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We resolve the long-standing problem of constructing the 
action of the operad of framed (stable) genus-0 curves on 
Hamiltonian Floer theory; this operad is equivalent to the 
framed E2 operad. We formulate the construction in the 
following general context: we associate to each compact subset 
of a closed symplectic manifold a new chain-level model for 
symplectic cohomology with support, which we show carries 
an action of a model for the chains on the moduli space of 
framed genus 0 curves. This construction turns out to be 
strictly functorial with respect to inclusions of subsets, and 
the action of the symplectomorphism group. In the general 
context, we appeal to virtual fundamental chain methods to 
construct the operations over fields of characteristic 0, and 
we give a separate account, over arbitrary rings, in the special 
settings where Floer’s classical transversality approach can be 
applied. We perform all constructions over the Novikov ring, 
so that the algebraic structures we produce are compatible 
with the quantitative information that is contained in Floer 
theory. Over fields of characteristic 0, our construction can 
be combined with results in the theory of operads to produce 
explicit operations encoding the structure of a homotopy BV

algebra. In an appendix, we explain how to extend the results 
of the paper from the class of closed symplectic manifolds to 
geometrically bounded ones.
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1. Introduction

1.1. Hamiltonian Floer theory

In his study of the Arnol’d conjecture [15], Floer associated a cohomology group 

to each non-degenerate Hamiltonian H : M × S1 → R on a closed symplectic mani-
fold, based on the gradient flow of the action functional on the free loop space of M . 
Such gradient flow lines correspond to cylinders satisfying a deformation of the holomor-
phic curve equation. The fact that one can study analogous equations on more general 
Riemann surfaces was first observed by Donaldson, leading to the construction of an 

associative product on Floer cohomology associated to pairs of pants, which was later 
shown by Piunikhin–Salamon–Schwartz [39] to yield a ring that is isomorphic to the 

quantum cohomology ring for those manifolds satisfying the property that the class of 
the symplectic form is a positive multiple of the first Chern class. Separately, and in 

the technically different context of exact symplectic manifolds with contact boundary, 
Viterbo [54] introduced a circle action in Floer theory, which takes the form of a degree 

−1 operator

Δ: SH∗(M) → SH∗−1(M), (1.1)

on a variant of Hamiltonian Floer cohomology, called symplectic cohomology, which goes 
back to Hofer and Floer’s work [14] on the symplectic topology of open subsets of Cn.

In this paper, we consider a version of Floer cohomology [46,24,52,53], which we call 
symplectic cohomology with prescribed support, in a change from the previous terminol-
ogy, which vastly generalises both of these frameworks, but we shall temporarily suppress 
this point.

The pair of pants product makes sense in the context of symplectic cohomology as 
well and, together with the operator Δ introduced by Viterbo, is known to satisfy the 

relation
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Δ(xyz) = Δ(xy)z + (−1)|x|xΔ(yz) + (−1)(|x|+1)|y|zΔ(xy)

− Δ(x)yz − (−1)|x|xΔ(y)z − (−1)|x|+|y|xyΔ(z), (1.2)

which implies that symplectic cohomology forms a Batalin-Vilkovisky algebra; this is a 

folklore result, whose proof appears, for example, in [2, §2.5].
The geometry giving rise to Equation (1.2) can be expressed in terms of the homology 

of the moduli space fM
R

0,4 of framed stable genus 0 curves, where the notion of framing 

corresponds to a choice of tangent ray at each marked point; the left hand side corre-

sponds to the class in the first homology of fM
R

0,4 associated to rotating the tangent 
ray at a specific marked point which is distinguished as output, and the right hand side 

expresses this class as a sum of the classes associated to rotating each input and those 

associated to breaking the domain into two components (each with three marked points) 
glued along the node, and rotating the tangent ray on one side of the node.

This geometric picture suggests that the correct chain-level structure that gives rise to 

the Batalin-Vilkovisky structure on symplectic cohomology is that of an algebra over the 

operad formed by the moduli spaces fM
R

0,k+1 (the case of k = 1 is exceptional, and we 

set it to be equal to the circle S1). The operad structure arises from the concatenation of 
Riemann surfaces with marked points to nodal Riemann surfaces, which induces a map 

of chain complexes

C∗(fM
R

0,k1+1) ⊗ · · · ⊗ C∗(fM
R

0,kn+1) ⊗ C∗(fM
R

0,n+1) → C∗(fM
R

0,
∑

ki+1), (1.3)

whereas the algebra structure on symplectic cochains is a collection of operations

SC∗(M) ⊗ · · · ⊗ SC∗(M)︸ ︷︷ ︸
k

⊗C∗(fM
R

0,k+1) → SC∗(M), (1.4)

for some model C∗(fM
R

0,k+1) of the singular chains on fM
R

0,k+1, and some chain complex 

SC∗(M) whose homology is symplectic cohomology, satisfying the following properties 
(we suggest [33] as a reference for operads and algebras over operads):

(1) Invariance under the action of the symmetric group on k-letters, acting by permuting 

the first k marked point of elements of fM
R

0,k+1, and the copies of SC∗(M) in the 

domain of (1.4).
(2) Compatibility with the operations associated to concatenation of the moduli spaces 

of framed curves (discussed in Appendix A.2), in the sense that the map

SC∗(M)⊗
∑n

i=1 ki ⊗ C∗(fM
R

0,k1+1) ⊗ · · · ⊗ C∗(fM
R

0,kn+1) ⊗ C∗(fM
R

0,n+1)

SC∗(M)⊗
∑n

i=1 ki ⊗ C∗(fM
R

0,
∑

n
i=1 ki+1)

(1.5)
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obtained either by first separately applying the maps in Equation (1.4) for k = ki, 
then applying it for k = n, agrees with the map obtained by first applying Equation 

(1.3), followed by Equation (1.4) for the sum k =
∑

ki.

The main result of the paper establishes the existence of such a structure, which we 

moreover show to satisfy the following fundamental properties:

• Independence of auxiliary choices.
• Strict functoriality under restriction maps.
• Compatibility with quantitative structures.

We shall give a precise formulation of our main result in Theorem 1.4 below, which we 

precede by a necessary overview of the notion of support for symplectic cohomology. 
Afterwards, we shall discuss our strategy for the proof of these results, as well as the 

relationship between the operad formed by the moduli spaces fM
R

0,k+1, and the framed 

E2 operad mentioned in the title, which is more extensively studied in the literature.

Remark 1.1. It will be apparent from our methods that one can construct a model for 
symplectic cochains, satisfying the above list of properties, and carrying an action of 
the operad formed by the chains of the union of the moduli spaces of framed Riemann 

surfaces fM
R

g,k+1 of arbitrary genus (more precisely, one has to shift the chains by a 

function of the genus to account for the degree of the corresponding operations). We 

leave the details of such an extension to the reader largely because it is orthogonal 
to the interesting operations in higher genus, which require one to consider gluing at 
multiple points (the operadic structure only allows operations with one output, which 

corresponds to gluing at one point). We expect that such an extension would require a 

more significant use of methods of homotopical algebra than the present paper.

Remark 1.2. There is a natural analogy between the chain structures we are constructing, 
and those which appear in Lagrangian Floer theory, leading to the question of why one 

cannot construct the operations in Equation (1.4) by a procedure which follows the exist-
ing steps in that context. To explain the essential difficulty, recall that, notwithstanding 

the technicalities in resolving questions of anomaly and obstruction which are required 

to define the Floer cohomology groups of a Lagrangian L, it is by now well-established 

[17,45] that one obtains an A∞ structure on the Lagrangian Floer chain complex, which 

can be written as a consistent collection of operations

CF∗(L) ⊗ · · · ⊗ CF∗(L) ⊗ C∗(R0,k+1) → CF∗(L), (1.6)

where R0,k+1 is the moduli space of stable discs with k + 1 marked points.
The fundamental difference between Equations (1.4) and (1.6) is that the moduli 

spaces R0,k+1 have a particularly simple topology: they can be realised as polytopes (the 
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Stasheff associahedra), and the operadic structure maps which control the consistency of 
the operations are given by inclusions of products of these polytopes as boundary faces. 
This leads to the algebraic structure being controlled by relatively simple combinatorics: 
there is a collection of operation indexed by the natural numbers, one for each moduli 
space R0,k+1, satisfying the familiar A∞ relation, which is the way that Equation (1.6)
is implemented in the literature, with the model for C∗(R0,k+1) given by the cellular 
chains of the polytope structure.

Because the geometry of the moduli spaces fM
R

0,k+1 is much more complicated such 

an approach is not adequate for Equation (1.6). This is already apparent for the case 

of operations with only one input, which we recall are given by a copy of S1, with 

composition map S1 ×S1 → S1 given by the usual multiplication. Evidently, this map is 
not given by a cellular inclusion. In fact, in the standard model for symplectic cochains, 
the chain level structure corresponding to the circle action is given [44] by a sequence of 
operations Δi, indexed by the natural numbers, satisfying dΔn =

∑
ΔiΔn−i.

1.2. Support conditions for symplectic cohomology

A standard construction associates to each compact subset K of a space M the in-
dicator (characteristic) function HK which is 0 on K and is infinite away from it. This 
construction is functorial with respect to inclusions in the sense that, whenever K is a 

subset of K ′, we have a pointwise inequality

HK′ ≤ HK . (1.7)

When M is a symplectic manifold (which we now assume to be closed for simplic-
ity), symplectic cohomology with support K can be thought of as a lift of the above 

construction to cohomology groups: since Floer cohomology is not defined for discontin-
uous functions (nor those which take infinite value), one considers instead a sequence 

of (non-degenerate) Hamiltonians Hi converging to HK , to which one associates the 

Floer cochain groups CF∗(Hi, J i) for an auxiliary sequence of almost complex struc-
tures J i. It is crucial at this stage to be careful with the choice of coefficients: a modern 

interpretation of Floer’s invariance result [15] is that the isomorphism type of the Floer 
cohomology groups does not depend on the choice of Hamiltonian when the coefficient 
ring is the Novikov field,1 whose elements are series 

∑∞
i=0 aiT

λi with ai lying in a cho-
sen ground ring k, and λi real numbers with the property that limi λi = +∞. In order 
to retain dynamical information about the functions Hi, one works instead with the 

smaller Novikov ring whose elements consists of series for which the exponents λi are 

non-negative. The category of modules inherits a natural completion functor associated 

1 Because we allow the ground ring k to be an arbitrary ring, rather than a field, using the term Novikov 
field in this context is an abuse of terminology. Similarly, the Novikov ring is not strictly speaking a valuation 
ring, even though we shall use the term.
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to the T -adic filtration, which is defined as the inverse limit of the tensor product with 

quotients of the Novikov ring by powers of T , which is essential to the following:

Definition 1.3. The symplectic cohomology SH∗
M (K) with support a compact subset K of 

a closed symplectic manifold is the homology of the completion of the (homotopy) direct 
limit of the chain Floer complexes of a monotone sequence of Hamiltonians converging 

to the indicator functor HK :

SC∗
M (K) ≡ ̂hocolim

i
CF∗(Hi, J i). (1.8)

In the above definition, the fact that we assume the sequence {Hi} of Hamiltonians to 

be monotone is essential in realizing the maps in the direct limit as maps of Floer com-
plexes over the Novikov ring, which is what allows us to define the symplectic cochains 
supported on K by completion. Geometrically, this is a consequence of the fact that 
monotone continuation maps always have non-negative (topological) energy, which is a 

property that fails for general continuation maps.
As we shall discuss in Section 1.5 below, the specific model for the homotopy colimit 

used in [52] is the mapping telescope, which is a complete chain complex receiving a map 

from each Floer group CF∗(Hi, J i) in the chosen sequence, together with a homotopy 

in each triangle

CF∗(Hi, J i) CF∗(Hi+1, J i+1)

SC∗
M (K),

(1.9)

where the horizontal map is the continuation map. In fact the underlying homotopy type 

of the mapping telescope can be characterised by a universal property associated to this 
data. This more abstract point of view will be useful to understand our construction.

Symplectic cohomology supported on K is independent of the choice of approximat-
ing Hamiltonians, recovers ordinary homology when M = K, and is functorial under 
inclusions in the sense that there is a restriction map

SH∗
M (K ′) → SH∗

M (K) (1.10)

whenever K is a subset of K ′, which is strictly compatible for triple inclusions. In ad-
dition, it satisfies a remarkable Mayer-Vietoris property, for a class of coverings which 

include those that are arise from a covering of the base of an coisotropic fibration. This 
property is crucial for recent applications both to symplectic topology [10] and to mirror 
symmetry [26]. The last reference includes an extension of the definition of symplec-
tic cohomology with support given by compact subsets to the case where the ambient 
symplectic manifold M is geometrically bounded, incorporating all the classes of open 

symplectic manifolds for which Floer theory is expected to be defined.
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1.3. Statement of results

We now state the main result of this paper, which is proved in Section 4:

Theorem 1.4. Associated to any compact subset K of a closed symplectic manifold is 

a complete torsion free chain complex SC∗

M,fM
R

0

(K) over the Novikov ring, called the

operadic symplectic cochains with support K, which is equipped with the following struc-

tures:

(1) An action of the operad whose kth chain complex, for 2 ≤ k, is given by the (sym-

metric normalised) cubical chains on fM
R

0,k+1, and whose first chain complex is the 

cubical chains of the circle.

(2) A restriction map for each inclusion K ⊂ K ′ of compact subsets

SC∗

M,fM
R

0

(K ′) → SC∗

M,fM
R

0

(K), (1.11)

which is compatible with the operadic action, so that the composition of the restriction 

maps associated to a pair of inclusions K ⊂ K ′ ⊂ K ′′ strictly agrees with the 

restriction map for K ⊂ K ′′.

(3) An action of the symplectomorphism group of M , i.e. an isomorphism

SC∗

M,fM
R

0

(K) ∼= SC∗

M,fM
R

0

(ψ(K)) (1.12)

for each symplectomorphism ψ of M , which is compatible with composition, preserves 

the operadic action, and commutes with restriction maps.

Remark 1.5. In Appendix C, we extend the above result (as well as the other main 

results of the paper), to the setting of geometrically bounded manifolds, which includes 
in particular the class of Liouville manifolds on which most of the literature on symplectic 

cohomology is formulated. We opt to segregate the discussion of geometrically bounded 

manifolds because it adds an additional level of technical complexity to a paper that is 
already quite technical.

Remark 1.6. Theorem 1.4 may appear suspiciously strong to experts, who might expect 
to see the compatibility property in its statement to involve higher homotopies, rather 
than being strict as asserted. These homotopies arise from the need to interpolate be-
tween various choices of data for defining the Floer complexes, as well as operations on 

them. An essential point of our approach is that all possible choices of Floer-theoretic 

data are incorporated in the definition of the operadic symplectic cochains with support 
a compact set K; in this way, the restriction maps associated to inclusions are straight-
forward to define, because they correspond to the fact that the space of data that arise 

in the definition of the operadic symplectic cochains for a compact set in M is a strict 
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subset of the data that arise in the definition for a subset thereof. Similarly, the action 

of the symplectomorphism group arises directly from its action on the space of data 

defining the operadic symplectic cochains. We shall presently give a more technically 

precise description of these ideas in Sections 1.5 and 1.6 below.

In the statement of the theorem, we are implicitly working with a Novikov ring whose 

coefficients are a field of characteristic 0, e.g. the rational numbers k = Q, and referring 

to Z/2-graded chain complexes. The proof of the above result thus relies on techniques 
of virtual counts, specifically on the results of [3]. The present paper separately contains 
a complete proof that is independent of any theory of virtual counts, for Floer complexes 
with coefficient ring the Novikov ring over the integers Z, under the assumption that the 

ambient symplectic manifold M is exact, Calabi-Yau, or monotone. Restricting to the 

subcomplex formed by contractible orbits one can work more generally on symplectic 

manifolds that are spherically Calabi-Yau or monotone, i.e. for which the first Chern class 
and symplectic class, evaluated on π2(M), are non-negatively proportional to each. Under 
the standard extra assumptions our results give chain complexes with finer gradings as 
well.

Remark 1.7. In the literature on Hamiltonian Floer theory [37, Definition 6.4.1], the 

ad hoc notion of semi-positivity is introduced as a condition under which the Floer 
complex is defined integrally, for a generic choice of almost complex structure. However, 
in this context, the standard methods do not associate higher homotopies to (generic) 
families of paths of almost complex structures. One is thus led to choose a generic almost 
complex structure, and to change the definition of the chain complex SC∗

M,fM
R

0

(K) so 

that all pseudoholomorphic curves are defined with respect to this fixed almost complex 

structure, and the Hamiltonian data are chosen generically to achieve transversality. In 

this way, the first two parts of Theorem 1.4 can be lifted to the integral Novikov ring in 

the semi-positive case. We do not know, however, how to prove the last part, regarding 

invariance under the action of the symplectomorphism group, using such methods.
We expect that Fukaya and Ono’s proposal [16] for extracting integral counts from 

moduli spaces of pseudo-holomorphic curves whose locus of non-trivial isotropy virtually 

has both strictly positive codimension and a stable complex normal bundle, will lead to a 

construction of the desired integral lift in general. A version of this proposal was realised 

by Bai and Xu [8] and Rezchikov [40] in a context which is sufficient to conclude the 

well-definedness of the Floer complexes, but which is not currently sufficient to define 

operations on it.

As stated, Theorem 1.4 makes no reference to Floer theory. In Section 1.7 below, we 

will explain the way in which all the structures are determined, in a universal way, from 

Floer-theoretic operations, but for concreteness, it is useful to separate the following 

result, regarding the chain complex underlying the operadic symplectic cochains:
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Theorem 1.8. For each Hamiltonian H which is negative on K, there is a map

CF∗(H, J) → SC∗
M,fM

R

0

(K), (1.13)

and for each monotone continuation map, there is a homotopy in the diagram

CF∗(H0, J0) CF∗(H1, J1)

SC∗
M,fM

R

0

(K).

(1.14)

Note that the conclusions of Theorems 1.4 and 1.8 are satisfied by many examples 
of rather trivial nature which do not record any deep information about symplectic 

topology. For example, by the constant assignment of a fixed algebra over the chains of 

the moduli spaces fM
R

0,k+1 to each compact subset of K, with a trivial morphism from 

each Hamiltonian Floer group. A more interesting example arises from the fact that one 

can equip the ordinary cochains of each topological space with the structure of an algebra 

over the E∞ operad, functorially with respect to all maps. Via the homotopically unique 

map from the operad fM
R

0,k+1 to the E∞ operad (induced by the fact that the latter is 
terminal), this gives rise to another example satisfying the conclusions of Theorems 1.4
and 1.8.

The following result, proved in Section 5, provides a comparison with the known 

constructions (and computations) of symplectic cohomology with support:

Theorem 1.9. The map from Hamiltonian Floer cochains to the operadic symplectic 

cochains with support K induces a quasi-isomorphism

SC∗
M (K) ∼= SC∗

M,fM
R

0

(K) (1.15)

from the homotopy colimit model of the symplectic cochains with support K. This map 

is a homotopy equivalence whenever the base ring k is a field, and it is compatible with 

restrictions maps, in the sense that the following diagram commutes up to prescribed 

homotopy:

SC∗
M (K ′) SC∗

M (K)

SC∗
M,fM

R

0

(K ′) SC∗
M,fM

R

0

(K).

(1.16)

Remark 1.10. We expect that the stronger conclusion that Equation (1.15) is a homotopy 

equivalence holds in general, but the proof that we provide relies on abstract properties 
of the category of chain complexes over rings of finite global dimension, which do not 
seem to apply to the integral Novikov ring.
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1.4. Framed E2 structures

The space of operations fM
R

0,k+1 that arises in Theorem 1.4 is known to be homotopy 

equivalent to the space of (disjoint) embeddings of k discs in the unit disc D2: the key 

point is that, for each genus 0 curve with one marked point (the output) which is equipped 

with a choice of tangent ray, there is a contractible choice of identifications of the domain 

with CP 1, mapping the marked point to ∞, the tangent ray to the positive real axis, 
and all other marked points to the complement of the unit disc. In order to extract the 

desired homotopy equivalence from this construction, one uses the further contractible 

choice of a sufficiently small positive real number for each other marked point (input), 
which extends the remaining choices of tangent rays to disjoint embedded discs.

The fact that this construction is compatible with the stable compactification, as well 
as with the operadic structure maps is encoded by the following result, due to Kimura, 

Stasheff, and Voronov [32, Section 3.4 and 3.7], who use the notation N for fM
R

0 and 

F for the framed E2 operad:

Proposition 1.11. There is an operad P, which is equipped with operad maps

Efr
2 ← P → fM

R

0 (1.17)

that are level-wise homotopy equivalences. �

This result immediately implies that the homology of the framed E2 operad acts on 

symplectic cohomology with support any compact set, and that this action is compati-
ble both with restriction maps and with the action of symplectomorphism groups. The 

homology of this operad was shown by Getzler [20] to be generated by two operations, 
an associative and commutative product and a degree 1-operator squaring to 0, subject 
only to the relation encoded by Equation (1.2). We conclude:

Corollary 1.12. The symplectic cohomology group SH∗
M (K) is equipped a natural BV -

algebra structure, which is preserved by restriction maps, and by the isomorphism 

SH∗
M (K) ∼= SH∗

M (ψK) associated to a symplectomorphism ψ of M . �

Restricting to the product, this construction recovers the product constructed in [51].
In order to formulate an explicit chain level structure on the telescope model of the 

symplectic cochains, we restrict to characteristic 0, in which case there is a replacement 
of the framed E2 operad, called the BV∞ operad, consisting of explicit operations [19, 
Theorem 20] for which a homotopy transfer result is known [19, Theorem 33] (the cited 

result is formulated for a characteristic 0 field but an inspection of the proof shows that 
it suffices to work over a commutative Q-algebra). This allows us to conclude:
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Corollary 1.13. Assuming that the ground ring k contains the rational numbers, the tele-

scope model SC∗
M (K) of symplectic cohomology with support K can be equipped with the 

structure of a BV∞ algebra, lifting the BV structure on homology. �

The list of operations on BV∞ algebras include those of an L∞ algebra, and we 

expect that these operations will recover those introduced by Siegel [47], without referring 

specifically to symplectic cohomology with support, and which he showed define new 

symplectic capacities.

Remark 1.14. The explicit description of BV∞ as a cofibrant replacement of the framed 

E2 operad in characteristic 0 strongly relies on the formality of the latter, i.e. on the 

existence of a homotopy equivalence between the rational homology of the framed E2

operad (which is the BV operad by Getzler’s result) and its rational chains. This was 
established in [25,55], building on Tamarkin’s result establishing the formality of the 

ordinary E2 operad [50]. Such a result is known to fail integrally as proved by Salvatore 

for the non-symmetric part of the operations in characteristic 2 [43], and by Cirici and 

Horel for the symmetric part in general [9, Remark 6.9].

1.5. A strictly functorial cochain model for SH∗
M (K)

As a final preparatory step to explaining the proof of our main results, we consider a 

toy problem, namely the construction of a model SC∗
M,�(K) for the symplectic cochains 

with support K, which is strictly functorial under inclusions, i.e. so that the restriction 

maps for a triple of inclusions K ⊂ K ′ ⊂ K ′′ give rise to a commutative diagram

SC∗
M,�(K ′′) SC∗

M,�(K ′)

SC∗
M,�(K).

(1.18)

We start by noting that the choices made in the definition of the existing model for 
SH∗

M (K) are (i) a sequence Hi of Hamiltonians converging to the indicator function of 
K, (ii) almost complex structures J i used to define the Floer complexes CF∗(Hi, J i), 
and (iii) continuation equations defining chain maps

CF∗(Hi, J i) → CF∗(Hi+1, J i+1). (1.19)

From these data, the complex SC∗
M(K) is then defined in [52] as the completion of the 

(total complex) given by the mapping telescope

CF∗(H0, J0) CF∗(H1, J1) · · ·

CF∗(H0, J0) CF∗(H1, J1) · · ·

= = (1.20)
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following the method originating in [6].
The advantage of the mapping telescope definition is that it is essentially as small as 

possible, so that the construction of explicit algebraic operations on it requires the least 
effort. But the construction of restriction maps require making an interpolation between 

the choices made for K and K ′, and there is no reason to expect that the interpolations 
for a triple of inclusions agree.

We resolve this as follows: first, we interpret the construction of the sequence of Floer 
complexes CF∗(Hi, J i) and of the continuation maps between them as a functor

CF : N → Ch (1.21)

from the natural numbers (thought of as a category with an arrow from i to j if and only 

if i ≤ j) to the category of chain complexes over the Novikov ring. Next, we sacrifice the 

small size of the mapping telescope for the larger model of the homotopy colimit given 

by the bar construction:

hocolim CF∗(Hi, J i) ∼= B(N, CF ). (1.22)

Finally, we replace the domain category N by the category FK,�(1) of all pairs (H, J)
for which Floer theory is defined, so that the Hamiltonian H is negative on K, and 

morphisms given by monotone continuation maps between them. It is important in this 
last stage to remember that there is a natural notion of a family of continuation maps, 
and we thus have to consider FK,�(1) as an enriched category, which turns out to have the 

particularly simple feature that the space of morphisms between objects are either empty 

or contractible. We make the technical choice of considering only families of continuation 

maps parametrised by cubes, thus modelling homotopy theory using (symmetric) cubical 
sets as discussed in Appendix B.1. There are alternative methods, such as grappling with 

the definition of a topology on the (infinite) dimensional space of continuation maps 
(allowing for breaking), or using simplicial sets, or even going all the way to formulate 

our construction using quasi-categories.
The essential point at this stage is that the functor of Floer cochains extends to an 

enriched functor

CF∗ : C∗FK,� → Ch . (1.23)

This means that we assign to each pair (H, J) its associated Floer complex, and to each 

n-cube of continuation maps a degree −n map of Floer cochains, which is compatible 

with restriction to boundary strata (and vanishes for degenerate cubes). The homotopy 

colimit of the corresponding functor is the dashed arrow in the diagram of differential 
graded categories
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C∗FK,� Ch .

�

CF∗

π
(1.24)

where the vertical map is the projection map to a point, and we have a prescribed 

(homotopy) natural transformation between CF∗ and the composition of this arrow 

with the projection. This natural transformation is the structure map appearing in the 

formulation of the universal property of the (homotopy) colimit, namely the existence 

of a map

CF∗(H, J) → hocolim
C∗FK,�

CF∗ (1.25)

for each object (H, J) of FK,� that commutes up to prescribed homotopy with the action 

of morphisms in the category C∗FK,�.
We find it convenient to use a specific model of the homotopy colimit given by the 

bar construction (see [30]), and we denote its completion by:

SC∗
M,�(K) ≡ ̂B(CF∗, FK,�(1)). (1.26)

With this definition at hand, establishing the existence of a commutative Diagram 

(1.18) is straightforward: an inclusion K ⊂ K ′ induces an inclusion of categories

FK′,�(1) → FK,�(1), (1.27)

because the only condition, that is not a global condition independent of K, which is 
imposed on the objects and morphisms of FK,�(1) is the requirement that the Hamil-
tonian H be non-negative on K, and this condition is inherited under inclusions. Given 

a nested triple K ⊂ K ′ ⊂ K ′′, the construction yields a nested inclusion of categories 
FK′′,�(1) ⊂ FK′,�(1) ⊂ FK,�(1), so that the functoriality of the bar construction yields 
the desired commutative triangle.

