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ABSTRACT
Targeted free energy perturbation uses an invertible mapping to promote configuration space overlap and the convergence of free energy esti-
mates. However, developing suitable mappings can be challenging. Wirnsberger et al. [J. Chem. Phys. 153, 144112 (2020)] demonstrated the
use of machine learning to train deep neural networks that map between Boltzmann distributions for different thermodynamic states. Here,
we adapt their approach to the free energy differences of a flexible bonded molecule, deca-alanine, with harmonic biases and different spring
centers. When the neural network is trained until “early stopping”—when the loss value of the test set increases—we calculate accurate free
energy differences between thermodynamic states with spring centers separated by 1 Å and sometimes 2 Å. For more distant thermodynamic
states, the mapping does not produce structures representative of the target state, and the method does not reproduce reference calculations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0164662

I. INTRODUCTION

Free energy calculations are a powerful tool that are increas-
ingly used to design materials1 and drugs.2 Accurately calculat-
ing free energy differences between a pair of thermodynamic
states often entails performing simulations of multiple intermedi-
ate states along a thermodynamic process connecting the states.3
Simulating multiple intermediates promotes overlap between the
most important configuration spaces in neighboring thermody-
namic states, a requirement for the convergence of free energy
estimates.4–6

Circumventing the simulation of these intermediates could
improve simulation accuracy and reduce resource requirements.
Simulations of intermediates can have problems that degrade the
accuracy of free energy estimates. For example, alchemical pro-
cesses in which particles are created or destroyed are known to
suffer from pathologies such as the end-point catastrophe—there
can be poor configuration space overlap between states where par-
ticles nearly appear or disappear, leading to spurious discontinuities
in free energy estimates along a thermodynamic process—and the

presence of artificial energy minima.7 Moreover, intermediate states
are usually of no particular scientific interest. Avoiding them could
lower resource requirements, allowing more scientists to access
the tool and reducing the consumption of computing and energy
resources.

Targeted free energy perturbation (TFEP)8 is an approach
that can bypass the simulation of intermediate states. Rather than
simulating many intermediates, TFEP achieves configuration space
overlap via an invertible mapping between the end states. In 2002,
Jarzynski8 formulated TFEP as an extension of the classic free energy
perturbation (FEP) identity.9 In FEP, configurations are sampled
from a single state. The free energy is an exponential average of
the difference between the potential energy of each sampled con-
figuration in the target and sampled states [Eq. (2)]. On the other
hand, instead of using the same configuration for both potential
energy evaluations, TFEP uses the potential energy of the mapped
configuration in the target state. Along with the Jacobian of the
mapping, the potential energy of the mapped configuration is incor-
porated into a generalized work [Eq. (6)] in the exponential average
[Eq. (5)].
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There were several precedents for the formalism of Jarzynski.8
In 1985, Voter10 performed free energy calculations with volume-
preserving translations. In 1995, Severance et al.11 considered trans-
formations of bond lengths and angles based on harmonic force
field parameters as well as the rotation of a dihedral angle. Although
they did not explicitly mention Jacobians, all of their example map-
pings had a Jacobian determinant of unity; the term was not needed
to reproduce analytical free energies. TFEP can be considered a
generalization of the celebrated Jarzynski identity12,13 that was pub-
lished in 1997; in the Jarzynski identity, mapping is performed by
a nonequilibrium switching process.14 In 2000, Miller and Rein-
hardt15 proposed that such switching processes can incorporate
scaling transformations.

There have been several extensions and generalizations to
TFEP. Hahn and Then16 implemented the bidirectional estimator
that Jarzynski8 suggested in the original TFEP paper. Soon after
Jarzynski,8 Meng and Schilling17 described a multistate generaliza-
tion of TFEP to arbitrary statistical distributions, which Paliwal
and Shirts18 applied to molecular systems. In addition to free ener-
gies, the multistate generalization is capable of estimating arbitrary
expectation values.17,18 Subsequently, TFEP and its extensions have
been applied to spin systems and other statistical distributions, but
our focus here will be on molecular systems.

Although TFEP is a compelling concept, it has been difficult to
apply to molecular systems because of the lack of suitable mapping
functions. Mappings have been developed for expanding a cavity
in a fluid,8 inserting a particle into a fluid,16 the interconversion of
water models,18 and between crystals at different temperatures19 and
volumes.20 However, the mappings are not broadly generalizable;
human intuition and creativity have been required for every distinct
application.

