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Abstract Triplex-forming peptide nucleic acids (PNAs) require chemical 
modifications for efficient, sequence specific recognition of DNA and RNA at 
physiological pH. Our research groups have developed 2-aminopyridine (M) 
as an effective mimic of protonated cytosine in C+•G-C triplets. M-modified 
PNAs have high binding affinity and sequence specificity, and promising 
biological properties for improving PNA applications. This communication 
reports optimization of synthetic procedures that give PNA M monomer in 
seven steps, with minimal need for column chromatography, and in good 
yields and purity. The optimized route uses inexpensive reagents and easy to 
perform reactions, which will be useful for the broad community of nucleic 
acid chemists. Thought has also been given to potential for future 
development of industrial syntheses of M monomers.   

Key words PNA, modified nucleobases, RNA recognition, triple helix, PNA 
monomer synthesis, solid phase PNA synthesis. 

 

Peptide nucleic acid (PNA, Figure 1) was introduced by Nielsen 

and co-workers in 1991 as a ligand for triple-helical binding to 

double-stranded DNA (dsDNA).1 PNA binds to both single and 

double stranded nucleic acids with high affinity and sequence 

specificity, which has led to many applications of PNAs as 

research probes and diagnostics.2 However, the therapeutic 

potential of PNA has not yet been realized leaving significant 

room for improvement of PNA’s properties by chemical 

modifications. 

An early PNA modification was the replacement of cytosine with 

pseudoisocytosine (J, Figure 1) to address the problem of 

unfavorable cytosine protonation (pKa ~4.5) required for 

formation of the Hoogsteen C+•G-C triplet in PNA-dsDNA 

complexes.3 Chen and co-workers recently improved the 

binding properties of J by substituting oxygen with sulfur in 

thio-pseudoisocytosine (L, Figure 1).4 In 2012, we adopted the 

more basic 2-aminopyridine (M, pKa ~6.7), previously used in 

DNA triplexes,5 as a superior alternative to J in PNA.6 Later 

detailed biophysical studies showed that an M+•G-C triplet had 

about three times stronger stability than a J•G-C triplet.7 

Moreover, M did not form strong Watson-Crick base pairs with 

the native nucleobases, which reduced the potential for off-

target binding to single-stranded DNA and RNA.7 PNA-RNA 

triplexes formed by M-modified PNA have already been used to 

catalyze template-directed reactions,8 inhibit mRNA 

translation9 and microRNA maturation,10 and detect A to I 

editing in RNA.11 Over the years, we have been developing and 

optimizing synthesis of PNA monomers and oligomers having M 

and other nucleobases.6, 12 In the present manuscript, we 

summarize these efforts and report the latest optimized 

synthetic route to Fmoc protected M monomers and M-modified 

PNAs along with specific advantages and disadvantages of 

alternative routes.   

 

Figure 1 Structures of triplex-forming PNA and Hoogsteen triplets formed by 

native and modified nucleobases. 
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Scheme 1 Alternative syntheses of M-acetic acid key intermediate 5.

Typically, synthesis of PNA is performed on an automated 

peptide synthesizer using Fmoc or Boc protected monomers. 

Some DNA synthesizers, such as the Expedite 8909, may have 

PNA protocols. We prefer the Fmoc strategy because the milder 

deprotection conditions allow for the use of Boc-protected 

nucleobases in custom monomers, such as M. The key step in 

synthesis of custom Fmoc protected monomers is preparation of 

the modified heterocycle as an acetic acid derivative (i.e., 5 in 

Scheme 1) that can be attached to appropriately protected PNA 

backbone.  

Our original synthesis13 of M monomer followed procedures 

described in a patent by Burns et al. 14 The synthesis started with 

ethanolysis of the commercially available 2-(6-chloro-3-

pyridinyl) acetonitrile 1 followed by Buchwald-Hartwig 

amination catalyzed by Xantphos-palladium complex (Scheme 1). 

However, we found that it was difficult to purify the Boc-

protected ester 4 from residual Xantphos and excess carbamate 

3. After some optimization, we discovered that using Xphos-

palladium catalyst15 and 1.1 equivalent of carbamate 3 in 

refluxing deoxygenated THF gave pure 4 in acceptable yield after 

silica gel column chromatography (for experimental details, see 

Supporting Information).  

