appendix A.2 for a detailed discussion of this
stabilization process. It is easy to see that the collection of maps 7 as k varies assembles
into a forgetful functor from the multicategory H to the KSV operad. We declare the
unit of H(H, H) to map to the unit in S! = fﬂ?(l)o.

An essential difficulty in our construction is the fact that the map 7 is not in general
a homotopy equivalence. The following definition identifies a condition which will ensure
this:

Definition 2.18. Let H = (H',..., H*) € H* and let H® € H. We say that H° > H if
for every x € M, and every 1 < i < k, we have

min HY(z) > 27! max H}(z). 2.26

i, Hy (z) e Hi(w) (2.26)

For the next result, we consider a smooth punctured Riemann surface 3 with k inputs
and 1 output:

Lemma 2.19. If H® > ﬁ, then for any closed 1-form o on ¥ which agrees with w;dt near
the ith input and with dt near the output and such that w; > 217F | there exists a function

Hy:Sx M—R (2.27)

so that Hxoo pulls back to Hdt with respect to the cylindrical end for the ith input, and
Hs.o pulls back to HOdt with respect to the cylindrical end near the output, and so that
the following condition holds for each x € M:

dHx,(x) Aa > 0. (2.28)

Proof. Extend each negative cylindrical end to an embedding of (—oo, §] x S* for a small
constant §, and the positive cylindrical end to an embedding of [—d,00) x S, so that
the images remain disjoint, and so that to pullback of o agrees with w;dt. We call the
images of these larger domains, the extended cylindrical ends.

Let H : M — R be a smooth function so that for any x € M, and for all 1 <1 < k,
we have

) 1 .
in HY H ok—1 Hi(z) > —Hi(x). 2.2
in i () > H(z) > P t(x)_tglﬂgfz ” i(z) (2:29)

We define the function Hy piecewise as follows:

(1) In the image of the cylindrical ends, Hy, agrees with w;H®.

(2) Away from the images of the extended cylindrical ends, Hy, = H.

(3) In the annuli [0,8] x S* (or [-§,0] x S!), we define Hx, by linearly interpolating,
along the radial direction, between w; H' and H, taking wg = 1.
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The monotonicity condition in Equation (2.28) then follows because the resulting func-
tion increases along the radial coordinates near each end, and is domain independent
away from them. 0O

The following is the main result of this section.
Proposition 2.20. If H° > H= (Hy,...,Hy), then the map
7 Ho(H, H®) = fMe (K)e (2.30)
is a homotopy equivalence of symmetric cubical sets.

The proof will be given at the end of this section, after a few preparatory lemmas.
Denote by fMg k41 the interior of fm](likﬂ, which can be alternately described as the
set of framed smooth curves, which is an (Sl)’”‘1 bundle over the interior Mg 11 of
Deligne-Mumford space. Denote by ’Hgm(ﬁ , H?) the topological space of 0-dimensional
multimorphisms whose underlying rational curve is smooth.

Lemma 2.21. The map
M (H, HY) = f Mok (2.31)
is a homotopy equivalence of topological spaces.

Proof. Denote by D the space of Riemann surfaces with k inputs and 1 output. We con-
sider the space A consisting of an element of D and a closed one form on the underlying
Riemann surface satisfying the condition in Equation (2.2) for some choice of weights
satisfying Condition (2.4) with the output weight equal to 1, up to biholomorphisms of
Riemann surfaces which intertwine the rest of the data.

Note that we can find a unique element of the form (3, e"Hs,e ", {5 }) in any
equivalence class [(Z, Hy, a, {e£})] € Hs™(H, HO) such that the output weight is 1. Let
us assume that the representatives that we use below satisfy this property.

The map 7 factors through the projection map from A to D as follows:

(B, Hs, a {e D] = (3,0 {g, D] = (B, {g D] = [2], (2.32)

which first forgets the choice of Hamiltonians H,, then the 1-form .3, and finally the
choices of cylindrical ends. It is easy to see that all of these maps are fibre bundles.

We shall show that each of these maps have contractible fibres. The fibres of the first
two maps are convex (with respect to the linear structures on the set of Hamiltonians
and 1-forms), so it suffices to show that they are non-empty: for the first map, this is the
content of Lemma 2.19, while for the middle map, this is a consequence of the de-Rham
isomorphism which implies we can find a 1-form @ with residue w; on the ith input and
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residue 1 on the output as long as wy +...4+w, = 1. The 1-form @ may not be cylindrical
with respect to our chosen ends, but this is easily fixed by adding an exact 1-form. We
also used the fact that w; > 217" is a convex condition and that there are solutions of
w1 + ...+ w, = 1 satisfying this property for all 1 <1i <n, e.g. w; = 1/n.

It remains to show that the forgetful map from D to the moduli space of framed curves
has contractible fibres. Note that given a cylindrical end € : (—00,0] x R/27Z — ¥ and
a non-negative real number r, we can obtain another cylindrical end by composing the
translation map (—o00,0] X R/27Z — (—o0,—7r] x R/27Z with the restriction of € to
(—o0,—7] x R/27Z.

Applying this restriction and translation operation, we find that the space of cylindri-
cal ends deformation retracts onto the subset of those whose images lie in the interior of
the image of a fixed cylindrical end. We now work on one puncture at a time. The space
of cylindrical ends with prescribed tangent ray (which map into the image of a fixed
cylindrical end) can be identified with the space of holomorphic embeddings f from the
closed unit disk into the open unit disk preserving the origin and such that f'(0) € R.
By a similar argument we can replace the target fixed disk with C.

By scaling down (multiply with r» where 0 < r < 1), restricting and scaling up
(multiply with 7=1) we define a contracting flow on the space of such embeddings. The
fixed points of this flow are linear embeddings. Using the asymptotic condition these are
just the ones given by real scalar multiplication, which is evidently forms a contractible
set, proving the desired result. O

For the next result, we denote by 05"*M the smooth singular cubes of a differentiable
manifold M.

Lemma 2.22. The inclusion in
by OS(HE(H, HY)) — Ho(H, H), (2.33)
s a homotopy equivalence of symmetric cubical sets.

Proof. Abbreviate Y, = O™ (Hg™(H, H)) and X, = H.(H, H®). We show that there
exists a deformation retraction of X, onto Y,. That is, we construct a map of symmetric
cubical sets pe : Xo¢ — PX, satisfying

d=ope=1id, dT 0pe(X]) CYe, peote=P(te)08s1. (2.34)

It is easy to see that a deformation retraction of symmetric cubical sets is a homotopy
equivalence.

Given a cube ? we construct pe(9). For a zero cube ? we consider the 1-cube pe(d) =
(bf,gf)fepl € X; defined by

bi={t T, 5(2)} € X (2.35)
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And the gluing atlas (bf, g7) rer, is the obvious one. Note that, whenever 0 lies in ¢(Y,),
the glued curve I';/5(9) does not depend on ¢, so we have

p.(D) = 8071(0) ifoe L(Y.). (236)

To define p for higher dimensional cubes recall the cover V,, introduced right after
Definition 2.9. Fix once and for all a partition of unity {¢¢ 1} subordinate to the cover V;
of the unit interval. This induces a corresponding partition of unity {¢¢,} subordinate
to the cover V,, by taking products.

It is straightforward to check that the partition of unity {t¢,} is compatible with
restriction to faces and equivariant with respect to transposition. That is, whenever f is
contained in a codimension 1 face f’ we have

Ufmlpr = Vpn-1, (2.37)

and for any o € ¥,, we have

wa'(f),n = '(/Jf,n O Po- (238)

We now proceed to define the retraction on an n-cube 0. We first define the underlying
map p(b)(t,z) of p(d) pointwise for (¢,z) € [0,1] x [0,1]™. Let fo be the smallest face for
which = € Wy,. Then, by definition,

b(x) = Fgfo(z)(bfo (.73)) (2.39)

Define a function g : [0,1] x Wy, — [0,1)P(T7) as follows. For each e € Ty, let S, ,
be the set of faces f’ O fy for which e is not collapsed under the map T, — T. Let

Groetz) = D vp@) | /201 = gy.e(@) + (1 = t)gg, (@)

/€550

+ D vp(@) ] greel). (240)

f'€5Se 5o
For  in the n-cube, let f(z) be the smallest face fy for which « € Wy,. Define
p()(t,x) =Ty, (t.2)(bs(2)). (2.41)

It remains to construct a gluing atlas. To prepare the ground for this, define for each
face f of the n-cube a function g : [0,1] x W; — [0,1)#(T5) by

gf,e(t,-r) = gf(x),e(tax) (242)
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Wy
Ty 3
L]
Wf 0
Ty, fo

Fig. 3. Trees associated to the boundary of a cube.

We turn to define a function by (t,z) : [0,1] x W; — H07Tf(ﬁ,H). For any fy C
f let Efo-f be the set of edges offofo that are collapsed under the map Ty, — T7.
Let gfo:/ : [0,1] x Wy, — [0,1)F°°" be the composition of gz, with the projection
[0,1)Eime(Tr0) — [0,1)2"7 | Define

~

bf(t,x) = Fgf(z),f(tyx)<bf(z)(x)). (2.43)

Before proceeding, we prove that g and b ¢ are smooth functions. This needs to be
verified for points where f(z) changes. That is, points on the boundaries of Wy, for
fo C f (see Fig. 3). The change in §; upon crossing the boundary of Wy, at a point « in
the boundary amounts to replacing the expression vy, (z)gy () in Equation (2.40) by
the expression ¢, (x)(t/2(1 — gf,.e(z)) + (1 — t)gs,.(x)) for each face f; that contains
the face fo but not the face f(z). Since vy, vanishes identically near the boundary of
W, the smoothness of g follows. The smoothness of b ¢ is similarly implied by Equation
(2.16) by the same vanishing.

We now return to the task of constructing the gluing atlas. For the faces {0} x f
with f € F,, we take the local model consisting of the data of the underlying set
Wf =V x[0,1) x Uy, the underlying tree Tf = T}, the broken curve map b ¢, and gluing
function gy just defined. It is clear by construction and by the smoothness of §; that this
satisfies the requirements of a local model for a corner and that b(x)|w, = Fgf(w)(f)f (2)).

For all the other faces f we have that Ty consists of a single vertex. Thus the local
model is necessarily the restriction of p*(b) to the neighbourhood of the face. For this
to be a local model for each such face, it suffices to verify that the map on the right
hand side of Equation (2.41), restricted to the complement of the face ¢t = 0, is smooth
as a map to H*™, the space of smooth Hamiltonian data on the punctured sphere. This
follows from Equation (2.41) together with the fact that the functions § are smooth.

The gluing axiom and compatibility axioms are automatic by construction. We have
thus constructed for each n-cube 9 in X,, an n + 1-cube p, () € PX,, = X,,11.
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We now show that this map pe : Xe — PX, is a map of cubical sets. That is, it satisfies
Equations (B.21) and (B.22): the compatibility of Equation (2.41) with taking face maps
is a consequence of Equation (2.40), together with the compatibility of the maps ¢,
with restriction to faces which is provided by Equation (2.37). For compatibility with
degeneracy maps, one verifies that whenever the data on 9 is independent of a particular
coordinate then so is the data defined by Equations (2.40) and (2.41). Finally, note
that Equations (2.40) and (2.41) are equivariant with respect to transpositions involving
coordinates other than the one corresponding to the direction of the homotopy, proving
the compatibility of the homotopy with symmetries of the cube.

Finally, we verify that pe indeed satisfies Condition (2.34). Examining Equation (2.40)
we have pe(0)(0,2) = 0(x), pe(0)(1,z) € Y, and, for any d € Y, we have pe(0)(t, z) = 0(x)
for all ¢ € [0,1]. This proves the claim. O

We now complete this section with the proof of its main result:

Proof of Proposition 2.20. Consider the diagram

O (Hg™(H, H°)) «—— DO3™(Hg™(H, H®)) —— Hl(H, H°)

J J lﬂ (2.44)

O (fMo 1) ——— O™ (fMo 1) —— fMy (k).

That 7 is a homotopy equivalence will follow from the fact that all other arrows in the
diagram are homotopy equivalences. Indeed, the upper right horizontal arrow is a ho-
motopy equivalence by Lemma 2.22. The left vertical one is a homotopy equivalence by
Lemma 2.21, and the fact that a homotopy equivalence of topological spaces induces
a homotopy of the associated symmetric cubical sets. The smooth approximation ar-
gument for families of functions and 1-forms parametrised by a cube then implies that
the two horizontal maps on the left are homotopy equivalences, hence so is the middle
vertical map (the use of such approximation arguments to show that the inclusion of
smooth chains into continuous chains is a homotopy equivalence goes all the way back
to Eilenberg [11]).
The bottom right horizontal map factors as

O (FMogesr) = Oo(fMosst) — Oo(fMe (k) = fMe (K)a. (2.45)

The map on the right of the last equation is induced from the inclusion of the interior
—R —R

of fMy (k). Since fM, (k) is a manifold with corners, this inclusion is a homotopy

equivalence. The map on the left is a homotopy equivalence, again by the cubical analogue

of [11]. O
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3. The Floer functor

The purpose of this section is twofold. For arbitrary symplectic manifolds, we construct
a multicategory F, lying over H, consisting of Floer data, i.e. Hamiltonian data with
chosen almost complex structures, and prove:

Proposition 3.1. The projection map of the non-unital multicategories associated to F
and H is a homotopy equivalence.

The above result implies that the analogue of Proposition 2.20 holds for the category
F, which we will use essentially in our later arguments.

Remark 3.2. The reason for which the above statement is formulated for the underlying
non-unital categories is because our construction will not incorporate any morphism
between (J, H) and (J', H'), whenever H = H’, except for identities which we formally
include. In [3, Part 3], a larger category F is constructed, which includes such morphisms,
but the proof that the projection map remains a homotopy equivalence in this case is
slightly more complicated.

As in the introduction, let k be a commutative ring and denote by A~y the Novikov
ring

AZO = {i aiTAi

a; € k, \; € R>q strictly increasing and lim \; = oo} .
- 11— 00
i=0

As in the strategy discussed around Equation (1.35), passing to the associated differential
graded multicategory, we can now directly appeal to the first author’s work on virtual
fundamental chains:

Proposition 3.3 (Propositions 9.10 and 12.9 of [3]). If k is a characteristic O field, there
is a multi-functor

CF : C.F — Cha., (3.1)

with target the category of Z/2-graded chain complezes, considered as a multicategory by
the tensor product of chain complexes, which assigns to every pair (H, J) a chain complex
whose underlying A>o module is freely generated by rank-1 free modules associated to the
time-1 Hamiltonian orbits of H, and whose differential is defined by a virtual count of
solutions to Floer’s equation. O

We refer to the cited reference for the proof of the above result, though the reader
will find, in Section 3.1 and 3.2 below the basic geometric constructions of the moduli
spaces which are involved.
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Our second goal is to give a construction that is independent of the theory of virtual
counts in the situation where virtual techniques can be avoided without an assumption
on the base ring k (see Remark 1.7 for a discussion of why we do not consider the
semi-positive case):

Proposition 3.4. If c; (M) and [w] are proportional on wo(M), with non-negative propor-
tionality constant, then there is a multicategory F"9 C F, so that (i) every object of H
admits a lift to F9, (ii) for each input sequence of objects m and output (Jy, Ho),
the associated inclusion of multimorphism spaces

Frea (T, HY, (Jo, Ho)) — F((J, H), (Jo, Ho)) (3.2)

is a homotopy equivalence, and (iii) Floer theory defines a cubically enriched multifunctor
CF : C.F"™ — Cha,, (3.3)

with target the category of Z/2-graded chain complexes over the Novikov ring. The dif-
ferential is defined by a geometric count of solutions to Floer’s equation.

Remark 3.5. In the special case where ¢; (M) vanishes, a trivialisation of the canonical
bundle of M determines a lift of the Floer multi-functor to the category of Z-graded
complexes. As discussed in [2], the condition that ¢; (M) be 2-torsion is sufficient to
define a lift of the Floer complexes to Z-graded chain complexes, but this lift is not in
general compatible with operations.

3.1. Almost complex structures

Let J denote the space of S*-families of w-compatible almost complex structures on
M. The set of objects of the multicategory F is the product of H with 7, i.e. it consists
of a non-degenerate Hamiltonian together with a compatible family of almost complex
structures.

Let (H, J; be a sequence (H', JY), (H?,J?),...,(H"*, J*) of objects of F.

Definition 3.6. A pre-multimorphism in F from (H,J) to (HP,.J°) consists of a pre-
multimorphism from H to HO in the sense of Definition 2.1, together with

(1) a lift of the label H¢ of each edge of the underlying tree T to a pair (H¢, J¢),
(2) a map from X to the space of tame almost complex structures on M, whose pullback

under the strip-like end associated to every edge e adjacent to a vertex v agrees with
Je.