The last thing to check is that this construction defines a complex which is homotopy 

equivalent to the usual symplectic cochains with support K. The essential point in this 
case is that the elements of the sequence {Hi}∞

i=0 eventually dominate any Hamiltonian 

H on M which is strictly negative on K, hence that the space of morphisms from 

any object of FK,�(1) to the chosen sequence eventually become contractible (this is 
Proposition 2.20). A standard comparison result for homotopy colimits (cf. Section 5.7) 
then implies:

Proposition 1.15. The map

SC∗
M (K) → SC∗

M,�(K) (1.28)

induced by the inclusion of the sequence {(Hi, J i)}∞
i=0 as a subcategory of FK,�(1) is a 

quasi-isomorphism. Assuming that k is a field, it is also a homotopy equivalence. �
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1.6. Strategy for the proof of Theorem 1.4

We now explain how to adapt the strategy outlined in the previous section in order 
to obtain a model which is equipped with the structure of an algebra over the operad of 

chains on fM
R

0,k+1. As indicated earlier, this means that our definition should include 

all possible choices not just for defining the Floer complexes, but also for constructing 

multiplicative operations on it.
A convenient formalism for recording all this data is that of a multicategory, which si-

multaneously extends the notions of category and operad: as in a category one is given a 

collection of objects, but in addition to morphisms between such objects, multimorphisms 
which have multiple inputs and a single output are included. Such multimorphisms corre-
spond to the higher spaces of an operad, and indeed an operad is exactly a multicategory 

with one object.
Multicategories arise naturally in Floer theory because the product map on Floer 

cochains

CF∗(H1, J1) ⊗ CF∗(H2, J2) → CF∗(H0, J0) (1.29)

is defined by considering equations of Floer type on a pair of pants with 3 marked points, 
whose restriction to neighbourhoods of the three marked points respectively agree, under 
a local biholomorphism of a half-cylinder with the pair of pants, with the Floer equations 
associated to the pair (Hi, J i). There is no canonical choice for such a map, and our goal 
therefore is to identify a space F((H1, J1), (H2, J2); (H0, J0)) (associated to K = ∅, 
which is the universal case for our construction) of Floer data with two inputs and one 

output, so that we have a map

CF∗(H1, J1) ⊗ CF∗(H2, J2) ⊗ C∗F((H1, J1), (H2, J2); (H0, J0)) → CF∗(H0, J0),
(1.30)

as well as composition maps associated to changing the inputs and outputs. More gener-
ally, we need to define spaces F((H1, J1), · · · , (Hk, Jk); (H0, J0)) for each input sequence 

of objects of F , and (multi)-composition maps realising the structure of a multicategory, 
which we formally recall in Appendix B.2.

The essential difficulty in this task is to ensure that the notion of Floer data that we 

use (i) has a well-defined notion of composition, (ii) induces maps of Floer complexes 
over the Novikov ring, and (iii) satisfies the property that, for each input sequence (
(H1, J1), · · · , (Hk, Jk)

)
and output data (H0, J0), the projection map from the space 

of multimorphisms to the moduli space fM
R

0,k+1 is a homotopy equivalence whenever 
the function H0 is sufficiently close to the indicator function of K.

Remark 1.16. The importance of the third condition above may not be immediately 

apparent to the reader, but it is essential in proving that our construction yields a model 
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for the symplectic cochains. The following analogy may be helpful: consider fibre bundles 
X1 → B and X2 → B with fibres F1 and F2, and assume that we have a map X1 → X2

which also a fibre bundle, through which the first fibre bundle projection factors. From 

these data, we obtain a map on B between the local systems with fibres F1 and F2, and 

we would like a natural condition that implies that this map is an isomorphism of local 
systems. Such a condition is provided by the assumption that the map X1 → X2 induces 
a homotopy equivalence F1 → F2.

In our setting, the data of X1 → B and X2 → B are ultimately used to construct the 

model of symplectic cochains defined in this paper, and the standard one. The space X1

consists of the data of multimorphisms, and the map to X2 only remembers their domain 

and their output. By requiring that the forgetful map be a homotopy equivalence, we 

shall be able to conclude that the map between the two models is an isomorphism.

The most general way to achieving (i) and (ii) is to define Hamiltonian data on a 

framed Riemann surface to consist of a 1-form H valued in the space of Hamiltonians 
on the target symplectic manifold, with prescribed restriction to a neighbourhood of the 

punctures. In this context, the positive energy condition that is required in order for 
operations to be defined over the Novikov ring is the non-linear equation

dH + {H,H} ≥ 0. (1.31)

Unfortunately, we have been unable to prove that this choice satisfies the third condition 

above.
Instead, we introduce a notion of split-monotone Floer data on a framed Riemann 

surface Σ; this consists of a closed 1-form on Σ, and a function H on Σ × M , subject to 

several conditions, of which the most important is the requirement that, for each point 
x ∈ M , the wedge product of the differential of H(x) with α is a non-negative 2-form 

on Σ

dH(x) ∧ α ≥ 0; (1.32)

this condition is the specialisation of Inequality (1.31) to the case H = H ⊗ α. When Σ
is a cylinder R × S1 with coordinates (s, t), and α = dt, it is clear that we recover the 

condition of monotonicity ∂H
∂s ≥ 0 for continuation maps, which underlies Definition 1.3.

An additional feature worth mentioning is that our 1-forms α are required to be of 
the form α = wpdt near each puncture p for some positive real weight wp (subject to the 

constraint in Equation (2.4)). The need for real weights is clarified in Fig. 1. Namely, for 
contractibility to hold we need to interpolate between different assignments of weights 
for given asymptotic data (there are other approaches where contractibility is achieved 

entirely using continuation maps, cf. [6]).
A split Floer datum on Σ defines an element of the space of multimorphisms with 

inputs 
(
(H1, J1), · · · , (Hk, Jk)

)
and output (H0, J0), when there is a choice of cylindrical 
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Fig. 1. Breaking of curves with integral weights.

ends at the ith puncture so that H ⊗α and J pull back to Hi⊗dt and to Ji. The topology 

on this space is straightforward to derive from the topology on the moduli space of framed 

Riemann surfaces and the C∞ topologies on function spaces.
Unfortunately, this construction is not closed under compositions. For example, we 

would need to have a (continuous) composition map

F((H1, J1), (H2, J2); (H0, J0)) ⊗ F((H0, J0); (H ′0, J ′0))

→ F((H1, J1), (H2, J2); (H ′0, J ′0)), (1.33)

which is compatible with the actions on Floer cochains, and more generally we need com-
position maps of multimorphisms with other multimorphisms. If we restrict attention to 

Floer data on (smooth) Riemann surfaces, this is impossible, because the composition of 
these operations is geometrically associated to the pre-stable Riemann surface obtained 

by attaching a cylinder to a pair of pants at one end. The definition of the multicategory 

F thus involves split Floer data on pre-stable Riemann surfaces. This makes a straight-
forward definition of a topology more tricky, and we choose to bypass this, as discussed 

earlier, by working with cubical sets as our model for homotopy types.
Continuing along the outline of the simpler problem discussed in Section 1.5, we have 

by now explained the construction of an algebraic object that encodes all possible choices 
for constructing genus 0 operations, with one output, in Hamiltonian Floer theory. The 

next step is to apply the usual Floer theoretic procedure to associate to each n-cube in 

F((H1, J1), (H2, J2); (H0, J0)) an operation of degree n in Equation (1.29), and more 

generally a chain map

CF∗(H1, J1) ⊗ · · · ⊗ CF∗(Hk, Jk)

⊗ C∗F((H1, J1), . . . , (Hk, Jk); (H0, J0)) → CF∗(H0, J0). (1.34)
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The compatibility of these maps with (multi)-compositions in F amount to asserting 

that they assemble to a differential graded multi-functor

C∗F → Ch, (1.35)

whose target is the category of chain complexes equipped with its monoidal structure 

given by the tensor product, which we consider as multicategory whose objects are Z2-
graded chain complexes and whose multimorphisms with source a sequence (C1, . . . , Ck)
of chain complexes and target a chain complex C0, given by the chain complex of maps

C1 ⊗ · · · ⊗ Ck → C0. (1.36)

At this stage, we recall that each compact subset K of M determines the subset of 
objects of F consisting of those pairs (H, J) for which the Hamiltonian H is strictly 

negative on K. We write FK ⊂ F for the full multicategory on these objects, and abuse 

notation by writing CF∗ for the restriction of the Floer functor to this multicategory.
It now remains to extract, from Equation (1.35), and the projection map from FK to 

fM
R

0 , a total complex which carries an action of the chain operad associated to fM
R

0 . In 

order to do this, we need one final piece of abstraction. In the diagram of multicategories

C∗FK Ch,

C∗fM
R

0

CF∗

π (1.37)

we shall consider a diagonal arrow that we refer to as the operadic (homotopy) left Kan 

extension of CF∗ along π. This is a natural generalisation, in two different ways, of the 

notion of a homotopy colimit which arose in Diagram (1.24): (i) we pass from categories 

to multicategories, and (ii) we work over the operad C∗fM
R

0 rather than over the point. 
We note at this stage that, from the point of view of operads as multicategories with 

one object, the diagonal arrow distinguishes a chain complex (the image of this unique 

object), together with an action of the operad of chains on fM
R

0 .
Instead of characterising the Kan extension by its universal property discussed in 

Section 1.7 below, we choose to work with a specific model, analogous to the bar con-
struction, which we describe explicitly in Section 4 and denote by Lπ∗ CF∗ and whose 

completion defines the operadic symplectic cochains with support K that we refer to in 

Theorem 1.4.
The structural results in Theorem 1.4, regarding restriction and the action of the 

symplectomorphism group follow rather directly from the good functorial properties of 
the model which we have chosen for the left Kan extension. On the other hand, our con-
struction of the comparison map in Equation (1.15) requires some explicit computations, 
because it is a comparison between a categorical and an operadic Kan extension.
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1.7. The universal property of the operadic model

While we use an explicit construction of the Floer algebra SC∗

M,fM
R

0

(K) in this paper, 

we complete this introduction by briefly indicating the universal property that it enjoys. 

We have already used the fact that an operad such as C∗fM
R

0 is the same thing as 

a multicategory with a single object while an C∗fM
R

0 -algebra is the same thing as a 

multifunctor from C∗fM
R

0 to Ch. Thus we take SC∗
M,fM

R

0

(K) to denote not merely a 

chain complex with operations but a multifunctor. We then denote by SC∗
M,fM

R

0

(K) ◦ π

the composition with the forgetful map.
The essential point at this stage is that there is a homotopy natural transformation 

of multifunctors

α : CF ∗ ⇒ SC∗

M,fM
R

0

(K) ◦ π (1.38)

whose component at the object (H, J) ∈ F is the inclusion map CF∗(H, J) ↪→

SC∗

M,fM
R

0

(K). It would take us too far afield to formally define such a notion, but one 

way to formulate it as the data of a collection of homotopies for each operadic structure 

map, together with higher homotopies associated to compositions thereof. Alternatively, 
the reader can find a discussion in the quasi-categorical setting in [5, Lemma 2.16].

The homotopy universal property is as follows: given any fM
R

0 algebra D together 

with a homotopy natural transformation α′ : CF ⇒ D ◦ π there exists, uniquely up to 

contractible choice, a homotopy natural transformation β : SC∗

M,fM
R

0

(K) → D such that 

α′ = β ◦ α.

Theorem 1.8 can be interpreted as the first non-trivial datum extracted from the nat-
ural transformation in Equation (1.38), at the level of morphisms. In order to formulate 

the analogous data for multimorphisms, fix a sequence {Hi}
k
i=0 of non-degenerate Hamil-

tonians which are strictly negative on K, and a sequence {J0} of S1-families of almost 
complex structures. Consider a family of framed genus-0 Riemann surfaces parametrised 

by an manifold (more generally, a cycle in fM
R

0,k+1), equipped with split Floer data as 
described above. Such data determine a map

CF∗(H1, J1) ⊗ · · · ⊗ CF∗(Hk, Jk) → CF∗(Hk, Jk) (1.39)

obtained from the moduli spaces of virtual dimension 0 solutions of the family of the 

associated Cauchy-Riemann equation. We omit the proof of the following result.

Proposition 1.17. There is a prescribed homotopy in the diagram

CF∗(H1, J1) ⊗ · · · ⊗ CF∗(Hk, Jk) CF∗(Hk, Jk)

SC∗
M,fM

R

0

(K) ⊗ · · · ⊗ SC∗
M,fM

R

0

(K) SC∗
M,fM

R

0

(K),

(1.40)
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in which the bottom horizontal map is defined applying the operadic structure map to the 

cycle in fM
R

0,k+1 associated to the chosen family of Floer data.

We propose to the reader that the above result should be interpreted as follows: given 

a sequence of elements of SH∗
M (K) arising as the image of cycles in the Floer cohomology 

of Hamiltonians Hi, the image of these elements under any operation parametrised by a 

cycle in the operad fM
R

0 can be computed by first lifting this cycle to the multicategory 

FK , then applying the associated Hamiltonian Floer-theoretic operation, and finally 

composing with the map from Floer cohomology to symplectic cohomology with support 
K. The main subtlety with this viewpoint is that, because of the chain-level completion, 
an arbitrary element of the symplectic cohomology group with support K may not arise 

as the image of an element of Floer cohomology for any choice of Hamiltonian. This is 
one reason for formulating the above result at the chain-level.

1.8. Outline

In Section 2, we construct the canonical Hamiltonian indexing multicategory H of 
a symplectic manifold. The objects of H are all non-degenerate Hamiltonians and for a 

compact K ⊂ M we consider the full sub-multicategory HK with the additional condition 

on objects that they be negative on K. The multimorphisms are very roughly given 

by families of Hamiltonians parametrised by a genus-0 Riemann surface, satisfying a 

monotonicity condition, i.e. that they are non-decreasing along some oriented singular 
one dimensional foliation on the surface (which is not a priori fixed and is part of the 

data), see Definition 2.1. In particular, recording the biholomorphism type of the surface 

defines a forgetful multifunctor

H → fM
R

0 (n). (1.41)

In order to be able to encode the homotopy type of multimorphism sets, we construct H
as a multicategory enhanced over symmetric cubical sets, see Definition 2.10. The main 

result in this section (referred to as contractibility) is Proposition 2.20 which says that if 
H0 is sufficiently larger than H1, . . . , Hn, the symmetric cubical set H(H1, . . . , Hn; H0)

is homotopy equivalent to fM
R

0 (n); without such an assumption, we have little control 
over the homotopy type of the multimorphism spaces, which could for example be empty.

The multicategory H (or HK) is used as an intermediate step to introduce, in Sec-
tion 3, the Floer data indexing multicategory F , whose objects are pairs consisting of a 

Hamiltonian and an almost complex structure, and whose multimorphisms also include 

the data of families of almost complex structures. There is a canonical forgetful multi-
functor F → H. Since the monotonicity condition does not involve the almost complex 

structures, the construction of F does not present any new significant difficulties, nei-
ther does the analogous contractibility result. We appeal to the results of [3] to obtain a 

dg-functor called the Floer functor :
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CF∗ : C∗F → Ch,

which extends the assignment of the Hamiltonian Floer complex to each object (H, J) of 
F , by assigning a degree −n map to each n dimensional cubical chain in a multimorphism 

space. While the construction the Floer functor in full generality uses virtual techniques, 
we also explain how it is constructed in the non-negatively monotone case using genericity 

arguments. The Floer functor might be of some independent interest as it is in some sense 

the universal diagram of Hamiltonian Floer complexes defined using split-monotone Floer 
data.

In Section 4, we construct a canonical dashed arrow

C∗FK Ch,

C∗fM
R

0

CF∗

π (1.42)

using an operadic bar construction. This gives the proof of Theorem 1.4. The diagram 

does not commute, but there is also a canonical homotopy natural transformation from 

the Floer functor to the composition of the other two maps. We explicitly describe only 

a very small part of this structure which constitutes our proof of Theorem 1.8.
Section 5 is devoted to a proof of Theorem 1.9. We first prove that our operadic bar 

construction is chain homotopy equivalent to a categorical bar construction. To pass 
to categories we use the PROP functor from multicategories to categories. Up to a 

difference in how the symmetric group actions enter in the construction, this passage is 
almost formal. On the other hand, it does take a considerable amount of work for us 
to settle this difference. This part concludes with Section 5.5. Then we show that we 

can pass to much smaller models (such as the telescope model) using standard cofinality 

arguments and contractibility.

big 

operadic 

model

big 

categorical 
model

model involving a 

cofinal sequence, 
e.g. telescope

Sec 5.2-5.5 Sec 5.6-5.7
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2. The Hamiltonian indexing multicategory

We fix a closed symplectic manifold M . The purpose of this section is to define a mul-
ticategory H, whose objects are Hamiltonians H ∈ C∞(R/Z × M) with non-degenerate 

1-periodic orbits, and whose multimorphisms are spaces (more precisely, symmetric cu-
bical sets as described in Appendix B.1) of Riemann surfaces with additional data which 

we shall presently specify. This multicategory will carry a forgetful map to the singular 

cubical chains (see Example B.2) of the framed KSV operad fM
R

0 . The reader who finds 
this section overwhelming on first reading may benefit from first consulting Section 1.5
which discusses a simpler setting, as well as Section 1.6, from which the role of the 

constructions of this section in the overall strategy should become clearer.

2.1. Multimorphisms of dimension 0

The essential point of our approach is the construction of a set of multimorphisms 
associated to each sequence (H1, . . . , Hn) of Hamiltonian inputs, and each choice H0 of 
output. This will correspond to the 0-cubes of the symmetric cubical set of multimor-
phisms associated to these data. All higher cubes will later turn out to be expressible in 

term of maps from the cube to this set.
Since the data that determine a multimorphism will involve a choice of Riemann 

surface, and we would like to identify the data supported on biholomorphic Riemann 

surfaces, it is convenient, as is familiar from many similar Floer-theoretic constructions, 
to define the desired space as a space of equivalence classes of a larger set which we now 

introduce (our conventions for trees and Riemann surfaces are prescribed in Appendix A):

Definition 2.1. A pre-multimorphism with input a sequence of Hamiltonians (H1, . . . , Hn)
and output a Hamiltonian H0 consists of the following data:

(1) A pre-stable rational curve Σ with n inputs and one output (in particular, equipped 

with a cylindrical end ε±
p on every puncture p of each component).

(2) A labelling of each edge e of the tree underlying Σ by an element He ∈ H. The i-th 

input edge, for i > 0, is labelled by Hi and the output by H0. We denote by T the 

given tree together with the labelling of the edges by Hamiltonians. We refer to T

as a Hamiltonian labelled tree.
(3) For each vertex v ∈ T a choice of a pair (Hv, αv) where Hv : Σv × M → R is a 

smooth function, and αv is a closed 1-form on Σv.

These are required to satisfy the following conditions:
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(1) On a bivalent vertex v, we have Heout �= Hein .
(2) For all x ∈ M we have the monotonicity inequality

dHv
x ∧ αv ≥ 0. (2.1)

(3) For any vertex v and any puncture p of Σv, there is a positive real number wp called 

the weight, such that we have

ε±,∗
p αv = wpdt (2.2)

ε±,∗
p (Hvαv) = Hepdt. (2.3)

(4) For each internal edge of T with endpoints v− and v+, the weights of αv−
and αv+

at the punctures associated to e agree.
(5) For any vertex v, if pout is the positive puncture of Σv and is p a negative puncture 

of Σv:

wp

wpout

≥
1

2|Ein(v)| − 1
. (2.4)

In Equation (2.1), we use the notation

Hv
x(·) = Hv(x, ·) : Σv → R. (2.5)

Observe that by closedness of the 1-forms αv, the output weight is the sum of the 

input weights at every vertex. The essential point in this definition is that, while one can 

define operations in Floer theory using Hamiltonian data of more general type than the 

split data that we choose (for example, one may consider a 1-form valued in the space 

of Hamiltonians), imposing the analogue of the monotonicity constraints in Equation 

(2.1) in such a general context results in a space whose homotopy type seems difficult to 

describe (even allowing for varying the choice of output Hamiltonian).

Remark 2.2. The condition Heout �= Hein can be omitted at the cost of allowing arbi-
trarily long compositions of the constant continuation map with itself. Imposing it thus 
corresponds, in a certain way, to working with a reduced version of the theory.

Similarly, Inequality (2.4) is imposed for convenience to obtain compactness of the 

space of allowable weights for fixed inputs and outputs. It could be omitted at the cost 
of changing the definitions so that the homotopy type of the spaces H(H1, . . . , Hn; H0)
is accurately reflected by the homotopy type of a sequence of exhausting subsets.

The remaining conditions are unavoidable consequences of needing to ensure that, 
when we choose almost complex structure in Section 3.1, the resulting moduli spaces 
give rise to operations from the Floer complexes of the input Hamiltonian to that of the 

output Hamiltonian.
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Definition 2.3. Two pre-multimorphisms are equivalent if there is an isomorphism of the 

underlying pre-stable rational curves which intertwines the choices of cylindrical ends, 
the data of He, and finally the data of {(Hv, αv)} up to the equivalence relation

{(erHv, e−rαv)} ∼ {(Hv, αv)} ∀r ∈ R. (2.6)

This leads to the following notion:

Definition 2.4. A multimorphism of dimension 0 is an equivalence class of pre-
multimorphisms. We denote by H0(H1, . . . , Hn; H0) the set of all multimorphisms of 
dimension 0. For a Hamiltonian labelled tree T with n inputs and one output we de-
note by H0,T (H1, . . . , Hn; H0) the set of multimorphisms defined on pre-stable rational 
curves modelled on T .

Remark 2.5. For each fixed T , the set H0,T (H1, . . . , Hk; H0) has a natural smooth struc-
ture as an infinite dimensional Fréchet manifold. Namely, when T consists of a single 

vertex, it a fibre bundle over the manifold of smooth framed curves with k + 1 marked 

points; the fibre is analyzed in detail in Lemma 2.21. For general T we may write a 

description as fibre products of variants of these bundles in which the Hamiltonian is 
not fixed at some of the punctures. We shall avoid introducing a topology on the space 

H0(H1, . . . , Hk; H0) of all multimorphisms of dimension 0, and instead will construct a 

cubical set of which these are the 0-cubes.

Part of the structure of a multicategory is an action, by relabelling, on multimor-
phisms. Concretely, the means that, given a permutation ρ of the sequence (1, . . . , k), 
we need an isomorphism

H0(H1, . . . , Hk; H0) → H0(Hρ(1), . . . , Hρ(k); H0), (2.7)

satisfying the property that the composition of the maps associated to permutations ρ1

and ρ2 to agree with the map associated to ρ1 ◦ρ2. This is in fact given by an elementary 

relabelling procedure on the set of pre-multimorphisms: we assign to Σ the pre-stable 

rational framed curve ρ∗Σ with the same underlying curve and framing, but with the 

input labels permuted by ρ. Since the sequence of inputs is also permuted by ρ, the rest 
of the data in the right hand side of Equation (2.7) (of labelling of trees, and choices of 
1-form, Hamiltonians, weights, and cylindrical ends), are canonically determined by this 
choice, and the imposed properties are preserved.

For the next definition, we consider sequences �H1 ∈ Hk1 and �H2 ∈ Hk2 , where the 

notation indicates the Cartesian product on the object sets, and write

�H1 ◦i
�H2 (2.8)

for the sequence with k1 + k2 − 1 elements obtained by replacing the ith component of 
H2 with the vector �H1.
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Given two Hamiltonian labelled trees T1 and T2 such that ith input label of T2 is the 

same as the output label of T1, we can construct a new Hamiltonian labelled tree T1 ◦i T2

by taking the disjoint union of T1 and T2 and identifying the output edge of T1 with the 

ith input edge of T2.
This operation extends to a multicomposition operation on multimorphisms.

Definition 2.6. The multicomposition

◦i : H0( �H1; Hi
2) × H0( �H2; H) → H0( �H1 ◦i

�H2; H) (2.9)

takes (d1, d2) to the multimorphism defined by attaching the output of d1 to the ith 

input of d2.

The main point to check is the compatibility condition in Definition 2.1 between the 

two data at the edge of T1 ◦i T2 along which the trees are attached. This is ensured by 

choosing representatives of d1 and d2 such that the output weight of d1 agrees with the 

ith input weight of d2. To avoid any confusion, we reiterate that this definition does not 
involve any gluing of Riemann surfaces (or Hamiltonian data), but uses only attaching 

pre-stable Riemann surfaces as in Definition A.3 (carrying, in addition, Hamiltonian 

data).

2.2. Higher cubes of multimorphisms

Informally speaking, we shall define positive dimensional cubes of multimorphisms as 
cube families of multimorphisms of dimension 0 which are obtained by gluing near the 

boundary strata. We think of this as a replacement for the more naive strategy of defining 

a smooth structure on the set of multimorphisms of dimension 0 and considering the 

smooth singular cubes of this target. This alternative strategy appears to be technically 

much more complicated because the space of choices is infinite dimensional, and there 

seems to be no natural way to equip it with a manifold structure that is consistent with 

the breaking of Riemann surfaces.
We now introduce some notation for the gluing operation that will be used in the 

definition of higher dimensional cubes. We consider an element d ∈ H0(H1, . . . , Hn; H0)
with underlying Hamiltonian labelled tree T , and refer the reader to Definition A.5 for 
the precise way in which we formulate gluing of Riemann surfaces:

Definition 2.7. The gluing of d along parameters �r ∈ [0, 1]Eint(T ) is the multimorphism 

obtained by gluing the underlying framed pre-stable curves, equipped with the restriction 

of the data (Hv− , αv−) and (Hv+ , αv+
) for each e ∈ Eint(T ) connecting vertices v− and 

v+ with re > 0.

Note that the compatibility condition of weights along the two sides of the node, 
which we imposed in Definition 2.1, ensures that the Hamiltonian data on the glued Rie-
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mann surface are well-defined after gluing (along the boundary identification in Equation 

(A.8)). In addition, the equality 2n−1 · 2m−1 = 2(n+m−1)−1 shows that Condition (2.4)
is satisfied.