While human intelligence is still important, we are now in
the age of artificial intelligence. Apropos of the emerging era, a
few groups have used deep learning to train maps between molec-
ular systems for TFEP. Wirnsberger et al.,21 from the Google
subsidiary DeepMind, who also developed AlphaFold,22 learned
mappings to ensembles of fluids containing a solute with different
radii. Ding and Zhang23 trained mappings between a Boltzmann
and tractable distribution—for which the normalized density is
known and independent and identically distributed samples can
be easily generated—to compute absolute free energies for differ-
ent conformations of di-alanine and temperatures of deca-alanine.
Subsequently, they applied the same approach to a host–guest
system to compute binding free energies.24 Rizzi et al.25 trained
neural networks for mapping between two levels of quantum
theory for a simple chemical reaction in the gas phase. Wirns-
berger et al.26 learned mappings between a lattice model with
random perturbations and different phases of Lennard-Jones
systems.

In recent years, the use of learned mappings in molecular
simulation beyond TFEP has been pioneered by Frank Noé and co-
workers. In 2019, Noé et al.27 introduced Boltzmann generators,
which use a reference state and a learned mapping to generate sam-
ples that may be reweighed to the Boltzmann distribution. They
demonstrated the method for generating samples of a bistable dimer
in fluid (initially described in a paper coauthored by the correspond-
ing author28) and a small protein. While their publication primarily
focused on sampling as opposed to free energies, they did report

computing free energy differences between independent Boltzmann
generators using the average (opposed to the exponential average
from TFEP8) of the generalized work. Subsequently, Sbailò et al.29
described the use of learned mappings for Monte Carlo moves,
as demonstrated in the bistable dimer system. Finally, Invernizzi
et al.30 used learned mappings for replica exchange, performing
simulations of di-alanine and tetra-alanine. Besides Noé and co-
workers, Mahmoud et al.31 have developed a hierarchical sampling
procedure to generate samples of a medium-sized (106 residue)
protein.

Here, we apply learned mappings to free energy differences
between different conformations of deca-alanine. Our approach is
similar to that of Wirnsberger et al.,21 but the system is qualita-
tively different. Wirnsberger et al.21 modeled a cavity in a fluid
of neutral monatomic molecules, which has a simpler potential
energy function due to the lack of bonded (bond length, bond
angle, and torsion) and Coulomb interactions. Our system is similar
to Ding and Zhang’s,23 but the approach is qualitatively different.
While Ding and Zhang23 learned mappings between Boltzmann
and tractable distributions, we learn mappings between Boltzmann
distributions corresponding to different thermodynamic states (dif-
ferent harmonic biases). Mapping to a tractable distribution has the
advantage that the tractable distribution can be selected to have sig-
nificant configuration space overlap with the unmapped molecular
distribution. Moreover, it is generally faster to evaluate the prob-
ability density and its derivatives for a tractable distribution than
the potential energy of a molecular system. On the other hand,
directly mapping between pairs of molecular distributions can per-
mit a subset of coordinates to be perturbed. For processes in which
changes are limited to a subset of coordinates, such as those in the
focused confinement method,32,33 such mappings may be particu-
larly fruitful. Hence, both approaches to mapping may find separate
niches.

The remainder of the paper is as follows: In Sec. II, we review
the theory of TFEP and the loss function. We then describe compu-
tational methods (Sec. III), including the deca-alaninemodel system,
the neural network architecture, the training procedure, and free
energy estimators.We then report the results along with a discussion
of their implications (Sec. IV) and finally describe our conclusions
(Sec. V).

II. THEORY
A. Targeted free energy perturbation

Let us first define notation. For a thermodynamic state A,
a configuration x has the equilibrium probability density ρA(x)
= exp [−βUA(x)]/ZA. In this expression, β is the inverse of the
temperature and Boltzmann’s constant kB, β = (kBT)−1, UA(x)
is the potential energy of the configuration in state A, and ZA
= ∫exp [−βUA(x)]dx is the configurational integral of the state,
an integral over all space. Analogous definitions apply to a sec-
ond thermodynamic state B. The objective of our calculation is
the Helmholtz free energy difference between states A and B,
defined as

ΔF = FB − FA = −β−1 ln(
ZB

ZA
). (1)
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FIG. 1. Schematic showing how mapping can improve configuration space overlap.
Each shape represents the highest-probability regions of the respective states.