As before, we define two pre-multimorphisms to be equivalent if there is a biholomor-
phism between the underlying pre-stable curves which intertwines both the Hamitonian
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and almost complex data. We write fo(m; (HO, J%)) for the set of equivalence classes
of such data and fo,T(m; (H°, J%) for those with underlying labelled tree T. The
C*° topology on the space of almost complex structures equips this space with a natural
topology for which the following result holds:

Lemma 3.7. The projection map
For((H, J§; (H°,J%) — Hor(H,...,H*; H) (3.4)
s a fibration with contractible fibres. O

As discussed in the proof of Proposition 2.20, this implies that the resulting map of
smooth singular cubes is a homotopy equivalence. This will only take us partly towards
the desired result, because, as in Section 2.2, we shall not topologise the full space
fo(m; (H°, J%), but rather define higher n-cubes to be those which are smooth on
each stratum, and are equipped with prescribed gluing data in neighbourhoods of all
strata.

To proceed, we thus extend the gluing construction from Section 2.2: given an element
For((H,J); (H®, J%) and a choice of gluing parameters 7 € [0, 1)!Fi (T indexed by
the interior edges of T', we obtain a glued datum

I'+(0) € Fo((H.J); (H°, J)) (3.5)

which lies in the stratum labelled by the tree obtained by collapsing every interior edge
of T with non-zero gluing parameter. In this way, we can define the notion of a Floer
local model by adding the complex structure data to Definition 2.9, i.e. this consists of
an open manifold V', an open neighbourhood U of the origin in the k-cube, and a tree
T labelled by Hamiltonians and almost complex structures, together with smooth maps

b: VxU— For((H, J§, (H°, J%) (3.6)
g: Vx U — [0,1)Fme(DI (3.7)

where we require the gluing data to vanish on V' x {0}, and for each component to
either identically vanish, or to be non-zero in the interior. The point is that this data
determines a map

Ty(b): V xU — Fo((H, Jﬁ, (H°, J%) (3.8)
which is the Floer data associated to this local model.

Definition 3.8. For each natural number n, the set F,((H, J), (H°, J°)) consists of col-
lections (by, gf) rer, , indexed by the faces of the cube, of Floer local models for a corner.
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We require that the Floer data obtained by gluing agree whenever they are defined, in
the sense of Definition 2.10.

We omit the proof of the next result, which is a straightforward generalisation of the
construction of the multicategory H:

Proposition 3.9. The collection of sets {F,((H,J),(H,J°))}>, admits face, degener-
acy, and symmetry operations making them into the n-cubes of a symmetric cubical set
Fo((H, J), (H,J%), which is equipped with a forgetful map to He(H, H®).

The next result is a consequence of the contractibility of the space of almost complex
structures which are compatible relative to a given symplectic form:

Lemma 3.10. The maps from Fo((H, J;, (HO, J%)) to He(H, H®) is an acyclic Kan fibra-
tion.

Sketch of proof. It suffices to show that, given a cube in H, (ﬁ , H%) whose boundary is
equipped with a lift to f.(m, (HY, J%), we may extend this lift to the entire cube.
The gluing atlas of Hamiltonians determines a lift to a gluing atlas incorporating almost
complex structures, which provides a lift to a neighbourhood of the boundary. Since the
underlying topological type of the (pre-stable) Riemann surface in the interior of the
cube is fixed, we may now directly use the contractibility of the space of tame almost
complex structures. 0O

Combining Lemma 3.10 with Proposition 2.20 we conclude:

Corollary 3.11. The forgetful map

w2 Fo(H,T), (HO, %) — fM (R)s (3.9)
is a homotopy equivalence.

Next, we extend the notation from Equation (2.8), and given sequences (H, .J ;1 € Fh
and (H, J)? e FFk2 we write

(H, J§1 o; (H, J§2 (3.10)

for the sequence with k; 4+ ko — 1 pairs obtained by replacing the ith component of
H? with the vector H'. It is straightforward to lift the multicomposition maps from
Equation (2.22) to maps
O - fnl((H? Jal’ (H7 J)Zwi) ® fnz((Ha ']327 (Ha ‘]))

— Frnytno ((H, J;l o; (H, J;Q; (H,J)) (3.11)
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which equips F with the structure of a multicategory, which admits a forgetful multi-
functor to H.

3.2. Moduli spaces
Associated to each cube d in F,,((H,J), (H,J)) is a topological space
M(d) (3.12)

whose elements are equivalence classes of stable solutions to the Cauchy-Riemann equa-
tion by (z) associated by 0 to a point = € [0, 1]™. Concretely, if x lies in a neighbourhood
of a stratum f, then by (), which is valued in fo(m, (H,J)), is obtained by gluing
the data by according to the gluing parameters associated to this point by x. Part of the
datum of an element of this set thus consists of a pre-stable Riemann surface X, with
k + 1-punctures. The solutions that we consider have domain pre-stable curves ¥ with
k + 1-punctures equipped with an embedding

Y, > % (3.13)

whose complement is unstable, and which is compatible with the labelling of the punc-
tures in the sense that the marked points labelled by ¢ in ¥, and ¥ are connected by
chains of components in the complement of 3,. We partition the components of 3\ 3,
into Floer cylinders, which separate the marked point labelled by ¢ in 3, from X, or the
two sides of a node in X, and sphere bubbles. We thus consider maps

ur X — M (3.14)
satisfying the Cauchy-Riemann equation
(du— Xp, @ ax)™ =0 (3.15)

where the function Hy;, the 1-form asy, and the almost complex structure are determined
as follows:

e On a component of ¥, we use the data determined by 0.

e On a Floer cylinder, we use the data determined by the associated node of ¥, (i.e.
with respect to the identification with R x S' which is canonical up to translation,
we set Hy, = H, for the edge e labelling this node, the 1-form ay to be given by dt,
and the almost complex structure by Je).

o On a sphere bubble, the function Hy identically vanishes (as does ayx), and the
almost complex structure is given by the almost complex structure on M associated
by 9 to the point in ¥, to which this bubble is attached (or to the corresponding
points in S! if the bubble is attached to a Floer component).
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We associate to each solution of this equation the topological energy (cf. [37, Lemma
8.1.6])

E(u) = /u*w +a*dH N« (3.16)
= /‘du—XH®a|2dVOIE + dHy ) A a. (3.17)

The moduli space M (D) is then defined to be the space of such finite energy maps,
with the property that the asymptotic conditions on the two sides of each node agree,
modulo the equivalence relation which identifies two maps that are intertwined by a
biholomorphism over M preserving the Floer data. We have the following consequence
of Gromov compactness:

Lemma 3.12. The energy functional is proper on M(?).

Sketch of proof: We must show that a sequence of solutions of bounded energy has a
subsequence which admits limit. The projection to the base [0,1]™ of the family admits
such a subsequence. By construction, the domains of these subsequences converge in the
Gromov sense (namely, they admit subdomains, whose complements are thin annuli, on
which the conformal structure converges), as does the Cauchy-Riemann equation that
we consider (by the gluing construction). The result is now a standard application of
Gromov compactness for families of Riemann surfaces. 0O

3.3. Regular Floer data

We begin by formulating a notion of regularity for objects of F, in terms of the
union M(J) of the (uncompactified) moduli spaces M(J;) of Ji-holomorphic spheres
(for t € S) as well as the (uncompactified) moduli space M (.J, H) of solutions to Floer’s
equation

jo(du—Xp, @dt) = (du— Xpg, @dt) o J, (3.18)

on the cylinder. We write My (J) and M (J, H) for the corresponding moduli spaces
with one marked point.

Definition 3.13. A pair (J, H) is regular if the following conditions hold:

(1) All elements of M(J) which are represented by simple pseudo-holomorphic spheres
of vanishing Chern number are regular.

(2) All element of M(J, H) of virtual dimension strictly smaller than 2 are regular.

(3) The restriction of the evaluation maps

My (J) = St x M < My (J, H) (3.19)
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to the loci of simple spheres of vanishing Chern number and Floer cylinders of virtual
dimension strictly smaller than 2 are transverse (and in particular are disjoint).

In order to use the above notion, it is important to consider what it implies for the
space M(J, H) of stable solutions to Floer’s equation, in the context where the symplectic
form and the first Chern class are non-negatively proportional:

Lemma 3.14. If a pair (J,H) is regular, then all stable solutions to Floer’s equations
of virtual dimension strictly smaller than 2 are regular (i.e. the associated linearised
operator is surjective).

Proof. It suffices to show that these conditions imply that the stable solutions to Floer’s
equation of virtual dimension strictly smaller than 2 are given as follows: those of virtual
dimension 0 have domain a cylinder, and those of virtual dimension 1 have domain either
a cylinder or a pair of virtual dimension 0 cylinders.

To see this, it is convenient to temporarily formulate our discussion in terms of the
Fredholm index of a stable solution to Floer’s equation, which is one more than the
virtual dimension, and has the advantage that it is additive over the component, with
each sphere bubble contributing twice its Chern number. Since our assumptions include
the requirement that the moduli spaces of solutions to Floer’s equation which have
strictly negative virtual dimension are empty, and there are no spheres of negative Chern
number, the contribution of each component to the Fredholm index is non-negative, and
only those spheres of trivial Chern class contribute trivially. This means that a stable
solution of virtual dimension strictly less than 2 cannot carry any sphere bubble of
strictly positive Chern number, and that all its Floer cylinder components have virtual
dimension either 0 or 1. Finally, we use our assumption that the cycles swept by cylinders
and simple Chern 0 spheres in S x X are transverse (hence disjoint) to conclude that
the remaining possibility (of a cylinder carrying a sphere bubble) is excluded, since every
Chern 0 sphere is a multiple cover of a simple one. O

Remark 3.15. It may appear more natural to use the conclusion of the above Lemma as
a definition, but that would make later constructions more complicated. The essential
point is that one can prove that regularity for stable moduli spaces of virtual dimension
strictly less than 2 is equivalent to the regularity of the corresponding moduli spaces of
smooth cylinders, with the additional condition that the cycle they sweep be disjoint
from all pseudo-holomorphic spheres of Chern number 0. The issue is that, in this char-
acterisation, no reason for the disjunction is given, so it becomes difficult to work with
it in families.

We now extend this notion to multimorphisms in F: the linearisation of the Cauchy-
Riemann operator satisfied by each point in M(?) is a Fredholm map

C®(Z;u*TM) /auty — QO (S w*T M), (3.20)
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where auty is the tangent space of the space of biholomorphisms of ¥ which preserve
the Floer data on X (i.e. preserve the equivalence class of this point in M(?)). Assuming
that the corresponding point in [0, 1] lies in the interior of a face [0, 1]*, the deformation
of the operator associated to moving the point within this stratum defines a map

T[0,1)* — Q%Y (S;u*TM). (3.21)

We call the sum of the operators in Equation (3.20) and (3.21) the extended linearisation
operator.

In analogy with the situation for Floer cylinders, we associate to each cube 0 a pair
of evaluation maps

Mi(0) = X +— My (Jp) (3.22)

where the left hand side is the moduli space of solutions to Floer’s equation, with 1-
marked point, and the right hand side is the moduli space of pseudo-holomorphic spheres,
parametrised by the curves underlying 0, also with one marked point.

Definition 3.16. The family of Floer data 0 is reqular if the following properties hold:

(1) the extended linearisation operation is surjective for all elements of M(J,) which
are simple pseudo-holomorphic spheres of Chern class 0,

(2) the extended linearisation operator is surjective for all elements of M(d), whose
underlying curve does not contain any Floer cylinder or sphere bubble, and for
which this index is strictly smaller than 2, and

(3) the evaluation maps from these two parametrised spaces to the product of X with
the universal curve are transverse (and hence disjoint).

Repeating the argument of Lemma 3.14 for families, we have:

Lemma 3.17. If the family of Floer data 0 are regular, then the extended linearisation
operator is surjective for each element of M(d) whose virtual dimension is strictly less
than 2. O

We note that regularity is closed under taking boundaries, degeneracies, and symme-
tries, as well as multicompositions (products). This leads to the following;:

Definition 3.18. The multicategory of regular Floer data F"°€ is the sub-multicategory
of F with objects regular pairs (J, H) and morphisms regular Floer data.

3.4. Contractibility of the space of regular data

In the treatments of Floer theory using perturbations, one assumes that the Floer
data at a corner of the parameter space, together with a choice of gluing parameter,
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determine the data in some neighbourhood. This is sufficient to achieve transversality
in the monotone or exact setting because these assumptions ensure compactness of the
moduli spaces of solutions to pseudo-holomorphic curve equations of prescribed dimen-
sion, so that a gluing construction, relying on the implicit function theorem, allows one
to deduce regularity of all solutions in a neighbourhood from the regularity of solutions
on the boundary stratum. In general, however, the moduli spaces of pseudo-holomorphic
curves are not compact, as compactness only holds after bounding the energy. Without
a refinement of the existing methods, we thus cannot expect the existence of a gluing
parameter for which the glued solutions are regular.

However, the gluing atlas setup that we are using is more flexible than this naive
approach since it allows us, as in [1], to perturb the data in a neighbourhood of every
corner. Indeed, we allow the function by to vary with respect to the normal direction,
so that we have a dense open set of choices for which the subset of M(?) consisting of
elements of bounded energy is regular. Exhausting R as a countable union of bounded
above subsets, we conclude that the set of choices for which regularity holds is a count-
able intersection of dense open sets. Since we only need to perturb the almost complex
structure in order to achieve transversality, we conclude that every object of H lifts to
Fre&. Going further, we have:

Lemma 3.19. The inclusion of the multicategory of reqular Floer data F*°% in F induces
an equivalence of multimorphism spaces:

Proof. We construct a deformation retraction: for each cube 9 in F, we choose a regular
cube o' with the same underlying Hamiltonian data, so that 9 = 9’ if 0 is regular, and a
homotopy between them, compatibly with face and degeneracy maps. The construction is
inductive on the dimension of the cube, and relies essentially on genericity of regular data,
so that the data b'f underlying 9’ can be chosen to be an arbitrarily small perturbation
of the data by underlying 9, yielding a canonical path between them up to contractible
choice, and provides the desired deformation retraction. 0O

We complete this section with a proof of its main result:
Proof of Proposition 3.4. The construction of the Floer functor now follows from the
existence of coherent orientations in Floer theory. More precisely, Floer and Hofer [13]
treated the case of the differential on the Floer complex. In our setting, we count each

solution u to Floer’s equation by its (signed) count, weighted by a factor T#")  where
E(u) is the topological energy of u, which is defined as the integral

B(u) = / W+ @tdH A dt (3.23)

:/\du—XH®dt|2ds/\dt (3.24)
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where @ is the graph of u. Explicitly, the differential then takes the form

op] =Y Y (~1TEITEM, ], (3.25)

4 ueM’(p,q)

where [0,] and [o,] are generators of the free modules associated by index theory to orbits
p and ¢, and M (p,q) is the subset of M(H,.J) consisting of those (equivalence classes
of) solution with asymptotic conditions given by the orbits p and ¢, which in addition
have the property that the virtual dimension vanishes.

The chain map associated to each 0-cube and 1-cube of the multimorphism spaces is
defined in Symplectic Field theory [7], and adapted to the Hamiltonian setting in [41].
The signed contribution of each solution is weighted by T#(*), which the second formula
together with Equation (2.1) show lies in the Novikov ring (the first formula shows that
this is a topological invariant, which ensures that we indeed obtain a chain map).

The operations associated to 1-cubes appear in the above references as chain ho-
motopies establishing that the resulting homology-level operations are independent of
choice, and rely on the fact that the corresponding parameterised moduli spaces interval
acquire coherent orientations, relative an orientation of the parameter space. The same
argument thus applies to associate to each n-cube § a map of degree —n, obtained from
the components of M(§) of virtual dimension 0 (which are regular by our assumptions).
The fact that this map depends on a choice of orientation on the cube implies its com-
patibility with symmetries, and its compatibility with compositions follows by the same
argument as in [13]. Finally, considering those moduli spaces M(J) of virtual dimen-
sion 1, we conclude the compatibility with face maps by observing that the boundary
of these moduli spaces are either associated to the faces of § or to breaking of Floer
trajectories. O

4. The Floer algebra of a compact subset

The purpose of this section is to prove Theorems 1.4 and 1.8: we thus associate to
each compact subset K of M a chain complex SC’X/[ S (K), equip it with the structure
’ 0

of an algebra over the operad C.( fﬂ?) of symmetric normalised cubical chains (see
Appendix B.1.3) on the moduli spaces of framed genus-0 stable Riemann surfaces, and
prove the properties listed in the introduction. We particularly refer to Section 1.2 for a
review of symplectic cohomology with support constraints.

To formulate the construction, we write Fx for the full sub-multicategory of F whose
objects are pairs (H,J) with H negative on K.