Given d ∈ H0( �H, H), which we stress can be broken, we call the triple (T, d′, �r) of a 

Hamiltonian labelled tree T , d′ ∈ H0,T ( �H, H) and �r : |Eint(T )| → [0, 1] such that

d = Γ�r(d′) (2.10)

a gluing decomposition of d. A given element d of H0( �H, H) may have more than one 

gluing decomposition, but the choice is fixed by choosing the tree labelling the decom-
position. We shall use the following weaker result, in which one fixes the source of the 

gluing map:

Lemma 2.8. Any two gluing decompositions of d with the same underlying tree T and 

Hamiltonian datum d′ ∈ H0,T ( �H, H) have equal gluing parameters.

Proof. We must show that the gluing parameters can be reconstructed from d. We shall 
not do so directly, but rather, we show that, for each edge e of T , a strictly monotonic 

function pe of the gluing parameter can be thus reconstructed. For the discussion below, 
we shall use the fact that such an edge determines a (free) homotopy class of circles in 

Σ.
We define pe(�r) as the infimum of the product of quantities (p1, . . . , pk) in (0, 1) such 

that there are disjoint holomorphic embeddings E : (log(pj), 0) ×R/2πZ → Σv, for some 

component Σv of the target, in the specified homotopy class, satisfying the following 

properties

E∗αv = cdt for some c > 0 (2.11)

E∗ (Hv
xαv) = Hedt, (2.12)

assuming that such an embedding exists. Note that, since the gluing annulus associated 

to e satisfies the above property, the only way for such an embedding to fail to exist is 
if the gluing parameter equals 1 (and there is no way to extend it holomorphically so 

that the stated properties hold), in which case we set pe(�r) to be 1. The other extreme 

case, with pe(�r) = 0, corresponds to the case in which e is not collapsed. Let us call the 

collection of maximal embeddings Ee.
Note that, since α does not vanish on Ee, its restriction to it is a foliation, which by 

the requirement that α pulls back to dt, has closed leaves. The condition that He ≤ He′

for any edge e′ that succeeds e′ along the arc to the output, with strict inequality at 
some point, implies that the sets Ee and Ee′ are disjoint whenever e �= e′.

The monotonicity condition further implies that Ee is contained in the image, under 
gluing, of the Riemann surfaces Σv−

and Σv+
which are associated to the endpoints of 

e. This implies that pe(�r) depends only on the gluing parameter re. Since Ee contains 
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the gluing annulus associated to e, we conclude that pe(�r) is a monotonic function of re

because the gluing region, which shrinks when the gluing parameter increases, while the 

remaining regions do not change. �

The next definition describes the local models for the cubes of multimorphisms that 
we will consider.

Definition 2.9. A local model for a codimension k corner of a family of multimorphisms

with input �H and output H consists of the following data:

(1) (Domain of maximal breaking) a smooth manifold C,
(2) (Collar neighbourhood) an open neighbourhood U of the origin in [0, 1]k (in the case 

k = 0 we write U = {0}).
(3) (Choice of broken curves) A Hamiltonian labelled tree T , and a smooth map

b : C × U → H0,T ( �H, H), (2.13)

where the target is smooth as in Remark 2.5.
(4) (Gluing data) A smooth map

g : C × U → [0, 1)|Eint(T )| (2.14)

whose components vanish identically on C × {0}. Moreover, for each face σ of U , 
any component gi of g either vanishes identically or is nowhere 0 on the interior of 
C × σ.

We are now ready to define the cubes of multimorphisms in H. For the definition we 

fix once and for all a positive number ε0 < 1/2. For each n denote by Fn the set of 
faces of the n-cube [0, 1]n (we include the top stratum among them, so that Fn has 3n

elements). For each f ∈ Fn, denote by fo, the interior of f . For each f ∈ Fn, let Wf be 

the image in the n-cube of the canonical affine embedding of

fo × [0, ε0)codim(f). (2.15)

Denote by Vn the open cover of [0, 1]n given by Vn = {Wf }f∈Fn
. Note that there are 

natural identifications Fn = (F1)n and Vn = (V1)n where an n-tuple (Wf1
, . . . , Wfn

) ∈
(V1)n is identified with the Cartesian product (Wf1

× · · · × Wfn
) = Wf1×···×fn

. Thus the 

cover Vn is compatible with intersection with faces of the n-cube and is equivariant with 

respect to the action by transposition of the coordinates on Fn.

Definition 2.10. An n-cube d in H( �H, H) consists of a family of Hamiltonian data given 

by a choice (Tf , bf , gf )f∈Fn
of a local model for each face f of the cube, with domain 

the set Wf , equipped with the decomposition from Equation (2.15) so that the following 
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property holds: given an inclusion f0 ⊂ f1, let E be the set of edges of Tf0
that are 

collapsed under the map Tf0
→ Tf1

. Let gE
f0

: V × U → [0, 1)E be the composition of gf0

with the projection [0, 1)|Eint(T )| → [0, 1)E . Then we have

bf1
|Wf0

= ΓgE
f0

(bf0
). (2.16)

To gain some intuition for this definition, the reader may want to note that from this 
data we get, for each inclusion f1 ⊂ f2 of faces, a surjective map σ12 : V (Tf1

) → V (Tf2
). 

If v1 and v2 are adjacent vertices of Tf1
, then whenever the corresponding components 

are glued, we have σ12(v1) = σ12(v2). Alternatively, if the gluing parameter of the edge 

connecting them vanishes, these vertices remain adjacent in Tf2
.

An n-cube determines a map of sets

b : [0, 1]n → H0( �H, H), (2.17)

which is given by the formula

b(p) = Γgf (x,y)(bf (x, y)), (2.18)

whenever p = (x, y) ∈ Vf × Uf = Wf . The compatibility condition in Equation (2.16)
implies that this expression is well-defined. The collection of local models (Tf , bf , gf )f∈Fn

is called a gluing atlas. We may have some distinct n-cubes whose underlying map b is 
the same if b contains broken rational curves.

Remark 2.11. It is tempting to try to simplify Definition 2.9 by making the family of 
Riemann surfaces depend only on the space C (which in the case of interest corresponds 
to the interior of a face), and the gluing parameters only on the factor U (which corre-
sponds to its normal direction). This would require us to restrict the class of breakings 
that are allowed to take place at a corner. For example, Fig. 2 shows a situation where the 

Riemann surfaces break twice in the corner of a square, once along one of the adjacent 
edges, and do not break along the other one. There is no gluing parameter associated 

to the normal direction of the edge along which no breaking take place, but the family 

of Riemann surfaces in a neighbourhood of the corner must depend on two parameters. 
Using the notation from the definition, this forces us to allow b to depend on a tubu-
lar neighbourhood of the edge. An analogous argument, involving an edge of a square, 
labelled by a tree with two internal edges, so that the adjacent edges are labelled by 

non-isomorphic trees, shows that the parameter g also must in general depend on the 

entire tubular neighbourhood.
One could imagine putting a stronger constraint on the set of allowed cubes in order 

to avoid this, but this will result in the resulting cubical set failing to satisfy good 

homotopical properties (in particular, the Kan property). Concretely, as soon as one 

formulates a definition of 1-cubes in which the edges appearing in Fig. 2 are allowed, the 

Kan property would require that these edges can appear as a corner of a 2-cube, and 
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Fig. 2. An assignment of trees to a strata near a corner which requires the gluing atlas to depend on 
neighbourhood of the strata.

the only possible combinatorial data underlying such a 2-cube is the one shown. While 

we do not explicitly use the Kan property, our proof of Lemma 2.22 uses a construction 

analogous to what would be required to establish it, and would fail for this reason if we 

restricted the class of allowed cubes to avoid this issue.

Next, we note some basic consequences of the definition which will later be used:

Lemma 2.12. The following properties hold for each n-cube (Tf , bf , gf )f∈Fn
in H( �H, H):

(1) If for x ∈ fo, b(x) is smooth, then bf (x) is also smooth and equal to b(x).
(2) If x ∈ fo, then b(x) ∈ H0,Tf

( �H, H).

Given another n-cube (b′, (T ′
f , b′

f , g′
f )f∈Fn

), we have:

(1) If b = b′, then Tf = T ′
f for all f ∈ Fn.

(2) If b = b′ and bf = b′
f for all f ∈ Fn, then gf = g′

f for all f ∈ Fn. �

The next result justifies the terminology of n-cube that we have been using.

Lemma 2.13. The collections of sets {Hn( �H, H)} are the underlying sets of n-cubes of a 

symmetric cubical set.

Proof. We mention what happens to the part of the data consisting of the map b :
[0, 1]n → H0( �H, H) and omit writing the natural operations on the gluing atlas. In order 
to shorten the notation, denote by Hn the set of n-cubes in H( �H, H).
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In the following ι±
n,i(t) : [0, 1]n → [0, 1]n+1 is the standard embedding as the face 

xi = 1/2 ±1/2, πn+1,i : [0, 1]n+1 → [0, 1]n is the projection forgetting the ith coordinate, 
and τn,i : [0, 1]n → [0, 1]n is the map which transposes the ith and (i + 1)th coordinates.

Define the face maps

d±
n,i : Hn( �H, H) → Hn−1( �H, H) (2.19)

by b �→ b ◦ ι±
n,i. Similarly, degeneracy maps

σi : Hn( �H, H) → Hn+1( �H, H) (2.20)

are defined by composition b �→ b ◦ πi. Finally, transposition maps

pn,i : Hn( �H, H) → Hn( �H, H) (2.21)

are defined by b �→ b ◦τn,i. It is readily verified that the face, degeneracy, and transposition 

maps are well defined and satisfy Equations (B.5)–(B.11), yielding a symmetric cubical 
set. �

The next definition is the generalisation of Definition 2.6:

Definition 2.14. For each integer i between 1 and the length of a sequence �H2 of Hamil-
tonians, define the multicomposition map

◦i : Hn1
( �H1; H2,i) × Hn2

( �H2; H) → Hn1+n2
( �H1 ◦i

�H2; H) (2.22)

to be the map determined by assigning to a pair (d1, d2) the product n1 + n2-cube given 

by mapping a point (x, y) to the composition d2(y) ◦i d1(x), and by taking the product 
gluing atlas.

It is straightforward to check that Equation (2.22) is equivariant with respect to the 

product action by Σn1
× Σn2

on the left, and the restriction of the action by Σn on the 

right, since both of them simply act by permuting the coordinates of the corresponding 

cubes. Similarly, boundaries and degeneracies are defined in the same way on the two 

sides in terms of inclusions and projections of cubes. We conclude:

Lemma 2.15. The map given in Equation (2.22) determines a map of symmetric cubical 

sets:

◦i : H•( �H1; H2,i) ⊗ H•( �H2; H) → H•( �H1 ◦i
�H2; H). � (2.23)

Remark 2.16. We warn the reader that the set of n-cubes of the tensor product 
H•( �H1; H2,i) ⊗ H•( �H2; H), which is described in detail in Appendix B.1.1, is not given 
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by the union over n1 + n2 = n of the left hand sides of Equation (2.22), i.e. by pairs 
(d1, d2) of n1 and n2 cubes. The problem is that only the product Σn1

× Σn2
acts on 

the set of such pairs, whereas an action of Σn is required as part of a symmetric cube 

structure.
Nonetheless, Equation (2.22) does determine, as asserted, a unique Σn-equivariant 

map from the n-cubes of H•( �H1; H2,i) ⊗ H•( �H2; H), to the n-cubes of the target. The 

reason is that such cubes are in fact given by a pair (d1, d2) as above, together with the 

additional datum of an element σ of Σn, modulo the action of Σn1
× Σn2

(see Equation 

(B.14)). Denoting by

τσ : [0, 1]n → [0, 1]n (2.24)

the permutation of the n-cube corresponding to σ, the assignment of Equation (2.22)
canonically extends to the map of symmetric cubical sets which takes [σ, (d1, d2)] to the 

(n1 + n2)-cube mapping the point τσ(x, y) to the composition d2(y) ◦i d1(x).

At this stage, one can easily check that the compositions we have just defined satisfy 

the associativity relations from Equations (B.29)–(B.31), and that the permutation ac-
tion given as in Equation (2.7) by relabelling the underlying trees and Riemann surfaces, 
satisfies Equations (B.33) and (B.34).

To complete the construction of the multicategory of Hamiltonians, recall that we im-
posed, in Definition 2.1, the condition that the input and output of each multimorphism 

with domain a cylinder be different. This implies that our construction so far has the 

property that morphisms from a Hamiltonian to itself are empty.

Definition 2.17. The multicategory H of Hamiltonian data is the following symmetric 

multicategory enriched in symmetric cubical sets.

• The objects are the elements of H.
• The multimorphisms are obtained by considering the symmetric cubical sets 

H•( �H, H), and formally adding units.
• The multicompositions given by Equation (2.23), with symmetric group action given 

by Equation (2.7).

2.3. Multimorphisms and the forgetful map

Denote by fM
R

0 (k)• the symmetric cubical set of maps from cubes to the kth space 

fM
R

0 (k) of the Kimura-Stasheff-Voronov operad, as defined in Section A.2. Given any 

sequence of Hamiltonians �H ∈ Hk, there is a natural map

π : H•( �H, H) → fM
R

0 (k)• (2.25)
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which forgets the Hamiltonian data and collapses the unstable components of the under-
lying framed curve. We refer the reader to Appendix A.2 for a detailed discussion of this 
stabilization process. It is easy to see that the collection of maps π as k varies assembles 
into a forgetful functor from the multicategory H to the KSV operad. We declare the 

unit of H(H, H) to map to the unit in S1 = fM
R

0 (1)0.
An essential difficulty in our construction is the fact that the map π is not in general 

a homotopy equivalence. The following definition identifies a condition which will ensure 

this:

Definition 2.18. Let �H = (H1, . . . , Hk) ∈ Hk and let H0 ∈ H. We say that H0 > �H if 
for every x ∈ M , and every 1 ≤ i ≤ k, we have

min
t∈R/Z

H0
t (x) > 2k−1 max

t∈R/Z

Hi
t(x). (2.26)

For the next result, we consider a smooth punctured Riemann surface Σ with k inputs 
and 1 output:

Lemma 2.19. If H0 > �H, then for any closed 1-form α on Σ which agrees with widt near 

the ith input and with dt near the output and such that wi ≥ 21−k, there exists a function

HΣ : Σ × M → R (2.27)

so that HΣα pulls back to Hidt with respect to the cylindrical end for the ith input, and 

HΣα pulls back to H0dt with respect to the cylindrical end near the output, and so that 

the following condition holds for each x ∈ M :

dHΣ(x) ∧ α ≥ 0. (2.28)

Proof. Extend each negative cylindrical end to an embedding of (−∞, δ] ×S1 for a small 
constant δ, and the positive cylindrical end to an embedding of [−δ, ∞) × S1, so that 
the images remain disjoint, and so that to pullback of α agrees with widt. We call the 

images of these larger domains, the extended cylindrical ends.
Let H : M → R be a smooth function so that for any x ∈ M , and for all 1 ≤ i ≤ k, 

we have

min
t∈R/Z

H0
t (x) > H(x) > 2k−1 max

t∈R/Z

Hi
t(x) ≥ max

t∈R/Z

1
wi

Hi
t(x). (2.29)

We define the function HΣ piecewise as follows:

(1) In the image of the cylindrical ends, HΣ agrees with wiH
i.

(2) Away from the images of the extended cylindrical ends, HΣ ≡ H.
(3) In the annuli [0, δ] × S1 (or [−δ, 0] × S1), we define HΣ by linearly interpolating, 

along the radial direction, between wiH
i and H, taking w0 = 1.
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The monotonicity condition in Equation (2.28) then follows because the resulting func-
tion increases along the radial coordinates near each end, and is domain independent 
away from them. �

The following is the main result of this section.

Proposition 2.20. If H0 > �H = (H1, . . . , Hk), then the map

π : H•( �H, H0) → fM
R

0 (k)• (2.30)

is a homotopy equivalence of symmetric cubical sets.

The proof will be given at the end of this section, after a few preparatory lemmas. 

Denote by fM0,k+1 the interior of fM
R

0,k+1, which can be alternately described as the 

set of framed smooth curves, which is an (S1)k+1 bundle over the interior M0,k+1 of 
Deligne-Mumford space. Denote by Hsm

0 ( �H, H0) the topological space of 0-dimensional 
multimorphisms whose underlying rational curve is smooth.

Lemma 2.21. The map

π : Hsm
0 ( �H, H0) → fM0,k+1 (2.31)

is a homotopy equivalence of topological spaces.

Proof. Denote by D the space of Riemann surfaces with k inputs and 1 output. We con-
sider the space A consisting of an element of D and a closed one form on the underlying 

Riemann surface satisfying the condition in Equation (2.2) for some choice of weights 
satisfying Condition (2.4) with the output weight equal to 1, up to biholomorphisms of 
Riemann surfaces which intertwine the rest of the data.

Note that we can find a unique element of the form (Σ, erHΣ, e−rα, {ε±
p }) in any 

equivalence class [(Σ, HΣ, α, {ε±
p })] ∈ Hsm

0 ( �H, H0) such that the output weight is 1. Let 
us assume that the representatives that we use below satisfy this property.

The map π factors through the projection map from A to D as follows:

[(Σ, HΣ, α, {ε±
p })] �→ [(Σ, α, {ε±

p })] �→ [(Σ, {ε±
p })] �→ [Σ], (2.32)

which first forgets the choice of Hamiltonians Hσ, then the 1-form α�w, and finally the 

choices of cylindrical ends. It is easy to see that all of these maps are fibre bundles.
We shall show that each of these maps have contractible fibres. The fibres of the first 

two maps are convex (with respect to the linear structures on the set of Hamiltonians 
and 1-forms), so it suffices to show that they are non-empty: for the first map, this is the 

content of Lemma 2.19, while for the middle map, this is a consequence of the de-Rham 

isomorphism which implies we can find a 1-form α with residue wi on the ith input and 
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residue 1 on the output as long as w1 + . . .+wn = 1. The 1-form α may not be cylindrical 
with respect to our chosen ends, but this is easily fixed by adding an exact 1-form. We 

also used the fact that wi ≥ 21−n is a convex condition and that there are solutions of 
w1 + . . . + wn = 1 satisfying this property for all 1 ≤ i ≤ n, e.g. wi = 1/n.

It remains to show that the forgetful map from D to the moduli space of framed curves 
has contractible fibres. Note that given a cylindrical end ε : (−∞, 0] × R/2πZ → Σ and 

a non-negative real number r, we can obtain another cylindrical end by composing the 

translation map (−∞, 0] × R/2πZ → (−∞, −r] × R/2πZ with the restriction of ε to 

(−∞, −r] × R/2πZ.
Applying this restriction and translation operation, we find that the space of cylindri-

cal ends deformation retracts onto the subset of those whose images lie in the interior of 
the image of a fixed cylindrical end. We now work on one puncture at a time. The space 

of cylindrical ends with prescribed tangent ray (which map into the image of a fixed 

cylindrical end) can be identified with the space of holomorphic embeddings f from the 

closed unit disk into the open unit disk preserving the origin and such that f ′(0) ∈ R+. 
By a similar argument we can replace the target fixed disk with C.

By scaling down (multiply with r where 0 < r < 1), restricting and scaling up 

(multiply with r−1) we define a contracting flow on the space of such embeddings. The 

fixed points of this flow are linear embeddings. Using the asymptotic condition these are 

just the ones given by real scalar multiplication, which is evidently forms a contractible 

set, proving the desired result. �

For the next result, we denote by �sm
• M the smooth singular cubes of a differentiable 

manifold M .

Lemma 2.22. The inclusion in

ι∗ : �
sm
• (Hsm

0 ( �H, H0)) ↪→ H•( �H, H0), (2.33)

is a homotopy equivalence of symmetric cubical sets.

Proof. Abbreviate Y• = �
sm
• (Hsm

0 ( �H, H0)) and X• = H•( �H, H0). We show that there 

exists a deformation retraction of X• onto Y•. That is, we construct a map of symmetric 

cubical sets ρ• : X• → PX• satisfying

d− ◦ ρ• = id, d+ ◦ ρ•(Xr
•) ⊂ Y•, ρ• ◦ ι• = P (ι•) ◦ s∗,1. (2.34)

It is easy to see that a deformation retraction of symmetric cubical sets is a homotopy 

equivalence.
Given a cube d we construct ρ•(d). For a zero cube d we consider the 1-cube ρ•(d) =

(bf , gf )f∈F1
∈ X1 defined by

b := {t �→ Γt/2(d)} ∈ Xr
1 (2.35)
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And the gluing atlas (bf , gf )f∈F1
is the obvious one. Note that, whenever d lies in ι(Y•), 

the glued curve Γt/2(d) does not depend on t, so we have

ρ•(d) = s0,1(d) if d ∈ ι(Y•). (2.36)

To define ρ for higher dimensional cubes recall the cover Vn introduced right after 
Definition 2.9. Fix once and for all a partition of unity {ψf,1} subordinate to the cover V1

of the unit interval. This induces a corresponding partition of unity {ψf,n} subordinate 

to the cover Vn by taking products.
It is straightforward to check that the partition of unity {ψf,n} is compatible with 

restriction to faces and equivariant with respect to transposition. That is, whenever f is 
contained in a codimension 1 face f ′ we have

ψf,n|f ′ = ψf,n−1, (2.37)

and for any σ ∈ Σn we have

ψσ(f),n = ψf,n ◦ pσ. (2.38)

We now proceed to define the retraction on an n-cube d. We first define the underlying 

map ρ(b)(t, x) of ρ(d) pointwise for (t, x) ∈ [0, 1] × [0, 1]n. Let f0 be the smallest face for 
which x ∈ Wf0

. Then, by definition,

b(x) = Γgf0 (x)(bf0
(x)). (2.39)

Define a function g̃ : [0, 1] × Wf0
→ [0, 1)E(Tf0 ) as follows. For each e ∈ Tf0

let Se,f0

be the set of faces f ′ ⊇ f0 for which e is not collapsed under the map Tf0
→ Tf ′ . Let

g̃f0,e(t, x) :=

⎛
⎝ ∑

f ′∈Se,f0

ψf ′(x)

⎞
⎠ (t/2(1 − gf0,e(x)) + (1 − t)gf0,e(x))

+

⎛
⎝ ∑

f ′ �∈Se,f0

ψf ′(x)

⎞
⎠ gf0,e(x). (2.40)

For x in the n-cube, let f(x) be the smallest face f0 for which x ∈ Wf0
. Define

ρ(b)(t, x) = Γg̃f(x)(t,x)(bf (x)). (2.41)

It remains to construct a gluing atlas. To prepare the ground for this, define for each 

face f of the n-cube a function ĝf : [0, 1] × Wf → [0, 1)E(Tf ) by

ĝf,e(t, x) := g̃f(x),e(t, x) (2.42)
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Fig. 3. Trees associated to the boundary of a cube.

We turn to define a function b̂f (t, x) : [0, 1] × Wf → H0,Tf
( �H, H). For any f0 ⊂

f let Ef0,f be the set of edges of Tf0
that are collapsed under the map Tf0

→ Tf . 
Let ĝf0,f : [0, 1] × Wf0

→ [0, 1)Ef0,f

be the composition of ĝf0
with the projection 

[0, 1)Eint(Tf0 ) → [0, 1)Ef0,f

. Define

b̂f (t, x) = Γĝf(x),f (t,x)(bf(x)(x)). (2.43)

Before proceeding, we prove that ĝf and b̂f are smooth functions. This needs to be 

verified for points where f(x) changes. That is, points on the boundaries of Wf0
for 

f0 ⊂ f (see Fig. 3). The change in ĝf upon crossing the boundary of Wf0
at a point x in 

the boundary amounts to replacing the expression ψf1
(x)gf,e(x) in Equation (2.40) by 

the expression ψf1
(x)(t/2(1 − gf0,e(x)) + (1 − t)gf0,e(x)) for each face f1 that contains 

the face f0 but not the face f(x). Since ψf1
vanishes identically near the boundary of 

Wf0
the smoothness of ĝf follows. The smoothness of b̂f is similarly implied by Equation 

(2.16) by the same vanishing.
We now return to the task of constructing the gluing atlas. For the faces {0} × f

with f ∈ Fn, we take the local model consisting of the data of the underlying set 
Ŵf = Vf × [0, 1) ×Uf , the underlying tree T̂f = Tf , the broken curve map b̂f , and gluing 

function ĝf just defined. It is clear by construction and by the smoothness of ĝf that this 
satisfies the requirements of a local model for a corner and that b(x)|Wf

= Γĝf (x)(b̂f (x)).
For all the other faces f we have that Tf consists of a single vertex. Thus the local 

model is necessarily the restriction of ρ∗(b) to the neighbourhood of the face. For this 
to be a local model for each such face, it suffices to verify that the map on the right 
hand side of Equation (2.41), restricted to the complement of the face t = 0, is smooth 

as a map to Hsm, the space of smooth Hamiltonian data on the punctured sphere. This 
follows from Equation (2.41) together with the fact that the functions ĝ are smooth.

The gluing axiom and compatibility axioms are automatic by construction. We have 

thus constructed for each n-cube d in Xn an n + 1-cube ρn(d) ∈ PXn = Xn+1.
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We now show that this map ρ• : X• → PX• is a map of cubical sets. That is, it satisfies 
Equations (B.21) and (B.22): the compatibility of Equation (2.41) with taking face maps 
is a consequence of Equation (2.40), together with the compatibility of the maps ψf,n

with restriction to faces which is provided by Equation (2.37). For compatibility with 

degeneracy maps, one verifies that whenever the data on d is independent of a particular 
coordinate then so is the data defined by Equations (2.40) and (2.41). Finally, note 

that Equations (2.40) and (2.41) are equivariant with respect to transpositions involving 

coordinates other than the one corresponding to the direction of the homotopy, proving 

the compatibility of the homotopy with symmetries of the cube.
Finally, we verify that ρ• indeed satisfies Condition (2.34). Examining Equation (2.40)

we have ρ•(d)(0, x) = d(x), ρ•(d)(1, x) ∈ Y• and, for any d ∈ Y• we have ρ•(d)(t, x) = d(x)
for all t ∈ [0, 1]. This proves the claim. �

We now complete this section with the proof of its main result:

Proof of Proposition 2.20. Consider the diagram

�•(Hsm
0 ( �H, H0)) �

sm
• (Hsm

0 ( �H, H0)) H•( �H, H0)

�•(fM0,k+1) �
sm
• (fM0,k+1) fM

R

0 (k)•.