In principle, a free energy difference ΔF may be calculated
based on the classic free energy perturbation identity,9

EA[e−βΔU] = e−βΔF , (2)

where EA[⋅] represents an expectation value in the state A, and
ΔU(x) = UB(x) −UA(x) is the potential energy difference of the
same configuration between the two states. (For notational simplic-
ity, the configuration dependence is implicit within the expectation
value.) Specifically, a free energy difference may be estimated using
the sample mean of the observable exp (−βΔU(x)) over configu-
rations drawn from state A. As exponential averages suffer from
finite-sample bias,34 better estimation performance may be achieved
using samples from both A and B35 or from multiple states (includ-
ing A and B).36 Regardless of the estimator, free energy calculations
do not reliably converge to the true values unless there is overlap
between the highest-probability regions of configuration space for
the pair (or series) of states.4–6

Configuration space overlap may be improved by bijective
(one-to-one) and invertible mapping (Fig. 1). A mapping is simply
a function that changes a configuration x into a new configuration
x′ =M(x). For an invertible mapping, the inverse function trans-
forms x′ into x, x =M−1(x′). Applying a mapping to state A creates
a new stateA′. The probability of the new state is given by the change
of variables formul

ρA′(M(x)) =
ρA(x)
∣JM(x)∣

, (3)

where ∣JM(x)∣ is the determinant of the Jacobian of the mapping.
Similarly, the inverse mapping can be applied to the state B to create
a new state B′ with density,

ρB′(M
−1
(x)) =

ρ(x)
∣JM−1(x)∣

. (4)

A mapping can be defined such that A′ is close to B, and conversely,
B′ is close to A (Fig. 1).

Mappings may be incorporated into free energy calculations via
a generalization of Eq. (2), TFEP,8

EA[e−βΦF] = e−βΔF. (5)

Equation (5) replaces the ΔU in Eq. (2) with a generalized work

ΦF(x) = UB(M(x)) −UA(x) − β−1 log ∣JM(x)∣, (6)

in which the configurations in states A and B may be different.
We refer to this term as work because it is a generalization14 of
the nonequilibrium work from Jarzynski’s identity.12,13 The work
includes a subscript F to denote a “forward” mapping from A to
A′. For the “reverse” mapping from B to B′, the work includes the
subscript R,

ΦR(x) = UA(M−1(x)) −UB(x) − β−1 log ∣JM−1(x)∣. (7)

The designation of a direction as forward or reverse is arbitrary. In
the case of an identity mapping, the work is the conventional poten-
tial energy difference, and Eq. (5) reduces to Eq. (2). However, a
mapping that increases configuration space overlap can improve the
convergence of free energy estimates. Indeed, if a mapping perfectly
transforms between A and B,

ρA′(M(x))
ρB(x)

=
ρB′(M

−1
(x))

ρA(x)
= 1, (8)

then only a single sample is needed to estimate the free energy
difference.8,25 In addition to the sample mean estimator based on
Eq. (5), mappings have also been incorporated into bidirectional16
and multistate17,18 estimators for free energies and expectation
values.

B. Loss functions
While it can be challenging to design mappings that improve

configuration space overlap and accelerate the convergence of free
energy calculations, Wirnsberger et al.21 demonstrated that machine
learning may be used to train mappings. Inspired by configura-
tion space overlap, they developed loss functions for their machine
learning models based on a statistical distance between mapped and
targeted distributions, the Kullback–Leibler (KL) divergence.37 The
quality of the forward mapping is quantified by the KL divergence
between themapped density ρA′(M(x)) and the target density ρB(x)

DKL[ρA′∥ρB] = β(EA[ΦF] − ΔF). (9)

Conversely, the quality of the reverse mapping is described by the
KL divergence between ρB′(M

−1
(x)) and ρA(x)

DKL[ρB′∥ρA] = β(EB[ΦR] + ΔF). (10)

As β and ΔF are constants with respect to mapping, they do not need
to be included in loss functions. Hence, a loss function suitable for
training only the forward mapping is

LF = ĒA[ΦF], (11)

where ĒA[⋅] is a sample mean estimate of an expectation value in
state A. Wirnsberger et al.21 also introduced and recommended a
bidirectional loss function,

L = ĒA[ΦF] + ĒB[ΦR], (12)

which we use in the present work.
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III. COMPUTATIONAL METHODS
A. Model system

Alanine deca-peptide [ACE-(ALA)9-NME] was selected as a
model system. The system was modeled in the gas phase at room
temperature, where it is a stable α helix. The initial structure was
modified by Nguyen and Minh38 by hand to include the end caps
ACE and NME. The system has 102 atoms. Parameters from the
AMBER ff14SB force field39 were used. Harmonic restraints were
added to the carbon atom of the first peptide bond and the nitrogen
atom of the last peptide bond, leading to the total potential energy,