Remark 4.1. The reader who prefers to avoid virtual methods may substitute the multi-
category of regular Floer data 779 for F in the above paragraph under the assumption
that M satisfies the hypotheses of Proposition 3.4, and obtain the corresponding multi-
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category F ¥ associated to a compact subset K of M. None of the arguments that we
will give in the remainder of the paper will depend on whether one uses Fy or F 9.

—R
By restricting the forgetful functor 7 : F — fM,, as well as the Floer multi-functor
CF*: F — Chy.,, we obtain a diagram of cubically enriched multifunctors

Fr = Chy,,
l” (4.1)
—R
Mg

Remark 4.2. In complete generality, the ring A>o will be the Novikov ring over a ground
field of characteristic 0, and the multicategory Chy., denotes the multicategory of Z/2-
graded complexes. As discussed earlier, in the Calabi-Yau case, one can work instead
with Z-graded complexes, and, under the more general hypotheses of Proposition 3.4,
one can assume that the ground ring is given by the integers. None of our arguments are
sensitive to this difference, so, in this regard, we shall keep the notation ambiguous in
what follows.

Applying the functor of symmetric normalised cubical chains from Appendix B.1.3, we
—R
wish to fill in an arrow Ci(f M, ) — Chy_, in a ‘universal’ way. The general framework

for doing this is a homotopical version of the operadic Kan extension, and SC* (K)

M, My
will be defined as its completion.

We shall give an explicit construction of the operadic Kan extension which is es-
sentially an unwinding of the standard bar construction involving the free-forgetful
adjunction, see for example Section 13.3 of [18] in the operad case. It generalizes the
left homotopy Kan extension of modules over dg-categories, e.g. Section 5 of [30]. We
prove Theorem 1.4 in Section 4.3 using only the explicit construction, but then pro-
vide the more abstract formulations in Sections 4.4—4.7 in preparation for the proof of
Theorem 1.8 in Section 4.8.

4.1. The chain complex

We start by providing an explicit description of the chain complex S CX/I SR (K). For
this we introduce some definitions. A levelled tree of height n is a collection Vo?. ey Vit

of finite sets together with surjections f; : V; — V;_1. We take Vj to consist of one
element, which we call the root. We call V,, 11 the set of leaves. The associated abstract
tree has vertices the union of the sets V; for 0 < i < n+ 1, and has edges which connect
each element v; € V; to its image under f;. An isomorphism of levelled trees consists of
bijections between the ith level vertices commuting with the defining surjections.
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Definition 4.3. A decorated levelled tree is a levelled tree together with the assignment of
an object of Fi for each edge. We write T, (K) for the set of trees with n-levels.

Let T =V,41 — -+ — V, be a decorated levelled tree. We associate to each vertex v
of T above the root a chain complex C,, defined by downward induction along the levels
in the following way. To each leaf labelled by an object (H, J), we associate the chain
complex CF*(H, J). Suppose inductively that we have associated to each vertex v at the
level k + 1 a chain complex C,, with the base case as above. Given a vertex w at the
level k and an ordering o on the incoming edges, let (v1,...,v,,) be the corresponding
set of vertices and (Hﬁ% = ((H1,J1)s- -, (Hm,Jm)) be the corresponding tuple of
Hamiltonians. Let O, be the set of orderings of the incoming edges, and define

Cp = <® Ch, ®"'®Cvm®C*(fK(mo§(HwaJw)))> . (4.2)
S

0€Q,,

m

Here the subscript S,, means that we are taking coinvariants (the quotient under the
subcomplex generated by elements of the form z — o - z for 0 € S,;,), under the action
defined by the maps

Cp, ®...0C,, & C.(Fk((H, J;O; (Huy, Jw))) =
C*(}—K(U : (H, J30§ (va Jw))) ® CO'(Ul) ®...® Ca(vn)' (4~3)

We now associate to the tree T' the complex

CF; = ( @ Cp, @...0Cy, ®C*fﬂ]§(k)> , (4.4)
S

0€000t &

where we assume that the root has k incoming edges. This complex is pictorially repre-
sented by Fig. 4. Taking the direct sum of these complexes over all trees of height n, we
obtain the direct sum

CF}, e, () = @ cr;, (4.5)
TeTn(K)

which is equipped with the differential d;,;, which is the sum of the differentials d for
each complex CF7..
For each integer ¢ between 0 and n, we construct a chain map

di:CFy o (K) = CFy om - (K) (4.6)

as follows: the map dj collapses the edges between the root and the first level by project-
. . ——R . . ..
ing from the multicategory F to the operad fM, and applying operadic composition.
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Fig. 4. A tree of height 2, labelled by an element of the operadic bar construction, where A stands for the
algebra CF, M for the multicategory C.F i, and O stands for the operad C, fﬂg{

For 0 < i < n, d; is given by collapsing the edges between the level ¢ and 7 + 1, and
applying composition in the indexing category F. Finally, d,, is given by collapsing the
edges between the nth level and the leaves, and applying the Floer functor.

Definition 4.4. The operadic symplectic cochains with support K is the degreewise com-
pletion, with respect to the valuation of the Novikov ring, of the direct sum of the shift
by n of the complexes associated to trees of level n,

SCJTLJ‘WHOQ (K) = @ CFM,fﬂé)R,n (K)[-n], (4.7)
equipped with the differential
i=0

Having given an explicit definition of our chain complex, we now give a slightly more
abstract description, using simplicial methods, which will be useful when describing
the algebraic structure. We start by recalling that a simplicial chain compler A} is
a contravariant functor from the simplex category to the category of chain complexes.
Explicitly, this amounts to the assignment of a chain complex A’ to each natural number
n, together with chain maps corresponding to the face and degeneracy maps, that satisfy
the simplicial identities. The geometric realization® functor takes each simplicial chain

2 Here we are slightly abusing terminology, as it would be more appropriate to call this the geometric
realization of the associated semisimplicial chain complex. We do this is only for convenience. We could
have used the normalized chain complex as in [48][Section 3.1] as well. The equivalence of the constructions
can be shown using the discussion in [21][Section III.2]. We will keep abusing terminology the same way in
the rest of the paper.
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complex to an ordinary chain complex, by taking the direct sum of the shift by n of A%,
equipped with the differential from Equation (4.8).

Now, the operations in Equation (4.6) are exactly the face maps of a simplicial complex
CF}k\J, fﬂ?},.(K ). The degeneracy maps s; correspond to replacing each vertex at the ith
leaf by a pair of vertices labelled by the same Hamiltonian connected by an edge labelled
by the identity. From Definition 4.4, we have:

Lemma 4.5. The complex of operadic symplectic cochains with support K is isomorphic
to the completion of the geometric realization of CF* __r (K). 0O

M,fM o
4.2. The algebra structure

As indicated above, we shall use simplicial methods in order to describe the algebra
structure. The main benefit is that we thus avoid getting mired in formulae.

The key definition is that of a simplicial C, fﬂ?—algebr&, which is a contravariant
functor from the simplex category to the category of C. fﬂg{—algebras.

*

M,fﬂﬂs,-(K) is the underlying complex of a sim-

Lemma 4.6. The simplicial complex CF

plicial C, fﬂ](}f—algebm.

Proof. For any n and any m > 1 we construct a chain map

% ®m _ R .

(O, xm (K)) @ Cof M (m) = CF}y o (K) (4.9)

as follows. Recall from Equation (4.4) that CF”]‘W AR (K) consists of summands CF,
J My

for trees of height n obtained by taking coinvariants of the sum

CFr= @ Co®...9C,, ®CfM, (k) (4.10)

0€0r00t

Taking the direct sum of these chain complexes, we define

CFy it n(K)= € CFy. (4.11)
TeTn(K)

There is an obvious chain map

* ®Xm _ R —
(CFypmzaK)) @ Cof My (m) = CF oy iz (K, (4.12)

by applying the operadic compositions. To obtain a map as in Equation (4.9) we write
%

CF pp 7% i, (K) for the direct sum in the right hand side of Equation (4.11), associated
to trees with m incoming edges at the root, and obtain a direct sum decomposition
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CFM,fmoR,n(K) = @CFM,fMOR,n,m(K)' (413)

Then the map of Equation (4.12) splits as a direct sum of maps

* —— — R
(CF s g8y () © -+ & CF g g i, () ) © Cof My ()
— CF i s (K, (4.14)

which are equivariant with respect to the action of Sk, X --- x S, which on the right
is induced by the inclusion into Sy . We thus take the map in Equation (4.9) to be
the induced one on the quotient.

We leave the verification of the compatibility of this construction with the face struc-
ture to the reader with the following indication: for i« = 0, we use the fact that the
projection map from F to fﬂf is a map of multicategories, for 0 < i < n, we use
the associativity of the operations on F, while for ¢ = n, we use the fact that CF is
an algebra. In all cases, the fact that operations are strictly compatible with the ac-
tion of the symmetric group follows from the equivariance conditions in the definition of
multicategories and algebras over them. O

The geometric realisation functor is (lax) symmetric monoidal, via the Eilenberg-
Zilber shuffle maps [12] that combinatorially encode the standard simplicial subdivision
of each prism AP x A? into a union of simplices APT4. This map immediately gives an
algebra structure on the geometric realisation of each simplicial algebra. The details are
given below in a more general context in Section 4.6 below.

4.3. Proof of Theorem 1.4

The proof of the first main result asserted in the introduction is now a completely
straightforward consequence of the construction:

Proof of Theorem 1.4. By construction, the multicategories Fx are sub-multicategories
of F, and thus each inclusion K C K’ gives rise to an inclusion Fx: C Fk, and hence
an inclusion of sets of decorated levelled trees T,(K’) C T,(K), which itself gives an
inclusion of complexes in Equation (4.5)

CFLJW%(K’) C CFLJW@W(K). (4.15)

Since the inclusions of sets of decorated levelled trees are compatible with the face maps
associated to collapsing levels, we obtain a map of simplicial chain complexes

* ! *
CF]M,fﬂHOK,o(K ) = CFM,fﬂg§7.(K)7 (416)
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which defines the desired map of operadic symplectic cochains with support K after
completions.

Given that the inclusion in Equation (4.15) is given by inclusion of trees, it lifts to an
inclusion

CF i n(K') = CFyp piq® o (K) (4.17)

of the complexes whose coinvariants give rise to the operadic symplectic cochains. In-
specting Equation (4.14), it follows that the restriction map is compatible with the
operadic action.

Since the strict compatibility of maps associated to a triple inclusion K ¢ K’ C¢ K" is
immediate from the inclusion of multicategories Fi» C Fg+ C F, it remains to identify
the action of the symplectomorphism group. Every symplectomorphism v of M induces
a multifunctor

Yo F— F, (4.18)

which at the level of objects and multimorphisms is given by pre-composing the Hamil-
tonian data with ¢, and conjugating the almost complex data by it. This action restricts
to a multifunctor from Fg to Fyx, with inverse the multifunctor associated to ¢»~!. The
induced map yields the isomorphism in Equation (1.12), which is compatible with the
operadic action by the functoriality of our construction of the structure maps.

Since (o). = V. 0¢, as multifunctors on F, the action is eminently compatible with
composition, and it is compatible with restriction map because 1, preserves inclusions,
in the sense of inducing, for each inclusion K C K’, a commutative diagram

Frr —— Fg
. . (4.19)
[

Forr —— Fyk.
4.4. Differential graded multicategories

At this stage, the reader can provide an explicit proof of Theorem 1.8, along the lines
of the proof of Theorem 1.4 presented above. However, we prefer to avoid the morass
of notation that would appear in such a direct approach, and present an even more
abstract construction of the left Kan extension giving rise to the symplectic cochains
with support. We shall thus take a small detour to explicitly describe the theory of
multicategories enriched over chain complexes, which is a special case of the notion of
enriched multicategories discussed in Appendix B.2.

Let Chg be the category of chain complexes over a fixed commutative ring R with
its standard symmetric monoidal structure given by tensor product of chain complexes.
The reader should keep the case where R is the Novikov ring in mind, since that is the
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only one that we will use. If we do not write anything under a tensor product sign it
means that it is the tensor product of chain complexes over R.

Throughout this section we use the word multicategory to mean a differential graded
multicategory (a special case of Definition B.9): writing X for the object set, this means
that the multimorphisms C(Z;y) with inputs a non-empty sequence ¥ € X™, and output
an element y € X are given by an object of Chg. The multicomposition operations, are
given by R-linear chain maps

o: ®C(fz,yl) ®C(Y;2z) = C(T oy, z) (4.20)
i=1

for each sequence of objects ¥ of length n, and each collection of n-sequences of objects
T1,...,Tn, and where T o f denotes the replacement of the ith element in 3 by the
sequence ;. Note that Equation (4.20) corresponds to applying the operations o; from
Equation (B.28), simultaneously for all elements of the sequence o;. The fact that such
an operation is well-defined (i.e. independent of the ordering of the multi-compositions)
is a consequence of the axioms. The unital structure is simply an element in C(z, z) for
each object z, and we have the symmetry isomorphisms

o": C(.’L‘l, <o Tns y) - C(mo(l)a s 7$a(n);y) (4'21)

given by R-linear chain maps.

The properties satisfied by these data are those given in Section B.2, which the reader
can find formulated in terms only of the composition operation o at all inputs in Defini-
tion 2.2.21 of [33]. Following the standard convention, we call a multicategory with one
object an operad.

Note that there is a forgetful 2-functor from (differential graded) multicategories to
(differential graded) categories, which forgets n-ary multimorphism spaces with n > 1.
Let us call the category associated to a multicategory its underlying category. There is
a functor in the other direction, which associates to a category the multicategory with
the same morphism (1-ary multimorphism) spaces and n-ary multimorphism spaces with
n > 1 are set to 0 (the chain complex with one element). By abuse of language, we will
call such a multicategory a category. Therefore, our constructions for multicategories will
specialize to constructions for categories. Note that a multifunctor C — D where C is a
category is nothing but a functor between the underlying categories.

The closed symmetric monoidal structure on Chp gives rise to a multicategory which
we denote by Ch;l%g , with object set those of Chg, and multimorphisms defined by

Ch%g (C_", D) := Hom, (é C’i;D> . (4.22)
i=1

We omit writing down the standard definitions of multicompositions and symmetric
group actions.
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An algebra over a differential graded multicategory C is simply a multifunctor
C — Ch¥. (4.23)
Algebras over C form a category that we will denote by
Alge. (4.24)

When C is a category, an algebra over C is sometimes called a module over C or a C-space
in the literature. We will not make a distinction and continue to think of categories as
special cases of multicategories.

4.5. The free algebra functor

Given a multicategory M, let us denote by Col(M) the colours of M, which is the
smallest multicategory with the same objects as M. Precisely, this means that the only
multimorphisms in Col(M) are the endomorphism spaces which are all assumed to be
the unit object of Chg (which is the ground ring considered as a complex concentrated
in degree 0). Note that the category of algebras over Col(M) has objects consisting of a
collection of chain complexes over R indexed by the objects of M, and morphisms given
by collections of maps of chain complexes.

We have a forgetful functor (U stands for underlying)

U AlgM — AlgcmM. (4.25)

More interesting is the fact that U admits a left adjoint: the free algebra functor Fa, :
Algcor m — Algaq, which we now construct.
Let C' = {Ci}zcobm) be an object of Algcol a. For every y € Ob(M), we define

oo
PBlc.e...0C, e P M| . (4.26)
n=1 FEOL(M)™ s,

Fam(C)(y) :
Here, the subscript S,, means that we are taking coinvariants of the chain complex
(Czy ®...0Cy, ) ® M(Z;y) under the action of S,, defined by the maps
Co, ®...0Cp, @M(Z5y) = Co(z) @ ... ® Cpg,) @ M(0o - Z;y). (4.27)
Using the multicompositions in M one can define chain maps
M(Z;y) = Homeng (Fam(C)(21) @ .. @ Fad(C) (2 ); FM(C) (), (4.28)

which are compatible with multicompositions and the symmetric structure. There is a
natural isomorphism
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Algm(Fm(C), A) ~ @ Homeny(Ca, UA,) (4.29)
z€O0b(M)

certifying that indeed the free algebra functor is left adjoint to the forgetful functor.
4.6. Geometric realization preserves algebras

Let us denote the category of simplicial objects in Algaq by Algﬁ,l. Note that an M-
algebra A can be thought of as a simplicial M-algebra whose n-simplices are given by
A for all simplicial degrees n > 0 and all face and degeneracy maps being the identity.
For the next statement, we also recall that the geometric realization C : Chﬁ — Chpg
maps every simplicial complex to the direct sum of the (shifted) underlying complexes,
equipped with the alternating sum of the face maps. The fact that this is a symmetric
monoidal functor is well-known, and goes back to Eilenberg and Zilber’s idea [12] for
comparing the geometric realisation of a product of simplicial sets with the product of
the geometric realisations. The reader seeking a reference for the exact statement we
use (for simplicial chain complexes and geometric realization as a semisimplicial chain
complex) can find the proof in [42, Proposition 2.16 and 2.17].