π (2.44)

That π is a homotopy equivalence will follow from the fact that all other arrows in the 

diagram are homotopy equivalences. Indeed, the upper right horizontal arrow is a ho-
motopy equivalence by Lemma 2.22. The left vertical one is a homotopy equivalence by 

Lemma 2.21, and the fact that a homotopy equivalence of topological spaces induces 
a homotopy of the associated symmetric cubical sets. The smooth approximation ar-
gument for families of functions and 1-forms parametrised by a cube then implies that 
the two horizontal maps on the left are homotopy equivalences, hence so is the middle 

vertical map (the use of such approximation arguments to show that the inclusion of 
smooth chains into continuous chains is a homotopy equivalence goes all the way back 

to Eilenberg [11]).
The bottom right horizontal map factors as

�
sm
• (fM0,k+1) → �•(fM0,k+1) → �•(fM

R

0 (k)) ≡ fM
R

0 (k)•. (2.45)

The map on the right of the last equation is induced from the inclusion of the interior 

of fM
R

0 (k). Since fM
R

0 (k) is a manifold with corners, this inclusion is a homotopy 

equivalence. The map on the left is a homotopy equivalence, again by the cubical analogue 

of [11]. �
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3. The Floer functor

The purpose of this section is twofold. For arbitrary symplectic manifolds, we construct 
a multicategory F , lying over H, consisting of Floer data, i.e. Hamiltonian data with 

chosen almost complex structures, and prove:

Proposition 3.1. The projection map of the non-unital multicategories associated to F

and H is a homotopy equivalence.

The above result implies that the analogue of Proposition 2.20 holds for the category 

F , which we will use essentially in our later arguments.

Remark 3.2. The reason for which the above statement is formulated for the underlying 

non-unital categories is because our construction will not incorporate any morphism 

between (J, H) and (J ′, H ′), whenever H = H ′, except for identities which we formally 

include. In [3, Part 3], a larger category F is constructed, which includes such morphisms, 
but the proof that the projection map remains a homotopy equivalence in this case is 
slightly more complicated.

As in the introduction, let k be a commutative ring and denote by Λ≥0 the Novikov 

ring

Λ≥0 :=

{
∞∑

i=0

aiT
λi |ai ∈ k, λi ∈ R≥0 strictly increasing and lim

i→∞
λi = ∞

}
.

As in the strategy discussed around Equation (1.35), passing to the associated differential 
graded multicategory, we can now directly appeal to the first author’s work on virtual 
fundamental chains:

Proposition 3.3 (Propositions 9.10 and 12.9 of [3]). If k is a characteristic 0 field, there 

is a multi-functor

CF : C∗F → ChΛ≥0
(3.1)

with target the category of Z/2-graded chain complexes, considered as a multicategory by 

the tensor product of chain complexes, which assigns to every pair (H, J) a chain complex 

whose underlying Λ≥0 module is freely generated by rank-1 free modules associated to the 

time-1 Hamiltonian orbits of H, and whose differential is defined by a virtual count of 

solutions to Floer’s equation. �

We refer to the cited reference for the proof of the above result, though the reader 
will find, in Section 3.1 and 3.2 below the basic geometric constructions of the moduli 
spaces which are involved.



38 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

Our second goal is to give a construction that is independent of the theory of virtual 
counts in the situation where virtual techniques can be avoided without an assumption 

on the base ring k (see Remark 1.7 for a discussion of why we do not consider the 

semi-positive case):

Proposition 3.4. If c1(M) and [ω] are proportional on π2(M), with non-negative propor-

tionality constant, then there is a multicategory Freg ⊂ F , so that (i) every object of H

admits a lift to Freg, (ii) for each input sequence of objects 
−−−−→
(J, H) and output (J0, H0), 

the associated inclusion of multimorphism spaces

Freg(
−−−−→
(J, H), (J0, H0)) → F(

−−−−→
(J, H), (J0, H0)) (3.2)

is a homotopy equivalence, and (iii) Floer theory defines a cubically enriched multifunctor

CF : C∗Freg → ChΛ≥0
(3.3)

with target the category of Z/2-graded chain complexes over the Novikov ring. The dif-

ferential is defined by a geometric count of solutions to Floer’s equation.

Remark 3.5. In the special case where c1(M) vanishes, a trivialisation of the canonical 
bundle of M determines a lift of the Floer multi-functor to the category of Z-graded 

complexes. As discussed in [2], the condition that c1(M) be 2-torsion is sufficient to 

define a lift of the Floer complexes to Z-graded chain complexes, but this lift is not in 

general compatible with operations.

3.1. Almost complex structures

Let J denote the space of S1-families of ω-compatible almost complex structures on 

M . The set of objects of the multicategory F is the product of H with J , i.e. it consists 
of a non-degenerate Hamiltonian together with a compatible family of almost complex 

structures.
Let 

−−−−→
(H, J) be a sequence (H1, J1), (H2, J2), . . . , (Hk, Jk) of objects of F .

Definition 3.6. A pre-multimorphism in F from 
−−−−→
(H, J) to (H0, J0) consists of a pre-

multimorphism from �H to H0 in the sense of Definition 2.1, together with

(1) a lift of the label He of each edge of the underlying tree T to a pair (He, Je),
(2) a map from Σ to the space of tame almost complex structures on M , whose pullback 

under the strip-like end associated to every edge e adjacent to a vertex v agrees with 

Je.

As before, we define two pre-multimorphisms to be equivalent if there is a biholomor-
phism between the underlying pre-stable curves which intertwines both the Hamitonian 
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and almost complex data. We write F0(
−−−−→
(H, J); (H0, J0)) for the set of equivalence classes 

of such data and F0,T (
−−−−→
(H, J); (H0, J0)) for those with underlying labelled tree T . The 

C∞ topology on the space of almost complex structures equips this space with a natural 
topology for which the following result holds:

Lemma 3.7. The projection map

F0,T (
−−−−→
(H, J); (H0, J0)) → H0,T (H1, . . . , Hk; H0) (3.4)

is a fibration with contractible fibres. �

As discussed in the proof of Proposition 2.20, this implies that the resulting map of 
smooth singular cubes is a homotopy equivalence. This will only take us partly towards 
the desired result, because, as in Section 2.2, we shall not topologise the full space 

F0(
−−−−→
(H, J); (H0, J0)), but rather define higher n-cubes to be those which are smooth on 

each stratum, and are equipped with prescribed gluing data in neighbourhoods of all 
strata.

To proceed, we thus extend the gluing construction from Section 2.2: given an element 
F0,T (

−−−−→
(H, J); (H0, J0)) and a choice of gluing parameters �r ∈ [0, 1)|Eint(T )| indexed by 

the interior edges of T , we obtain a glued datum

Γ�r(d) ∈ F0(
−−−−→
(H, J); (H0, J0)) (3.5)

which lies in the stratum labelled by the tree obtained by collapsing every interior edge 

of T with non-zero gluing parameter. In this way, we can define the notion of a Floer 

local model by adding the complex structure data to Definition 2.9, i.e. this consists of 
an open manifold V , an open neighbourhood U of the origin in the k-cube, and a tree 

T labelled by Hamiltonians and almost complex structures, together with smooth maps

b : V × U → F0,T (
−−−−→
(H, J), (H0, J0)) (3.6)

g : V × U → [0, 1)|Eint(T )|, (3.7)

where we require the gluing data to vanish on V × {0}, and for each component to 

either identically vanish, or to be non-zero in the interior. The point is that this data 

determines a map

Γg(b) : V × U → F0(
−−−−→
(H, J), (H0, J0)) (3.8)

which is the Floer data associated to this local model.

Definition 3.8. For each natural number n, the set Fn(
−−−−→
(H, J), (H0, J0)) consists of col-

lections (bf , gf )f∈Fn
, indexed by the faces of the cube, of Floer local models for a corner. 
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We require that the Floer data obtained by gluing agree whenever they are defined, in 

the sense of Definition 2.10.

We omit the proof of the next result, which is a straightforward generalisation of the 

construction of the multicategory H:

Proposition 3.9. The collection of sets {Fn(
−−−−→
(H, J), (H0, J0))}∞

n=0 admits face, degener-

acy, and symmetry operations making them into the n-cubes of a symmetric cubical set 

F•(
−−−−→
(H, J), (H0, J0)), which is equipped with a forgetful map to H•( �H, H0).

The next result is a consequence of the contractibility of the space of almost complex 

structures which are compatible relative to a given symplectic form:

Lemma 3.10. The maps from F•(
−−−−→
(H, J), (H0, J0)) to H•( �H, H0) is an acyclic Kan fibra-

tion.

Sketch of proof. It suffices to show that, given a cube in H•( �H, H0) whose boundary is 

equipped with a lift to F•(
−−−−→
(H, J), (H0, J0)), we may extend this lift to the entire cube. 

The gluing atlas of Hamiltonians determines a lift to a gluing atlas incorporating almost 
complex structures, which provides a lift to a neighbourhood of the boundary. Since the 

underlying topological type of the (pre-stable) Riemann surface in the interior of the 

cube is fixed, we may now directly use the contractibility of the space of tame almost 
complex structures. �

Combining Lemma 3.10 with Proposition 2.20 we conclude:

Corollary 3.11. The forgetful map

π : F•(
−−−−→
(H, J), (H0, J0)) → fM

R

0 (k)• (3.9)

is a homotopy equivalence.

Next, we extend the notation from Equation (2.8), and given sequences 
−−−−→
(H, J)1 ∈ Fk1

and 
−−−−→
(H, J)2 ∈ Fk2 , we write

−−−−→
(H, J)1 ◦i

−−−−→
(H, J)2 (3.10)

for the sequence with k1 + k2 − 1 pairs obtained by replacing the ith component of 
�H2 with the vector �H1. It is straightforward to lift the multicomposition maps from 

Equation (2.22) to maps

◦i : Fn1
(
−−−−→
(H, J)1; (H, J)2,i) ⊗ Fn2

(
−−−−→
(H, J)2; (H, J))

→ Fn1+n2
(
−−−−→
(H, J)1 ◦i

−−−−→
(H, J)2; (H, J)) (3.11)
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which equips F with the structure of a multicategory, which admits a forgetful multi-
functor to H.

3.2. Moduli spaces

Associated to each cube d in Fn(
−−−−→
(H, J), (H, J)) is a topological space

M(d) (3.12)

whose elements are equivalence classes of stable solutions to the Cauchy-Riemann equa-
tion bd(x) associated by d to a point x ∈ [0, 1]n. Concretely, if x lies in a neighbourhood 

of a stratum f , then bd(x), which is valued in F0(
−−−−→
(H, J), (H, J)), is obtained by gluing 

the data bf according to the gluing parameters associated to this point by x. Part of the 

datum of an element of this set thus consists of a pre-stable Riemann surface Σx with 

k + 1-punctures. The solutions that we consider have domain pre-stable curves Σ with 

k + 1-punctures equipped with an embedding

Σx → Σ (3.13)

whose complement is unstable, and which is compatible with the labelling of the punc-
tures in the sense that the marked points labelled by i in Σx and Σ are connected by 

chains of components in the complement of Σx. We partition the components of Σ \ Σx

into Floer cylinders, which separate the marked point labelled by i in Σx from Σ, or the 

two sides of a node in Σx, and sphere bubbles. We thus consider maps

u : Σ → M (3.14)

satisfying the Cauchy-Riemann equation

(du − XHΣ
⊗ αΣ)0,1 = 0 (3.15)

where the function HΣ, the 1-form αΣ, and the almost complex structure are determined 

as follows:

• On a component of Σx, we use the data determined by d.
• On a Floer cylinder, we use the data determined by the associated node of Σx (i.e. 

with respect to the identification with R × S1 which is canonical up to translation, 
we set HΣ = He for the edge e labelling this node, the 1-form αΣ to be given by dt, 
and the almost complex structure by Je).

• On a sphere bubble, the function HΣ identically vanishes (as does αΣ), and the 

almost complex structure is given by the almost complex structure on M associated 

by d to the point in Σx to which this bubble is attached (or to the corresponding 

points in S1 if the bubble is attached to a Floer component).
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We associate to each solution of this equation the topological energy (cf. [37, Lemma 

8.1.6])

E(u) =
∫

u∗ω + ũ∗dH ∧ α (3.16)

=
∫

|du − XH ⊗ α|2dvolΣ + dHu(z) ∧ α. (3.17)

The moduli space M(d) is then defined to be the space of such finite energy maps, 
with the property that the asymptotic conditions on the two sides of each node agree, 
modulo the equivalence relation which identifies two maps that are intertwined by a 

biholomorphism over M preserving the Floer data. We have the following consequence 

of Gromov compactness:

Lemma 3.12. The energy functional is proper on M(d).

Sketch of proof: We must show that a sequence of solutions of bounded energy has a 

subsequence which admits limit. The projection to the base [0, 1]n of the family admits 
such a subsequence. By construction, the domains of these subsequences converge in the 

Gromov sense (namely, they admit subdomains, whose complements are thin annuli, on 

which the conformal structure converges), as does the Cauchy-Riemann equation that 
we consider (by the gluing construction). The result is now a standard application of 
Gromov compactness for families of Riemann surfaces. �

3.3. Regular Floer data

We begin by formulating a notion of regularity for objects of F , in terms of the 

union M(J) of the (uncompactified) moduli spaces M(Jt) of Jt-holomorphic spheres 
(for t ∈ S1) as well as the (uncompactified) moduli space M(J, H) of solutions to Floer’s 
equation

j ◦ (du − XHt
⊗ dt) = (du − XHt

⊗ dt) ◦ Jt (3.18)

on the cylinder. We write M1(J) and M1(J, H) for the corresponding moduli spaces 
with one marked point.

Definition 3.13. A pair (J, H) is regular if the following conditions hold:

(1) All elements of M(J) which are represented by simple pseudo-holomorphic spheres 
of vanishing Chern number are regular.

(2) All element of M(J, H) of virtual dimension strictly smaller than 2 are regular.
(3) The restriction of the evaluation maps

M1(J) → S1 × M ← M1(J, H) (3.19)
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to the loci of simple spheres of vanishing Chern number and Floer cylinders of virtual 
dimension strictly smaller than 2 are transverse (and in particular are disjoint).

In order to use the above notion, it is important to consider what it implies for the 

space M(J, H) of stable solutions to Floer’s equation, in the context where the symplectic 

form and the first Chern class are non-negatively proportional:

Lemma 3.14. If a pair (J, H) is regular, then all stable solutions to Floer’s equations 

of virtual dimension strictly smaller than 2 are regular (i.e. the associated linearised 

operator is surjective).

Proof. It suffices to show that these conditions imply that the stable solutions to Floer’s 
equation of virtual dimension strictly smaller than 2 are given as follows: those of virtual 
dimension 0 have domain a cylinder, and those of virtual dimension 1 have domain either 
a cylinder or a pair of virtual dimension 0 cylinders.

To see this, it is convenient to temporarily formulate our discussion in terms of the 

Fredholm index of a stable solution to Floer’s equation, which is one more than the 

virtual dimension, and has the advantage that it is additive over the component, with 

each sphere bubble contributing twice its Chern number. Since our assumptions include 

the requirement that the moduli spaces of solutions to Floer’s equation which have 

strictly negative virtual dimension are empty, and there are no spheres of negative Chern 

number, the contribution of each component to the Fredholm index is non-negative, and 

only those spheres of trivial Chern class contribute trivially. This means that a stable 

solution of virtual dimension strictly less than 2 cannot carry any sphere bubble of 
strictly positive Chern number, and that all its Floer cylinder components have virtual 
dimension either 0 or 1. Finally, we use our assumption that the cycles swept by cylinders 
and simple Chern 0 spheres in S1 × X are transverse (hence disjoint) to conclude that 
the remaining possibility (of a cylinder carrying a sphere bubble) is excluded, since every 

Chern 0 sphere is a multiple cover of a simple one. �

Remark 3.15. It may appear more natural to use the conclusion of the above Lemma as 
a definition, but that would make later constructions more complicated. The essential 
point is that one can prove that regularity for stable moduli spaces of virtual dimension 

strictly less than 2 is equivalent to the regularity of the corresponding moduli spaces of 
smooth cylinders, with the additional condition that the cycle they sweep be disjoint 
from all pseudo-holomorphic spheres of Chern number 0. The issue is that, in this char-
acterisation, no reason for the disjunction is given, so it becomes difficult to work with 

it in families.

We now extend this notion to multimorphisms in F : the linearisation of the Cauchy-
Riemann operator satisfied by each point in M(d) is a Fredholm map

C∞(Σ; u∗TM)/autΣ → Ω0,1(Σ; u∗TM), (3.20)
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where autΣ is the tangent space of the space of biholomorphisms of Σ which preserve 

the Floer data on Σ (i.e. preserve the equivalence class of this point in M(d)). Assuming 

that the corresponding point in [0, 1]n lies in the interior of a face [0, 1]k, the deformation 

of the operator associated to moving the point within this stratum defines a map

T [0, 1]k → Ω0,1(Σ; u∗TM). (3.21)

We call the sum of the operators in Equation (3.20) and (3.21) the extended linearisation

operator.
In analogy with the situation for Floer cylinders, we associate to each cube d a pair 

of evaluation maps

M1(d) → X ← M1(Jd) (3.22)

where the left hand side is the moduli space of solutions to Floer’s equation, with 1-
marked point, and the right hand side is the moduli space of pseudo-holomorphic spheres, 
parametrised by the curves underlying d, also with one marked point.

Definition 3.16. The family of Floer data d is regular if the following properties hold:

(1) the extended linearisation operation is surjective for all elements of M(Jd) which 

are simple pseudo-holomorphic spheres of Chern class 0,
(2) the extended linearisation operator is surjective for all elements of M(d), whose 

underlying curve does not contain any Floer cylinder or sphere bubble, and for 
which this index is strictly smaller than 2, and

(3) the evaluation maps from these two parametrised spaces to the product of X with 

the universal curve are transverse (and hence disjoint).

Repeating the argument of Lemma 3.14 for families, we have:

Lemma 3.17. If the family of Floer data d are regular, then the extended linearisation 

operator is surjective for each element of M(d) whose virtual dimension is strictly less 

than 2. �

We note that regularity is closed under taking boundaries, degeneracies, and symme-
tries, as well as multicompositions (products). This leads to the following:

Definition 3.18. The multicategory of regular Floer data F reg is the sub-multicategory 

of F with objects regular pairs (J, H) and morphisms regular Floer data.

3.4. Contractibility of the space of regular data

In the treatments of Floer theory using perturbations, one assumes that the Floer 
data at a corner of the parameter space, together with a choice of gluing parameter, 
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determine the data in some neighbourhood. This is sufficient to achieve transversality 

in the monotone or exact setting because these assumptions ensure compactness of the 

moduli spaces of solutions to pseudo-holomorphic curve equations of prescribed dimen-
sion, so that a gluing construction, relying on the implicit function theorem, allows one 

to deduce regularity of all solutions in a neighbourhood from the regularity of solutions 
on the boundary stratum. In general, however, the moduli spaces of pseudo-holomorphic 

curves are not compact, as compactness only holds after bounding the energy. Without 
a refinement of the existing methods, we thus cannot expect the existence of a gluing 

parameter for which the glued solutions are regular.
However, the gluing atlas setup that we are using is more flexible than this naive 

approach since it allows us, as in [1], to perturb the data in a neighbourhood of every 

corner. Indeed, we allow the function bf to vary with respect to the normal direction, 
so that we have a dense open set of choices for which the subset of M(d) consisting of 
elements of bounded energy is regular. Exhausting R as a countable union of bounded 

above subsets, we conclude that the set of choices for which regularity holds is a count-
able intersection of dense open sets. Since we only need to perturb the almost complex 

structure in order to achieve transversality, we conclude that every object of H lifts to 

F reg. Going further, we have:

Lemma 3.19. The inclusion of the multicategory of regular Floer data F reg in F induces 

an equivalence of multimorphism spaces:

Proof. We construct a deformation retraction: for each cube d in F , we choose a regular 
cube d′ with the same underlying Hamiltonian data, so that d = d′ if d is regular, and a 

homotopy between them, compatibly with face and degeneracy maps. The construction is 
inductive on the dimension of the cube, and relies essentially on genericity of regular data, 
so that the data b′

f underlying d′ can be chosen to be an arbitrarily small perturbation 

of the data bf underlying d, yielding a canonical path between them up to contractible 

choice, and provides the desired deformation retraction. �

We complete this section with a proof of its main result:

Proof of Proposition 3.4. The construction of the Floer functor now follows from the 

existence of coherent orientations in Floer theory. More precisely, Floer and Hofer [13]
treated the case of the differential on the Floer complex. In our setting, we count each 

solution u to Floer’s equation by its (signed) count, weighted by a factor T E(u), where 

E(u) is the topological energy of u, which is defined as the integral

E(u) =
∫

u∗ω + ũ∗dH ∧ dt (3.23)

=
∫

|du − XH ⊗ dt|2ds ∧ dt (3.24)
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where ũ is the graph of u. Explicitly, the differential then takes the form

[op] �→
∑

q

∑

u∈M
0
(p,q)

(−1)sign(u)T E(u)[oq], (3.25)

where [op] and [oq] are generators of the free modules associated by index theory to orbits 

p and q, and M
0
(p, q) is the subset of M(H, J) consisting of those (equivalence classes 

of) solution with asymptotic conditions given by the orbits p and q, which in addition 

have the property that the virtual dimension vanishes.
The chain map associated to each 0-cube and 1-cube of the multimorphism spaces is 

defined in Symplectic Field theory [7], and adapted to the Hamiltonian setting in [41]. 
The signed contribution of each solution is weighted by T E(u), which the second formula 

together with Equation (2.1) show lies in the Novikov ring (the first formula shows that 
this is a topological invariant, which ensures that we indeed obtain a chain map).

The operations associated to 1-cubes appear in the above references as chain ho-
motopies establishing that the resulting homology-level operations are independent of 
choice, and rely on the fact that the corresponding parameterised moduli spaces interval 
acquire coherent orientations, relative an orientation of the parameter space. The same 

argument thus applies to associate to each n-cube δ a map of degree −n, obtained from 

the components of M(δ) of virtual dimension 0 (which are regular by our assumptions). 
The fact that this map depends on a choice of orientation on the cube implies its com-
patibility with symmetries, and its compatibility with compositions follows by the same 

argument as in [13]. Finally, considering those moduli spaces M(δ) of virtual dimen-
sion 1, we conclude the compatibility with face maps by observing that the boundary 

of these moduli spaces are either associated to the faces of δ or to breaking of Floer 
trajectories. �

4. The Floer algebra of a compact subset

The purpose of this section is to prove Theorems 1.4 and 1.8: we thus associate to 

each compact subset K of M a chain complex SC∗
M,fM

R

0

(K), equip it with the structure 

of an algebra over the operad C∗(fM
R

0 ) of symmetric normalised cubical chains (see 

Appendix B.1.3) on the moduli spaces of framed genus-0 stable Riemann surfaces, and 

prove the properties listed in the introduction. We particularly refer to Section 1.2 for a 

review of symplectic cohomology with support constraints.
To formulate the construction, we write FK for the full sub-multicategory of F whose 

objects are pairs (H, J) with H negative on K.

Remark 4.1. The reader who prefers to avoid virtual methods may substitute the multi-
category of regular Floer data Freg for F in the above paragraph under the assumption 

that M satisfies the hypotheses of Proposition 3.4, and obtain the corresponding multi-
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category Freg
K associated to a compact subset K of M . None of the arguments that we 

will give in the remainder of the paper will depend on whether one uses FK or Freg
K .

By restricting the forgetful functor π : F → fM
R

0 , as well as the Floer multi-functor 
CF∗ : F → ChΛ≥0

, we obtain a diagram of cubically enriched multifunctors

FK ChΛ≥0

fM
R

0 .

CF∗

π (4.1)

Remark 4.2. In complete generality, the ring Λ≥0 will be the Novikov ring over a ground 

field of characteristic 0, and the multicategory ChΛ≥0
denotes the multicategory of Z/2-

graded complexes. As discussed earlier, in the Calabi-Yau case, one can work instead 

with Z-graded complexes, and, under the more general hypotheses of Proposition 3.4, 
one can assume that the ground ring is given by the integers. None of our arguments are 

sensitive to this difference, so, in this regard, we shall keep the notation ambiguous in 

what follows.

Applying the functor of symmetric normalised cubical chains from Appendix B.1.3, we 

wish to fill in an arrow C∗(fM
R

0 ) → ChΛ≥0
in a ‘universal’ way. The general framework 

for doing this is a homotopical version of the operadic Kan extension, and SC∗

M,fM
R

0

(K)

will be defined as its completion.
We shall give an explicit construction of the operadic Kan extension which is es-

sentially an unwinding of the standard bar construction involving the free-forgetful 
adjunction, see for example Section 13.3 of [18] in the operad case. It generalizes the 

left homotopy Kan extension of modules over dg-categories, e.g. Section 5 of [30]. We 

prove Theorem 1.4 in Section 4.3 using only the explicit construction, but then pro-
vide the more abstract formulations in Sections 4.4–4.7 in preparation for the proof of 
Theorem 1.8 in Section 4.8.

4.1. The chain complex

We start by providing an explicit description of the chain complex SC∗
M,fM

R

0

(K). For 

this we introduce some definitions. A levelled tree of height n is a collection V0, . . . , Vn+1

of finite sets together with surjections fi : Vi → Vi−1. We take V0 to consist of one 

element, which we call the root. We call Vn+1 the set of leaves. The associated abstract 
tree has vertices the union of the sets Vi for 0 ≤ i ≤ n + 1, and has edges which connect 
each element vi ∈ Vi to its image under fi. An isomorphism of levelled trees consists of 
bijections between the ith level vertices commuting with the defining surjections.
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Definition 4.3. A decorated levelled tree is a levelled tree together with the assignment of 
an object of FK for each edge. We write Tn(K) for the set of trees with n-levels.

Let T = Vn+1 → · · · → V0 be a decorated levelled tree. We associate to each vertex v

of T above the root a chain complex Cv defined by downward induction along the levels 
in the following way. To each leaf labelled by an object (H, J), we associate the chain 

complex CF∗(H, J). Suppose inductively that we have associated to each vertex v at the 

level k + 1 a chain complex Cv, with the base case as above. Given a vertex w at the 

level k and an ordering o on the incoming edges, let (v1, . . . , vm) be the corresponding 

set of vertices and 
−−−−→
(H, J)o = ((H1, J1), . . . , (Hm, Jm)) be the corresponding tuple of 

Hamiltonians. Let Ow be the set of orderings of the incoming edges, and define

Cw :=

( ⊕

o∈Ow

Cv1
⊗ · · · ⊗ Cvm

⊗ C∗(FK(
−−−−→
(H, J)o; (Hw, Jw)))

)

Sm

. (4.2)

Here the subscript Sm means that we are taking coinvariants (the quotient under the 

subcomplex generated by elements of the form x − σ · x for σ ∈ Sm), under the action 

defined by the maps

Cv1
⊗ . . . ⊗ Cvn

⊗ C∗(FK(
−−−−→
(H, J)o; (Hw, Jw))) →

C∗(FK(σ ·
−−−−→
(H, J)o; (Hw, Jw))) ⊗ Cσ(v1) ⊗ . . . ⊗ Cσ(vn). (4.3)

We now associate to the tree T the complex

CF∗
T :=

( ⊕

o∈Oroot

Cv1
⊗ . . . ⊗ Cvk

⊗ C∗fM
R

0 (k)

)

Sk

, (4.4)

where we assume that the root has k incoming edges. This complex is pictorially repre-
sented by Fig. 4. Taking the direct sum of these complexes over all trees of height n, we 

obtain the direct sum

CF∗

M,fM
R

0 ,n
(K) ≡

⊕

T ∈Tn(K)

CF∗
T , (4.5)

which is equipped with the differential dint, which is the sum of the differentials dT for 
each complex CF∗

T .
For each integer i between 0 and n, we construct a chain map

di : CF∗
M,fM

R

0 ,n
(K) → CF∗

M,fM
R

0 ,n−1
(K) (4.6)

as follows: the map d0 collapses the edges between the root and the first level by project-

ing from the multicategory F to the operad fM
R

0 and applying operadic composition. 
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O(3)

M(2) M(1) M(3)

M(2) M(1) M(2) M(1) M(2) M(1)

A A A A A A A A A

Fig. 4. A tree of height 2, labelled by an element of the operadic bar construction, where A stands for the 
algebra CF, M for the multicategory C∗FK , and O stands for the operad C∗fM

R

0 .