Uλ(x) = U0(x) + k∥xC − x0C∥
2
+ k∥xN − xλN∥

2, (13)

where U0(x) is the standard gas-phase AMBER potential energy.
In the harmonic potential, k = 50 kJ/mol/Å2 is the force constant,
xC and xN are the coordinates of the restrained carbon and nitro-
gen atoms, respectively, and ∥ ⋅ ∥ represents the Euclidean norm,
the length of the vector. The spring center x0C is at the origin, and
xλN = (0, 0, λ), where λ ∈ {14, 14.2, 14.4, . . . , 20.6, 20.8, 21} Å.

For each λ, an ensemble of structures was generated with
a molecular dynamics simulation. Isothermal molecular dynam-
ics simulations were performed using the Langevin integra-
tor (LangevinIntegrator) in OpenMM 7.740 at a temperature of
T = 300 K with a time step of 1 fs for a duration of 20 ns. The last
10 000 configurations (every 1 ps for the last 10 ns) were saved.

B. Neural network architecture
Mappings between Cartesian coordinates from pairs of ensem-

bles with different λ were performed based on real-valued non-
volume preserving (real NVP) transformations.41 Real NVP uses
a deep neural network composed of a stack of simple bijections,
known as affine coupling layers, that include scaling and transla-
tion. Because each affine coupling layer only transforms a subset
of system coordinates, multiple layers are required to transform
all coordinates. Affine coupling layers are especially well-suited
for TFEP because they are stably invertible and because the Jaco-
bian of their transformations can be efficiently computed. The
initial paper on real NVP uses a mapping to a tractable distri-
bution, but the neural network can be applied to any pair of
distributions.

To adapt real NVP to molecular systems in Cartesian coor-
dinates, we tried two sets of affine coupling layers. Initially, we
considered coupling layers for x, y, and z dimensions (Fig. 2), which
we will refer to as NN 1. Based on reviewer suggestions, we later per-
formed some calculations in which the subsets were backbone heavy
atoms, side chain heavy atoms, and hydrogen atoms, which we will
refer to as NN 2.

In NN 1, the first coupling layer Mx transforms the x
coordinates while leaving the y and z coordinates invariant,

Mx({x, y, z}) = {x′ = xes(y,z) + t(y, z), y, z}, (14)

where s and t are functions encoded in the neural net-
work. The inverse of this mapping is M−1x ({x′, y, z})

FIG. 2. Schematic of the neural network architecture. (a) In the first coupling layer
Mx , y and z are left unchanged and the learnable parameters θ for the s and
t functions are trained to transform the x coordinates. (b) The entire real NVP
network consists of M = Mz ○ My ○ Mx .

= {x = [x′ − t(y, z)]e−s(y,z), y, z}. Jacobian determinants of the

mappingsMx andM−1x are

log ∣JMx ∣ =

Natoms

∑
i=1

si(y, z), (15)

log ∣JM−1x
∣ = −

Natoms

∑
i=1

si(y, z), (16)

where the sum is over the atoms and the limit is the total number of
atoms, Natoms. Similarly, the second coupling layerMy and the third
coupling layerMz transform the y and z coordinates with (x, z) and
(x, y) invariants, respectively. Each coupling layerMk : T3 N

→ T3 N

used the same architecture but different learnable parameters θk. The
coupling layers consisted of 10 hidden layers with 128 dimensions
(compared to 102 atoms).

The overall mappingM of the real NVP transformation is given
as

M =Mz ○My ○Mx, (17)

where ○ means that the output of the right side is the input for the
left side. Its inverse is

M−1 =M−1x ○M
−1
y ○M

−1
z . (18)

The Jacobian determinants of the mapping M and the inverse
mappingM−1 are

log ∣JM ∣ = ∑
ν∈{x,y,z}

log ∣JMν ∣, log ∣JM−1 ∣ = ∑
ν∈{x,y,z}

log ∣JM−1ν
∣. (19)

NN 2 had a similar architecture except that Mx, My, and
Mz were replaced by Mb for backbone heavy atoms, Msc for
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side chain heavy atoms, and Mh for hydrogen atoms, respec-
tively. The number of hidden dimensions was 3N dimensions,
where N is the number of atoms. The three mappings form a
block such thatMn =Mb ○ Msc ○ Mh. The total mapping was com-
posed of five blocks of complete mappings, M =M1 ○ M2 ○ M3
○ M4 ○ M5. Calculations were performed with NN 1 unless explic-
itly mentioned otherwise.