Lemma 4.7. The Eilenberg-Zilber shuffle map determines a lift
C, : Alghy — Algpm (4.30)
of the geometric realization functor to the category of algebras over M.

Sketch of proof: The structure of a simplicial M-algebra consists of maps of simplicial
chain complexes

AQ(21) ® ... ® A (zn) ® M(T59)e — AZ(Y), (4.31)

where M(Z;y)s denotes the constant simplicial chain complex.
We apply C., to this map and pre-compose it with the shuffle (Eilenberg-Zilber) map
to obtain

C.AB (1) ® ... ® CAR(2,) ® CL(M(F y)s) = C.AX(y). (4.32)

Noting that Co(M(Z;y)e) = M(Z;y), we get the desired M-algebra structure
maps. 0O

4.7. The extension functor Lm, : Algpm — Algo

Given a map M — O of multicategories, our goal in this section is to finally construct

the functor L7, : Algng — Alge in the abstract setup; the algebra CFj\/f AR (K') which
5 0:®
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was explicitly constructed in Definition 4.4, is the outcome of applying this functor to
the Floer algebra, and to the forgetful map from Fg to fﬂgR. This point of view will be
important in Section 5 below, where we compare our model of symplectic cohomology
with the one coming from the mapping telescope.

Let us first define a functor on algebras over multicategories of colours Col(w), :
Algcoim — Algcol © which maps an algebra x — C,, to the algebra

vy P G (4.33)

We define a simplicial object (A7).As in Algo by the formula
(Am) A, = (Fo o Col(n)s o U) o (FpU)"(A). (4.34)

It is clear how all degeneracy maps and all but one of the face maps (for each n > 1)
are defined by the functoriality of Fp o Col(n). using the unit and the counit of the
free-forgetful adjunction. For those last maps we construct an algebra map

Fo o Col(r), o U o Fay(D) = Fo o Col(r), (D), (4.35)

where D is an Ob(M) indexed collection, using 7w to turn multimorphisms in M to
multimorphisms in O and then using multicompositions in O.

Definition 4.8. The extension of A along 7 is the geometric realisation
LA = C.(AT), A,. (4.36)

Going back to our geometric context, the definition we gave in Section 4.1 can be
translated as follows:

Lemma 4.9. The operadic symplectic cochains with support a compact subset K are equal
to the completion, with respect to the valuation of the Novikov ring, of the extension of

* . . -—R
the restriction of CF™ to Fi along the projection w to the chains on fM, :

o —

SC* __u(K)=Lm, (CF* |Fx). O (4.37)

M, MG
4.8. Proof of Theorem 1.8
We are now ready to prove the second main result asserted in the introduction:

Proof of Theorem 1.8. We proceed to check the asserted properties as they are listed.
First, to construct a map from the Floer cochains of every Hamiltonian H which is
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negative on K, we consider the associated inclusion of the category (g, ;) with one
object in F. This inclusion induces a map of extensions

Ln, (CF* | — Lr. (CF* | Fx) . (4.38)

*(H,J))

The left hand side is, essentially by definition, the geometric realisation of the constant
simplicial functor on the free C, fﬂ? algebra on the Floer complex CF*(H,J), and
thus has a canonical inclusion of this free algebra, associated to the O-simplices of the
simplicial construction. To see this, note that, in the formula corresponding to Equation
(4.34), we have that the underlying functor on the category of modules over *g sy is

the identity functor, and hence so is F A map of such algebras thus canonically

*(H,J)
corresponds to a map of complexes

CF*(H, J) — UL, (CF* | F). (4.39)

Composing with the completion maps yields the map whose existence is asserted in
Equation (1.13).

Next, we produce the homotopy in Diagram (1.14). Considering the inclusion of a
category F,, with objects (Hp, Jy) and (Hq, J1), and a unique morphism between them
given by a continuation map x. The morphisms from CF*(Hy, Jo) and CF*(Hy, J1) to

SC’]*W R x (K) both factor through the underlying complex of L, (CF* |F,;). Next, we
0

consider the projection map p from F, to the point. The inclusion of the unit in fM,
induces a map

ULp, (CF* |F,.) — UL, (CF* | Fx), (4.40)

and the maps from both CF*(Hy, Jo) and CF*(Hy, J;) factor through it. It thus suffices
to show that the following diagram is homotopy commutative:

CF*(H(),JO E— CF Hl,Jl)

\ l (4.41)

ULp, (CF* |F,.) .

We now analyse the target of these maps. Since the target category of p is the point,
the map denoted by Fp in Equation (4.34) is the identity map. The 0-simplices of the
associated simplicial chain complex are given by

(Col(p), o U) o CF* |z, = CF*(Hy, Jo) & CF*(Hy, Jy), (4.42)

and the two maps in Diagram (4.41) are given by the inclusions of these factors.
We claim that there is a map from CF*(Hy, Jy) to the 1-simplices, whose composition
with the face map for n = 0 gives the inclusion of the first factor in the right of Equation
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(4.42), and whose composition with the face map for n = 1 gives the composition of x
with the inclusion of the second factor. To see this, we compute from Equation (4.26)
(which simplifies significantly in the context of categories) that the value on the object
(Hy,J1) of the algebra obtained by the composing CF* with the forgetful functor and
then the free functor is

Fr U (CF*|£,) (Hy, J1) = CF*(Hy, Jo) & CF* (Hy, J1), (4.43)

where the first summand corresponds to the identity of the object (Hyp,Jy), and the
second to the unique morphism from this object to (Hi,J1). Tracing through the
construction, we find that the inclusion of this first summand provides the desired ho-
motopy. O

5. Comparison of the two models

In this section, we prove Theorem 1.9, which establishes the non-triviality of the
operadic symplectic cochains with support by proving that this cochain complex is ho-
motopy equivalent to the existing model for symplectic cochains with support.

While this section is fairly long, the basic ideas underlying the comparison can be
explained quite succinctly: as in Section 1.5 denote by Fik . the subcategory of the 1-
categorical part of the indexing multi-category Fx whose morphisms project to the
unit in fﬂg{(l). The most significant difference between the telescope construction
and the model SC;\‘/[’fﬂR (K) is that the former is a model for the homotopy colimit

0
of the Floer functor over Fg ., while the latter involves the entire multicategory. We

will use the notation SC},;(K) to denote the completion of some unspecified model
for the homotopy colimit of the Floer functor CF* over Fk ., which is well-defined
(up to homotopy equivalence) because the homotopy colimit is itself well defined up to
contractible choice.

We are thus led to consider the following diagram of differential graded multicategories

C.Fgo — CuFg —2 ChyY

J Iﬂ 7 (5.1)

AZO % C*fﬂ](lf

in which the dashed arrows are the left Kan extensions whose completions give rise to
the two models of symplectic Floer cochains that we are trying to compare.

The statement that the two models are homotopy equivalent then follows from a
general argument asserting this conclusion for any such diagram where the left square
is a (homotopy) pullback square. The fact that we do obtain a pullback square in our
geometric situation is ultimately a consequence of the results of Section 2, specifically
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of Proposition 2.20. Since the statement that a square of topological spaces is a homo-
topy pullback square is equivalent to the statement that the induced map of fibres is a
homotopy equivalence, it should not be surprising that a proposition asserting that a
projection map has contractible fibres implies the desired result.

If we had formulated our operadic constructions in a fully homotopically invariant way,
e.g. using a theory of operads internal to quasi-categories, the above paragraph would
be an outline of the proof, and its implementation would be shorter than the argument
we provide, by relying on multiple citations of results in Section 3 of the manuscript
[34]. Since the statements in the introduction are about operads in the ordinary differ-
ential graded sense, such an approach would require us to then further use a comparison
between these two different notions.

We prefer to give a longer, explicit argument, relying on classical results of homotopical
algebra, by comparing operadic left Kan extensions to categorical Kan extensions.

5.1. Overview of the proof of Theorem 1.9

It is clear from the phrasing of the problem in the paragraphs surrounding Diagram
(5.1) that the missing ingredient is a general statement about multi-categories. For this
reason, until the end of the proof, everything will be stated in general algebraic terms.

As in Sections 4.4-4.7, we fix a commutative ring R and the following data:

« a differential graded multicategory M

¢ a differential graded multicategory O, which we assume to only have one object
« a differential graded multi-functor 7 : M — O

e an Me-algebra A: M — Chng

We call this the abstract setup in this section. The construction of Section 4.7 can be
formulated as the construction of such data by applying the normalized chains of sym-
metric cubical sets (and the resulting functor from Ch% to Ch‘ég ) to the Floer theoretic
constructions from Sections 2 and 3. To be specific R = A>g, C.Fx plays the role of
M, C;fﬂ? of O, C, applied to the multifunctor Fx — fﬂ? plays the role of 7, and
CF* that of A. In Section 4.7, we explained the construction of an O-algebra which is
a model for the homotopical operadic left Kan extension of A via m. We formulated the
construction as a functor

L7y : Algpm — Algo. (5.2)

On the other hand, by taking the fibre of 7 over the unit of O, we obtain a category
which we denote by M. The homotopy colimit of A over M, is equipped with a natural
map of chain complexes

hocolim A — L, A. (5.3)

*
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Our goal is to prove that this map is a homotopy equivalence. We will need a key
intermediate step where we use a functor from the category of multi-categories to the
category of symmetric monoidal categories, called the PROP functor (see Section 5.4.1
in [35] and also Section 5.2 below), and which we denote by P. From a sufficiently high-
level perspective, the functor P encodes multicategorical data in terms of equivalent
categorical data, and the main difference between the two approaches is how the notion
of symmetry is encoded.

Remark 5.1. While not completely standard, the version of the PROP functor that we
will consider will rely on an auxiliary choice of ordering of the set of objects of the
multicategory which we consider. We stress that this ordering is not going to be arising
from geometric considerations. Rather, we choose it because it simplifies the compar-
ison between the constructions that we will associate to the PROP and the operadic
construction.

We will ignore part of the structure and consider the target of P as simply the category
of (differential graded) categories. As a first step, we note that if M is a multi-category
(with an ordered set of objects), then the objects of PM are ordered sequences of objects
of M. We can apply the PROP functor to our abstract setup and obtain the following
data:

« a differential graded category PM,

¢ a differential graded category PO,

o a differential graded functor Pw : PM — PO, and

o a differential graded module PA : PM — Ch%q (i.e. a PM-algebra).

We are thus at the position where we have to compare three different chain complexes:

(1) (Operadic) The left Kan extension associated to the multifunctors = and A: L, A,

(2) (Categorical) The left Kan extension associated to the functors Pm and PA:
LPr,PA,

(3) The homotopy colimit of A over M,.

The inclusion of categories M, — P.M induces a comparison map between the second
and the third complex, and we shall discuss, in Section 5.7 a criterion for when it is
quasi-isomorphism. We shall also show that there is always a map comparing the first
and the second of these chain complexes, which is analogous to the map from the Borel
construction to the quotient by a group action. In order for the comparison map to be a
quasi-isomorphism, we need additional assumptions. Before we state them let us make
an ad hoc definition extending, to the Z/2-graded case, the notion of a bounded below
and free Z-graded right module (i.e. one which is a free A-module in each degree, and
vanishes below some dimension).
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Definition 5.2. A Z/2-graded right chain complex over A is called bounded below and free
if it is obtained by collapsing the grading of a bounded below and free Z-graded right
A-chain complex.

Definition 5.3. The abstract setup is said to satisfy the freeness hypothesis if the following
conditions hold:

(Identity) The endomorphism algebra of every object & of Ob(PM) is given by the
group ring on the subgroup Aut(Z) of permutations of [n] that preserve the map

Z:[n] = Ob(M)
PM(%; &) = R[Aut(Z)]. (5.4)

(Freeness 1) For every pair of objects & and ¢ of P(M), the morphism complex
M(Z; %) is a bounded below and free right R[Aut(Z)]-chain complex.

(Freeness 2) For every n > 1, the complex O(n) is a bounded below and free right
R[S,]-chain complex.

Note that Freeness 2 property implies that O(n) is a bounded below and free right
R[G]-chain complex for all subgroups G C S,, by an elementary argument

The comparison of Operadic (1) and Categorical (2) Kan extensions as above is the
subject of the following result, whose proof takes up the bulk of this section:

Proposition 5.4. Assuming that the freeness hypothesis holds, the value of the module
LPw.PA on the unit object of PO is chain homotopy equivalent to the complex under-
lying L, A.

Remark 5.5. A similar result was obtained in [28, Proposition 1.15], using more abstract
model categorical arguments, but it does not appear that his result directly implies ours.

The above result reduces the desired equivalence from Theorem 1.9 to a comparison
between the homotopy colimit and the categorical left Kan extension, which follows
whenever the diagram

M, —— PM

i l,r (5.5)

* — PO

is a homotopy pushout square. This is exactly the point that we alluded to in the discus-
sion surrounding Diagram (5.1), but, having passed from multicategories to categories,
both the formulation and the proof become more classical, as we discuss in Section 5.7
below.
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5.2. PROP functor

We now recall the construction of the PROP functor P which associates to a multi-
category with an ordering of the set of objects a symmetric monoidal category. We will
not use the symmetric monoidal structure so we only explain the underlying categorical
structure below. Throughout, all constructions are enriched over Chg.

Definition 5.6. Given a multicategory M, define the associated PROP category P(M)
to have

(1) Objects Ob(P(M)) given by (finite) non-decreasing sequences of objects of M. We
write Os*(M) for those sequences of length k.

(2) Morphism complexes between objects @ € Os™(M) and b € Os™(M) of P(M), given
by the direct sum, over all maps f : [n] — [m] of the sets labelling the sequences, of
the tensor product over all elements b; of the output sequence b of the complex of
multimorphisms with (i) inputs the objects of @ labelled by f~!(j) and (ii) output
bjt

PM)@b) = € QMils-1):by). (5.6)

filn]=[m] j=1

(3) The composition structure is defined in [38, Construction 4.1], using the composition
in the multicategory along with its symmetric structure.

We clarify that the choice of ordering does not enter in the description of the mor-
phisms; in this way, it should be clear that PM is a full subcategory of a category whose
objects are all (finite) sequences of objects.

Note that for o € S,, whose action on @ is trivial, the symmetric structure of the
operad M induces permutation morphisms o* € P(M)(d,@). These will play a key role
in the comparison argument.

Remark 5.7. The construction of composition in [38] is much more clear when the colours
of all objects in question are different. One first composes only using the composition
structure in M and then uses the symmetric structure so that the domain of the compo-
sition comes out correctly. In the general case where not all colours are different, we use
the same formula - even though it is less obvious to see why this should be the formula
if all colours are the same for example. Associativity is proved by a relatively painful
explicit check. There is a third definition of multicategories, called fat multicategories
in Appendix A.2 of [33], which makes the check of associativity trivial. Yet now the
work is shifted to proving that a multicategory gives rise to a canonical fat symmetric
multicategory.
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Remark 5.8. When M is an operad there is a single object, and no auxiliary choice is
needed. In this case, B. Fresse pointed out to us that there is a canonical isomorphism

PM(nm;m)~ P R[S,] ®g(s,, 19--0R(S,,,] Q) M(n;) | - (5.7)
j=1mg=n =1
‘TLjEN

This is sometimes used directly as the definition of the PROP functor in the operad case,
e.g. [36], Example 59. The isomorphism can be constructed using the same idea as that
of Proposition 5.12 below.

The assignment P lifts to a functor from multicategories (with orderings on the choice
of objects, and multifunctors preserving this ordering) to categories in a straightforward
way: given a multi-functor F' : M — M’ P(F) acts on objects by assigning to a
map [n] — Ob(M) its post-composition with Ob(F) : Ob(M) — Ob(M’). From this
description the action of P(F') on morphisms is obvious.

Given an algebra A : C — Ch%g , we obtain a functor PC — PCh?DLg. Note also that
there exists a canonical (symmetric monoidal) functor PChng — Chng , which sends a
sequence of vector spaces to their tensor product. By PA, we thus mean the PC-algebra
obtained by the composition

PC - PChpr — Chp. (5.8)
We conclude:

Lemma 5.9. The PROP construction induces a functor

P: Algpm — Algpapg. O (5.9)

As discussed in Section 4.4, the embedding of categories into multicategories implies
that the constructions of Section 4.5-4.7 directly apply to algebras over PM. In practice
the formulas simplify significantly. For example, there is no need to pass to coinvariants in
the construction of the free algebra because the group action is trivial. In fact, Equation
(4.26), which is our formula for the free algebra functor, simplifies even further for the
specific algebras over PM that we will consider:

Lemma 5.10. If D = {Dgz}zconpr) is a collection of chain complexes satisfying the
condition

Dz=D,;, ®...9D,, (5.10)

then the free algebra on D is
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Frm(D)(9) =

&y D Do®...0D,, @ | @Ml | |- o (5.11)

n=1FcOb(M)" \ f:[n]—[m] J=1

We note that the hypothesis of the above result is satisfied whenever D is obtained
by applying the forgetful functor to the image of an M-algebra A under P.