For 0 < i < n, di is given by collapsing the edges between the level i and i + 1, and 

applying composition in the indexing category F . Finally, dn is given by collapsing the 

edges between the nth level and the leaves, and applying the Floer functor.

Definition 4.4. The operadic symplectic cochains with support K is the degreewise com-
pletion, with respect to the valuation of the Novikov ring, of the direct sum of the shift 
by n of the complexes associated to trees of level n,

SC∗

M,fM
R

0

(K) :=
⊕̂

n

CF∗

M,fM
R

0 ,n
(K)[−n], (4.7)

equipped with the differential

d = dint +
n∑

i=0

(−1)idi. (4.8)

Having given an explicit definition of our chain complex, we now give a slightly more 

abstract description, using simplicial methods, which will be useful when describing 

the algebraic structure. We start by recalling that a simplicial chain complex A∗
• is 

a contravariant functor from the simplex category to the category of chain complexes. 
Explicitly, this amounts to the assignment of a chain complex A∗

n to each natural number 
n, together with chain maps corresponding to the face and degeneracy maps, that satisfy 

the simplicial identities. The geometric realization2 functor takes each simplicial chain 

2 Here we are slightly abusing terminology, as it would be more appropriate to call this the geometric 
realization of the associated semisimplicial chain complex. We do this is only for convenience. We could 
have used the normalized chain complex as in [48][Section 3.1] as well. The equivalence of the constructions 
can be shown using the discussion in [21][Section III.2]. We will keep abusing terminology the same way in 
the rest of the paper.
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complex to an ordinary chain complex, by taking the direct sum of the shift by n of A∗
n, 

equipped with the differential from Equation (4.8).
Now, the operations in Equation (4.6) are exactly the face maps of a simplicial complex 

CF∗

M,fM
R

0 ,•
(K). The degeneracy maps si correspond to replacing each vertex at the ith 

leaf by a pair of vertices labelled by the same Hamiltonian connected by an edge labelled
by the identity. From Definition 4.4, we have:

Lemma 4.5. The complex of operadic symplectic cochains with support K is isomorphic 

to the completion of the geometric realization of CF∗
M,fM

R

0 ,•
(K). �

4.2. The algebra structure

As indicated above, we shall use simplicial methods in order to describe the algebra 

structure. The main benefit is that we thus avoid getting mired in formulae.

The key definition is that of a simplicial C∗fM
R

0 -algebra, which is a contravariant 

functor from the simplex category to the category of C∗fM
R

0 -algebras.

Lemma 4.6. The simplicial complex CF∗

M,fM
R

0 ,•
(K) is the underlying complex of a sim-

plicial C∗fM
R

0 -algebra.

Proof. For any n and any m ≥ 1 we construct a chain map

(
CF∗

M,fM
R

0 ,n
(K)

)⊗m

⊗ C∗fM
R

0 (m) → CF∗

M,fM
R

0 ,n
(K) (4.9)

as follows. Recall from Equation (4.4) that CF∗
M,fM

R

0 ,n
(K) consists of summands CF ∗

T

for trees of height n obtained by taking coinvariants of the sum

C̃F
∗

T :=
⊕

o∈Oroot

Cv1
⊗ . . . ⊗ Cvk

⊗ C∗fM
R

0 (k) (4.10)

Taking the direct sum of these chain complexes, we define

C̃F
∗

M,fM
R

0 ,n(K) =
⊕

T ∈Tn(K)

C̃F
∗

T . (4.11)

There is an obvious chain map

(
C̃F

∗

M,fM
R

0 ,n(K)
)⊗m

⊗ C∗fM
R

0 (m) → C̃F
∗

M,fM
R

0 ,n(K), (4.12)

by applying the operadic compositions. To obtain a map as in Equation (4.9) we write 

C̃F
∗

M,fM
R

0 ,n,m(K) for the direct sum in the right hand side of Equation (4.11), associated 

to trees with m incoming edges at the root, and obtain a direct sum decomposition
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C̃F
∗

M,fM
R

0 ,n(K) =
⊕

m

C̃F
∗

M,fM
R

0 ,n,m(K). (4.13)

Then the map of Equation (4.12) splits as a direct sum of maps

(
C̃F

∗

M,fM
R

0 ,n,k1
(K) ⊗ · · · ⊗ C̃F

∗

M,fM
R

0 ,n,km
(K)

)
⊗ C∗fM

R

0 (m)

→ C̃F
∗

M,fM
R

0 ,n,
∑

m
i=1 ki

(K), (4.14)

which are equivariant with respect to the action of Sk1
× · · · × Skm

which on the right 
is induced by the inclusion into S∑

m
i=1 ki

. We thus take the map in Equation (4.9) to be 

the induced one on the quotient.
We leave the verification of the compatibility of this construction with the face struc-

ture to the reader with the following indication: for i = 0, we use the fact that the 

projection map from F to fM
R

0 is a map of multicategories, for 0 < i < n, we use 

the associativity of the operations on F , while for i = n, we use the fact that CF is 
an algebra. In all cases, the fact that operations are strictly compatible with the ac-
tion of the symmetric group follows from the equivariance conditions in the definition of 
multicategories and algebras over them. �

The geometric realisation functor is (lax) symmetric monoidal, via the Eilenberg-
Zilber shuffle maps [12] that combinatorially encode the standard simplicial subdivision 

of each prism Δp × Δq into a union of simplices Δp+q. This map immediately gives an 

algebra structure on the geometric realisation of each simplicial algebra. The details are 

given below in a more general context in Section 4.6 below.

4.3. Proof of Theorem 1.4

The proof of the first main result asserted in the introduction is now a completely 

straightforward consequence of the construction:

Proof of Theorem 1.4. By construction, the multicategories FK are sub-multicategories 
of F , and thus each inclusion K ⊂ K ′ gives rise to an inclusion FK′ ⊂ FK , and hence 

an inclusion of sets of decorated levelled trees Tn(K ′) ⊂ Tn(K), which itself gives an 

inclusion of complexes in Equation (4.5)

CF∗
M,fM

R

0 ,n
(K ′) ⊂ CF∗

M,fM
R

0 ,n
(K). (4.15)

Since the inclusions of sets of decorated levelled trees are compatible with the face maps 
associated to collapsing levels, we obtain a map of simplicial chain complexes

CF∗
M,fM

R

0 ,•
(K ′) ⊂ CF∗

M,fM
R

0 ,•
(K), (4.16)
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which defines the desired map of operadic symplectic cochains with support K after 
completions.

Given that the inclusion in Equation (4.15) is given by inclusion of trees, it lifts to an 

inclusion

C̃F
∗

M,fM
R

0 ,n(K ′) → C̃F
∗

M,fM
R

0 ,n(K) (4.17)

of the complexes whose coinvariants give rise to the operadic symplectic cochains. In-
specting Equation (4.14), it follows that the restriction map is compatible with the 

operadic action.
Since the strict compatibility of maps associated to a triple inclusion K ⊂ K ′ ⊂ K ′′ is 

immediate from the inclusion of multicategories FK′′ ⊂ FK′ ⊂ FK , it remains to identify 

the action of the symplectomorphism group. Every symplectomorphism ψ of M induces 
a multifunctor

ψ∗ : F → F , (4.18)

which at the level of objects and multimorphisms is given by pre-composing the Hamil-
tonian data with ψ, and conjugating the almost complex data by it. This action restricts 
to a multifunctor from FK to FψK , with inverse the multifunctor associated to ψ−1. The 

induced map yields the isomorphism in Equation (1.12), which is compatible with the 

operadic action by the functoriality of our construction of the structure maps.
Since (ψ◦φ)∗ = ψ∗ ◦φ∗ as multifunctors on F , the action is eminently compatible with 

composition, and it is compatible with restriction map because ψ∗ preserves inclusions, 
in the sense of inducing, for each inclusion K ⊂ K ′, a commutative diagram

FK′ FK

FψK′ FψK .

⊂

ψ∗ ψ∗

⊂

� (4.19)

4.4. Differential graded multicategories

At this stage, the reader can provide an explicit proof of Theorem 1.8, along the lines 
of the proof of Theorem 1.4 presented above. However, we prefer to avoid the morass 
of notation that would appear in such a direct approach, and present an even more 

abstract construction of the left Kan extension giving rise to the symplectic cochains 
with support. We shall thus take a small detour to explicitly describe the theory of 
multicategories enriched over chain complexes, which is a special case of the notion of 
enriched multicategories discussed in Appendix B.2.

Let ChR be the category of chain complexes over a fixed commutative ring R with 

its standard symmetric monoidal structure given by tensor product of chain complexes. 
The reader should keep the case where R is the Novikov ring in mind, since that is the 
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only one that we will use. If we do not write anything under a tensor product sign it 
means that it is the tensor product of chain complexes over R.

Throughout this section we use the word multicategory to mean a differential graded 

multicategory (a special case of Definition B.9): writing X for the object set, this means 
that the multimorphisms C(�x; y) with inputs a non-empty sequence �x ∈ X n, and output 
an element y ∈ X are given by an object of ChR. The multicomposition operations, are 

given by R-linear chain maps

◦ :
n⊗

i=1

C(�xi; yi) ⊗ C(�y; z) → C(�x ◦ �y, z) (4.20)

for each sequence of objects �y of length n, and each collection of n-sequences of objects 
�x1, . . . , �xn, and where �x ◦ �y denotes the replacement of the ith element in �y by the 

sequence �xi. Note that Equation (4.20) corresponds to applying the operations ◦i from 

Equation (B.28), simultaneously for all elements of the sequence ◦i. The fact that such 

an operation is well-defined (i.e. independent of the ordering of the multi-compositions) 
is a consequence of the axioms. The unital structure is simply an element in C(x, x) for 
each object x, and we have the symmetry isomorphisms

σ∗ : C(x1, . . . , xn; y) → C(xσ(1), . . . , xσ(n); y) (4.21)

given by R-linear chain maps.
The properties satisfied by these data are those given in Section B.2, which the reader 

can find formulated in terms only of the composition operation ◦ at all inputs in Defini-
tion 2.2.21 of [33]. Following the standard convention, we call a multicategory with one 

object an operad.
Note that there is a forgetful 2-functor from (differential graded) multicategories to 

(differential graded) categories, which forgets n-ary multimorphism spaces with n > 1. 
Let us call the category associated to a multicategory its underlying category. There is 
a functor in the other direction, which associates to a category the multicategory with 

the same morphism (1-ary multimorphism) spaces and n-ary multimorphism spaces with 

n > 1 are set to 0 (the chain complex with one element). By abuse of language, we will 
call such a multicategory a category. Therefore, our constructions for multicategories will 
specialize to constructions for categories. Note that a multifunctor C → D where C is a 

category is nothing but a functor between the underlying categories.
The closed symmetric monoidal structure on ChR gives rise to a multicategory which 

we denote by Chdg
R , with object set those of ChR, and multimorphisms defined by

Chdg
R

(
�C, D

)
:= Hom∗

(
n⊗

i=1

Ci; D

)
. (4.22)

We omit writing down the standard definitions of multicompositions and symmetric 

group actions.
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An algebra over a differential graded multicategory C is simply a multifunctor

C → Chdg
R . (4.23)

Algebras over C form a category that we will denote by

AlgC. (4.24)

When C is a category, an algebra over C is sometimes called a module over C or a C-space 

in the literature. We will not make a distinction and continue to think of categories as 
special cases of multicategories.

4.5. The free algebra functor

Given a multicategory M, let us denote by Col(M) the colours of M, which is the 

smallest multicategory with the same objects as M. Precisely, this means that the only 

multimorphisms in Col(M) are the endomorphism spaces which are all assumed to be 

the unit object of ChR (which is the ground ring considered as a complex concentrated 

in degree 0). Note that the category of algebras over Col(M) has objects consisting of a 

collection of chain complexes over R indexed by the objects of M, and morphisms given 

by collections of maps of chain complexes.
We have a forgetful functor (U stands for underlying)

U : AlgM → AlgCol M. (4.25)

More interesting is the fact that U admits a left adjoint: the free algebra functor FM :
AlgCol M → AlgM, which we now construct.

Let C = {Cx}x∈Ob(M) be an object of AlgCol M. For every y ∈ Ob(M), we define

FM(C)(y) :=
∞⊕

n=1

⎛
⎝Cx1

⊗ . . . ⊗ Cxn
⊗

⊕

�x∈Ob(M)n

M(�x; y)

⎞
⎠

Sn

. (4.26)

Here, the subscript Sn means that we are taking coinvariants of the chain complex 

(Cx1
⊗ . . . ⊗ Cxn

) ⊗ M(�x; y) under the action of Sn defined by the maps

Cx1
⊗ . . . ⊗ Cxn

⊗ M(�x; y) → Cσ(x1) ⊗ . . . ⊗ Cσ(xn) ⊗ M(σ · �x; y). (4.27)

Using the multicompositions in M one can define chain maps

M(�x; y) → HomChR
(FM(C)(x1) ⊗ . . . ⊗ FM(C)(xn); FM(C)(y)), (4.28)

which are compatible with multicompositions and the symmetric structure. There is a 

natural isomorphism
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AlgM(FM(C), A) �
⊕

x∈Ob(M)

HomChR
(Cx, UAx) (4.29)

certifying that indeed the free algebra functor is left adjoint to the forgetful functor.

4.6. Geometric realization preserves algebras

Let us denote the category of simplicial objects in AlgM by Alg∆
M. Note that an M-

algebra A can be thought of as a simplicial M-algebra whose n-simplices are given by 

A for all simplicial degrees n ≥ 0 and all face and degeneracy maps being the identity. 
For the next statement, we also recall that the geometric realization C∗ : Ch∆

R → ChR

maps every simplicial complex to the direct sum of the (shifted) underlying complexes, 
equipped with the alternating sum of the face maps. The fact that this is a symmetric 

monoidal functor is well-known, and goes back to Eilenberg and Zilber’s idea [12] for 
comparing the geometric realisation of a product of simplicial sets with the product of 
the geometric realisations. The reader seeking a reference for the exact statement we 

use (for simplicial chain complexes and geometric realization as a semisimplicial chain 

complex) can find the proof in [42, Proposition 2.16 and 2.17].

Lemma 4.7. The Eilenberg-Zilber shuffle map determines a lift

C∗ : Alg∆
M → AlgM (4.30)

of the geometric realization functor to the category of algebras over M.

Sketch of proof: The structure of a simplicial M-algebra consists of maps of simplicial 
chain complexes

A∆
• (x1) ⊗ . . . ⊗ A∆

• (xn) ⊗ M(�x; y)• → A∆
• (y), (4.31)

where M(�x; y)• denotes the constant simplicial chain complex.
We apply C∗ to this map and pre-compose it with the shuffle (Eilenberg-Zilber) map 

to obtain

C∗A∆
• (x1) ⊗ . . . ⊗ C∗A∆

• (xn) ⊗ C∗(M(�x; y)•) → C∗A∆
• (y). (4.32)

Noting that C0(M(�x; y)•) = M(�x; y), we get the desired M-algebra structure 

maps. �

4.7. The extension functor Lπ∗ : AlgM → AlgO

Given a map M → O of multicategories, our goal in this section is to finally construct 
the functor Lπ∗ : AlgM → AlgO in the abstract setup; the algebra CF∗

M,fM
R

0 ,•
(K) which 
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was explicitly constructed in Definition 4.4, is the outcome of applying this functor to 

the Floer algebra, and to the forgetful map from FK to fM
R

0 . This point of view will be 

important in Section 5 below, where we compare our model of symplectic cohomology 

with the one coming from the mapping telescope.
Let us first define a functor on algebras over multicategories of colours Col(π)∗ :

AlgCol M → AlgCol O which maps an algebra x �→ Cx to the algebra

y �→
⊕

x∈π−1(y)

Cx. (4.33)

We define a simplicial object (Δπ)∗A• in AlgO by the formula

(Δπ)∗An = (FO ◦ Col(π)∗ ◦ U) ◦ (FMU)n(A). (4.34)

It is clear how all degeneracy maps and all but one of the face maps (for each n ≥ 1) 
are defined by the functoriality of FO ◦ Col(π)∗ using the unit and the counit of the 

free-forgetful adjunction. For those last maps we construct an algebra map

FO ◦ Col(π)∗ ◦ U ◦ FM(D) → FO ◦ Col(π)∗(D), (4.35)

where D is an Ob(M) indexed collection, using π to turn multimorphisms in M to 

multimorphisms in O and then using multicompositions in O.

Definition 4.8. The extension of A along π is the geometric realisation

Lπ∗A := C∗(Δπ)∗A•. (4.36)

Going back to our geometric context, the definition we gave in Section 4.1 can be 

translated as follows:

Lemma 4.9. The operadic symplectic cochains with support a compact subset K are equal 

to the completion, with respect to the valuation of the Novikov ring, of the extension of 

the restriction of CF∗ to FK along the projection π to the chains on fM
R

0 :

SC∗
M,fM

R

0

(K) = ̂Lπ∗ (CF∗ |FK). � (4.37)

4.8. Proof of Theorem 1.8

We are now ready to prove the second main result asserted in the introduction:

Proof of Theorem 1.8. We proceed to check the asserted properties as they are listed. 
First, to construct a map from the Floer cochains of every Hamiltonian H which is 
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negative on K, we consider the associated inclusion of the category ∗(H,J) with one 

object in FK . This inclusion induces a map of extensions

Lπ∗

(
CF∗ |∗(H,J)

)
→ Lπ∗ (CF∗ |FK) . (4.38)

The left hand side is, essentially by definition, the geometric realisation of the constant 

simplicial functor on the free C∗fM
R

0 algebra on the Floer complex CF∗(H, J), and 

thus has a canonical inclusion of this free algebra, associated to the 0-simplices of the 

simplicial construction. To see this, note that, in the formula corresponding to Equation 

(4.34), we have that the underlying functor on the category of modules over ∗(H,J) is 
the identity functor, and hence so is F∗(H,J)

. A map of such algebras thus canonically 

corresponds to a map of complexes

CF∗(H, J) → ULπ∗ (CF∗ |FK) . (4.39)

Composing with the completion maps yields the map whose existence is asserted in 

Equation (1.13).
Next, we produce the homotopy in Diagram (1.14). Considering the inclusion of a 

category Fκ with objects (H0, J0) and (H1, J1), and a unique morphism between them 

given by a continuation map κ. The morphisms from CF∗(H0, J0) and CF∗(H1, J1) to 

SC∗

M,fM
R

0

(K) both factor through the underlying complex of Lπ∗ (CF∗ |Fκ). Next, we 

consider the projection map p from Fκ to the point. The inclusion of the unit in fM
R

0

induces a map

ULp∗ (CF∗ |Fκ) → ULπ∗ (CF∗ |FK) , (4.40)

and the maps from both CF∗(H0, J0) and CF∗(H1, J1) factor through it. It thus suffices 
to show that the following diagram is homotopy commutative:

CF∗(H0, J0) CF∗(H1, J1)

ULp∗ (CF∗ |Fκ) .

(4.41)

We now analyse the target of these maps. Since the target category of p is the point, 
the map denoted by FO in Equation (4.34) is the identity map. The 0-simplices of the 

associated simplicial chain complex are given by

(Col(p)∗ ◦ U) ◦ CF∗ |Fκ
∼= CF∗(H0, J0) ⊕ CF∗(H1, J1), (4.42)

and the two maps in Diagram (4.41) are given by the inclusions of these factors.
We claim that there is a map from CF∗(H0, J0) to the 1-simplices, whose composition 

with the face map for n = 0 gives the inclusion of the first factor in the right of Equation 
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(4.42), and whose composition with the face map for n = 1 gives the composition of κ
with the inclusion of the second factor. To see this, we compute from Equation (4.26)
(which simplifies significantly in the context of categories) that the value on the object 
(H1, J1) of the algebra obtained by the composing CF∗ with the forgetful functor and 

then the free functor is

FFκ
U (CF∗ |Fκ

) (H1, J1) ∼= CF∗(H0, J0) ⊕ CF∗(H1, J1), (4.43)

where the first summand corresponds to the identity of the object (H0, J0), and the 

second to the unique morphism from this object to (H1, J1). Tracing through the 

construction, we find that the inclusion of this first summand provides the desired ho-
motopy. �

5. Comparison of the two models

In this section, we prove Theorem 1.9, which establishes the non-triviality of the 

operadic symplectic cochains with support by proving that this cochain complex is ho-
motopy equivalent to the existing model for symplectic cochains with support.

While this section is fairly long, the basic ideas underlying the comparison can be 

explained quite succinctly: as in Section 1.5 denote by FK,� the subcategory of the 1-
categorical part of the indexing multi-category FK whose morphisms project to the 

unit in fM
R

0 (1). The most significant difference between the telescope construction 

and the model SC∗

M,fM
R

0

(K) is that the former is a model for the homotopy colimit 

of the Floer functor over FK,�, while the latter involves the entire multicategory. We 

will use the notation SC∗
M (K) to denote the completion of some unspecified model 

for the homotopy colimit of the Floer functor CF∗ over FK,�, which is well-defined 

(up to homotopy equivalence) because the homotopy colimit is itself well defined up to 

contractible choice.
We are thus led to consider the following diagram of differential graded multicategories

C∗FK,� C∗FK Chdg
Λ≥0

Λ≥0 C∗fM
R

0

CF∗

π (5.1)

in which the dashed arrows are the left Kan extensions whose completions give rise to 

the two models of symplectic Floer cochains that we are trying to compare.
The statement that the two models are homotopy equivalent then follows from a 

general argument asserting this conclusion for any such diagram where the left square 

is a (homotopy) pullback square. The fact that we do obtain a pullback square in our 
geometric situation is ultimately a consequence of the results of Section 2, specifically 
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of Proposition 2.20. Since the statement that a square of topological spaces is a homo-
topy pullback square is equivalent to the statement that the induced map of fibres is a 

homotopy equivalence, it should not be surprising that a proposition asserting that a 

projection map has contractible fibres implies the desired result.
If we had formulated our operadic constructions in a fully homotopically invariant way, 

e.g. using a theory of operads internal to quasi-categories, the above paragraph would 

be an outline of the proof, and its implementation would be shorter than the argument 
we provide, by relying on multiple citations of results in Section 3 of the manuscript 
[34]. Since the statements in the introduction are about operads in the ordinary differ-
ential graded sense, such an approach would require us to then further use a comparison 

between these two different notions.
We prefer to give a longer, explicit argument, relying on classical results of homotopical 

algebra, by comparing operadic left Kan extensions to categorical Kan extensions.

5.1. Overview of the proof of Theorem 1.9

It is clear from the phrasing of the problem in the paragraphs surrounding Diagram 

(5.1) that the missing ingredient is a general statement about multi-categories. For this 
reason, until the end of the proof, everything will be stated in general algebraic terms.

As in Sections 4.4-4.7, we fix a commutative ring R and the following data:

• a differential graded multicategory M

• a differential graded multicategory O, which we assume to only have one object
• a differential graded multi-functor π : M → O

• an M-algebra A : M → Chdg
R

We call this the abstract setup in this section. The construction of Section 4.7 can be 

formulated as the construction of such data by applying the normalized chains of sym-
metric cubical sets (and the resulting functor from Ch�

R to Chdg
R ) to the Floer theoretic 

constructions from Sections 2 and 3. To be specific R = Λ≥0, C∗FK plays the role of 

M, C∗fM
R

0 of O, C∗ applied to the multifunctor FK → fM
R

0 plays the role of π, and 

CF∗ that of A. In Section 4.7, we explained the construction of an O-algebra which is 
a model for the homotopical operadic left Kan extension of A via π. We formulated the 

construction as a functor

Lπ∗ : AlgM → AlgO. (5.2)

On the other hand, by taking the fibre of π over the unit of O, we obtain a category 

which we denote by M�. The homotopy colimit of A over M�, is equipped with a natural 
map of chain complexes

hocolim
M�

A → Lπ∗A. (5.3)



60 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

Our goal is to prove that this map is a homotopy equivalence. We will need a key 

intermediate step where we use a functor from the category of multi-categories to the 

category of symmetric monoidal categories, called the PROP functor (see Section 5.4.1 

in [35] and also Section 5.2 below), and which we denote by P . From a sufficiently high-
level perspective, the functor P encodes multicategorical data in terms of equivalent 
categorical data, and the main difference between the two approaches is how the notion 

of symmetry is encoded.

Remark 5.1. While not completely standard, the version of the PROP functor that we 

will consider will rely on an auxiliary choice of ordering of the set of objects of the 

multicategory which we consider. We stress that this ordering is not going to be arising 

from geometric considerations. Rather, we choose it because it simplifies the compar-
ison between the constructions that we will associate to the PROP and the operadic 

construction.

We will ignore part of the structure and consider the target of P as simply the category 

of (differential graded) categories. As a first step, we note that if M is a multi-category 

(with an ordered set of objects), then the objects of PM are ordered sequences of objects 
of M. We can apply the PROP functor to our abstract setup and obtain the following 

data:

• a differential graded category PM,
• a differential graded category PO,
• a differential graded functor Pπ : PM → PO, and
• a differential graded module PA : PM → Chdg

R (i.e. a PM-algebra).

We are thus at the position where we have to compare three different chain complexes:

(1) (Operadic) The left Kan extension associated to the multifunctors π and A: Lπ∗A,
(2) (Categorical) The left Kan extension associated to the functors Pπ and PA: 

LPπ∗PA,
(3) The homotopy colimit of A over M�.