Mappings were implemented in JAX.42

C. Training
The real NVP map was initialized as an identity map. This was

achieved by initializing the transformation t and scaling s factors to
zero, such that x′ = x exp(0) + 0 = x. Randomness in the initial con-
ditions was introduced by drawing all other initial parameters from
the standard normal distribution.

The real NVP neural network was trained by minimizing
the value of the loss function [Eq. (12)]. As the loss func-
tion [Eq. (12)] is based on the molecular mechanics ener-
gies of mapped configurations, we implemented the AMBER
force field in JAX. This implementation is freely available at
https://github.com/swillow/jax_amber. To ensure that mapped xN is
similar to xλN , we used k = 200 kJ/mol/Å2 instead of k = 50 kJ/mol/Å2

in the loss function. Data were divided into a training set (80%) and
a test set (20%). Out of the last 10 ns of simulation, 2000 config-
urations (from 10 to 12 ns) were designated as test sets, while the
remaining 8000 configurations (from 12 to 20 ns) were designated
as training sets. The training loss was minimized using the adap-
tive moment estimation (Adam) optimizer43 with a learning rate of
1.0 × 10−4.

We performed different amounts of training in the initial
and later calculations. Initially, training was performed for 150 000
steps. We compared results from mappings obtained after different
amounts of training:

1. Early stopping, with the minimum loss of the test set.
2. L ∼ 0, where the loss of the training set was closest to zero.
3. Complete, after all 150 000 training steps.

Subsequently, after observing superior free energy estimation
from early stopping, we stopped training once the loss of the test set
in the last 200 steps was over 3.0kBT greater than the minimum.

D. Free energy estimation
Reference free energies as a function of λ were calculated using

the multistate Bennett acceptance ratio (MBAR) estimator36 without
mapping. They made us aware of the entire ensemble of equili-
brated structures and energies. Mapped free energies were estimated
based on data from pairs of λ using the generalization of the Ben-
nett acceptance ratio35 described by Hahn and Then.16 Thus, the
mapped calculations were based on a small subset of the structures
and energies used in the reference calculations.

IV. RESULTS AND DISCUSSION
A. The free energy landscape of deca-alanine
has multiple barriers

The free energy of deca-alanine as a function of the spring posi-
tion generally increases between λ = 14 and λ = 21 Å (Fig. 3). There

FIG. 3. The reference free energy surface and average potential energy difference
compared to the state with λ = 14 Å.

are local minima near 14, 16, and 18 Å that are separated by barri-
ers. The barriers correspond to local peaks in the potential energy,
suggesting that crossing them corresponds to breaking intramolec-
ular interactions such as hydrogen bonds. As the potential energy
barriers are larger than the free energy barriers, they are partially
compensated for by entropic increases.

B. Overlap decreases as λ separation increases
While there may be some overlap between thermodynamic

states with λ separated by 1 Å, there does not appear to be any over-
lap between states where it is separated by 2 Å or more (Δλ ≥ 2 Å).
The overlap between thermodynamic states may be evaluated based
on the histograms ofΦF and −ΦR. Without mapping (or an identity
map), the work is simply the potential energy difference of the same
configuration in the pair of states. For both separations, the distribu-
tions of the potential energy difference are unimodal. For Δλ = 1 Å,

FIG. 4. Normalized histograms of work without mapping for λA = 20 Å and
λB = 21 Å (solid line) and for λA = 19 Å and λB = 21 Å (dashed line). For both
pairs, βΦF is colored green with forward diagonal hatches, and −βΦR is colored
red with backward diagonal hatches.
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FIG. 5. Loss values for the mapping between states with λA = 20 Å and
λB = 21 Å for training (blue) and test (red) data. The inset is a subset of the range
emphasizing the minimum of the test loss.

there is some overlap between the tails of the distributions ofΦF and
−ΦR. For Δλ = 2 Å, the distributions of potential energy differences
are broader and further separated, such that there is no evident over-
lap (Fig. 4). Due to the lack of overlap between these distributions,
the free energy difference cannot be accurately calculated (without a
mapping that improves overlap).