5.8. From the bar construction to the operadic extension
We now construct a chain map
LPm.PA(x) — Lm, A(%), (5.12)
which we will show in the next two sections to be a quasi-isomorphism under the as-
sumptions of Proposition 5.4. This is where the choice of ordering becomes essential,
and the starting point is the following formula for the (operadic) free algebra functor in

terms of data involving the associated PROP:

Lemma 5.11. Denoting by Aut(Z) the permutations of [n] that preserve a map Z : [n] —
Ob(M), we have a natural isomorphism of chain complexes

Fu@W) =D | D Cun®...®C, @M(iy) (5.13)
n=1 \ Z€Ob(M)» s,
=B P (€. ®C,) Drpum ME:y), (5.14)
n=1z€0sm(M)

for each object y. O

We shall be specifically interested in a formula for the composition of the PROP
functor with the free and forgetful functors applied to operadic algebras. The next result
provides such an expression; Fig. 5 justifies why we refer to it as untangling.

In the statement of the next result, the symbol U refers to chain complex obtained by
forgetting the operadic operations on an algebra, as in Section 4.5, so that the composite
FapUD is the free algebra on the complex underlying D.

Proposition 5.12 (Untangling trick). For every M algebra D and an ordered sequence i
we have a canonical isomorphism

PFMUD()) = @ PM(F§) @paua) PD(). (5.15)
ZEOs™ (M)
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4 2 3 1 3 1 1 3 2

Ty Ty To T3 T3 Ty Ty Ty T3 Ty
Y1 Y2 Ys Ya

1 1 1 1 2 2 3 3 3 4

] 5 T3 x x] x5 x x5 xy ]
Y1 Y2 Y3 Ya

Fig. 5. Untangling a forest of 4 corollas.

Proof. By definition PF U D(%) is equal to

® D (D) ®...®D(j,,) Oriaue,) M(Ej;5)) | - (5.16)

We can rewrite this as

o0 m
B p P (D(zj,) ® ... @ D(x;, ) @raut(;)] Q) M (55 95)
n=1Y" ny=n \#;€0s" (M) j=1
n; eN
(5.17)
We can put Z, ..., &, next to each other and obtain a sequence Z. There are Aut(Z)

many permutations of [n] which make # into an ordered sequence. By making a choice
for each of these, we obtain a canonical map from

m

b b T Q(D(z;,) @...® D(x;, ) @ M(&;3y;) (5.18)

n=13"" nj=n \F;€0s"i (M) \j=1
njEN

to the right hand side of Equation (5.15) from the statement:

B PDE) @riauisy) PME; ). (5.19)
ZEOb(PM)
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Clearly the map is independent of the choices. Moreover, it also descends to a map from
the desired chain complex displayed in Equation (5.17). It is easy to see that this map
is an isomorphism. O

Using the fact that we defined the operadic Kan extension in terms of the free forgetful
adjunction, the above result yields:

Corollary 5.13. An ordering of the objects of the multicategory M determines an isomor-
phism between the operadic Kan extension Lm, A(x), and the simplicial chain complex
whose m-simplices are given by the direct sum

P PA(Zy) @Riaut(zo)] PM(T0: T1) @riaut(z)] - @R[Aut(@,)] OF)-
F1ve B €Ob(PM)
(5.20)

Proof. Tteratively applying the canonical isomorphism (5.15), starting with D =
(FaU)™ LA, we obtain the isomorphism

(FmU)"A(y) = PEMU)"AY) » €D
T1,., B €Ob(PM)

PA(Zo) @Rjaut(z,)] PM(Z0; T1) @Riau(@)] - @RAut(@n)] M(Emiy).  (5.21)
For an M algebra D, we also have that

Fo o Col(m). o U(D)(%)

-P P pPw)|o-o| P D | @rs Ok
k

y1 €EO0b(M) yr EOb(M)

= @ @ PD(9) @riaut(g)] O(k)

k geOsk(M)
which finishes the proof by applying it to D = (FypU)™A. O

Since the bar construction LPm,PA(x) is the geometric realisation of a simplicial
complex whose n-simplices are given by

$H P PAGE) @ PM(Z;71) @ ... @ PM(Zn_1;) @ O(kn), (5.22)
[ko]—=...=[kn] ;08" (M)
1€[n]

we conclude:
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Lemma 5.14. The projection map from the tensor product over the ground ring to the
tensor product over the group ring of Aut(Z) defines a map from Equation (5.22) to
Equation (5.20), which induces a map from the simplicial chain complex giving rise to
LPm.PA(%) to the simplicial chain complex giving rise to Lm,A(%). O

This defines the map of Equation (5.12). We now proceed to show that it is a quasi-
isomorphism under the freeness hypothesis.

5.4. Dg-flatness

As alluded to at the beginning of this section, the heuristic for the proof that the
comparison map in Equation (5.12) is an equivalence is the statement that the projection
map from the Borel construction to the ordinary quotient is a homotopy equivalence for
spaces with free actions.

We need a purely algebraic analogue of this idea, so we start by fixing an associative
algebra A over R, where the key example we have in mind is the group ring R[G] of a
finite group.

Definition 5.15. A left A-chain complex M is dg-flat if the functor N — N ®4 M
sends quasi-isomorphisms of right A-chain complexes to quasi-isomorphisms of R-chain
complexes.

For the next statement, recall that we provided an ad-hoc formulation for Zs-graded
chain complexes in Definition 5.2, in terms of the existence of a bounded below graded
lift:

Lemma 5.16. Let M be a bounded below and free left A-chain complex. Then M is dg-flat.

Proof. This is classical in the Z-graded case, see 1.1.F - 1.2.F of [4].

Assume that we have a quasi-isomorphism of Zs graded left A-chain complexes N —
N’. Our assumption that M is bounded below asserts the existence of a bounded below
dg-flat Z-graded A-chain complex M whose Zs reduction is M. Then, it follows that

NsM— N @ M (5.23)

is a quasi-isomorphism. This is because we can first unroll the Z, complexes N and N’
into Z-graded ones, take tensor product as such with M and then only consider what
happens in degrees 0 and 1 to recover the desired map. This finishes the proof in the Zo
graded case. O

Remark 5.17. If we assume that A has finite global dimension, then we can drop the
bounded below assumption from Lemma 5.16 (see the proof of Proposition 5.30 and 1.5
of [4]). However, in our application below, we will have A = R[G] for a finite group G.
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Even if we assume that R has finite global dimension and |G| is a unit in A, we could
not determine if one can conclude that R has finite global dimension. Of course, when
R is a field, then this is true: A has global dimension 0 by Maschke’s theorem.

Let M, be a right A-chain complex and M; be a left A-chain complex. We define
B(M,, A, M;) to be the bar complex

oo
P M A% @ M, =M, ® TA® M, (5.24)

n=0

with its standard differential. Note that in our terminology, B(M,., A, M;) is the geomet-
ric realization of the simplicial R-chain complex whose n-simplices are

B™(M,, A, M) := M, ® A®™ @ M,. (5.25)
When we set M; = A, we have a canonical a chain map of right A-chain complexes:
B(M,,A,A) = M,., (5.26)

which is a homotopy equivalence of R-chain complexes, and hence in particular a quasi-
isomorphism. This last conclusion holds more generally:

Proposition 5.18. If M, is dg-flat left A-chain complex, then the canonical map of R-
chain complexes

p: B(MTaAaMl) :B(MTaAaA) XA Mr’ HMT DA Ml; (527)
is a quasi-isomorphism. 0O

It will be convenient for our arguments to factor this map through a map of geometric
realisations. We thus define the R-chain complex

M, @5 My = ) M, @4 Min] (5.28)

n=0

which is the geometric realization of the constant simplicial R-chain complex M, ® 4 M,
(the differentials alternate between vanishing and agreeing with the identity map). Note
that we have a canonical quasi-isomorphism

q: M, 4 My — M, ®4 M. (5.29)
Let us note that there is always a simplicial map

B, (Mr7 A7 Ml) — M, DA Mlv (530)
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where the target is thought of as the constant simplicial R-chain complex. It is defined
for any n > 0 by taking the map M, ® A®" @ M; — M, ®4 M, to be

mrRa1 ... R a, @My — My ...a, Qm,. (5.31)

This is in fact a bi-natural transformation.
Taking geometric realizations, we obtain a chain map

fi:B(M,, A M;) = M, % M,. (5.32)
Remark 5.19. Assuming that M; is an A— A’ bimodule, this map is a map of A’ modules.
We conclude:

Corollary 5.20. We have a commutative diagram

(MT,.A Ml 4) M, ®AMl

\ l (5.33)

M, @4 M;
Assuming that M; is dg-flat, the horizontal map is a quasi-isomorphism. O

5.5. Proof that the map from the bar construction to the operadic extension is a
quasi-isomorphism

In this section, we show that the comparison map from Equation (5.12) is a quasi
isomorphism by equipping to two sides with compatible filtration, and showing that the
map induces an isomorphism on associated graded homology groups. To simplify the
notation, we write

L :=LPm,PA(%) (5.34)
L =LmA(x). (5.35)

We begin by recalling that

) @

n>0 [ko]—[k1]—...—= [kn]—1

P PAF) ©@ PM(Zp; 1) @ -+ @ PM(F,_1;En) @ O(kn)[n].

Z;€0s%i (M)
1€[n]
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For an integer m > 0 let O,, be the set of (m + 1)-tuples (Zo,..., %) of ordered
sequences of objects of M with the property that Z; # ;1 1.

Under the identity assumption, and using 7" for the tensor algebra construction, we
can rewrite L as

L= oy PA(Zo) @ T(R[Aut(Zy)]) @ PM(Zo; &)@

m>0  (Zo,...,Zm)EOm

T(RIAW(71)]) @ -+ ® PM(Fm13 )  T(RAUHT)]) © O(|Fom ).

Note that the summands here are isomorphic as a k-module to an iterated bar con-
struction as in Equation (5.24) with a left parenthesis inserted after every occurrence of
T(R]‘]) and right parentheses at the end. We remind the reader that this splitting of L
is only as a k-module and not as a chain complex. The differential has some terms which
do preserve this decomposition and this agrees with the differential of the iterated bar
complex from Equation (5.24). On the other hand, part of the differential decreases m
by composing Z; and Z;41.

Lemma 5.21. Under the Identity assumption, there is a canonical isomorphism of modules

L'= @ PA(Zo) ©Rjaut(zo)) PM(T0; 1) O aun(a))

m>0 ("an-uvfm)eom

 ORAut(@m 1)) PM(@m-15Tm) OR(auez,.)) OZml)

Under this identification, the map L — L' of Equation (5.12) is given by applying Equa-
tion (5.32) iteratively. The map respects the module grading by m.

Proof. The isomorphism part of the claim follows from Corollary 5.13 and the rest of
the computation is straightforward. O

Let us call the map of Equation (5.12) after this identification
o:L— L. (5.36)
Remark 5.22. Here is a toy version of the next argument to aid the reader. Let us use
the notation of Corollary 5.20 and in addition assume that we are given an R-module
M and an R-linear map

M, ® M, —» M, (5.37)

which factors through M, ® M; — M, ® 4 M;. Then, we can construct the cones of the
canonical chain maps
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B(M,, A, M) — M (5.38)

and M, ®% M; — M. The map f induces a chain map on these cones, which is a
quasi-isomorphism under the same assumption that M; is dg-flat.

Let L,, and L], be the submodules with exactly m essential levels. We also define
FoL: =@ Ly, and F, L' :=@"_, L, . Noting

n=0
FnL=Fn \L®Ln (5.39)

we can write the differential in block form. Considering L,, and L/, as a chain complex
with their canonical differential, we can express F,,L and F,,L’ as the cones of the
canonical maps

fm :Lim — Fpp1L (5.40)
floo L — Fy L. (5.41)
Proposition 5.23. The diagram
fVYL

Ly —2 Fy 1L

lcpm lFm_l«@ (5.42)

JRL TN AR )

commutes. 0O
Theorem 5.24. Under the freeness hypothesis, the map

F,®:F,L—~ F,L (5.43)
s a quasi-isomorphism for all m > 0.

Proof. We will do this by induction on m. For m = 0, this is a direct consequence of
Lemma 5.16 and Proposition 5.20. In fact, similarly, the map

&, : Ly — L, (5.44)

is a quasi-isomorphism by an iterated use of Proposition 5.20. Then, we use Proposi-
tion 5.23 along with the long exact sequence of a cone to finish the induction. O

Because our filtrations are exhaustive, taking cones reduces the next result to an
acyclicity statement which is easy to see:

Corollary 5.25. Under the freeness hypothesis, ® : L — L' is a quasi-isomorphism. O
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5.6. Two-sided bar constructions as left Kan extensions

It is convenient, for the next two sections, to formulate the left Kan extensions in
the categorical context as a 2-sided bar construction (cf. [22, Appendix A]). Given a
differential graded category C, we use the term right module for a differential graded
functor from C to the category of chain complexes, while a left module is a differential
graded functor on the opposite category.

Remark 5.26. We recommend Section 3 of [30] as a reference for the two-sided bar con-
struction and a list of basic properties. Especially important for us is Section 5 of the
same reference, where the two-sided bar construction is used to construct a left homo-
topy Kan extension along enriched functors. Even though the statements in [30] are
formulated for categories enriched over topological spaces, the construction and results
that we use extend in a straightforward way to chain complexes.

We associate to a left module £ and a right module R over C a simplicial chain
complex Be(R,C, L) whose n-simplices are given by

D R(20) ®@ C(x0,21) @ -+ @ C(Tp—1,20) @ L(1) (5.45)
(zg,...,2n)EObC™

and whose face maps are given for ¢+ = 0 by the action of C on L, for 0 < 7 < n
by composition in C, and for ¢ = n by the action of C on R. This can be formulated
more abstractly in terms of a free-forgetful adjunction. We abuse notation and write
B(R,C, L) for the associated chain complex. More generally, if R is a differential graded
B-C bimodule, and L is a C-D bimodule, then the bar construction is a B-D bimodule.
The following result asserts that the left Kan extension that we have been studying,
when computed for categories, is given by a 2-sided bar construction. In its formulation,
we shall use the following notation: for a differential graded functor p : A — C, denote
by ,C the A — C-bimodule which assigns to a pair of objects (a, c) the morphism space

C(f(a);c).

Lemma 5.27. Let C be a category and R be a right module. If p : A — C is a functor, we
have an isomorphism of right A-modules

Lp.R = B(R, A, ,C) (5.46)

Proof. Recall that a right module for a category considered as a multicategory is simply
what we referred to as an algebra. The only trees that contribute to the left hand side are
the linear ones. Moreover, the symmetric group actions in this case do not play any role
and we do not need to take coinvariants at any step. By inspection of the constructions,
it follows that the two sides of the equation are precisely the same. O
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5.7. Hollender-Vogt cofinality result

Consider a commutative square of differential graded functors:

A AN B
p lq (5.47)

¢ 2 D.
We say that such a diagram is a homotopy pushout square if the natural comparison map
B(f*B,A,pC) = g"¢D (5.48)
is a quasi-isomorphism of B — C-bimodules.

Lemma 5.28 (Proposition 5.4 of [30]). Given a right module X : B — Chg, the compar-
ison map of C modules

B(f*X,A,,C) = ¢"B(X,B,,D), (5.49)
is a quasi-isomorphism for each homotopy pushout square as in Equation (5.47).
Proof. We consider the following sequence of maps

9"B(X,B,,D) = B(X,B,9",D) (5.50)
+— B(X,B,B(f*B, A, ,C))
= B(f*B(B,B,X), A, ,C)
~ B(f*X,A,,C).
The first arrow is a quasi-isomorphism by assumption, the second is an isomorphism of

chain complexes, and the third is a homotopy equivalence by the acyclicity of the bar
complex. 0O

Returning to the outline of our strategy provided in Section 5.1, find that we can
complete the comparison between the operadic Kan extension and the homotopy colimit,
in a setting slightly more general than Diagram (5.5), where we replace the fibre M, by
a potentially different category:

Corollary 5.29. Given a functor N — M, with the property that the Diagram

N —— PM

J lﬂ (5.51)

* — PO
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is a homotopy pushout square, the comparison map

hoc/s)/limA — Ln, A (5.52)
is a quasi-isomorphism. O
5.8. Proof of Theorem 1.9

We need one final ingredient for the proof of the remaining result stated in the
introduction: the techniques of this section in general produce quasi-isomorphisms of
complexes obtained from various bar constructions. To obtain homotopy equivalences,
we will thus need the following result:

Proposition 5.30. Let k be a field and A>o be the Novikov ring over k. Let C be a (Z-
graded or Z/2-graded) chain complex over Aso. If the underlying graded module of C is
degree-wise free, then its acyclicity implies its contractibility.