The inclusion of categories M� → PM induces a comparison map between the second 

and the third complex, and we shall discuss, in Section 5.7 a criterion for when it is 
quasi-isomorphism. We shall also show that there is always a map comparing the first 
and the second of these chain complexes, which is analogous to the map from the Borel 
construction to the quotient by a group action. In order for the comparison map to be a 

quasi-isomorphism, we need additional assumptions. Before we state them let us make 

an ad hoc definition extending, to the Z/2-graded case, the notion of a bounded below 

and free Z-graded right module (i.e. one which is a free A-module in each degree, and 

vanishes below some dimension).
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Definition 5.2. A Z/2-graded right chain complex over A is called bounded below and free

if it is obtained by collapsing the grading of a bounded below and free Z-graded right 
A-chain complex.

Definition 5.3. The abstract setup is said to satisfy the freeness hypothesis if the following 

conditions hold:

(Identity) The endomorphism algebra of every object �x of Ob(PM) is given by the 

group ring on the subgroup Aut(�x) of permutations of [n] that preserve the map 

�x : [n] → Ob(M)

PM(�x; �x) = R[Aut(�x)]. (5.4)

(Freeness 1) For every pair of objects �x and �y of P (M), the morphism complex 

M(�x; �y) is a bounded below and free right R[Aut(�x)]-chain complex.
(Freeness 2) For every n ≥ 1, the complex O(n) is a bounded below and free right 
R[Sn]-chain complex.

Note that Freeness 2 property implies that O(n) is a bounded below and free right 
R[G]-chain complex for all subgroups G ⊂ Sn by an elementary argument

The comparison of Operadic (1) and Categorical (2) Kan extensions as above is the 

subject of the following result, whose proof takes up the bulk of this section:

Proposition 5.4. Assuming that the freeness hypothesis holds, the value of the module 

LPπ∗PA on the unit object of PO is chain homotopy equivalent to the complex under-

lying Lπ∗A.

Remark 5.5. A similar result was obtained in [28, Proposition 1.15], using more abstract 
model categorical arguments, but it does not appear that his result directly implies ours.

The above result reduces the desired equivalence from Theorem 1.9 to a comparison 

between the homotopy colimit and the categorical left Kan extension, which follows 
whenever the diagram

M� PM

� PO

π (5.5)

is a homotopy pushout square. This is exactly the point that we alluded to in the discus-
sion surrounding Diagram (5.1), but, having passed from multicategories to categories, 
both the formulation and the proof become more classical, as we discuss in Section 5.7
below.
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5.2. PROP functor

We now recall the construction of the PROP functor P which associates to a multi-
category with an ordering of the set of objects a symmetric monoidal category. We will 
not use the symmetric monoidal structure so we only explain the underlying categorical 
structure below. Throughout, all constructions are enriched over ChR.

Definition 5.6. Given a multicategory M, define the associated PROP category P (M)
to have

(1) Objects Ob(P (M)) given by (finite) non-decreasing sequences of objects of M. We 

write Osk(M) for those sequences of length k.
(2) Morphism complexes between objects �a ∈ Osn(M) and �b ∈ Osm(M) of P (M), given 

by the direct sum, over all maps f : [n] → [m] of the sets labelling the sequences, of 
the tensor product over all elements bj of the output sequence �b of the complex of 
multimorphisms with (i) inputs the objects of �a labelled by f−1(j) and (ii) output 
bj :

P (M)(�a,�b) :=
⊕

f :[n]→[m]

m⊗

j=1

M(�a|f−1(j); bj). (5.6)

(3) The composition structure is defined in [38, Construction 4.1], using the composition 

in the multicategory along with its symmetric structure.

We clarify that the choice of ordering does not enter in the description of the mor-
phisms; in this way, it should be clear that PM is a full subcategory of a category whose 

objects are all (finite) sequences of objects.
Note that for σ ∈ Sn whose action on �a is trivial, the symmetric structure of the 

operad M induces permutation morphisms σ∗ ∈ P (M)(�a, �a). These will play a key role 

in the comparison argument.

Remark 5.7. The construction of composition in [38] is much more clear when the colours
of all objects in question are different. One first composes only using the composition 

structure in M and then uses the symmetric structure so that the domain of the compo-
sition comes out correctly. In the general case where not all colours are different, we use 

the same formula - even though it is less obvious to see why this should be the formula 

if all colours are the same for example. Associativity is proved by a relatively painful 
explicit check. There is a third definition of multicategories, called fat multicategories 
in Appendix A.2 of [33], which makes the check of associativity trivial. Yet now the 

work is shifted to proving that a multicategory gives rise to a canonical fat symmetric 

multicategory.
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Remark 5.8. When M is an operad there is a single object, and no auxiliary choice is 
needed. In this case, B. Fresse pointed out to us that there is a canonical isomorphism

PM(n; m) �
⊕

∑m
j=1 nj=n

nj∈N

⎛
⎝R[Sn] ⊗R[Sn1 ]⊗···⊗R[Snm ]

m⊗

j=1

M(nj)

⎞
⎠ . (5.7)

This is sometimes used directly as the definition of the PROP functor in the operad case, 
e.g. [36], Example 59. The isomorphism can be constructed using the same idea as that 
of Proposition 5.12 below.

The assignment P lifts to a functor from multicategories (with orderings on the choice 

of objects, and multifunctors preserving this ordering) to categories in a straightforward 

way: given a multi-functor F : M → M′, P (F ) acts on objects by assigning to a 

map [n] → Ob(M) its post-composition with Ob(F ) : Ob(M) → Ob(M′). From this 
description the action of P (F ) on morphisms is obvious.

Given an algebra A : C → Chdg
R , we obtain a functor PC → P Chdg

R . Note also that 
there exists a canonical (symmetric monoidal) functor P Chdg

R → Chdg
R , which sends a 

sequence of vector spaces to their tensor product. By PA, we thus mean the PC-algebra 

obtained by the composition

PC → P ChR → ChR . (5.8)

We conclude:

Lemma 5.9. The PROP construction induces a functor

P : AlgM → AlgP M. � (5.9)

As discussed in Section 4.4, the embedding of categories into multicategories implies 
that the constructions of Section 4.5–4.7 directly apply to algebras over PM. In practice 

the formulas simplify significantly. For example, there is no need to pass to coinvariants in 

the construction of the free algebra because the group action is trivial. In fact, Equation 

(4.26), which is our formula for the free algebra functor, simplifies even further for the 

specific algebras over PM that we will consider:

Lemma 5.10. If D = {D�x}�x∈Ob(P M) is a collection of chain complexes satisfying the 

condition

D�x = Dx1
⊗ . . . ⊗ Dxn

, (5.10)

then the free algebra on D is
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FP M(D)(�y) =

∞⊕

n=1

⊕

�x∈Ob(M)n

⎛
⎝ ⊕

f :[n]→[m]

Dx1
⊗ . . . ⊗ Dxn

⊗

⎛
⎝

m⊗

j=1

M(x|f−1(j); yj)

⎞
⎠

⎞
⎠ . � (5.11)

We note that the hypothesis of the above result is satisfied whenever D is obtained 

by applying the forgetful functor to the image of an M-algebra A under P .

5.3. From the bar construction to the operadic extension

We now construct a chain map

LPπ∗PA(�) → Lπ∗A(�), (5.12)

which we will show in the next two sections to be a quasi-isomorphism under the as-
sumptions of Proposition 5.4. This is where the choice of ordering becomes essential, 
and the starting point is the following formula for the (operadic) free algebra functor in 

terms of data involving the associated PROP:

Lemma 5.11. Denoting by Aut(�x) the permutations of [n] that preserve a map �x : [n] →
Ob(M), we have a natural isomorphism of chain complexes

FM(C)(y) =
∞⊕

n=1

⎛
⎝ ⊕

�x∈Ob(M)n

Cx1
⊗ . . . ⊗ Cxn

⊗ M(�x; y)

⎞
⎠

Sn

(5.13)

=
∞⊕

n=1

⊕

�x∈Osn(M)

(Cx1
⊗ . . . ⊗ Cxn

) ⊗R[Aut(�x)] M(�x; y), (5.14)

for each object y. �

We shall be specifically interested in a formula for the composition of the PROP 

functor with the free and forgetful functors applied to operadic algebras. The next result 
provides such an expression; Fig. 5 justifies why we refer to it as untangling.

In the statement of the next result, the symbol U refers to chain complex obtained by 

forgetting the operadic operations on an algebra, as in Section 4.5, so that the composite 

FMUD is the free algebra on the complex underlying D.

Proposition 5.12 (Untangling trick). For every M algebra D and an ordered sequence �y

we have a canonical isomorphism

PFMUD(�y) ∼=
⊕

�x∈Osn(M)

PM(�x; �y) ⊗R[Aut(�x)] PD(�x). (5.15)
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Fig. 5. Untangling a forest of 4 corollas.

Proof. By definition PFMUD(�y) is equal to

m⊗

j=1

⎛
⎝ ⊕

�xj∈ObP M

(D(xj1
) ⊗ . . . ⊗ D(xjnj

) ⊗R[Aut(�xj)] M(�xj ; yj))

⎞
⎠ . (5.16)

We can rewrite this as

∞⊕

n=1

⊕
∑m

j=1 nj=n

nj∈N

⎛
⎝ ⊕

�xj∈Osnj (M)

⎛
⎝(D(xj1

) ⊗ . . . ⊗ D(xjnj
)) ⊗R[Aut(�xj)]

m⊗

j=1

M(�xj ; yj)

⎞
⎠

⎞
⎠ .

(5.17)
We can put �x1, . . . , �xm next to each other and obtain a sequence �x. There are Aut(�x)

many permutations of [n] which make �x into an ordered sequence. By making a choice 

for each of these, we obtain a canonical map from

∞⊕

n=1

⊕
∑m

j=1 nj=n

nj∈N

⎛
⎝ ⊕

�xj∈Osnj (M)

⎛
⎝

m⊗

j=1

(D(xj1
) ⊗ . . . ⊗ D(xjnj

)) ⊗ M(�xj ; yj)

⎞
⎠

⎞
⎠ (5.18)

to the right hand side of Equation (5.15) from the statement:

⊕

�x∈Ob(P M)

PD(�x) ⊗R[Aut(�x)] PM(�x; �y). (5.19)
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Clearly the map is independent of the choices. Moreover, it also descends to a map from 

the desired chain complex displayed in Equation (5.17). It is easy to see that this map 

is an isomorphism. �

Using the fact that we defined the operadic Kan extension in terms of the free forgetful 
adjunction, the above result yields:

Corollary 5.13. An ordering of the objects of the multicategory M determines an isomor-

phism between the operadic Kan extension Lπ∗A(�), and the simplicial chain complex 

whose m-simplices are given by the direct sum

⊕

�x1,...,�xm∈Ob(P M)

PA(�x0) ⊗R[Aut(�x0)] PM(�x0; �x1) ⊗R[Aut(�x1)] · · · ⊗R[Aut(�xm)] O(k).

(5.20)

Proof. Iteratively applying the canonical isomorphism (5.15), starting with D =
(FMU)m−1A, we obtain the isomorphism

(FMU)mA(y) = P (FMU)mA(y) →
⊕

�x1,...,�xm∈Ob(P M)

PA(�x0) ⊗R[Aut(�x0)] PM(�x0; �x1) ⊗R[Aut(�x1)] · · · ⊗R[Aut(�xm)] M(�xm; y). (5.21)

For an M algebra D, we also have that

FO ◦ Col(π)∗ ◦ U(D)(�)

=
⊕

k

⎛
⎝

⎛
⎝ ⊕

y1∈Ob(M)

D(y1)

⎞
⎠ ⊗ · · · ⊗

⎛
⎝ ⊕

yk∈Ob(M)

D(yk)

⎞
⎠

⎞
⎠ ⊗R[Sk] O(k)

=
⊕

k

⊕

�y∈Osk(M)

PD(�y) ⊗R[Aut(�y)] O(k)

which finishes the proof by applying it to D = (FMU)mA. �

Since the bar construction LPπ∗PA(�) is the geometric realisation of a simplicial 
complex whose n-simplices are given by

⊕

[k0]→...→[kn]

⊕

�xi∈Oski (M)
i∈[n]

PA(�x0) ⊗ PM(�x0; �x1) ⊗ . . . ⊗ PM(�xn−1; �xn) ⊗ O(kn), (5.22)

we conclude:
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Lemma 5.14. The projection map from the tensor product over the ground ring to the 

tensor product over the group ring of Aut(�x) defines a map from Equation (5.22) to 

Equation (5.20), which induces a map from the simplicial chain complex giving rise to 

LPπ∗PA(�) to the simplicial chain complex giving rise to Lπ∗A(�). �

This defines the map of Equation (5.12). We now proceed to show that it is a quasi-
isomorphism under the freeness hypothesis.

5.4. Dg-flatness

As alluded to at the beginning of this section, the heuristic for the proof that the 

comparison map in Equation (5.12) is an equivalence is the statement that the projection 

map from the Borel construction to the ordinary quotient is a homotopy equivalence for 
spaces with free actions.

We need a purely algebraic analogue of this idea, so we start by fixing an associative 

algebra A over R, where the key example we have in mind is the group ring R[G] of a 

finite group.

Definition 5.15. A left A-chain complex M is dg-flat if the functor N �→ N ⊗A M

sends quasi-isomorphisms of right A-chain complexes to quasi-isomorphisms of R-chain 

complexes.

For the next statement, recall that we provided an ad-hoc formulation for Z2-graded 

chain complexes in Definition 5.2, in terms of the existence of a bounded below graded 

lift:

Lemma 5.16. Let M be a bounded below and free left A-chain complex. Then M is dg-flat.

Proof. This is classical in the Z-graded case, see 1.1.F - 1.2.F of [4].
Assume that we have a quasi-isomorphism of Z2 graded left A-chain complexes N →

N ′. Our assumption that M is bounded below asserts the existence of a bounded below 

dg-flat Z-graded A-chain complex M̃ whose Z2 reduction is M . Then, it follows that

N ⊗A M → N ′ ⊗A M (5.23)

is a quasi-isomorphism. This is because we can first unroll the Z2 complexes N and N ′

into Z-graded ones, take tensor product as such with M̃ and then only consider what 
happens in degrees 0 and 1 to recover the desired map. This finishes the proof in the Z2

graded case. �

Remark 5.17. If we assume that A has finite global dimension, then we can drop the 

bounded below assumption from Lemma 5.16 (see the proof of Proposition 5.30 and 1.5 

of [4]). However, in our application below, we will have A = R[G] for a finite group G. 
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Even if we assume that R has finite global dimension and |G| is a unit in A, we could 

not determine if one can conclude that R has finite global dimension. Of course, when 

R is a field, then this is true: A has global dimension 0 by Maschke’s theorem.

Let Mr be a right A-chain complex and Ml be a left A-chain complex. We define 

B(Mr, A, Ml) to be the bar complex

∞⊕

n=0

Mr ⊗ A⊗n ⊗ Ml = Mr ⊗ TA ⊗ Ml (5.24)

with its standard differential. Note that in our terminology, B(Mr, A, Ml) is the geomet-
ric realization of the simplicial R-chain complex whose n-simplices are

Bn(Mr, A, Ml) := Mr ⊗ A⊗n ⊗ Ml. (5.25)

When we set Ml = A, we have a canonical a chain map of right A-chain complexes:

B(Mr, A, A) → Mr, (5.26)

which is a homotopy equivalence of R-chain complexes, and hence in particular a quasi-
isomorphism. This last conclusion holds more generally:

Proposition 5.18. If Ml is dg-flat left A-chain complex, then the canonical map of R-

chain complexes

p : B(Mr, A, Ml) = B(Mr, A, A) ⊗A Mr → Mr ⊗A Ml, (5.27)

is a quasi-isomorphism. �

It will be convenient for our arguments to factor this map through a map of geometric 

realisations. We thus define the R-chain complex

Mr ⊗s
A Ml :=

∞⊕

n=0

Mr ⊗A Ml[n] (5.28)

which is the geometric realization of the constant simplicial R-chain complex Mr ⊗A Ml

(the differentials alternate between vanishing and agreeing with the identity map). Note 

that we have a canonical quasi-isomorphism

q : Mr ⊗s
A Ml → Mr ⊗A Ml. (5.29)

Let us note that there is always a simplicial map

B•(Mr, A, Ml) → Mr ⊗A Ml, (5.30)
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where the target is thought of as the constant simplicial R-chain complex. It is defined 

for any n ≥ 0 by taking the map Mr ⊗ A⊗n ⊗ Ml → Mr ⊗A Ml to be

mr ⊗ a1 ⊗ . . . ⊗ an ⊗ ml �→ mra1 . . . an ⊗ ml. (5.31)

This is in fact a bi-natural transformation.
Taking geometric realizations, we obtain a chain map

f : B(Mr, A, Ml) → Mr ⊗s
A Ml. (5.32)

Remark 5.19. Assuming that Ml is an A −A′ bimodule, this map is a map of A′ modules.

We conclude:

Corollary 5.20. We have a commutative diagram

B(Mr, A, Ml) Mr ⊗s
A Ml

Mr ⊗A Ml

f

p
q (5.33)

Assuming that Ml is dg-flat, the horizontal map is a quasi-isomorphism. �

5.5. Proof that the map from the bar construction to the operadic extension is a 

quasi-isomorphism

In this section, we show that the comparison map from Equation (5.12) is a quasi 
isomorphism by equipping to two sides with compatible filtration, and showing that the 

map induces an isomorphism on associated graded homology groups. To simplify the 

notation, we write

L :=LPπ∗PA(�) (5.34)

L′ :=Lπ∗A(�). (5.35)

We begin by recalling that

L =
⊕

n≥0

⊕

[k0]→[k1]→...→[kn]→1

⊕

�xi∈Oski (M)
i∈[n]

PA(�x0) ⊗ PM(�x0; �x1) ⊗ · · · ⊗ PM(�xn−1; �xn) ⊗ O(kn)[n].
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For an integer m ≥ 0 let Om be the set of (m + 1)-tuples (�x0, . . . , �xm) of ordered 

sequences of objects of M with the property that �xi �= �xi+1.
Under the identity assumption, and using T for the tensor algebra construction, we 

can rewrite L as

L =
⊕

m≥0

⊕

(�x0,...,�xm)∈Om

PA(�x0) ⊗ T (R[Aut(�x0)]) ⊗ PM(�x0; �x1)⊗

T (R[Aut(�x1)]) ⊗ · · · ⊗ PM(�xm−1; �xm) ⊗ T (R[Aut(�x0)]) ⊗ O(|�xm|).

Note that the summands here are isomorphic as a k-module to an iterated bar con-
struction as in Equation (5.24) with a left parenthesis inserted after every occurrence of 
T (R[·]) and right parentheses at the end. We remind the reader that this splitting of L
is only as a k-module and not as a chain complex. The differential has some terms which 

do preserve this decomposition and this agrees with the differential of the iterated bar 
complex from Equation (5.24). On the other hand, part of the differential decreases m
by composing �xi and �xi+1.

Lemma 5.21. Under the Identity assumption, there is a canonical isomorphism of modules

L′ =
⊕

m≥0

⊕

(�x0,...,�xm)∈Om

PA(�x0) ⊗s
R[Aut(�x0)] PM(�x0; �x1)⊗s

R[Aut(�x1)]

· · · ⊗s
R[Aut(�xm−1)] PM(�xm−1; �xm) ⊗s

R[Aut(�xm)] O(|�xm|)

Under this identification, the map L → L′ of Equation (5.12) is given by applying Equa-

tion (5.32) iteratively. The map respects the module grading by m.

Proof. The isomorphism part of the claim follows from Corollary 5.13 and the rest of 
the computation is straightforward. �

Let us call the map of Equation (5.12) after this identification

Φ : L → L′. (5.36)

Remark 5.22. Here is a toy version of the next argument to aid the reader. Let us use 

the notation of Corollary 5.20 and in addition assume that we are given an R-module 

M and an R-linear map

Mr ⊗ Ml → M, (5.37)

which factors through Mr ⊗ Ml → Mr ⊗A Ml. Then, we can construct the cones of the 

canonical chain maps
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B(Mr, A, Ml) → M (5.38)

and Mr ⊗s
A Ml → M . The map f induces a chain map on these cones, which is a 

quasi-isomorphism under the same assumption that Ml is dg-flat.

Let Lm and L′
m be the submodules with exactly m essential levels. We also define 

FmL :=
⊕m

n=0 Lm and FmL′ :=
⊕m

n=0 L′
m. Noting

FmL = Fm−1L ⊕ Lm (5.39)

we can write the differential in block form. Considering Lm and L′
m as a chain complex 

with their canonical differential, we can express FmL and FmL′ as the cones of the 

canonical maps

fm : Lm → Fm−1L (5.40)

f ′
m : L′

m → Fm−1L′. (5.41)

Proposition 5.23. The diagram

Lm Fm−1L

L′
m Fm−1L′

fm

Φm Fm−1Φ

f ′
m

(5.42)

commutes. �

Theorem 5.24. Under the freeness hypothesis, the map

FmΦ : FmL → FmL′ (5.43)

is a quasi-isomorphism for all m ≥ 0.

Proof. We will do this by induction on m. For m = 0, this is a direct consequence of 
Lemma 5.16 and Proposition 5.20. In fact, similarly, the map

Φm : Lm → L′
m (5.44)

is a quasi-isomorphism by an iterated use of Proposition 5.20. Then, we use Proposi-
tion 5.23 along with the long exact sequence of a cone to finish the induction. �

Because our filtrations are exhaustive, taking cones reduces the next result to an 

acyclicity statement which is easy to see:

Corollary 5.25. Under the freeness hypothesis, Φ : L → L′ is a quasi-isomorphism. �
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5.6. Two-sided bar constructions as left Kan extensions

It is convenient, for the next two sections, to formulate the left Kan extensions in 

the categorical context as a 2-sided bar construction (cf. [22, Appendix A]). Given a 

differential graded category C, we use the term right module for a differential graded 

functor from C to the category of chain complexes, while a left module is a differential 
graded functor on the opposite category.

Remark 5.26. We recommend Section 3 of [30] as a reference for the two-sided bar con-
struction and a list of basic properties. Especially important for us is Section 5 of the 

same reference, where the two-sided bar construction is used to construct a left homo-
topy Kan extension along enriched functors. Even though the statements in [30] are 

formulated for categories enriched over topological spaces, the construction and results 
that we use extend in a straightforward way to chain complexes.

We associate to a left module L and a right module R over C a simplicial chain 

complex B•(R, C, L) whose n-simplices are given by

⊕

(x0,...,xn)∈Ob Cn

R(x0) ⊗ C(x0, x1) ⊗ · · · ⊗ C(xn−1, xn) ⊗ L(xn) (5.45)

and whose face maps are given for i = 0 by the action of C on L, for 0 < i < n

by composition in C, and for i = n by the action of C on R. This can be formulated 

more abstractly in terms of a free-forgetful adjunction. We abuse notation and write 

B(R, C, L) for the associated chain complex. More generally, if R is a differential graded 

B-C bimodule, and L is a C-D bimodule, then the bar construction is a B-D bimodule.
The following result asserts that the left Kan extension that we have been studying, 

when computed for categories, is given by a 2-sided bar construction. In its formulation, 
we shall use the following notation: for a differential graded functor p : A → C, denote 

by pC the A − C-bimodule which assigns to a pair of objects (a, c) the morphism space 

C(f(a), c).

Lemma 5.27. Let C be a category and R be a right module. If p : A → C is a functor, we 

have an isomorphism of right A-modules

Lp∗R ∼= B(R, A, pC) (5.46)

Proof. Recall that a right module for a category considered as a multicategory is simply 

what we referred to as an algebra. The only trees that contribute to the left hand side are 

the linear ones. Moreover, the symmetric group actions in this case do not play any role 

and we do not need to take coinvariants at any step. By inspection of the constructions, 
it follows that the two sides of the equation are precisely the same. �
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5.7. Hollender-Vogt cofinality result

Consider a commutative square of differential graded functors:

A B

C D.

f

p q

g

(5.47)

We say that such a diagram is a homotopy pushout square if the natural comparison map

B(f∗B, A, pC) → g∗
qD (5.48)

is a quasi-isomorphism of B − C-bimodules.

Lemma 5.28 (Proposition 5.4 of [30]). Given a right module X : B → ChR, the compar-

ison map of C modules

B(f∗X, A, pC) → g∗B(X, B, qD), (5.49)

is a quasi-isomorphism for each homotopy pushout square as in Equation (5.47).

Proof. We consider the following sequence of maps

g∗B(X, B, qD) = B(X, B, g∗
qD) (5.50)

← B(X, B, B(f∗B, A, pC))

∼= B(f∗B(B, B, X), A, pC)

� B(f∗X, A, pC).

The first arrow is a quasi-isomorphism by assumption, the second is an isomorphism of 
chain complexes, and the third is a homotopy equivalence by the acyclicity of the bar 
complex. �

Returning to the outline of our strategy provided in Section 5.1, find that we can 

complete the comparison between the operadic Kan extension and the homotopy colimit, 
in a setting slightly more general than Diagram (5.5), where we replace the fibre M� by 

a potentially different category:

Corollary 5.29. Given a functor N → M� with the property that the Diagram

N PM

� PO

π (5.51)



74 M. Abouzaid et al. / Advances in Mathematics 450 (2024) 109755

is a homotopy pushout square, the comparison map

hocolim
N

A → Lπ∗A (5.52)

is a quasi-isomorphism. �

5.8. Proof of Theorem 1.9

We need one final ingredient for the proof of the remaining result stated in the 

introduction: the techniques of this section in general produce quasi-isomorphisms of 
complexes obtained from various bar constructions. To obtain homotopy equivalences, 
we will thus need the following result:

Proposition 5.30. Let k be a field and Λ≥0 be the Novikov ring over k. Let C be a (Z-

graded or Z/2-graded) chain complex over Λ≥0. If the underlying graded module of C is 

degree-wise free, then its acyclicity implies its contractibility.

Proof. We consider the projective model structure on ChΛ≥0
as in [29]. By Remark 2.3.7 

of the same reference the cofibrant objects correspond to the DG-projective complexes 
of [4].

It is not difficult to prove that the global dimension of Λ≥0 is finite using [49, 065T]
under the assumption that k is a field. Proposition 3.4 of [4] shows that degree-wise 

free chain complexes are cofibrant! Lemma 2.3.8 of [29] finishes the proof. For the last 
step one can also use the general Whitehead theorem for model categories (Theorem 

7.5.10 of [27]) as all chain complexes are fibrant in the projective model structure. The 

Z/2-graded case is a consequence of [31, Proposition 5.9]). �

We now assemble the results we have established in the proof of our comparison 

statement:

Proof of Theorem 1.9. We begin by checking that the conditions of Definition 5.3 hold 

in the geometric context. Identity assumption immediately follows from the fact that 
the objects of F form partially ordered sets in the following sense; if there are non-zero 

morphisms from x to y and vice versa, then x = y. The second Freeness assumption 

follows from the fact that the symmetric group on k-letters acts freely on fM
R

0,k, and 

this implies the first Freeness assumption given the forgetful map from F to fM
R

0 (any 

fixed points in the multimorphism spaces must map to a fixed point in the operad, but 
none exist).