After ester hydrolysis, the optimized original route gave the key 

acetic acid intermediate 5 in three steps and in a sufficient ~39% 

overall yield but was costly (1 and Xphos are expensive) and 

required an intricate Buchwald-Hartwig amination step, which 

was difficult to control on larger scales. To further improve the 

synthesis of M monomer, we developed an alternative route 

starting from 5-bromo-2-nitropyridine 6 (Scheme 1) that avoids 

expensive reagents and was easier to scale up. Nucleophilic 

aromatic substitution with tert-butyl ethyl malonate gave 7 after 

silica gel column purification.16, 17 Decarboxylation under acidic 

conditions was followed by reduction of the nitro group using Fe 

powder (for details of Fe reduction, see Supporting 

Information).16  Most recently, we found that hydrogenation over 

Pd on carbon was an even simpler and higher yielding alternative 

to Fe powder reduction.18 After Boc protection, both routes 

converged on ester 4.19 Providing that good quality reagents and 

solvents are used under careful control of reaction conditions, the 

entire sequence (7 to 4) required only one silica gel column 

purification of ester 4. We have also found that that the aromatic 

substitution may give sufficiently pure 7 to run the entire 

synthesis (6 to 4) without chromatography purification of any 

intermediate. Finally, cleavage of the ethyl ester (using either 

NaOH13 or LiOH) completed the synthesis of the key acetic acid 

derivative 5.20 In our hands, N-Boc protection has been 

convenient and effective; however, others have reported PNA 

synthesis using N-trityl protected M monomers.21 Overall, the 

new synthesis gives the key intermediate 5 in five steps and 

~37% overall yield. Although it was two steps longer and slightly 

lower yielding, the new route used inexpensive starting materials 

and reactions were amenable to scale up and industrial 

development, though some reagents (e.g., NaH and trifluoroacetic 

acid) may need to be replaced in industrial settings.  

To explore even more efficient alternatives, we developed a one-

pot three-step sequence to 4 starting from chloropyridine 9. The 

amino group was introduced by heating 9 in aqueous ammonia 

at 190 °C (warning, a steel reactor required due to pressure 

reaching 40 atm!) in the presence of copper (I) oxide. The main 

side reaction is formation of ~25% of 2-(6-hydroxypyridine-3-

yl)acetic acid. Nevertheless, during the extraction and 

crystallization procedures at subsequent esterification and Boc 

protection steps, this and other minor impurities were removed 

and 4 was obtained with 98% (HPLC) purity and 47% yield over 

the three steps (for experimental details, see Supporting 

Information). No chromatography was used in this procedure; 

however, it is less attractive for laboratory use due to the 

necessity of high-pressure equipment. 

In our original procedure,13 we coupled 5 with O-allyl protected 

PNA backbone 10a (Scheme 2). During synthesis of various 

modified PNAs,12, 16 we discovered that using O-benzyl protected 

backbone 10b with either HATU or HBTU as coupling reagents 

provided a simpler and cleaner route to PNA monomers. In our 

optimized route to 12 (Scheme 2), we recommend using the O-

benzyl protected backbone 10b; however, other heterocyclic 

PNA bases (e.g., L and others containing sulfur) may not be 

compatible with hydrogenation conditions. In such cases, the O-

allyl protected backbone 10a may provide a better alternative. In 

cases when the nucleobase is not compatible with either Pd 

catalyst, a free acid 10c can be used with TSTU as a coupling 

reagent under anhydrous conditions, albeit the yields are usually 

lower (<50%).16   
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Scheme 2 Coupling to PNA backbones and final steps towards M-monomer. 

 

While 10a and 10b are stable when stored as solids at -20 °C, 

both degrade rapidly in solution (estimated t1/2 ~4 days) and as 

solids (estimated t1/2 ~2-3 weeks) at room temperature. The salt 

forms of 10a and 10b are more stable, but generally, salts of 

either 5 or 10a and 10b give lower yields in the coupling 

reactions. Hydrogenation over Pd on carbon gives pure (no 

column chromatography needed) final M monomer 12 that is 

stable in NMP solution (used for PNA synthesis on Expedite) at -

20 °C for more than a month.22 

Synthesis of modified PNAs can be performed using either an 

Expedite 8909 DNA synthesizer that has Fmoc-PNA protocol or 

peptide synthesizers. We have previously described and are 

routinely using Expedite to synthesize M-modified PNAs on a 2 

mol scale.6, 7, 23 However, alternative approaches are needed 

because manufacturing of Expedites has been discontinued for 

more than two decades and the number of available refurbished 

instruments is declining. Among peptide synthesizers, the 

microwave assisted CEM Liberty instruments have been a 

convenient alternative, especially for synthesis of PNA-peptide 

conjugates.24, 25 Using the previous reports as a starting point,24, 

25 we briefly optimized the synthesis of M-modified PNAs on a 

CEM Liberty Blue instrument on a 10 mol scale (for details, see 

Supporting Information). Consistent with previous 

observations,24 coupling at 40 °C for 20 min gave higher yields 

than protocols that used 50 °C (c.f., Figures S3 and S4).  Overall, 

we obtained good amounts and satisfactory yields (Table S1) of 

pure 9-mer PNAs similar to those used in our recent studies on 

PNA-RNA triplexes.26   

 

Figure 2 HPLC profiles of crude and purified (inset) PNA NH2-TMTMMTMMT-

CONH2 synthesized on CEM Liberty Blue using M monomer 12 (for details of 

LC conditions, see Figure S3). 

  In summary, we have developed a seven-step synthetic route 

that gives PNA M monomer 12 in ~27% overall yield. Overall, the 

yields may depend on the scale of reactions with smaller scale 

preparations giving higher yields than those we report and, vice 

versa, larger scales may somewhat decrease the yields. Despite 

minimal use of column chromatography (only two or three over 

seven steps) the route gives 12 with sufficient purity for 

multistep solid phase synthesis PNA oligomers. The purity of 12 

(and other PNA monomers) is critical as in our hands 

contaminations that are sometimes not detectable by NMR or 

LCMS (e.g., salts, etc.) lead to failures of PNA syntheses. In such 

cases, it is possible to do additional column purification of the 

final monomer to restore the coupling efficiency. Our optimized 

route to 12 uses straightforward reactions that should be easy to 

adopt for academic labs and industrial synthesis.    
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