Proof. We consider the projective model structure on Chy ., as in [29]. By Remark 2.3.7
of the same reference the cofibrant objects correspond to the DG-projective complexes
of [4].

It is not difficult to prove that the global dimension of A>¢ is finite using [49, 065T]
under the assumption that k is a field. Proposition 3.4 of [4] shows that degree-wise
free chain complexes are cofibrant! Lemma 2.3.8 of [29] finishes the proof. For the last
step one can also use the general Whitehead theorem for model categories (Theorem
7.5.10 of [27]) as all chain complexes are fibrant in the projective model structure. The
Z /2-graded case is a consequence of [31, Proposition 5.9]). O

We now assemble the results we have established in the proof of our comparison
statement:

Proof of Theorem 1.9. We begin by checking that the conditions of Definition 5.3 hold
in the geometric context. Identity assumption immediately follows from the fact that
the objects of F form partially ordered sets in the following sense; if there are non-zero
morphisms from x to y and vice versa, then x = y. The second Freeness assumption

—R
follows from the fact that the symmetric group on k-letters acts freely on fM, , and

this implies the first Freeness assumption given the forgetful map from F to fm%f (any
fixed points in the multimorphism spaces must map to a fixed point in the operad, but
none exist).

We conclude the existence of a canonical quasi-isomorphism

L P, P CF(x) — L, CF(x), (5.53)

by Corollary 5.25.
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Next, we establish that the fact that the diagram

NAZO —_— PC*]‘—K
JP’T (5.54)

—R
*As, — PCfM,
associated to a cofinal sequence of Hamiltonians is a homotopy pushout square, in order
to apply Corollary 5.29. Here, Nj_, is the category with objects the natural numbers
0,1,2,... and morphisms

Aso i<y

(5.55)
0 i>j

Homn, (i,4) = {

and the cofinal sequence of Hamiltonians determines a functor to C,Fx.
Explicitly, we need to show that for each sequence ((Hy,J1), ..., (Hyg, Ji)) of objects
of Fx the natural map

o — R
B (C.Fi(Hy, J1)o- oo (Hi Ji)i N Aso) = CufMogy (5:56)

is a quasi-isomorphism.

If all the Hamiltonians in the cofinal sequence are strictly larger than (Hi,...Hy)
the last statement is an immediate consequence of Proposition 2.20. Therefore, for each
fixed sequence (Hi, ..., Hy) the statement holds if we start the cofinal sequence from a
large enough natural number. But the homotopy type depends only on the tail of the
sequence, so the statement holds for the original cofinal sequence.

It is a well-known result that the telescope of a diagram Nj., — C.Fk admits a
canonical quasi-isomorphism to its homotopy colimit. The latter is of course nothing but
the left Kan extension of Ny, — C.Fx over x;.,

Combining these results with the fact that coﬁlpletion preserves quasi-isomorphisms
of chain complexes with torsion free underlying modules (see [52, Corollary 2.3.6 (3)]
finishes the proof of the first statement of Theorem 1.9. The homotopy equivalence
statement is a direct consequence of Proposition 5.30 noting that homotopy equivalences
are automatically preserved by completion. The homotopy commutativity of the diagram
is similar to the proof of Theorem 1.8. O

Appendix A. Trees and Riemann surfaces
A.1. Conventions about trees

In what follows we will allow trees T to have edges that have one endpoint. We call
such edges external edges and denote them by FE..:(T) and call the edges with two
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€o

Fig. 6. A stable tree.
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Fig. 7. Conventions for labelling edges and vertices.

endpoints internal edges, which we denote by E;n:(T). We write E(v) for the set of
edges adjacent to a vertex v, and denote the valency of v by v(v) := |E(v)|. We assume
that the valency of each vertex is at least two. Note that our trees (without any other
qualification or adjective) are not equipped with a planar structure and we do not allow
edges with zero endpoints.

Definition A.1. For a natural number n, a pre-stable tree T with n inputs and 1 output
is a tree equipped with a bijection

{0,...,n} = Eeu(T). (A1)
A pre-stable tree T is called stable if v(v) > 3 for all v € V(7).

We now describe the notation we use, which is illustrated in Figs. 6 and 7. Refer to
the external edge labelled by 0 as the output. The other external edges are the inputs
of T. For each vertex v, there is a distinguished outgoing edge e,,+(v) € F(v) lying on
the minimal arc connecting v to the output edge. The edges adjacent to v which are not
outgoing are called incoming edges:

Ein(v) = E(v) \ {€ou(v)}. (A.2)
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Each internal edge is the distinguished outgoing edge of exactly one vertex denoted by
v~ (e). The other vertex of e is denoted by v™ (e).
Below, for a pre-stable tree T', we abbreviate v € T' to mean v € V(T).

A.1.1. Pre-stable Riemann surfaces with cylindrical ends

We now introduce our conventions for Riemann surfaces equipped with input and
output marked points; as discussed in Remark 1.1 in our work, we only consider the case
of 1 output marked point:

Definition A.2. A genus-0 punctured Riemann surface is a Riemann surface X which is
the complement of finitely many points P in a closed genus-0 Riemann surface 3. The
elements of P are referred to as the punctures of X.

A choice of cylindrical ends on ¥ is a decomposition P = P, [ [ Py into inputs and
outputs and a choice for each p € P of a map

€y : (—00,0] x R/27Z — ¥ itpe Py, (A.3)
ef :[0,00) X R/27Z - ¥ if p € Pou (A.4)

which is a biholomorphism onto a punctured neighbourhood of p in ¥. We moreover,
make the assumption that the images of the cylindrical ends are pairwise disjoint and,
in the case of one input and one output, we assume that e* extend to biholomorphisms
of R x R/27Z onto X.

A genus-0 Riemann surface with n;, inputs and ngy,y outputs, is a genus-0 punctured
Riemann surface, with | Py, | = 14, and | Pout| = Nout, together with a choice of cylindrical
ends.

Changing coordinates from the half-cylinder to the disc, we see that a cylindrical end
of ¥ at p gives rise to a tangent vector in T,X. A framed Riemann surface is a Riemann
surface equipped with the datum of a tangent vector at each marked point, up to positive
real dilation. We thus have a forgetful map from the set of genus-0 Riemann surfaces
with cylindrical ends to framed Riemann surfaces.

Next, we discuss the notion of pre-stability, which can be formulated abstractly in
terms of nodal Riemann surfaces, but which we prefer to describe prosaically in terms
of trees labelled by Riemann surfaces:

Definition A.3. A pre-stable rational curve ¥ with n inputs and one output consists of a
pre-stable tree T' with n inputs, and, for each vertex v € T', a genus-0 Riemann surface X,
with |E;, (v)| inputs and 1 output, together with a bijection between the edges adjacent
to each vertex v and the punctures of the corresponding Riemann surfaces:

E(v) —Ps, (A.5)
€ —Pe. (A.6)
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We require this bijection to map the outgoing edge maps to the output, and denote the
inverse bijection by p — ep.

A stable rational curve with n inputs and 1 output is a pre-stable rational curve whose
underlying tree T' is stable.

We refer to the data (T, {X, }ver) as the underlying pre-stable curve, and the surfaces
Y, as the components of ¥. For an internal edge e € E;,;(T) we denote by p;t the
corresponding punctures in ¥+ ) respectively.

Definition A.4. Consider a pre-stable rational curve ¥ with n inputs and one output,
with underlying tree T', and fix an internal edge e in T. Given a parameter r € (0, 1] we
define the corresponding glued Riemann surface as the pre-stable curve I';. .(X) given by
the following data:

(1) The tree T'/e obtained from T by removing e and quotienting the vertex set by
v~ (e) ~ vt (e). We denote by vye, € T” the vertex corresponding to the equivalence
class of v™(e) ~ v (e).

(2) The surface ¥, which is defined by gluing

(zv+ Ve (=00, In7) x R/QWZ)) U (zv_ \ et ((~Inr, 00) x ]R/27TZ)) . (A

along their boundaries by the relation

€+ (In7r,t) ~ e (=Inrt). (A.8)

e

b and X
(3) The surfaces X, for v # vne € V(T/€) are given by the corresponding component
of X.

has cylindrical ends which are induced from those on X

VUnew Vin Vout *

Let us also declare that I'g .(X) = X, i.e. gluing with 0 gluing parameter does not change
the curve.

Definition A.5. Given 7 € [0, 1]%+(T) | we denote by I'#(X) the gluing of ¥ with gluing
parameter given by 7. That is, we pick an order on the edges of T' and we inductively
glue each edge e whose associated parameter r. is non-zero. The result does not depend
on the order in which gluing is performed. For a real number r € [0, 1] we write

FT‘(E) = F(r,‘..ﬂ‘)(z)' (Ag)
That is, we glue all the edges with the same gluing parameter r.

A biholomorphism ¢ = (¢, {1, }) of pre-stable rational curves (T3, {X, }ver; )t = 1,2
consists of an isomorphism ¢ : T — T5 of pre-stable trees with n inputs and 1 output and
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for each v € V(T1) a biholomorphism ), : ¥, — ¥4, such that the map Pz, — Ps, .
is the one given by E(v) — E(¢(v)). Two pre-stable rational curves with n inputs and
one output are said to be isomorphic if there is a biholomorphism of the underlying
pre-stable curves which intertwines the cylindrical ends at all the vertices.

Denote by Dy 141 the set of isomorphism classes of pre-stable rational curves with &
inputs and one output. For a pre-stable tree T' with k inputs denote by Da kr1 C Do k+1
the subset consisting of curves whose underlying tree is 7'

Remark A.6. Note that we consider Dy ;11 merely as a set. We are not aware of natural
Hausforff topology on Dy ;41. On top of the difficulties caused by unstable components,
even if we consider a sequence of stable curves converging (in a reasonable topology) to a
stable curve, there will be an ambiguity in the choice of cylindrical ends on the limiting
curve whenever breaking is involved.

For a stable tree T' we do however consider the set Da pi1 of curves modelled on T
with its natural topology.

A.2. Stabilization and the KSV moduli space

Denote by Mo’k+1 the Deligne-Mumford moduli space of biholomorphism classes of
stable genus 0 curves with k& + 1 marked points labelled by {0,...,k}. We recommend
the reader [37][Appendix D] for basic definitions and properties. We call the 0" marked
point, i.e. the marked point labelled with 0, the output marked point and the others
input marked points. Note that MO’kJ’,l is canonically a smooth manifold (which would
not be true for g > 0) [37][Theorem D.5.1]. It is a compactification of the space Mg k41
of biholomorphism classes of smooth curves with k£ + 1 marked points. Denote by &
the divisor Mo,k-s-l \ Mo kt1. It is easy to see that & is a normal crossings divisor
[37][Proposition D.5.4]. For k > 2 the Kimura-Stasheff-Voronov moduli space Mg .,
is defined as the manifold with corners obtained by doing an oriented real blow-up of
Mo 111 at E. Note that the interior of M, j+1 is canonically identified with Mo x41. We

define the framed KSV moduli space fﬂ§k+1 as the total space of the (S!)**1-bundle
over My .1 given by choices of a tangent ray at each marked point. A tangent ray at
a marked point x € ¥ simply means an element of T, \ {0} /R~. Note that the group
R/27Z canonically acts on the set of tangent rays at a point of a Riemann surface.

We define the underlying topological spaces of a topological operad fm]§ by taking
FMe (1) = R/27Z and fMq (k) = fMo sy for k> 1.

Before we define the operations on fﬂ?} let us describe the points of framed KSV
moduli spaces a bit more concretely. Points of fﬂ? x+1 can be described canonically as
the set of equivalence classes of stable curves equipped with a choice of a tangent ray
at each marked point and a pair of tangent rays modulo simultaneous rotation at each
node. That is, for any nodal point p; ~ p2 contained in irreducible components ¥; and
Y9, we have a pair of tangent rays v; in T),,%; \ {0} /R~ modulo the equivalence relation
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(v1,v2) ~ (e®v1,e7Pvs), 0 €R/27Z. (A.10)

Using this description it is straightforward to define the operations of the operad

fMgR:
FMe(n) x fMo (k1) - x [ Mo (k) — fMe (ky + - + k). (A.11)
Namely,

e if n =1, we use the action of fﬂﬂs (n) = R/27Z on the tangent ray of the output
marked point of the element of fﬂ?(lﬁ).

e if k; = 1, we use the action of fﬂg{(lsi) = R/277Z on the tangent ray of the k!"
input marked point of the element of fﬂf (n).

o if k; > 1, we identify the output marked point of fMgR (k;) with the k" input marked
point of fﬂ? (n) to obtain a stable curve and use the projection to the equivalence
classes described in Equation (A.10).

The unit of fﬂ? is [0] € R/27Z. We omit the straightforward checking of the axioms.
We call fng the framed KSV operad.

—R
Remark A.7. We could in fact define f M, as an operad over the symmetric monoidal

—R
category of manifolds with corners. We will use the fact each fM, (k) is by construction
equipped with a manifold with corners structure below.

Denoting as before by Dy 141 the set of pre-stable genus-0 Riemann surfaces with &
inputs and one output, there is a natural forgetful map

—_R
VI D07k+1 — fMO,k+17 (A.12)

which we describe now.

Consider ¥ € Dy 41 with underlying tree T'. To each bivalent vertex v of T', we can
associate a twist parameter in R/27Z as follows. By assumption we have biholomor-
phisms

e :RxR/271Z — %,
et R xR/27Z — B,.

Therefore, we obtain a biholomorphism

() toet :RxR/27Z — R x R/27Z,
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which is a composition of a translation and a rotation by an angle in R /27Z. This angle
is our twist parameter.

If k = 1, all the vertices of T' have to be bivalent, and we define 7(X) € R/27Z to
be the sum of the twist parameters of all the vertices in T". Before we handle the k£ > 1
case, we need a couple of definitions.

If we have a tree T with a bivalent vertex v and at least one other vertex, we define
the flattening of T at v to be the tree obtained by removing v from the vertex set and
identifying the two edges adjacent to v to define the new edge set.

Given a Riemann surface IT with k£ > 2 inputs and 1 output, we construct canonically
tangent rays at each marked point of II as follows. Let € be the cylindrical end at a
puncture. Let us call s and t € R/27Z the coordinates in the domain of e. Consider the
tangent rays containing €,0; obtained along €(t = 0). The limit of these at the marked
point gives the desired tangent ray. Let us call IT with these tangent rays at its marked
points the fine compactification of II.

Now we go back to defining 7 (3) for k > 1. There is at least one non-bivalent vertex
of T'. Flattening all the bivalent vertices we obtain a stable tree T” whose vertices are
in one-to-one correspondence with the non-bivalent vertices of 1. The correspondence
preserves valencies. To each vertex v of T” we can canonically associate the same Riemann
surface X! with v(v) — 1 inputs and 1 output. The stable curve ¥’ underlying 7 (X) is
obtained by taking the fine compactification of X! at each v € V(T") and identifying the
added points to form double points as prescribed by T”. At this point ¥’ is also equipped
with the data of a tangent ray at each marked point and double point of its irreducible
components.

Moreover, the edges of T” correspond to maximal subtrees of T with only bivalent
vertices. These maximal subtrees include edges all of whose endpoint vertices have va-
lency more than 2. We can add up the twist parameters in each such maximal subtree
to obtain an element of R /277 associated to the edges of T". If there is no vertex of the
associated maximal subtree we associate [0] to the edge. Let us call this the total twist
of an edge of T".

The existing tangent rays of ¥’ and the total twists at the edges of T are then used
in the following way to upgrade the stable curve ¥’ to n(X) € fﬂl(likﬂ. If ¢ is the
unique output of ¥’ with tangent ray v, and 7 the total twist of its outgoing edge, we let
Uz/; = e'Tiy, to be the final tangent ray at g. If ¢ is an input, we let Uz/; = e~ v, where
7 is now the total twist of its incoming edge. If ¢ is a double point p™ ~ p~ of ¥/ with
tangent rays vy, v_, we take the equivalence class

(e v ) ~ (vy,ev), (A.13)
where 7 is the total twist of the associated internal edge.

Definition A.8. The stabilization of a pre-stable rational curve ¥ with k£ inputs and 1
output is the element m(X) of the framed KSV moduli space.
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Remark A.9. The surjective map 7 : Dy 41 — fﬂlskﬂ has contractible fibres, as shown
in Lemma 2.21. In order to state a more global result, we could define a cubical set, which
is roughly the singular cubical chains on Dg ;41 (with the non-Hausdorff topology that
we omitted defining) equipped with a map of cubical sets to the singular cubical chains
of fm](li x+1- This map will be a homotopy equivalence.