We conclude the existence of a canonical quasi-isomorphism

LPπ∗P CF(�) → Lπ∗ CF(�), (5.53)

by Corollary 5.25.
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Next, we establish that the fact that the diagram

NΛ≥0
PC∗FK

�Λ≥0
PC∗fM

R

0

P π (5.54)

associated to a cofinal sequence of Hamiltonians is a homotopy pushout square, in order 
to apply Corollary 5.29. Here, NΛ≥0

is the category with objects the natural numbers 
0, 1, 2, . . . and morphisms

HomNΛ≥0
(i, j) =

{
Λ≥0 i ≤ j

0 i > j,
(5.55)

and the cofinal sequence of Hamiltonians determines a functor to C∗FK .
Explicitly, we need to show that for each sequence ((H1, J1), . . . , (Hk, Jk)) of objects 

of FK the natural map

B
(

C∗FK((H1, J1), . . . , (Hk, Jk); _), N
op
Λ≥0

, Λ≥0

)
→ C∗fM

R

0,k+1 (5.56)

is a quasi-isomorphism.
If all the Hamiltonians in the cofinal sequence are strictly larger than (H1, . . . Hk)

the last statement is an immediate consequence of Proposition 2.20. Therefore, for each 

fixed sequence (H1, . . . , Hk) the statement holds if we start the cofinal sequence from a 

large enough natural number. But the homotopy type depends only on the tail of the 

sequence, so the statement holds for the original cofinal sequence.
It is a well-known result that the telescope of a diagram NΛ≥0

→ C∗FK admits a 

canonical quasi-isomorphism to its homotopy colimit. The latter is of course nothing but 
the left Kan extension of NΛ≥0

→ C∗FK over �Λ≥0

Combining these results with the fact that completion preserves quasi-isomorphisms 
of chain complexes with torsion free underlying modules (see [52, Corollary 2.3.6 (3)]
finishes the proof of the first statement of Theorem 1.9. The homotopy equivalence 

statement is a direct consequence of Proposition 5.30 noting that homotopy equivalences 
are automatically preserved by completion. The homotopy commutativity of the diagram 

is similar to the proof of Theorem 1.8. �

Appendix A. Trees and Riemann surfaces

A.1. Conventions about trees

In what follows we will allow trees T to have edges that have one endpoint. We call 
such edges external edges and denote them by Eext(T ) and call the edges with two 
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e1 e2 e3 e4

· · ·

vroot

e0

en−1 en

Fig. 6. A stable tree.

v−
e

v+
e

e

Ein(v)

v

eout(v)

Fig. 7. Conventions for labelling edges and vertices.

endpoints internal edges, which we denote by Eint(T ). We write E(v) for the set of 
edges adjacent to a vertex v, and denote the valency of v by υ(v) := |E(v)|. We assume 

that the valency of each vertex is at least two. Note that our trees (without any other 
qualification or adjective) are not equipped with a planar structure and we do not allow 

edges with zero endpoints.

Definition A.1. For a natural number n, a pre-stable tree T with n inputs and 1 output

is a tree equipped with a bijection

{0, . . . , n} → Eext(T ). (A.1)

A pre-stable tree T is called stable if υ(v) ≥ 3 for all v ∈ V (T ).

We now describe the notation we use, which is illustrated in Figs. 6 and 7. Refer to 

the external edge labelled by 0 as the output. The other external edges are the inputs

of T . For each vertex v, there is a distinguished outgoing edge eout(v) ∈ E(v) lying on 

the minimal arc connecting v to the output edge. The edges adjacent to v which are not 
outgoing are called incoming edges:

Ein(v) ≡ E(v) \ {eout(v)}. (A.2)
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Each internal edge is the distinguished outgoing edge of exactly one vertex denoted by 

v−(e). The other vertex of e is denoted by v+(e).
Below, for a pre-stable tree T , we abbreviate v ∈ T to mean v ∈ V (T ).

A.1.1. Pre-stable Riemann surfaces with cylindrical ends

We now introduce our conventions for Riemann surfaces equipped with input and 

output marked points; as discussed in Remark 1.1 in our work, we only consider the case 

of 1 output marked point:

Definition A.2. A genus-0 punctured Riemann surface is a Riemann surface Σ which is 
the complement of finitely many points P in a closed genus-0 Riemann surface Σ. The 

elements of P are referred to as the punctures of Σ.
A choice of cylindrical ends on Σ is a decomposition P = Pin

∐
Pout into inputs and 

outputs and a choice for each p ∈ P of a map

ε−
p : (−∞, 0] × R/2πZ → Σ if p ∈ Pin (A.3)

ε+
p : [0, ∞) × R/2πZ → Σ if p ∈ Pout (A.4)

which is a biholomorphism onto a punctured neighbourhood of p in Σ. We moreover, 
make the assumption that the images of the cylindrical ends are pairwise disjoint and, 
in the case of one input and one output, we assume that ε± extend to biholomorphisms 
of R × R/2πZ onto Σ.

A genus-0 Riemann surface with nin inputs and nout outputs, is a genus-0 punctured 

Riemann surface, with |Pin| = nin and |Pout| = nout, together with a choice of cylindrical 
ends.

Changing coordinates from the half-cylinder to the disc, we see that a cylindrical end 

of Σ at p gives rise to a tangent vector in TpΣ. A framed Riemann surface is a Riemann 

surface equipped with the datum of a tangent vector at each marked point, up to positive 

real dilation. We thus have a forgetful map from the set of genus-0 Riemann surfaces 
with cylindrical ends to framed Riemann surfaces.

Next, we discuss the notion of pre-stability, which can be formulated abstractly in 

terms of nodal Riemann surfaces, but which we prefer to describe prosaically in terms 
of trees labelled by Riemann surfaces:

Definition A.3. A pre-stable rational curve Σ with n inputs and one output consists of a 

pre-stable tree T with n inputs, and, for each vertex v ∈ T , a genus-0 Riemann surface Σv

with |Ein(v)| inputs and 1 output, together with a bijection between the edges adjacent 
to each vertex v and the punctures of the corresponding Riemann surfaces:

E(v) →PΣv
(A.5)

e �→pe. (A.6)
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We require this bijection to map the outgoing edge maps to the output, and denote the 

inverse bijection by p �→ ep.
A stable rational curve with n inputs and 1 output is a pre-stable rational curve whose 

underlying tree T is stable.

We refer to the data (T, {Σv}v∈T ) as the underlying pre-stable curve, and the surfaces 
Σv as the components of Σ. For an internal edge e ∈ Eint(T ) we denote by p±

e the 

corresponding punctures in Σv±(e) respectively.

Definition A.4. Consider a pre-stable rational curve Σ with n inputs and one output, 
with underlying tree T , and fix an internal edge e in T . Given a parameter r ∈ (0, 1] we 

define the corresponding glued Riemann surface as the pre-stable curve Γr,e(Σ) given by 

the following data:

(1) The tree T/e obtained from T by removing e and quotienting the vertex set by 

v−(e) ∼ v+(e). We denote by vnew ∈ T ′ the vertex corresponding to the equivalence 

class of v−(e) ∼ v+(e).
(2) The surface Σvnew

which is defined by gluing

(
Σv+

\ ε−
p+

e
((−∞, ln r) × R/2πZ)

)
�∼

(
Σv−

\ ε+

p−
e

((− ln r, ∞) × R/2πZ)
)

, (A.7)

along their boundaries by the relation

ε−
p+

e
(ln r, t) ∼ ε+

p−
e

(− ln r, t). (A.8)

Σvnew
has cylindrical ends which are induced from those on Σvin

and Σvout
.

(3) The surfaces Σv for v �= vnew ∈ V (T/e) are given by the corresponding component 
of Σ.

Let us also declare that Γ0,e(Σ) = Σ, i.e. gluing with 0 gluing parameter does not change 

the curve.

Definition A.5. Given �r ∈ [0, 1]Eint(T ), we denote by Γ�r(Σ) the gluing of Σ with gluing 

parameter given by �r. That is, we pick an order on the edges of T and we inductively 

glue each edge e whose associated parameter re is non-zero. The result does not depend 

on the order in which gluing is performed. For a real number r ∈ [0, 1] we write

Γr(Σ) := Γ(r,...,r)(Σ). (A.9)

That is, we glue all the edges with the same gluing parameter r.

A biholomorphism ψ = (φ, {ψv}) of pre-stable rational curves (Ti, {Σv}v∈Ti
), i = 1, 2

consists of an isomorphism φ : T1 → T2 of pre-stable trees with n inputs and 1 output and 
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for each v ∈ V (T1) a biholomorphism ψv : Σv → Σφ(v) such that the map PΣv
→ PΣφ(v)

is the one given by E(v) → E(φ(v)). Two pre-stable rational curves with n inputs and 

one output are said to be isomorphic if there is a biholomorphism of the underlying 

pre-stable curves which intertwines the cylindrical ends at all the vertices.
Denote by D0,k+1 the set of isomorphism classes of pre-stable rational curves with k

inputs and one output. For a pre-stable tree T with k inputs denote by DT
0,k+1 ⊂ D0,k+1

the subset consisting of curves whose underlying tree is T .

Remark A.6. Note that we consider D0,k+1 merely as a set. We are not aware of natural 
Hausforff topology on D0,k+1. On top of the difficulties caused by unstable components, 
even if we consider a sequence of stable curves converging (in a reasonable topology) to a 

stable curve, there will be an ambiguity in the choice of cylindrical ends on the limiting 

curve whenever breaking is involved.
For a stable tree T we do however consider the set DT

0,k+1 of curves modelled on T

with its natural topology.

A.2. Stabilization and the KSV moduli space

Denote by M0,k+1 the Deligne-Mumford moduli space of biholomorphism classes of 
stable genus 0 curves with k + 1 marked points labelled by {0, . . . , k}. We recommend 

the reader [37][Appendix D] for basic definitions and properties. We call the 0th marked 

point, i.e. the marked point labelled with 0, the output marked point and the others 
input marked points. Note that M0,k+1 is canonically a smooth manifold (which would 

not be true for g > 0) [37][Theorem D.5.1]. It is a compactification of the space M0,k+1

of biholomorphism classes of smooth curves with k + 1 marked points. Denote by Ek

the divisor M0,k+1 \ M0,k+1. It is easy to see that Ek is a normal crossings divisor 
[37][Proposition D.5.4]. For k ≥ 2 the Kimura-Stasheff-Voronov moduli space M0,k+1

is defined as the manifold with corners obtained by doing an oriented real blow-up of 
M0,k+1 at Ek. Note that the interior of M0,k+1 is canonically identified with M0,k+1. We 

define the framed KSV moduli space fM
R

0,k+1 as the total space of the (S1)k+1-bundle 

over M0,k+1 given by choices of a tangent ray at each marked point. A tangent ray at 
a marked point x ∈ Σ simply means an element of TxΣ \ {0}/R>0. Note that the group 

R/2πZ canonically acts on the set of tangent rays at a point of a Riemann surface.

We define the underlying topological spaces of a topological operad fM
R

0 by taking 

fM
R

0 (1) := R/2πZ and fM
R

0 (k) := fM
R

0,k+1 for k > 1.

Before we define the operations on fM
R

0 let us describe the points of framed KSV 

moduli spaces a bit more concretely. Points of fM
R

0,k+1 can be described canonically as 
the set of equivalence classes of stable curves equipped with a choice of a tangent ray 

at each marked point and a pair of tangent rays modulo simultaneous rotation at each 

node. That is, for any nodal point p1 ∼ p2 contained in irreducible components Σ1 and 

Σ2, we have a pair of tangent rays vi in Tpi
Σi \{0}/R>0 modulo the equivalence relation
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(v1, v2) ∼
(
eiθv1, e−iθv2

)
, θ ∈ R/2πZ. (A.10)

Using this description it is straightforward to define the operations of the operad 

fM
R

0 :

fM
R

0 (n) × fM
R

0 (k1) × · · · × fM
R

0 (kn) → fM
R

0 (k1 + · · · + kn). (A.11)

Namely,

• if n = 1, we use the action of fM
R

0 (n) = R/2πZ on the tangent ray of the output 

marked point of the element of fM
R

0 (k1).

• if ki = 1, we use the action of fM
R

0 (ki) = R/2πZ on the tangent ray of the kth
i

input marked point of the element of fM
R

0 (n).

• if ki > 1, we identify the output marked point of fM
R

0 (ki) with the kth
i input marked 

point of fM
R

0 (n) to obtain a stable curve and use the projection to the equivalence 

classes described in Equation (A.10).

The unit of fM
R

0 is [0] ∈ R/2πZ. We omit the straightforward checking of the axioms. 

We call fM
R

0 the framed KSV operad.

Remark A.7. We could in fact define fM
R

0 as an operad over the symmetric monoidal 

category of manifolds with corners. We will use the fact each fM
R

0 (k) is by construction 

equipped with a manifold with corners structure below.

Denoting as before by D0,k+1 the set of pre-stable genus-0 Riemann surfaces with k

inputs and one output, there is a natural forgetful map

π : D0,k+1 → fM
R

0,k+1, (A.12)

which we describe now.
Consider Σ ∈ D0,k+1 with underlying tree T . To each bivalent vertex v of T , we can 

associate a twist parameter in R/2πZ as follows. By assumption we have biholomor-
phisms

ε− : R × R/2πZ → Σv

ε+ : R × R/2πZ → Σv.

Therefore, we obtain a biholomorphism

(ε−)−1 ◦ ε+ : R × R/2πZ → R × R/2πZ,
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which is a composition of a translation and a rotation by an angle in R/2πZ. This angle 

is our twist parameter.
If k = 1, all the vertices of T have to be bivalent, and we define π(Σ) ∈ R/2πZ to 

be the sum of the twist parameters of all the vertices in T . Before we handle the k > 1
case, we need a couple of definitions.

If we have a tree T with a bivalent vertex v and at least one other vertex, we define 

the flattening of T at v to be the tree obtained by removing v from the vertex set and 

identifying the two edges adjacent to v to define the new edge set.
Given a Riemann surface Π with k ≥ 2 inputs and 1 output, we construct canonically 

tangent rays at each marked point of Π̄ as follows. Let ε be the cylindrical end at a 

puncture. Let us call s and t ∈ R/2πZ the coordinates in the domain of ε. Consider the 

tangent rays containing ε∗∂s obtained along ε(t = 0). The limit of these at the marked 

point gives the desired tangent ray. Let us call Π̄ with these tangent rays at its marked 

points the fine compactification of Π.
Now we go back to defining π(Σ) for k > 1. There is at least one non-bivalent vertex 

of T . Flattening all the bivalent vertices we obtain a stable tree T ′ whose vertices are 

in one-to-one correspondence with the non-bivalent vertices of T . The correspondence 

preserves valencies. To each vertex v of T ′ we can canonically associate the same Riemann 

surface Σ′
v with υ(v) − 1 inputs and 1 output. The stable curve Σ′ underlying π(Σ) is 

obtained by taking the fine compactification of Σ′
v at each v ∈ V (T ′) and identifying the 

added points to form double points as prescribed by T ′. At this point Σ′ is also equipped 

with the data of a tangent ray at each marked point and double point of its irreducible 

components.
Moreover, the edges of T ′ correspond to maximal subtrees of T with only bivalent 

vertices. These maximal subtrees include edges all of whose endpoint vertices have va-
lency more than 2. We can add up the twist parameters in each such maximal subtree 

to obtain an element of R/2πZ associated to the edges of T ′. If there is no vertex of the 

associated maximal subtree we associate [0] to the edge. Let us call this the total twist 
of an edge of T ′.

The existing tangent rays of Σ′ and the total twists at the edges of T ′ are then used 

in the following way to upgrade the stable curve Σ′ to π(Σ) ∈ fM
R

0,k+1. If q is the 

unique output of Σ′ with tangent ray vq and τ the total twist of its outgoing edge, we let 
v′

q = eiτivq to be the final tangent ray at q. If q is an input, we let v′
q := e−iτ vq, where 

τ is now the total twist of its incoming edge. If q is a double point p+ ∼ p− of Σ′ with 

tangent rays v+, v−, we take the equivalence class

(eiτiv+, v−) ∼ (v+, eiτiv−), (A.13)

where τ is the total twist of the associated internal edge.

Definition A.8. The stabilization of a pre-stable rational curve Σ with k inputs and 1
output is the element π(Σ) of the framed KSV moduli space.
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Remark A.9. The surjective map π : D0,k+1 → fM
R

0,k+1 has contractible fibres, as shown 

in Lemma 2.21. In order to state a more global result, we could define a cubical set, which 

is roughly the singular cubical chains on D0,k+1 (with the non-Hausdorff topology that 
we omitted defining) equipped with a map of cubical sets to the singular cubical chains 

of fM
R

0,k+1. This map will be a homotopy equivalence.
We give a toy example to guide the reader. Let X be an arbitrary topological space and 

consider what one might call a non-Hausdorff boundary blow-up of (0, 1]: the quotient 
space of (0, 1] × X by the equivalence relation

(r, x) ∼ (r′, x′) if r = r′ < 1. (A.14)

The point is that the blow-down map is always a homotopy equivalence. This can be 

proved by first showing that the blow-up space deformation retracts to (0, 1). There is 
not a homotopy equivalence which preserves boundaries.

Appendix B. Categorical and algebraic background

B.1. Symmetric cubical sets

As discussed in the introduction, we shall use the category of symmetric cubical sets 
as a model for the homotopy theory of spaces. Underlying this category is the category of 
symmetric cubes, which can be considered as a subcategory of the category of topological 
spaces, with objects the cubes [0, 1]n, and morphisms given by those maps

[0, 1]n → [0, 1]m, (B.1)

which can be expressed as a composition of (i) projections, (ii) permutation of coordi-
nates, and (iii) inclusion of faces corresponding to setting some coordinates equal to 0, 
and others to 1. This is not the standard definition, because it is possible to express 
all generators and relations completely combinatorially, but the geometrically minded 

reader will hopefully find this definition more amenable to their intuition.
The category of symmetric cubical sets is the category of contravariant functors from 

symmetric cubes to sets. While we shall use this perspective in explaining our con-
structions, for proofs and formal definitions, we shall often use the purely combinatorial 
perspective. A reference for this approach is [23]:

Definition B.1. A symmetric cubical set K∗ is a sequence of sets {Kn}n≥0 together with 

a collection of face maps

d±
n,i : Kn → Kn−1, n ≥ 1, 1 ≤ i ≤ n, (B.2)

degeneracy maps
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sn−1,i : Kn−1 → Kn, n ≥ 1, 1 ≤ i ≤ n, (B.3)

and transposition maps

pn,i : Kn → Kn n ≥ 2, 1 ≤ i ≤ n − 1. (B.4)

These are required to satisfy the following relations for μ, ν ∈ {+, −}:

dμ
n−1,i ◦ dν

n,j = dν
n−1,j−1 ◦ dμ

n,i, i < j, (B.5)

sn,i ◦ sn−1,j = sn,j+1 ◦ sn−1,i, i ≤ j, (B.6)

p2
n,i = id, (pn,i ◦ pn,i+1)3 = id, (B.7)

pn,i ◦ pn,j = pn,j ◦ pn,i, i + 1 < j, (B.8)

dμ
n,i ◦ sn−1,j =

⎧
⎪⎪⎨
⎪⎪⎩

sn−2,j−1 ◦ dμ
n,i, i < j,

sn−2,j ◦ dμ
n,i−1, i > j,

id, i = j,

(B.9)

dμ
n,j ◦ pn,i =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pn−1,i−1 ◦ dμ
n,j , j < i,

dμ
n,i+1, j = i,

dμ
n,i, j = i + 1,

pn−1,i ◦ dμ
n,j , j > i + 1,

(B.10)

pn,i ◦ sn−1,j =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sn−1,j ◦ pn,i−1, j < i,

sn−1,i+1, j = 1,

sn−1,i, j = i + 1,

sn−1,j ◦ pn−1,i, j > i + 1.

(B.11)

A morphism of cubical sets f : K1
• → K2

• (of degree 0) is a map of graded sets which 

commutes with all face, degeneracy and transposition maps. We denote the category of 
cubical sets with morphisms of degree 0 by scSet.

Example B.2. Let X be a topological space and define �n(X) to be the set of continuous 
maps from the standard n-cube [0, 1]n into X. For σ ∈ �n(X) define the face map 

d±
n,i(σ) to be the restriction σ|xi=(1/2±1/2) ∈ �n−1(X), the degeneracy map si(σ) to 

be the composition σ ◦ πi where πi : [0, 1]n+1 → [0, 1]n is the projection forgetting the 

ith component, and the transposition map pn,i(σ) to be the composition σ ◦ τn,i for 
τn,i : [0, 1]n → [0, 1]n the map which transposes the ith and (i + 1)th coordinates. Then 

�•(X) is a symmetric cubical set. We refer to it as the set of singular (symmetric) cubes 

in X. The reader may verify that a continuous map f : X → Y induces a morphism 

f• : �•(X) → �•(Y ) of degree 0 by mapping σ �→ f◦σ. Thus the assignment X �→ �•(X)
is a functor Top → scSet.
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We can construct a functor from symmetric cubical sets to spaces by taking a colimit 
weighted by the tautological standard cube functor, which assigns to a natural number 
n the associated cube [0, 1]n. From the combinatorial perspective, this is given by the 

following expression:

Definition B.3. Let K• be a symmetric cubical set. The geometric realization |K•| is the 

topological space obtained by the quotient

∐

n

Kn × [0, 1]n/ ∼, (B.12)

where the relation ∼ is generated by

(d±
n,i(σ), t) ∼ (σ, ι±

n,i(t)), (sn,i(σ), t) ∼ (σ, πn+1,i(t)), (pn,i(σ), t) ∼ (σ, τn,i(t)).

(B.13)
Here ι±

n,i(t) : [0, 1]n → [0, 1]n+1 is the standard embedding as the face xi = 1/2 ± 1/2, 
πn+1,i : [0, 1]n+1 → [0, 1]n is the projection forgetting the ith coordinate, and τn,i :
[0, 1]n → [0, 1]n is the map which transposes the ith and (i + 1)th coordinates.

Note that the geometric realization is automatically a Hausdorff space. The geometric 

realization functor | − | : scSet → Top is left adjoint to the singular cubes functor 
�• : Top → scSet.

B.1.1. The monoidal structure

The category scSet carries a symmetric monoidal structure ⊗ which arises as a left 
Kan extension with respect to the functor that maps a pair of cubes to their product. 
Combinatorially, this may be expressed as follows: first observe that by Equations (B.7)
and (B.8) the maps pn,i generate an action of the symmetric group Sn on Kn for any 

symmetric cubical set K•. Using this we define

(K1 ⊗ K2)n :=
∐

n1,n2≥0,n1+n2=n

Sn ×Sn1 ×Sn2
(K1

n1
× K2

n2
/ ∼). (B.14)

The equivalence relation ∼ is given by

(sn1−1,n1
(σ1), σ2) ∼ (σ1, sn2−1,1(σ2)). (B.15)

For u ∈ Sn, x ∈ K1
n1

, y ∈ K2
n2

we denote by [u · (x ⊗ y)] the corresponding element in 

K1 ⊗ K2.
The transposition maps on K1⊗K2 are defined by pi acting as the ith transposition on 

the Sn factor. To define the face and degeneracy maps it suffices to describe the maps d±
n,1

and sn,1 as all the others are determined by these together with the transposition maps. 
For this we identify Sn with the set of bijections n → n. Define a map ηn : Sn → Sn+1

by
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ηn(u) = id ×u, (B.16)

and ζn : Sn → Sn−1 by

ζn(u)(j) =

{
u(j) − 1, j < u−1(1)

u(j + 1) − 1, j ≥ u−1(1).
(B.17)

Finally, writing i = u−1(1), define

dμ
n,1 ([u · (x ⊗ y)]) =

{
[ζn(u) · (dμ

n1,i(x) ⊗ y)], i ≤ n1

[ζn(u) · (x ⊗ dμ
n2,i−n1

(y)], i > n1.
(B.18)

sn,1 ([u · (x ⊗ y)]) = [ηn(u) · (sn1,1(x) ⊗ y]. (B.19)

The functorial perspective is useful in establishing the following result, which is analogous 
to the characterisation of maps with domain a tensor product of vector spaces in terms 
of bilinear maps:

Lemma B.4. There is a natural isomorphism between the set of maps of cubical sets with 

domain K1 ⊗ K2 and target K, and the data of maps K1
n1

× K2
n2

to Kn1+n2
for all pairs 

n1 and n2 of integers which

(1) are equivariant with respect to the Sn1
× Sn2

,

(2) intertwine the face maps d±
i,1 with d±

i (for 1 ≤ i ≤ n1), and d±
j,2 with d±

n1+j (for 

1 ≤ j ≤ n2), and

(3) intertwine the degeneracy maps si,1 with si (for 1 ≤ i ≤ n1 + 1), and sj,2 with sn1+j

(for 1 ≤ j ≤ n1 + 1). �

B.1.2. Homotopy between morphisms of cubical sets

The path functor P : scSet → scSet is given by setting PK• = K•+1 and discarding 

all the operations d±
n,1, sn,1 and τn,1. The discarded face and degeneracy maps give rise 

to natural transformations between the identity functor and the path functor d± = d•,1 :
PK• → K• and s = s•,1 : K• → PK•.

Definition B.5. A cubical homotopy between maps f± : K1 → K2 of cubical sets is a 

morphism

H : K1 → PK2 (B.20)

whose composition with d± agrees with f±. We say that f± are homotopic if there exists 
a homotopy between them.
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We can describe a cubical homotopy as a map H : K1
∗ → K2

∗+1 of sets satisfying

H ◦ d±
n,i = d±

n+1,i+1 ◦ H, H ◦ sn,i = sn+1,i+1 ◦ H, i = 1, . . . , n, (B.21)

and

H ◦ τn,i = τn+1,i+1 ◦ H (B.22)

The morphisms f± corresponding to the endpoints of the interval can be recovered from 

a homotopy H via the formula

f± = d±
1 ◦ H. (B.23)

Lemma B.6. A homotopy H between morphisms f, g : K1
• → K2

• of cubical sets induces 

a homotopy

|H| : [0, 1] × |K1
• | → |K2

• | (B.24)

between the geometric realization |f | and |g|.