Even for Δλ ≤ 2 Å, our unmapped work distributions are more
distinct from one another than those reported inWirnsberger et al.21
Wirnsberger et al.21 focused on a solute in a Lennard-Jones fluid,
in which the states A and B were generated by changing the solute
radii from RA = 2.5974σ to RB = 2.8444σ. For σ = 3.15 Å, the radius
of the solute in state A is 8.18 Å and that of the solute in state B is
8.96 Å, for a difference of 0.78 Å. The distance between unmapped
work distributions was about β(EA[ΦF] + EB[ΦR]) ∼ 40. In con-
trast, we observe β(EA[ΦF] + EB[ΦR]) ∼ 200 and 600 for 1 and 2 Å,
respectively.

C. Loss values for the training and test sets diverge
after overfitting

In all of the learned mappings, the loss values for the training
and test sets exhibit different behaviors from one another (Fig. 5).
At the start of training, both loss values quickly decrease. With
additional training steps, the training loss continues to trend down-
ward and even becomes negative. On the other hand, the test loss
approaches a minimum and sharply increases after around 2000
steps.

A deviation between the training and test loss is common in
machine learning, including the learned mapping in Wirnsberger
et al.21 and Rizzi et al.25—and is an indicator of overfitting to the
training set. For this reason, Wirnsberger et al.21 adopted an early
stopping criterion. Rizzi et al.25 suggested that overtraining leads to
a systematic bias in the free energy estimate; thus, they estimated

free energies based on evaluation sets separate from their training
sets.

D. Mapping increases the overlap between forward
and reverse work distributions

With early stopping, mapping improves overlap between the
work distributions and the feasibility of free energy estimation
[Fig. 6(a)]. At this mapping, which provides a minimum loss for
the test set, there is considerable overlap between the distribu-
tions of ΦF and −ΦR. Trends in the average work and free energy
difference are consistent with applying Jensen’s inequality to the
expectation values in the TFEP expression, Eq. (5). We anticipate
that EA[ΦF] > −β−1 lnEA[e−βΦF ] = ΔF. Similarly, EB[ΦR] > −ΔF.
Hence, expectation values of the work bound the free energy accord-
ing to −EB[ΦR] < ΔF < EA[ΦF]. While these inequalities are true
for expectation values, they do not necessarily hold for estimates
based on finite sample sizes, which are not only imprecise but sys-
tematically biased.34 With early stopping, however, the order of
expectation values and the free energy follow the anticipated trend.
Consequently, the free energy difference, which is at the value ofΦ in
which the densities are equal,16 is straightforward to identify. How-
ever, further training leads to unexpected trends in the distributions
of generalized energies.

When the loss is close to zero, we observe that both esti-
mated averages are less than the free energy difference, ÊB[−ΦR]

∼ ÊA[ΦF] < ΔF [Fig. 6(b)]. With perfect mapping, we would antic-
ipate that EB[−ΦR] = EA[ΦF] = ΔF. The deviation of the expec-
tation values from the free energy difference demonstrates that
perfect mapping is not achieved. The potential energy distribu-
tions of the mapped configurations mostly overlap with the tar-
geted (unmapped) potential energy distribution (Fig. S2 of the
supplementary material). This overlap between potential energy dis-
tributions shows that the source of the observed inequality is from
the Jacobian: log∣JM ∣ ≠ 0 and log ∣JM−1 ∣ ≠ 0.

Finally, at the end of training, when the training loss values
are negative (L < 0), the forward work values are actually much
smaller than the reverse work values. As shown in Fig. 6(c), the
order of averages and free energies is flipped such that ÊA[ΦF]

≪ ΔF ≪ ÊB[−ΦR]. This flipping occurs because the mapped ener-
gies UB(M(xA)) and UA(M−1(xB)) are lower than the tar-
geted energies UB(xB) and UA(xA) (Fig. ?? of the supplementary
material). Molecular mechanics potential energies, especially
Lennard-Jones repulsion terms, are very sensitive to small changes in
coordinates; there are many opportunities for energy optimization
relative to samples from the Boltzmann distribution. While these
low energies demonstrate that the optimizer is working well, the
generated structures are not representative of the target distribu-
tion. Moreover, the overlap between work distributions is reduced
compared to when the loss is close to zero.