We give a toy example to guide the reader. Let X be an arbitrary topological space and
consider what one might call a non-Hausdorff boundary blow-up of (0, 1]: the quotient
space of (0,1] x X by the equivalence relation

(r,z) ~ (r',2')ifr =r" < 1. (A.14)

The point is that the blow-down map is always a homotopy equivalence. This can be
proved by first showing that the blow-up space deformation retracts to (0,1). There is
not a homotopy equivalence which preserves boundaries.

Appendix B. Categorical and algebraic background
B.1. Symmetric cubical sets

As discussed in the introduction, we shall use the category of symmetric cubical sets
as a model for the homotopy theory of spaces. Underlying this category is the category of
symmetric cubes, which can be considered as a subcategory of the category of topological
spaces, with objects the cubes [0, 1]", and morphisms given by those maps

[0,1]" — [0,1]™, (B.1)

which can be expressed as a composition of (i) projections, (ii) permutation of coordi-
nates, and (iii) inclusion of faces corresponding to setting some coordinates equal to 0,
and others to 1. This is not the standard definition, because it is possible to express
all generators and relations completely combinatorially, but the geometrically minded
reader will hopefully find this definition more amenable to their intuition.

The category of symmetric cubical sets is the category of contravariant functors from
symmetric cubes to sets. While we shall use this perspective in explaining our con-
structions, for proofs and formal definitions, we shall often use the purely combinatorial
perspective. A reference for this approach is [23]:

Definition B.1. A symmetric cubical set K, is a sequence of sets { K, },>0 together with
a collection of face maps

At Ky > K., n>1, 1<i<n, (B.2)

degeneracy maps
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Sp—1,i  Kn-1 =2 K,, n>1 1<i<n, (B.3)
and transposition maps
Pri Kn—=>K, n>2 1<i<n-1L1 (B.4)

These are required to satisfy the following relations for p,v € {+,—}:

dy y0dy;=dy_y; qod,, <y, (B.5)
81,0 © Sn—1,j = Sn,j+1© Sn—1,, 1< J, (B.6)
pa;=id, (P o pni+1)’ =1id, (B.7)
Pn,i ©Pn,j = Pn,j ©Pn,i, 1+1< Js (BS)
Sn—2,j—1© di:ﬂ‘v i < j7
de,i © 8n—17j = sn—27j o dﬁyi_p v > j7 (Bg)
id, =7,
Pn-1,i-10dy, j, J <t
dﬂ i+1° j = i?
dpjopni=9q mH = (B.10)
dpy i j=14+1,
Pn—1,i© dﬁ,j’ j>14+1,
Sn—1,j © Pn,i—1, Jj<it,
Sn—1,i+1, .7: 13
Pri©Sn-1;=14 o (B.11)
Sn—1,is j=1+1,
Sn—1,j © Pn—1; Jj>i+1

A morphism of cubical sets f : Kl — K2 (of degree 0) is a map of graded sets which
commutes with all face, degeneracy and transposition maps. We denote the category of
cubical sets with morphisms of degree 0 by scSet.

Example B.2. Let X be a topological space and define 0,,(X) to be the set of continuous
maps from the standard n-cube [0,1]" into X. For ¢ € 0O,(X) define the face map
dii(d) to be the restriction ol,,—(1/2+1/2) € On-1(X), the degeneracy map s;(o) to
be the composition o o m; where m; : [0,1]"*! — [0,1]" is the projection forgetting the
ith component, and the transposition map p,;(o) to be the composition o o 7, ; for
Tn,i ¢ [0,1]™ — [0,1]™ the map which transposes the ith and (i + 1)th coordinates. Then
Oe(X) is a symmetric cubical set. We refer to it as the set of singular (symmetric) cubes
in X. The reader may verify that a continuous map f : X — Y induces a morphism
fo : Oe(X) — O4(Y) of degree 0 by mapping o — foo. Thus the assignment X — Oe(X)
is a functor Top — scSet.



84 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

We can construct a functor from symmetric cubical sets to spaces by taking a colimit
weighted by the tautological standard cube functor, which assigns to a natural number
n the associated cube [0,1]™. From the combinatorial perspective, this is given by the
following expression:

Definition B.3. Let K, be a symmetric cubical set. The geometric realization |K,| is the
topological space obtained by the quotient

5. x[0.1]"/ ~, (B.12)

where the relation ~ is generated by

(i (), ) ~ (0, 654(0), (30,i(0)s8) ~ (0, Tnr1i(t)s (Pasi(0) 1) ~ (0T (1)).
(B.13)
Here Lii(t) : [0,1]™ — [0,1]"*! is the standard embedding as the face z; = 1/2 4 1/2,

Tt ¢ [0,1]"F1 — [0,1]™ is the projection forgetting the ith coordinate, and 7, ; :
[0,1]™ — [0, 1]™ is the map which transposes the ith and (i 4+ 1)th coordinates.

Note that the geometric realization is automatically a Hausdorff space. The geometric
realization functor | — | : scSet — Top is left adjoint to the singular cubes functor
Oe : Top — scSet.

B.1.1. The monoidal structure

The category scSet carries a symmetric monoidal structure ® which arises as a left
Kan extension with respect to the functor that maps a pair of cubes to their product.
Combinatorially, this may be expressed as follows: first observe that by Equations (B.7)
and (B.8) the maps p,; generate an action of the symmetric group S,, on K, for any
symmetric cubical set K,. Using this we define

(K'® K?), = 1T S X8y, x8ny (K, x K2,/ ~). (B.14)

ni,n2>0,n1+n2=n

The equivalence relation ~ is given by
(snl—l,nl (01)30—2) ~ (0—173712—1,1(02))' (B15)

For u € Sy, € K} ,y € K2, we denote by [u- (z ® y)] the corresponding element in
K'® K2

The transposition maps on K'®K? are defined by p; acting as the ith transposition on
the S,, factor. To define the face and degeneracy maps it suffices to describe the maps dil
and s, 1 as all the others are determined by these together with the transposition maps.
For this we identify S,, with the set of bijections n — n. Define a map n,, : S, = Sn41
by



M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755 85

N () = id xu, (B.16)
and (, : S, — Sp—1 by
N U(])—l, ]<U_1(].)
C(u)(j) = {u(j P)o1 jeul(). (B.17)

Finally, writing i = u~1(1), define

[Cn(u) - (dy, () @y)], i<m
o (u- (z = st B.18
wa ([ (z@y)]) {[Cn(U)-(xQ@dZ?,i_m(y)], P> . (B.18)
sna ([u- (x@y)]) = [Mu(w) - (5ny,1(2) @ yl. (B.19)

The functorial perspective is useful in establishing the following result, which is analogous
to the characterisation of maps with domain a tensor product of vector spaces in terms
of bilinear maps:

Lemma B.4. There is a natural isomorphism between the set of maps of cubical sets with
domain K' ® K? and target K, and the data of maps K}Ll X K,%Z to Ky, 4n, for all pairs
ny and no of integers which

(1) are equivariant with respect to the Sy, X Sp,,

(2) intertwine the face maps ditl with dE (for 1 < i < ny), and d;»'fQ with diﬂ (for
1 S .] S TLQ), and

(3) intertwine the degeneracy maps s; 1 with s; (for1 <i <mn;+1), and s; o with s, 4;
(for1<j<ni+1). O

B.1.2. Homotopy between morphisms of cubical sets

The path functor P : scSet — scSet is given by setting PK, = K411 and discarding

+

all the operations d,, ;,

5n,1 and 7,,1. The discarded face and degeneracy maps give rise
to natural transformations between the identity functor and the path functor d* = de :

PK, =+ Ko, and s = 5,1 : K¢ = PK,.

Definition B.5. A cubical homotopy between maps f*: K' — K? of cubical sets is a
morphism

H: K' — PK? (B.20)

whose composition with d* agrees with f*. We say that f* are homotopic if there exists
a homotopy between them.
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We can describe a cubical homotopy as a map H : K} — K2 1 of sets satisfying

Hodf,=df, ;. 0H, Hosn;=snis10H, i=1...n, (B.21)

PR

and
Hoty;="Tpt1i410H (B.22)

The morphisms f* corresponding to the endpoints of the interval can be recovered from
a homotopy H via the formula

ff=dfoH. (B.23)

Lemma B.6. A homotopy H between morphisms f,g: K} — K? of cubical sets induces
a homotopy

[H]:[0,1] x | K, — |KJ| (B.24)
between the geometric realization |f| and |g|.

Proof. We show that H induces a continuous map [0, 1] x |K*| — |K?2|. This is defined
for s € [0,1], (0,t) € |K!| by

(s, (0,1)) = (f(0), (s,1))- (B.25)

Then |H| is well defined on equivalence classes under the relations given in (B.13). It
follows that |H| is continuous. Moreover |d* o H| is precisely the restriction of |H| to
s =1/241/2. The claim follows. O

B.1.3. Symmetric normalised cubical chains

While most of the constructions of this paper take place at the level of cubical sets,
the objects that we are ultimately interested in are formulated as algebraic structures in
category of chain complexes. The key construction in passing from one category to the
other is the notion of symmetric normalised cubical chains, which is the chain complex
C.(K), which in degree n is the quotient of the complex freely generated by the n-
cubes, modulo those which are in the image of a degeneracy map, and the relation which
identifies a cube with the negative of its image under a transposition:

Z[Ky)]

Cn(K) = —; — :
Zi:l Im(sn_l,i K, — Kn) + Zi:l Im(l + Dnyi: K, — Kn)

(B.26)

The alternating sum of the face maps define a map
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K2

d= i(—ly (df —d7) : Cu(K) = Cua(K) (B.27)

which is easily seen to square to 0. Since a map of symmetric cubical sets respects the
three operations that enter in the definition of the complex C,(K), this construction
yields a functor from the category of symmetric cubical sets to the category of chain
complexes of abelian groups. We shall repeatedly use the fact that this functor is com-
patible with the monoidal structure on the two sides:

Proposition B.7 (Lemma B./4 of [3]). The normalised symmetric cubical chain functor is
(lax) symmetric monoidal. O

B.2. Multicategories

We choose to encode multiplicative structures in Floer theory in the language of
multicategories (these are also referred to as coloured operads in the literature). We
introduce the basic definitions here (cf. [33])

Definition B.8. A multicategory enriched in a symmetric monoidal category (V,®,I)
consists of the following data

(1) an object set X,

(2) an object C(Z,y) of V referred to as n-ary multimorphisms for each object y € X
and n-tuple ¥ € X",

(3) a distinguished morphism id, : I — C(x, ), and

(4) multicomposition maps

0i : C(Z,yi) @ C(, 2) = C(¥ 0i 4, 2) (B.28)

where y; is the ith element of ¥/, and Zo; i/ denotes the replacement of the ith element
in ¢ by the sequence ¥ (Fig. 8).

The composition maps are required to satisfy the associativity relations (Figs. 9 and
10)

aoiyj_1(bojc)=(ao;b)ojc, (B.29)
whenever a € C(Z,y;),b € C(¥, z;), ¢ € C(Z,w), and
a0 (boj, €) =b0oj,44,—1 (a0 c), (B.30)
whenever a € C(#1,y;,),b € C(Z2,yi,),c € C(¥,z) and i1 < i2, and,

aoyid =ido; a = a. (B.31)
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Y1
Y1 —
— Yi—1
T
— 1
Yi —
C(7, 2) z
— Tky
I)Cz
— Yit1
Yk, —
Yk,

Fig. 8. Multicomposition maps.

z; —
C(Z,w) w
Yi —

Fig. 9. The first associativity relation.

- c@, ) vi, —

C(Y, z) z

— C(f2:yi2) Yi, —

Fig. 10. The second associativity relation.

Definition B.9. A symmetric multi-category is a multi-category together with an action
of the symmetric group Sy on the set of k-morphisms, given by a map

" C(x1, Tk Y) = C(To()s - To(h)s V) (B.32)



M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755 89

for each o € Si. The action is required to be compatible with multi-compositions. To
formulate this consider ordered sequences Z, if of length k, j respectively. The composition
yo,; & induces embeddings ¢; : Sk — Skyj—1 and n; : S; = Sk4j-1. (i(0) acts by applying
o to the subsequence of length k starting at the ith place, while n;(c) acts by treating
the same sub-sequence as a single element. We require that

0i(Z,0*(Y)) = ni(0)*(0i(%, 7)), Vo €S, (B.33)
0i(0* (%), y) = Gi(0)"(0:(Z,¥)), Vo € Sy. (B.34)

The collection of all multicategories forms a category, with morphisms defined as
follows: a multifunctor between multicategories G : C — D consists of

o a map of object sets G : Ob(C) — Ob(D)
« a chain map C(Z;y) — D(Gx; Gy) for each Z € Ob(C)™ and y € Ob(C).

We again omit the standard list of properties, but note that this includes a compatibility
with the symmetric structure.

A natural transformation of multifunctors Gy, Gy : C — D consists of a morphism
D(Go(x); G1(z)) for every x € Ob(C) compatible with all multimorphisms.

Appendix C. Dissipative cubes

In this appendix we indicate the adjustments required for the geometrically bounded
case. Symplectic cohomology and all its associated structures are defined and are invari-
ant in this more general setting. However the proof of invariance is more involved and
requires the Floer multi-functor to be indexed by a multi-category consisting of dissi-
pative Floer data. In this case, we need to involve the almost complex structures at the
outset. The category of dissipative Floer data will be defined as a proper submulticate-
gory F¢ C F, of the multicategory F, of Floer data as defined in Section §3.

C.1. Dissipative Floer data on cylinders

We begin by constraining the class of almost complex structures that we shall con-
sider; a (compatible) almost complex structure on a symplectic manifold determines a
Riemannian metric, and the constraints that we impose will depend only on this data.

For a Riemannian metric g on a manifold M and a point p € M we denote by inj g(p)
the radius of injectivity and by Secy(p) the maximal sectional curvature at p. We drop
g from the notation when it is clear from the context.

Definition C.1. Let (M, g) be a complete Riemannian manifold. For a > 0, the metric

g is said to be a-bounded at a point p € M if inj(z) > 1 and |Sec(z)| < a? for all

LS Bl/a(p)'



90 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

We say that g is strictly intermittently bounded if there is an exhaustion Ky C Ky C
. of M by precompact sets and a sequence {a;};>1 of positive numbers such that the
following holds.
(1) d(Ki, 0K41) > o=+ 4
(2) g is a;-bounded on 9K;.
(3) the series obtained by adding the squares of the inverses of a; diverges:

<1
> —5 =00 (C.1)
i=1

The data {K;,a;}i>1 is called taming data for (M, g). The open neighbourhood V' =
Ui By /q, (K;) is said to support taming data for g.

More generally we allow a slight weakening in the definition:

Definition C.2. A Riemannian metric g is intermittently bounded, abbreviated i-bounded,
if there exists a metric ¢’ that is strictly intermittently bounded with taming data
(K;,a;), and a sequence of constants C; such that g is Cj-quasi-isometric to ¢’ on
B <8Ki, %) and

=1
= 00. C.2
> (Coar)? (C.2)

i=1
In this case we will refer to the sequence (K, a;, C;) as the taming data of g.

We remind the reader that the quasi-isometry condition in the definition asserts that,
on By, (0K;), the lengths of any tangent vector X with respect to g and g’ are mutually
bounded with respect to each other as follows:

1
= 1 X1y < 11Xy < Gl Xl (C.3)
Ci

For a symplectic manifold (M,w), an w-compatible almost complex structure J is
called i-bounded if the associated metric g is i-bounded.

We now turn our attention to the class of Hamiltonians that we will consider: given
a Floer datum (H,J) on a symplectic manifold M, we refer to a Floer solution with
domain of the form [a,b] x R/Z, with a < b € R as a partial Floer trajectory.

We then associate to each proper function F : M — R, a map

I'h,: RZoR (C.4)
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defined as the infimum over all F for which there is a partial Floer trajectory u of
geometric energy £ with one end of u contained in F~!([—ry,71]) and the other end in
F~Y(R\ (=rg,72)). Note that I'f; ;(r1,72) may take the value of infinity.

Definition C.3. A Floer datum (H,J) is loopwise dissipative (LD) if for some F' (hence
any F') and any r; we have ng(}(rl,r) — o0 as r — oo. We say that (H,J) is ro-
bustly loopwise dissipative (RLD) if in the uniform C! x C° topology determined by g
there is an open neighbourhood of the datum (H, J) such that all elements are loopwise
dissipative.

We now formulate the compatibility condition between boundedness of the almost
complex structure and dissipativity of the Hamiltonian:

Definition C.4. A Floer datum (H,J) is called dissipative if

(1) The datum (H, J) is robustly loopwise dissipative.

(2) for each t the almost complex structure J; is intermittently bounded and there exist
taming data which are independent of ¢ and are supported on some set V' such that
the following properties hold:

(a) For any to,t1, the associated metrics g5, and g,, restricted to V are quasi-
isometric.

(b) The restriction of H to V x St is uniformly Lipschitz with respect to the induced
metric.