Proof. We show that H induces a continuous map [0, 1] × |K1| → |K2|. This is defined 

for s ∈ [0, 1], (σ, t) ∈ |K1| by

(s, (σ, t)) �→ (f(σ), (s, t)). (B.25)

Then |H| is well defined on equivalence classes under the relations given in (B.13). It 
follows that |H| is continuous. Moreover |d± ◦ H| is precisely the restriction of |H| to 

s = 1/2 ± 1/2. The claim follows. �

B.1.3. Symmetric normalised cubical chains

While most of the constructions of this paper take place at the level of cubical sets, 
the objects that we are ultimately interested in are formulated as algebraic structures in 

category of chain complexes. The key construction in passing from one category to the 

other is the notion of symmetric normalised cubical chains, which is the chain complex 

C∗(K), which in degree n is the quotient of the complex freely generated by the n-
cubes, modulo those which are in the image of a degeneracy map, and the relation which 

identifies a cube with the negative of its image under a transposition:

Cn(K) ≡
Z[Kn]∑n

i=1 Im(sn−1,i : Kn−1 → Kn) +
∑n−1

i=1 Im(1 + pn,i : Kn → Kn)
. (B.26)

The alternating sum of the face maps define a map
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d =
n∑

i=1

(−1)i
(
d+

i − d−
i

)
: Cn(K) → Cn−1(K) (B.27)

which is easily seen to square to 0. Since a map of symmetric cubical sets respects the 

three operations that enter in the definition of the complex C∗(K), this construction 

yields a functor from the category of symmetric cubical sets to the category of chain 

complexes of abelian groups. We shall repeatedly use the fact that this functor is com-
patible with the monoidal structure on the two sides:

Proposition B.7 (Lemma B.4 of [3]). The normalised symmetric cubical chain functor is 

(lax) symmetric monoidal. �

B.2. Multicategories

We choose to encode multiplicative structures in Floer theory in the language of 
multicategories (these are also referred to as coloured operads in the literature). We 

introduce the basic definitions here (cf. [33])

Definition B.8. A multicategory enriched in a symmetric monoidal category (V, ⊗, I)
consists of the following data

(1) an object set X ,
(2) an object C(�x, y) of V referred to as n-ary multimorphisms for each object y ∈ X

and n-tuple �x ∈ X n,
(3) a distinguished morphism idx : I → C(x, x), and
(4) multicomposition maps

◦i : C(�x, yi) ⊗ C(�y, z) → C(�x ◦i �y, z) (B.28)

where yi is the ith element of �y, and �x◦i �y denotes the replacement of the ith element 
in �y by the sequence �x (Fig. 8).

The composition maps are required to satisfy the associativity relations (Figs. 9 and 

10)

a ◦i+j−1 (b ◦j c) = (a ◦i b) ◦j c, (B.29)

whenever a ∈ C(�x, yi), b ∈ C(�y, zj), c ∈ C(�z, w), and

a ◦i1
(b ◦i2

c) = b ◦i2+i1−1 (a ◦i1
c), (B.30)

whenever a ∈ C(�x1, yi1
), b ∈ C(�x2, yi2

), c ∈ C(�y, z) and i1 < i2, and,

a ◦1 id = id ◦i a = a. (B.31)
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C(�y, z) z

yk1

y1

C(�x, yi) yi

xk2

x1

C(�x ◦i �y, z)

yi−1

x1

xk2

yi+1

z

yk1

y1

Fig. 8. Multicomposition maps.

C(�z, w) w
C(�y, zj) zj

C(�x, yi) yi

Fig. 9. The first associativity relation.

C(�y, z) z

C(�x1, yi1
) yi1

C(�x2, yi2
) yi2

Fig. 10. The second associativity relation.

Definition B.9. A symmetric multi-category is a multi-category together with an action 

of the symmetric group Sk on the set of k-morphisms, given by a map

σ∗ : C(x1, . . . , xk; y) → C(xσ(1), . . . , xσ(k); y) (B.32)
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for each σ ∈ Sk. The action is required to be compatible with multi-compositions. To 

formulate this consider ordered sequences �x, �y of length k, j respectively. The composition 

�y◦i �x induces embeddings ζi : Sk → Sk+j−1 and ηi : Sj → Sk+j−1. ζi(σ) acts by applying 

σ to the subsequence of length k starting at the ith place, while ηi(σ) acts by treating 

the same sub-sequence as a single element. We require that

◦i(�x, σ∗(�y)) = ηi(σ)∗(◦i(�x, �y)), ∀σ ∈ Sj (B.33)

◦i(σ
∗(�x), �y) = ζi(σ)∗(◦i(�x, �y)), ∀σ ∈ Sk. (B.34)

The collection of all multicategories forms a category, with morphisms defined as 
follows: a multifunctor between multicategories G : C → D consists of

• a map of object sets G : Ob(C) → Ob(D)
• a chain map C(�x; y) → D( �Gx; Gy) for each �x ∈ Ob(C)n and y ∈ Ob(C).

We again omit the standard list of properties, but note that this includes a compatibility 

with the symmetric structure.
A natural transformation of multifunctors G0, G1 : C → D consists of a morphism 

D(G0(x); G1(x)) for every x ∈ Ob(C) compatible with all multimorphisms.

Appendix C. Dissipative cubes

In this appendix we indicate the adjustments required for the geometrically bounded 

case. Symplectic cohomology and all its associated structures are defined and are invari-
ant in this more general setting. However the proof of invariance is more involved and 

requires the Floer multi-functor to be indexed by a multi-category consisting of dissi-

pative Floer data. In this case, we need to involve the almost complex structures at the 

outset. The category of dissipative Floer data will be defined as a proper submulticate-
gory Fd

• ⊂ F• of the multicategory F• of Floer data as defined in Section §3.

C.1. Dissipative Floer data on cylinders

We begin by constraining the class of almost complex structures that we shall con-
sider; a (compatible) almost complex structure on a symplectic manifold determines a 

Riemannian metric, and the constraints that we impose will depend only on this data.
For a Riemannian metric g on a manifold M and a point p ∈ M we denote by injg(p)

the radius of injectivity and by Secg(p) the maximal sectional curvature at p. We drop 

g from the notation when it is clear from the context.

Definition C.1. Let (M, g) be a complete Riemannian manifold. For a > 0, the metric 

g is said to be a-bounded at a point p ∈ M if inj(x) ≥ 1
a and | Sec(x)| ≤ a2 for all 

x ∈ B1/a(p).
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We say that g is strictly intermittently bounded if there is an exhaustion K1 ⊂ K2 ⊂

. . . of M by precompact sets and a sequence {ai}i≥1 of positive numbers such that the 

following holds.

(1) d(Ki, ∂Ki+1) > 1
ai

+ 1
ai+1

.
(2) g is ai-bounded on ∂Ki.
(3) the series obtained by adding the squares of the inverses of ai diverges:

∞∑

i=1

1
ai

2
= ∞. (C.1)

The data {Ki, ai}i≥1 is called taming data for (M, g). The open neighbourhood V =
∪iB1/ai

(Ki) is said to support taming data for g.

More generally we allow a slight weakening in the definition:

Definition C.2. A Riemannian metric g is intermittently bounded, abbreviated i-bounded, 
if there exists a metric g′ that is strictly intermittently bounded with taming data 

(Ki, ai), and a sequence of constants Ci such that g is Ci-quasi-isometric to g′ on 

B
(

∂Ki,
1
ai

)
and

∞∑

i=1

1

(Ciai)
2 = ∞. (C.2)

In this case we will refer to the sequence (Ki, ai, Ci) as the taming data of g.

We remind the reader that the quasi-isometry condition in the definition asserts that, 
on B1/ai

(∂Ki), the lengths of any tangent vector X with respect to g and g′ are mutually 

bounded with respect to each other as follows:

1
Ci

‖X‖g ≤ ‖X‖g′ ≤ Ci‖X‖g (C.3)

For a symplectic manifold (M, ω), an ω-compatible almost complex structure J is 
called i-bounded if the associated metric gJ is i-bounded.

We now turn our attention to the class of Hamiltonians that we will consider: given 

a Floer datum (H, J) on a symplectic manifold M , we refer to a Floer solution with 

domain of the form [a, b] × R/Z, with a < b ∈ R as a partial Floer trajectory.
We then associate to each proper function F : M → R, a map

ΓF
H,J : R2 → R (C.4)
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defined as the infimum over all E for which there is a partial Floer trajectory u of 
geometric energy E with one end of u contained in F −1([−r1, r1]) and the other end in 

F −1(R \ (−r2, r2)). Note that ΓF
H,J(r1, r2) may take the value of infinity.

Definition C.3. A Floer datum (H, J) is loopwise dissipative (LD) if for some F (hence 

any F ) and any r1 we have ΓF
H,J(r1, r) → ∞ as r → ∞. We say that (H, J) is ro-

bustly loopwise dissipative (RLD) if in the uniform C1 × C0 topology determined by gJ

there is an open neighbourhood of the datum (H, J) such that all elements are loopwise 

dissipative.

We now formulate the compatibility condition between boundedness of the almost 
complex structure and dissipativity of the Hamiltonian:

Definition C.4. A Floer datum (H, J) is called dissipative if

(1) The datum (H, J) is robustly loopwise dissipative.
(2) for each t the almost complex structure Jt is intermittently bounded and there exist 

taming data which are independent of t and are supported on some set V such that 
the following properties hold:
(a) For any t0, t1, the associated metrics gJt0

and gJt1
restricted to V are quasi-

isometric.
(b) The restriction of H to V ×S1 is uniformly Lipschitz with respect to the induced 

metric.
(c) The function mint∈R/Z Ht(x) can be approximated uniformly from below by a 

function H̃ : M → R whose restriction to V is uniformly Lipschitz.

Remark C.5. The definition of dissipativity given here is a little more restrictive than 

the one given in [24] which instead of the Lipschitz condition on H requires only that 
the Gromov metric determined by J and H be intermittently bounded.

Remark C.6. Observe that dissipativity is an open condition.

Lemma C.7. Suppose that (M, ω) is geometrically bounded in the sense that it carries a 

geometrically bounded almost complex structure J . If K ⊂ M is a compact subset, then 

the set of Hamiltonian H ∈ HK for which there exists a J so that (H, J) is dissipative 

is cofinal in HK .

Proof. See [24, Theorem 6.6, Theorem 6.10, Lemma 8.11]. �

Remark C.8. It is another matter to ask for a cofinal sequence. If M is non-compact, no 

such sequence exists. However, one can show that given a monotone sequence (Hi, Ji) of 
dissipative data converging pointwise to the function HK, the map from the homotopy 
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colimit of the truncated Floer complexes over the sequence to the homotopy colimit over 
all of HK induces an isomorphism in each truncation level.

C.2. Dissipative Floer data on general Riemann surfaces

We proceed to discuss the notion of dissipativity for multimorphisms. Let Σ be a 

Riemann surface with complex structure jΣ, equipped with an area form ωΣ. Let J

be a Σ-parametrized family of ω-compatible almost complex structures on M and let 
H : Σ × M → R be a smooth function. We assume that for each z ∈ Σ the function Hz

is proper and bounded below. Finally we fix a 1-form α on Σ and assume that for each 

z ∈ Σ, we have dHz ∧ α ≥ 0. To this data one associates an almost complex structure 

on Σ × M defined by

JH := JM + jΣ + XH ⊗ α + JXH ⊗ α ◦ jΣ. (C.5)

This almost complex structure is compatible with the symplectic form

ωH := π∗
1ωΣ + π∗

2ω + d(Hα) (C.6)

on Σ × M . We denote the induced metric on Σ × M by gJH
. We refer to the metric gJH

as the Gromov metric. We stress that the Gromov metric depends on the choice of area 

form on Σ.
In order to define the condition of dissipativity for multimorphisms we shall need to 

consider the notion of intermittent boundedness relative to a projection. Let U be a 

possibly open Riemann surface equipped with an area form ωU and a complex structure 

jU . Let π : M × U → U be a Hamiltonian fibration over U . Let J be an almost complex 

structure on M × U preserving the fibres of π.

Definition C.9. The almost complex structure J is uniformly strictly intermittently 

bounded rel π if there is

(1) an exhaustion of M × U by subsets Ki for which π|Ki
is proper, and

(2) positive real numbers ai > 0

so that

(1) d(∂Ki+1, Ki) > 1
ai

+ 1
ai+1

,
(2) the Gromov metric is ai-bounded on ∂Ki, and
(3)

∑
1
ai

2
= ∞.

We say that J is uniformly intermittently bounded rel π if the above inequalities hold 

only up to constants Ci as in Definition C.1.
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Remark C.10. Note that when U is a point the last definition reduces to the definition 

of intermittent boundedness.

Lemma C.11. Let J1, J2 be a pair of almost complex structures on M × U which are 

uniformly intermittently bounded rel π with taming data supported on sets V1, V2 respec-

tively. Then there are subsets Wi ⊂ Vi such that W1 ∩W2 = ∅ and such that W1, W2 still 

support taming data for J1, J2 respectively.

Proof. See [24, Theorem 4.3]. �

We call an area form on a Riemann surface Σ with cylindrical ends admissible if it is 
compatible with jΣ and it is of the form ωΣ = ds ∧ dt in the ends.

Definition C.12. Let {F i = (Hi, J i)}n
i=0 be a sequence of dissipative Floer data. Let d

be a pre-multimorphism from (F 1, . . . F n) to F 0 as in Definition 3.6, which is modelled
on a tree T . We say that d is dissipative if

(1) the Floer datum Fe at each edge e of T is dissipative,
(2) for each vertex v of T there is a finite open cover U = {U1, . . . , UN } of Σv so that 

fixing any admissible area form on ωΣv
, the induced Gromov metric on M × Ui is 

intermittently bounded rel the projection π : M × U → U for each i. We assume the 

interior of each cylindrical end is an element of the cover U .

Clearly, the property of being dissipative is preserved under equivalence of pre-
multimorphisms. Accordingly, we refer to dissipativity as a property of multi-morphisms.

Remark C.13. Note that changing the admissible area form induces a Gromov metric 

that is quasi-isometric to the original one. The property of dissipativity thus depends 
only on the data of the pre-multimorphism and not on the additional datum of the area 

form.

For each i indexing an element of the cover U , let Vi ⊂ M be the support of the 

taming data for the Gromov metric on M × Ui. In light of Lemma C.11 we will always 
assume that the Vi are pairwise disjoint. We shall refer to the union V = ∪iVi as the 

support of the taming data for the Gromov metric on Σ × M .
The following is a criterion that we will repeatedly use:

Lemma C.14. Suppose U is a Riemann surface, J is intermittently bounded rel π : M ×

U → U with taming data supported on some set V , α is a closed 1-form on U and 

H : M → R is uniformly Lipschitz on V . Then the corresponding Gromov metric is 

intermittently bounded.

Proof. See [26, Lemma A.3] �
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We now arrive at the main definition of this appendix:

Definition C.15. A k-dimensional cube d ∈ F• of unbroken multi-morphisms is dissipative 

if there is

• a partition of the k-cube into subsets A1, . . . , AN ,
• for each 1 ≤ i ≤ N , a smooth trivialization of the family of Riemann surfaces 

underlying d which identifies each fibre with a fixed Riemann surface Σ with n

inputs and 1 output preserving the cylindrical ends, and
• data taming dσ for all σ ∈ Ai, with respect to this identification.

An arbitrary cube d ∈ F is called dissipative if the image of d under the deformation 

retraction to smooth cubes as in Lemma 2.223 is dissipative.

Remark C.16. Note the difference between Definition C.12 where we required a finite 

open cover on which there is fixed taming data and Definition C.15 where we only require 

a partition. The reason for this difference is that Floer’s equation contains derivatives 
with respect to coordinates on the underlying Riemann surface but not in the direction 

of the parameter σ of the cube. Thus for C0 estimates we need every point on Σ to be 

contained in a disc of radius r bounded away from 0 for which there is taming data. No 

such disc is required for the neighbourhood of a point in the cube.

With these definitions in place we have the following. Denote by Fd
• ⊂ F• the subset 

of objects which are dissipative Hamiltonians, and the subset of morphisms which are 

dissipative multi-morphisms.

Proposition C.17. Fd
• ⊂ F• forms a submulticategory.

Proof. We need to prove that given a pair d1, d2 of dissipative multimorphisms such 

that the output of one matches the ith input of the other, the multi-composition is still 
dissipative. The retraction of Lemma 2.22 applied to the multicomposition of d1, d2 is 
readily seen to be the same as the one applied to the multicomposition of the retractions. 
This can be deduced from Equations (2.40), (2.41) and the observation that the order 
of gluing at distinct nodes is immaterial. It thus does no harm to assume that d1, d2 are 

smooth cubes. We further point out that if a broken multimorphism is dissipative, then 

so is its gluing with any gluing parameter. Indeed, we obtain an open cover witnessing 

dissipativity of the glued curve from the open covers of each component by keeping in 

mind that the ends are elements in such a cover. Observe in particular that the taming 

data for each element in the cover remains the same under gluing.

3 Strictly speaking, Lemma 2.22 refers to only multimorphisms in H without the data of almost complex 
structures. But for cubes of Floer data with strict gluing, the same construction goes through seamlessly.
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Let k1 and k2 respectively denote the dimensions of d1 and d2. Let {A1, . . . , AN1
}

and {B1, . . . , BN2
} be the corresponding partitions on which there are fixed taming data 

for d1, d2 respectively.4 Then by the above observation, we have fixed taming data on 

Ai × Bj for the image of d1 × d2 under the retraction of Lemma 2.22. �

Proposition C.18. For any dissipative cube d and any compact set K there exists a func-

tion R = R(d, K, E) so that any pseudo-holomorphic curve, solving an equation belonging 

to the family parametrised by d, which intersect K and which has geometric energy at 

most E is contained in BR(K).

Proof. Observe that a dissipative cube conforms to Definition 5.10 of [24], so that we 

can apply Theorem 6.3 of said paper. �

Definition C.19. Let F 0 = (H0, J0), F 1 = (H1, J1) . . . , F n = (Hn, Jn) be dissipative 

Floer data. We say that F 0 > �F if H0 > �H as per Definition 2.18.

Proposition C.20. Suppose F 0 > �F . The forgetful map π : Fd
• ( �F , F ) → fM

R

0 (k)• is a 

homotopy equivalence of cubical sets.

Remark C.21. The last proposition is all we need if we are willing to use virtual tech-
niques. If we rather want to use regular data we need to show in addition that the 

inclusion of Fd,reg
• := Fd

• ∩ Freg into Fd
• is a homotopy equivalence. The proof is the 

same as that of Proposition 3.4. The only thing to note is that dissipativity is an open 

condition on multimorphisms. In particular, in an arbitrarily small neighbourhood of a 

dissipative cube one can find a regular dissipative one.

By definition, the set of all dissipative cubes deformation retracts to the set of smooth 

dissipative cubes, so we only need to prove:

Proposition C.22. The restriction of the forgetful map π to the set of smooth dissipative 

cubes is a homotopy equivalence.

We will prove this result at the end of this Appendix, after some preliminary results. 
Denote by D̃sm

• the cubical set of curves with n inputs and one output, equipped with a 

1-form α and whose underlying curve is smooth. The forgetful map D̃sm
• → fM

R

0 (k)• is 
a homotopy equivalence as was shown during the proof of Lemma 2.21. Thus it remains 
to show that the forgetful map π′ : Fd

• ( �F , F ) → D̃sm
• is a homotopy equivalence. The 

first order of business is to construct a homotopy inverse. Unlike before, we work at the 

outset with cubical sets since the dissipative cubes are not the (smooth) singular cubes 
of a topological space.

4 Note that trivializations of the pair of families of smooth Riemann surfaces underlying d1, d2 induce a 
trivialization of the family obtained by gluing them.
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Lemma C.23. There is a morphism G : D̃sm
• → Fd

• ( �F , F 0) such that π′ ◦ G = id.

Proof. As in the proof of Lemma 2.19, we can find a time independent function H̃

satisfying

min
t∈R/2πZ

H0
t > H̃ > 2k−1 max

t∈R/2πZ

Hi
t (C.7)

which by the definition of dissipativity can in addition be taken to be Lipschitz with 

respect to J̃ = Jt for some t ∈ S1 on an open set V supporting taming data for J̃ .
Fix a cube σ �→ (Σσ, ασ) in D̃sm where for each σ the 1-form ασ has weights wi,σ ≥

21−k. We first observe that by Lemma C.14, for each σ the datum (H̃, ασ, J̃) determines 
an intermittently bounded Gromov metric on Σσ × M .

It remains to interpolate between F̃ = (H̃, J̃) and the F i near the ends for each σ in a 

way which maintains the monotonicity and is smooth in σ. This is done in a marginally 

different setting in Lemma 7.6 of [24]. In the interest of self containment and to prepare 

the ground for the proof of the main proposition we spell out the proof.
For each end, we will carry out the interpolation within the cylindrical end. That is, 

at the ith input we need to piece together the datum F̃ = (wiH̃dt, J̃) with the datum 

F i = (Hidt, J i) in a dissipative manner while maintaining monotonicity. It suffices to 

produce a Floer datum Fs,t = (Hs,t, Js,t) on [0, 1] × R/2πZ × M such that the following 

conditions are satisfied

• ∂sFs,t vanishes identically near the boundary of [0, 1] ×R/2πZ ×M , and thus extends 
to a Floer datum on R × R/2πZ × M interpolating between (Hi, J i) and (wiH̃, J).

• Denoting by π : R × R/2πZ × M the projection to R × R/2πZ, we have that the 

restriction of the Gromov almost complex structure JH to each of π−1((1/3, ∞) ×
R/2πZ) and to π−1((−∞, 2/3) × R/2πZ) is intermittently bounded relative to π.

• ∂sHs ≥ 0 everywhere.

Other than the last condition, the construction would be the same as in the proof of [24, 
Theorem 4.3]. We show that the monotonicity requirement does not affect the proof. Fix 

two disjoint open sets V1 and V2 of M such that there are taming data for J̃ and J i

which are respectively supported in [0, 1] ×R/2πZ ×Vj for j = 1, 2. We may assume that 
each of the Vj is a disjoint union of pre-compact sets. Let χ : M → [0, 1] be a function 

which equals 0 on V0 and 1 on V1. Let f : [0, 1] → [0, 1] be a monotone function which is 
identically 0 near 0 and identically 1 on [1/3, 1]. Let g : M × [0, 1] → [0, 1] be defined by

g(x, s) = f(1 − s)(f(s)χ(x) − 1) + 1 (C.8)

Then g is

• monotone increasing in s,
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• identically 0 for all x when s is near 0,
• identically 1 for all x when s is near 1,
• identically 0 on [0, 2/3] × V1, and,
• identically 1 on [1/3, 1] × V2.

Take Hs,t = g(x, s)wiH̃t + (1 − g(x, s))Hi
t . Then Hs,t is also monotone increasing in s. 

Moreover, H is fixed and equal to Hi on [0, 2/3] × V1 and to wiH̃ on [1/3, 1] × V2. A 

similar interpolation can be defined for J̃. To describe this by a similar formula we may 

use Gromov’s deformation retraction from the space of metrics to the space of almost 
complex structures.

All the functions H̃, J̃ , χ, f, g can be fixed once and for all to depend only on the 

inputs and output. Applying the above procedure to any cube in D̃sm
• produces a cube 

in Fd
• ( �F , F 0). Note that the family produced is smooth in σ. Indeed the dependence in 

σ is implicit in the choice of the Riemann surfaces Σσ with their cylindrical end, which 

are assumed to be smooth in σ. The procedure clearly commutes with face, degeneracy 

and symmetry maps. This concludes the proof. �

Lemma C.24. Let h : [0, 1]n → [0, 1] be a smooth surjective function. Suppose that we are 

given dissipative families of unbroken multimorphisms d0, d1 in F( �F , F 0) parameterized 

respectively by U0 := h−1([0, 1)) and U1 := h−1(0, 1]), and suppose in addition that for 

each σ in the intersection U0 ∩ U1 the projection under π′ of d0(σ) agrees with that of 

d1(σ). Then here exists a partition of unity {g, 1 − g} on [0, 1]n × M subordinate to the 

cover {U0 × M, U1 × M} such that gd1 + (1 − g)d2 is dissipative.

Proof. Let V0 and V1 be disjoint be open subsets of M , respectively supporting taming 

data for d0 and d1. This means that Vi contains the support of some local taming data 

for each σ ∈ Ui. Let χ : M → [0, 1] be a function which is identically 0 on V0 and 

identically 1 on V1. Let f : [0, 1] → [0, 1] be a monotone function which is identically 0
near 0 and identically 1 on [1/3, 1]. Define a function g : M × [0, 1]n → [0, 1] by

g(x, σ) = f(1 − h(σ))(f(h(σ))χ(x) − 1) + 1. (C.9)

We point out that since the function g is constant on Σ for fixed (x, σ), F σ satisfies the 

monotonicity condition (2.1) for each σ so long as F 1 and F 2 do. As in the previous 
Lemma, {g, 1 − g} is a partition of unity as desired. �

We have now arranged all the necessary pieces to prove our main result:

Proof of Proposition C.22. It remains to construct a homotopy from the identity to G ◦

π′. Such a homotopy involves constructing a map of cubical sets η : Fd → PFd such 

that d− ◦ η = id and d+ ◦ η = G ◦ π′.
We will proceed inductively. We first define η on 0-cubes. Let d0 be any dissipative 

multimorphism and let d1 = G ◦ π′(d1). Extend d0 and d1 trivially to [0, 1) and to (0, 1]
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and continue to denote this extension by di. Applying the previous Lemma we get a 

dissipative 1-cube which is as required.
Inductively, suppose that we have defined η on all n − 1-cells so that it respects face, 

degeneracy and symmetry maps and that it is a homotopy preserving the fibre of π′. 
Given a non-degenerate dissipative n-cube d we need to define η(d) so that it agrees with 

η as already defined on the faces and so that it preserves fibres. Consider the n + 1-cube 

[0, 1] ×�
n. We have dissipative data on its boundary defined on [0, 1] × ∂�

n by applying 

η to the boundary of d1 and on {0} × �
n, {1} × �

n respectively by d and G ◦ π′(d). We 

extend this to [0, 1]n+1 \ [2ε, 1 − 2ε]n+1 as follows. First we define the underlying curve 

and 1-form in the unique way so that it is independent of the first coordinate. Then we 

fix a flow on [0, 1]n+1 \ [2ε, 1 − 2ε]n+1 going from the inner to the outer boundary, for 
example, the Euler flow. We also fix a diffeomorphism between the family of Riemmann 

surfaces underlying d and the trivial family in such a way that cylindrical ends go to 

cylindrical ends. We then extend the data so that it is constant along flow lines. The 

resulting family of multimorphisms is dissipative except that the dependence on the 

parameters of the cube is not smooth. To fix this, observe that dissipativity is an open 

condition and we can therefore replace our extension to [0, 1]n+1 \ [2ε, 1 − 2ε]n+1 by an 

arbitrarily close one which is smooth. We also define a dissipative family on the cube 

[ε, 1 − ε]n+1 by pulling back d via the projection forgetting the first coordinate. We then 

interpolate the two families using the previous Lemma by taking h to be a function such 

that h ≡ 0 on [0, 1]n+1 \ [ε, 1 − ε]n+1 and h ≡ 1 on [2ε, 1 − 2ε]n+1. It is clear that the 

inductive hypothesis is now satisfied for all n + 1-cubes. �
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