Except with early stopping, trends in the work distributions
of the test set do not match those of the training set (Fig. ??
in the supplementary material). With early stopping, the training
and test sets have comparable work distributions. When L ∼ 0,
the work distributions for the test set are similar to the distri-
butions after early stopping; ρ(βΦF) and ρ(−βΦR) of the test
set do not have nearly complete overlap. For complete training,
the anticipated order of averages and free energies ÊB[−ΦR] < ΔF
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FIG. 6. Effect of stopping criterion on work distributions for training data between
λA = 20 Å and λB = 21 Å. Normalized histograms are shown for mapping func-
tions from (a) early stopping, (b) when the loss is closest to zero, and (c) after
150 000 training steps. βΦF are colored green with forward diagonal hatches,
and −βΦR are colored red with backward diagonal hatches. The reference free
energy difference ΔF obtained via the MBAR estimator is represented by the ver-
tical dashed line. A similar figure for the testing data is available as Fig. S1 in the
supplementary material.

< ÊA[ΦF] is preserved, but the distributions are very broad. The cor-
responding large test loss indicates that there is overfitting in the
training set.

E. Mapping enables accurate free estimation
for smaller δλ

For most pairs of states where Δλ = 1 Å, TFEP is able to accu-
rately reproduce reference free energy differences.Mapped estimates
are most accurate between pairs of states with ΔF less than 2 kJ/mol,
less accurate when ΔF is between 2 and 4 kJ/mol, and least accurate
for ΔF greater than 4 kJ/mol [Fig. 7(b)].

Among stopping criteria, TFEP is more reliable when using
a learned mapping with early stopping. When the loss value is
near zero, TFEP performance is sometimes improved over early
stopping, but in several cases with large free energy differences,

FIG. 7. Comparison of free energy estimates for a separation of 1 Å. Mapped
free energy differences were computed between λA and λB = λA + 1 Å for λA

∈ {14, 15, . . . , 20} Å. (a) Free energy surfaces were computed as a cumulative
sum. (b) Individually mapped ΔF̂ were compared to reference values. In both pan-
els, estimates were computed with maps from early stopping (magenta squares)
and L ∼ 0 (green circles).

the estimate significantly deviates from the reference value. When
−EB[ΦR] = EA[ΦF] = ΔF, we would expect that the free energies are
easy to predict. However, we have already shown [Fig. 6(b)] that the
learned mappings do not provide perfect mappings and that there is
overfitting to the training set.

Differences between stopping criteria are more evident for free
energy surface reconstruction [Fig. 7(a)]. With early stopping, the
estimated free energy surface reproduces the local minimum near
16 Å and the barrier between that state and at 18 Å. Finer details in
the free energy surface are not evident because the mapped estimate
was performed at intervals of 1 Å as opposed to 0.2 Å. In con-
trast to the accurate surface reconstruction using the mapping from
early stopping, when the training loss is near zero, the estimated free
energy surface has few features.

These results demonstrate the ability to achieve configuration
space overlap and accurate free energy estimation through learned
mapping, as opposed to sampling of additional intermediate states.
Comparable free energy differences are obtained using a fifth of the
number of samples between adjacent λ values. While the mapped
estimation procedure incurs additional costs in training and is more
complex, it may lead to an overall reduction in computational
cost.

Using early stopping, reasonable mapped free energy estimates
were also obtained for select pairs of states for which Δλ = 2. For
λA = 18 Å and λB = 20 Å, the mapped estimate based on early
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TABLE I. Comparison of TFEP and MBAR free energy estimates for 4 Å separa-
tions. TFEP estimates were based on learned mappings with two different neural
network architectures. For each architecture, results from two independent trainings
are separated by a slash.

(λA, λB) ΔFref ΔFTFEP (NN 1) ΔFTFEP (NN 2)

(14, 18) 8.461 −20.4/−35.2 −25.1/−34.1
(15, 19) 8.691 −25.4/−11.4 −31.8/−19.9
(16, 20) 9.269 11.3/7.8 −10.6/−17.9
(17, 21) 8.154 4.8/17.2 4.8/−1.3

stopping (3.1 kJ/mol) is better than the L ∼ 0 estimate (7.4 kJ/mol)
at reproducing the reference free energy (3.6 kJ/mol). For λA = 19 Å
and λB = 21 Å, the early stopping estimate (5.5 kJ/mol) is also closer
to the reference free energy (4.8 kJ/mol) than the L ∼ 0 estimate
(6.6 kJ/mol). These pairs of states are not separated by potential
energy barriers (Fig. 3).

F. There is poor mapping for more distant states
In contrast to the accurate performance for smaller Δλ, TFEP

does not provide accurate free energy differences for pairs of states
in which the spring center is separated by 4 Å (Table I). Not only
are TFEP results significantly different from the reference calcula-
tion, but the two independent training replicates diverge from one
another. This suggests that the optimization leads to maps that are
quite different from one another. Thus, these maps are at local as
opposed to global minima of the loss function. The results for NN 2
were worse than for NN 1. To pinpoint the causes and effects
of poor mapping, we further analyzed the work, potential energy,
and structural distributions of the mapping between λA = 14 Å and
λB = 18 Å.