(c) The function min;cr,z H¢(x) can be approximated uniformly from below by a
function H : M — R whose restriction to V is uniformly Lipschitz.

Remark C.5. The definition of dissipativity given here is a little more restrictive than
the one given in [24] which instead of the Lipschitz condition on H requires only that
the Gromov metric determined by J and H be intermittently bounded.

Remark C.6. Observe that dissipativity is an open condition.

Lemma C.7. Suppose that (M,w) is geometrically bounded in the sense that it carries a
geometrically bounded almost complex structure J. If K C M is a compact subset, then
the set of Hamiltonian H € Hy for which there exists a J so that (H,J) is dissipative
is cofinal in Hy .

Proof. See [24, Theorem 6.6, Theorem 6.10, Lemma 8.11]. O
Remark C.8. It is another matter to ask for a cofinal sequence. If M is non-compact, no

such sequence exists. However, one can show that given a monotone sequence (H;, J;) of
dissipative data converging pointwise to the function Hg, the map from the homotopy
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colimit of the truncated Floer complexes over the sequence to the homotopy colimit over
all of Hx induces an isomorphism in each truncation level.

C.2. Dissipative Floer data on general Riemann surfaces

We proceed to discuss the notion of dissipativity for multimorphisms. Let 3 be a
Riemann surface with complex structure jy, equipped with an area form wyx. Let J
be a Y-parametrized family of w-compatible almost complex structures on M and let
H : Y x M — R be a smooth function. We assume that for each z € ¥ the function H,
is proper and bounded below. Finally we fix a 1-form « on ¥ and assume that for each
z € 3, we have dH, A a > 0. To this data one associates an almost complex structure
on X X M defined by

Jo=Jy+is+ Xg®a+JXygRaojs. (C5)
This almost complex structure is compatible with the symplectic form
wyg = mwy + mow + d(Ha) (C.6)

on X x M. We denote the induced metric on ¥ x M by gs,,. We refer to the metric g,
as the Gromov metric. We stress that the Gromov metric depends on the choice of area
form on 3.

In order to define the condition of dissipativity for multimorphisms we shall need to
consider the notion of intermittent boundedness relative to a projection. Let U be a
possibly open Riemann surface equipped with an area form wy and a complex structure
ju-Let m: M x U — U be a Hamiltonian fibration over U. Let J be an almost complex
structure on M x U preserving the fibres of .

Definition C.9. The almost complex structure J is wuniformly strictly intermittently
bounded rel m if there is

(1) an exhaustion of M x U by subsets K, for which 7|k, is proper, and
(2) positive real numbers a; > 0

so that

(1) d(aKZ+1,KZ) > L + L

a; a;qy1’
(2) the Gromov metric is a;-bounded on 0K, and

(3) Y47 =cc.

We say that J is uniformly intermittently bounded rel w if the above inequalities hold
only up to constants C; as in Definition C.1.
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Remark C.10. Note that when U is a point the last definition reduces to the definition
of intermittent boundedness.

Lemma C.11. Let J1,Jy be a pair of almost complex structures on M x U which are
uniformly intermittently bounded rel m with taming data supported on sets Vi, Va respec-
tively. Then there are subsets W; C V; such that W1 NWy = 0 and such that W1, Wy still
support taming data for Ji, Jy respectively.

Proof. See [24, Theorem 4.3]. O

We call an area form on a Riemann surface ¥ with cylindrical ends admissible if it is
compatible with jy and it is of the form wy, = ds A dt in the ends.

Definition C.12. Let {F* = (H*, J")}"_, be a sequence of dissipative Floer data. Let D
be a pre-multimorphism from (F!,... F") to F? as in Definition 3.6, which is modelled
on a tree T. We say that 0 is dissipative if

(1) the Floer datum F, at each edge e of T is dissipative,

(2) for each vertex v of T there is a finite open cover U = {Uy,...,Un} of X, so that
fixing any admissible area form on wsy,, the induced Gromov metric on M x U; is
intermittently bounded rel the projection 7 : M x U — U for each i. We assume the
interior of each cylindrical end is an element of the cover U.

Clearly, the property of being dissipative is preserved under equivalence of pre-
multimorphisms. Accordingly, we refer to dissipativity as a property of multi-morphisms.

Remark C.13. Note that changing the admissible area form induces a Gromov metric
that is quasi-isometric to the original one. The property of dissipativity thus depends
only on the data of the pre-multimorphism and not on the additional datum of the area
form.

For each ¢ indexing an element of the cover U, let V; C M be the support of the
taming data for the Gromov metric on M x U;. In light of Lemma C.11 we will always
assume that the V; are pairwise disjoint. We shall refer to the union V = U;V; as the
support of the taming data for the Gromov metric on ¥ x M.

The following is a criterion that we will repeatedly use:

Lemma C.14. Suppose U is a Riemann surface, J is intermittently bounded rel w: M x
U — U with taming data supported on some set V, « is a closed 1-form on U and
H : M — R is uniformly Lipschitz on V. Then the corresponding Gromov metric is
intermittently bounded.

Proof. See [26, Lemma A.3] O
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We now arrive at the main definition of this appendix:

Definition C.15. A k-dimensional cube 0 € F, of unbroken multi-morphisms is dissipative
if there is

e a partition of the k-cube into subsets Aq,..., Ay,

o for each 1 < ¢ < N, a smooth trivialization of the family of Riemann surfaces
underlying ® which identifies each fibre with a fixed Riemann surface ¥ with n
inputs and 1 output preserving the cylindrical ends, and

e data taming 9, for all o € A;, with respect to this identification.

An arbitrary cube 0 € F is called dissipative if the image of 9 under the deformation
retraction to smooth cubes as in Lemma 2.223 is dissipative.

Remark C.16. Note the difference between Definition C.12 where we required a finite
open cover on which there is fixed taming data and Definition C.15 where we only require
a partition. The reason for this difference is that Floer’s equation contains derivatives
with respect to coordinates on the underlying Riemann surface but not in the direction
of the parameter o of the cube. Thus for Cj estimates we need every point on X to be
contained in a disc of radius r bounded away from 0 for which there is taming data. No
such disc is required for the neighbourhood of a point in the cube.

With these definitions in place we have the following. Denote by F¢ C F, the subset
of objects which are dissipative Hamiltonians, and the subset of morphisms which are
dissipative multi-morphisms.

Proposition C.17. F¢ C F, forms a submulticategory.

Proof. We need to prove that given a pair 01,05 of dissipative multimorphisms such
that the output of one matches the ith input of the other, the multi-composition is still
dissipative. The retraction of Lemma 2.22 applied to the multicomposition of 01,0 is
readily seen to be the same as the one applied to the multicomposition of the retractions.
This can be deduced from Equations (2.40), (2.41) and the observation that the order
of gluing at distinct nodes is immaterial. It thus does no harm to assume that 01,05 are
smooth cubes. We further point out that if a broken multimorphism is dissipative, then
so is its gluing with any gluing parameter. Indeed, we obtain an open cover witnessing
dissipativity of the glued curve from the open covers of each component by keeping in
mind that the ends are elements in such a cover. Observe in particular that the taming
data for each element in the cover remains the same under gluing.

3 Strictly speaking, Lemma 2.22 refers to only multimorphisms in ‘H without the data of almost complex
structures. But for cubes of Floer data with strict gluing, the same construction goes through seamlessly.
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Let k1 and ko respectively denote the dimensions of 9; and 05. Let {A;,..., An,}
and {By,..., By, } be the corresponding partitions on which there are fixed taming data
for 01,09 respectively. Then by the above observation, we have fixed taming data on
A; x Bj for the image of 91 X 02 under the retraction of Lemma 2.22. O

Proposition C.18. For any dissipative cube 0 and any compact set K there exists a func-
tion R = R(0, K, E) so that any pseudo-holomorphic curve, solving an equation belonging
to the family parametrised by 0, which intersect K and which has geometric energy at
most E is contained in Br(K).

Proof. Observe that a dissipative cube conforms to Definition 5.10 of [24], so that we
can apply Theorem 6.3 of said paper. O

Definition C.19. Let F* = (H°, J°), F' = (H',JY)...,F" = (H"™,J") be dissipative
Floer data. We say that F° > Fif HO > H as per Definition 2.18.

- - —R
Proposition C.20. Suppose F° > F. The forgetful map © : FL(F,F) — fM, (k)e is a
homotopy equivalence of cubical sets.

Remark C.21. The last proposition is all we need if we are willing to use virtual tech-
niques. If we rather want to use regular data we need to show in addition that the

inclusion of F&™ := Fd N Fred into FZ is a homotopy equivalence. The proof is the

same as that of Proposition 3.4. The only thing to note is that dissipativity is an open
condition on multimorphisms. In particular, in an arbitrarily small neighbourhood of a

dissipative cube one can find a regular dissipative one.

By definition, the set of all dissipative cubes deformation retracts to the set of smooth
dissipative cubes, so we only need to prove:

Proposition C.22. The restriction of the forgetful map 7 to the set of smooth dissipative
cubes is a homotopy equivalence.

We will prove this result at the end of this Appendix, after some preliminary results.
Denote by D™ the cubical set of curves with n inputs and one output, equipped with a
1-form a and whose underlying curve is smooth. The forgetful map D™ — fﬂ](lf(k). is
a homotopy equivalence as was shown during the proof of Lemma 2.21. Thus it remains
to show that the forgetful map 7’ : ff(ﬁ ,F) — f)fm is a homotopy equivalence. The
first order of business is to construct a homotopy inverse. Unlike before, we work at the
outset with cubical sets since the dissipative cubes are not the (smooth) singular cubes
of a topological space.

4 Note that trivializations of the pair of families of smooth Riemann surfaces underlying 91, 92 induce a
trivialization of the family obtained by gluing them.
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Lemma C.23. There is a morphism & : D™ — FA(F, FO) such that 7' o ® = id.

Proof. As in the proof of Lemma 2.19, we can find a time independent function H
satisfying

min _ H? > H > 21 max H} (C.7)
teR/2rZ teR /277
which by the definition of dissipativity can in addition be taken to be Lipschitz with
respect to J = J; for some t € S on an open set V supporting taming data for J.

Fix a cube 0 — (3,, o) in Ds™ where for each o the 1-form «, has weights w; , >
21—k We first observe that by Lemma C.14, for each o the datum (lfI, Ay, j) determines
an intermittently bounded Gromov metric on X, x M.

It remains to interpolate between F' = (H,.J) and the F* near the ends for each o in a
way which maintains the monotonicity and is smooth in ¢. This is done in a marginally
different setting in Lemma 7.6 of [24]. In the interest of self containment and to prepare
the ground for the proof of the main proposition we spell out the proof.

For each end, we will carry out the interpolation within the cylindrical end. That is,
at the ith input we need to piece together the datum F = (w’Hdt,J) with the datum
F' = (H'dt,J*) in a dissipative manner while maintaining monotonicity. It suffices to
produce a Floer datum Fy ; = (Hy 4, Js) on [0,1] x R/27Z x M such that the following
conditions are satisfied

o 0yF,, vanishes identically near the boundary of [0, 1] xR/27Z x M, and thus extends
to a Floer datum on R x R/27Z x M interpolating between (H?,.J?) and (w'H,.J).

e Denoting by 7 : R x R/27Z x M the projection to R x R/27Z, we have that the
restriction of the Gromov almost complex structure Jy to each of m=1((1/3,00) x
R/27Z) and to 7~ 1((—o0,2/3) x R/2nZ) is intermittently bounded relative to .

e O;Hy > 0 everywhere.

Other than the last condition, the construction would be the same as in the proof of [24,
Theorem 4.3]. We show that the monotonicity requirement does not affect the proof. Fix
two disjoint open sets V; and Va of M such that there are taming data for J and J?
which are respectively supported in [0, 1] x R/27Z x V; for j = 1,2. We may assume that
each of the Vj is a disjoint union of pre-compact sets. Let x : M — [0,1] be a function
which equals 0 on Vj and 1 on V;. Let f : [0,1] — [0,1] be a monotone function which is
identically 0 near 0 and identically 1 on [1/3,1]. Let g : M x [0,1] — [0, 1] be defined by

g(@,s) = fF(1 = 5)(f(s)x(z) = 1) +1 (C.8)
Then g is

e monotone increasing in s,
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o identically 0 for all  when s is near 0,
¢ identically 1 for all x when s is near 1,
o identically 0 on [0,2/3] x V1, and,

o identically 1 on [1/3,1] x V.

Take Hy; = g(x,s)w'Hy + (1 — g(z,s))H}. Then H, is also monotone increasing in s.
Moreover, H is fixed and equal to H? on [0,2/3] x V; and to w'H on [1/3,1] x Va. A
similar interpolation can be defined for J. To describe this by a similar formula we may
use Gromov’s deformation retraction from the space of metrics to the space of almost
complex structures.

All the functions H,J,x, f,g can be fixed once and for all to depend only on the
inputs and output. Applying the above procedure to any cube in D™ produces a cube
in F2(F, F°). Note that the family produced is smooth in ¢. Indeed the dependence in
o is implicit in the choice of the Riemann surfaces ¥, with their cylindrical end, which
are assumed to be smooth in o. The procedure clearly commutes with face, degeneracy
and symmetry maps. This concludes the proof. 0O

Lemma C.24. Let h: [0,1]™ — [0,1] be a smooth surjective function. Suppose that we are
given dissipative families of unbroken multimorphisms 99,01 in ]-'(ﬁ, F°) parameterized
respectively by Uy := h=1([0,1)) and Uy := h=1(0,1]), and suppose in addition that for
each o in the intersection Uy N Uy the projection under ©' of 9o9(o) agrees with that of
01(0). Then here exists a partition of unity {g,1 — g} on [0,1]™ x M subordinate to the
cover {Ug x M,Uy x M} such that gd1 + (1 — g)02 is dissipative.

Proof. Let V and V; be disjoint be open subsets of M, respectively supporting taming
data for 0¢ and ;. This means that V; contains the support of some local taming data
for each o0 € U;. Let x : M — [0,1] be a function which is identically 0 on V; and
identically 1 on V;. Let f : [0,1] — [0,1] be a monotone function which is identically 0
near 0 and identically 1 on [1/3,1]. Define a function g : M x [0,1]" — [0,1] by

g9(z,0) = f(1 = h(0)(f(h(o))x(x) = 1) + 1. (C.9)

We point out that since the function g is constant on ¥ for fixed (z,0), F satisfies the
monotonicity condition (2.1) for each o so long as F! and F? do. As in the previous
Lemma, {g,1 — g} is a partition of unity as desired. O

We have now arranged all the necessary pieces to prove our main result:

Proof of Proposition C.22. It remains to construct a homotopy from the identity to & o
7. Such a homotopy involves constructing a map of cubical sets n : F¢ — PF? such
that d-on=id and d* o =& or’.

We will proceed inductively. We first define 1 on 0-cubes. Let 0y be any dissipative
multimorphism and let 9; = & o 7/(91). Extend 9y and 9; trivially to [0,1) and to (0, 1]
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and continue to denote this extension by 0;. Applying the previous Lemma we get a
dissipative 1-cube which is as required.

Inductively, suppose that we have defined 1 on all n — 1-cells so that it respects face,
degeneracy and symmetry maps and that it is a homotopy preserving the fibre of 7’
Given a non-degenerate dissipative n-cube d we need to define 7(?) so that it agrees with
7 as already defined on the faces and so that it preserves fibres. Consider the n + 1-cube
[0,1] x O™. We have dissipative data on its boundary defined on [0, 1] x 90" by applying
7 to the boundary of 9; and on {0} x O™, {1} x O™ respectively by d and & o 7’(d). We
extend this to [0, 1]"T1 \ [2¢,1 — 2¢]"T! as follows. First we define the underlying curve
and 1-form in the unique way so that it is independent of the first coordinate. Then we
fix a flow on [0,1]"T1 \ [2¢,1 — 2¢]"*! going from the inner to the outer boundary, for
example, the Euler flow. We also fix a diffeomorphism between the family of Riemmann
surfaces underlying 0 and the trivial family in such a way that cylindrical ends go to
cylindrical ends. We then extend the data so that it is constant along flow lines. The
resulting family of multimorphisms is dissipative except that the dependence on the
parameters of the cube is not smooth. To fix this, observe that dissipativity is an open
condition and we can therefore replace our extension to [0,1]" 1\ [2¢,1 — 2¢]"*! by an
arbitrarily close one which is smooth. We also define a dissipative family on the cube
[e,1 —€]"*! by pulling back d via the projection forgetting the first coordinate. We then
interpolate the two families using the previous Lemma by taking h to be a function such
that h = 0 on [0,1]""1 \ [e,1 — ¢]"*! and h = 1 on [2¢,1 — 2¢]" L. It is clear that the
inductive hypothesis is now satisfied for all n + 1-cubes. O
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