For this pair of states, TFEP fails to reproduce reference free
energies because the work distributions are still not overlapping
(Fig. 8). Without mapping, there is a gap of over 2000 kBT between
the peaks of the forward and reverse work distributions. Mapping
significantly reduces this gap, but there is no significant probability
density at the free energy difference, making it difficult to estimate
accurately. The mapping based on NN 2 does not reduce the gap as
significantly as the mapping based on NN 1. Thus, the rest of our
results are based on NN 1.

The failure to achieve work distribution overlap occurs because
mapping does not reproduce the targeted potential energy distribu-
tion (Fig. 9). Overall, the mapped structures have a higher potential
energy than the target distribution. For the forward mapping, the
potential energy distribution is shifted higher and broadened. There
is significant overlap with the target’s potential energy distribution.
For the reverse mapping, there is more pronounced shifting and
broadening, and the high-energy tail of the distribution is heavier.
These suggest that the forward mapping is more successful than the
reverse mapping.

From a structural perspective, the failure of reverse mapping
is related to the formation of hydrogen bonds. While state A is
characterized by a stable α-helix, state B is comparatively unfolded.
Near the ends of the helix, structures mapped from state B to state
A are similar to structures from state A (Fig. 10). However, the
middle of the helix is compressed and lacks hydrogen bonds. The

FIG. 8. Normalized histograms of work (a) without and (b and c) with mapping
between λA = 14 Å and λB = 18 Å. Mapping was performed with the first (b) and
second (c) neural network architectures. βΦF are colored green with forward diag-
onal hatches, and −βΦR are colored red with backward diagonal hatches. In (b)
and (c), the histogram range was limited to between −400 and 150.

mapped states are in a metastable state, as opposed to the most stable
structure of the peptide.

The shortcomings of our more distant mappings suggest that
improved neural network architectures and training procedures
may be required to map between distant thermodynamic states
across rugged potential energy surfaces. Reviewers suggested that
mapping could be improved by a more expressive neural network
that includes additional coupling layers, e.g., multiple repetitions of
Fig. 2(b). Another research area is the development of improved
training algorithms. A possible approach to better training of map-
pings may be to borrow ideas from sampling. Sbailò et al.29 demon-
strated that learned mappings may be used to propose Monte Carlo
moves between metastable states of a dimer. Mappings capable
of generating reasonable structures in the target distribution will
probably work well for TFEP.

As mentioned in the introduction, an alternative to mapping
between distant molecular distributions is to map each molecu-
lar distribution to a comparable tractable distribution. Using this
strategy, Ding and Zhang23 were able to reproduce free energy differ-
ences between deca-alanine at very different temperatures, 300 and
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FIG. 9. Normalized histograms of potential energies U for (a) λA = 14 and (b)
λB = 18 Å, based on samples from the distribution (line) or mapped samples
(dashed line).

FIG. 10. Comparison of the targeted structures (red color) with the mapped
structures (green color) in the reverse process from λB = 18 Å to λA = 14 Å.

500 K. Subsequently, Ding and Zhang24 applied the same strategy to
obtaining binding free energies for a host–guest complex. Reference
calculations were performed with an attach–pull–release procedure
with multiple intermediate states, suggesting that the end states
occupy quite different configuration spaces. However, it is unclear
whether their methods will work well on larger and more flexible
protein-ligand systems.Moreover, asmentioned in the introduction,
mapping between molecular distributions may be the only way to
map subsets of coordinates.

V. CONCLUSIONS
We have successfully used learned mappings in TFEP to repro-

duce reference free energy differences between conformations of a
flexible bonded molecule with a rugged free energy surface, deca-
alanine. The learned mappings were most successful when the

unmapped states were similar. On the other hand, our procedure
was unable to learn a mapping from the unfolded to the alpha helical
structure of the model peptide.

SUPPLEMENTARY MATERIAL

Two figures. Fig S1 shows the effect of stopping criterion on
estimated probability densities of βΦ for test data between λA = 20 Å
and λB = 21 Å. Fig S2 shows estimated probability densities of poten-
tial energies and terminal nitrogen positions for simulated and
mapped samples for λA = 20 Å and λB = 21 Å.
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