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Abstract—We propose Physics-Informed Fourier Networks for
Electrical Properties (EP) Tomography (PIFON-EPT), anovel deep
learning-based method for EP reconstruction using noisy and/or in-
complete magnetic resonance (MR) measurements. Our approach
leverages the Helmholtz equation to constrain two networks, re-
sponsible for the denoising and completion of the transmit fields,
and the estimation of the object’s EP, respectively. We embed a ran-
dom Fourier features mapping into our networks to enable efficient
learning of high-frequency details encoded in the transmit fields.
We demonstrated the efficacy of PIFON-EPT through several sim-
ulated experiments at 3 and 7 T (T) MR imaging, and showed that
our method can reconstruct physically consistent EP and transmit
fields. Specifically, when only 20 % of the noisy measured fields were
used as inputs, PIFON-EPT reconstructed the EP of a phantom
with < 5% error, and denoised and completed the measurements
with < 1% error. Additionally, we adapted PIFON-EPT to solve
the generalized Helmholtz equation that accounts for gradients
of EP between inhomogeneities. This yielded improved results at
interfaces between different materials without explicit knowledge
of boundary conditions. PIFON-EPT is the first method that can
simultaneously reconstruct EP and transmit fields from incomplete
noisy MR measurements, providing new opportunities for EPT
research.

Index Terms—Electrical property mapping, fourier features
mapping, magnetic resonance imaging, physics informed neural
networks.
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1. INTRODUCTION

LECTRICAL properties (EP), namely relative permittivity
E and electric conductivity, determine the interactions be-
tween electromagnetic waves and biological tissue [1], [2]. EP
have the potential to be employed as biomarkers for pathologies
such as cerebral ischemia [3], [4] and cancer [5], [6], [7], [8].
EP could also be used to improve the effectiveness of existing
therapeutic modalities such as radiofrequency hyperthermia [9],
[10], [11].

Several EP tomography (EPT) methods have been proposed
that are based on MR measurements, such as the magnetic
transmit (Bf“) or receive (Bp) field maps [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22]. These techniques
can be classified based on the form of Maxwell’s equations
(differential or integral) they use to fit the MR measurements.
Differential methods, such as the Helmholtz EPT (H-EPT) [14]
or the Convection-Reaction EPT (CR-EPT) [16], require the
calculations of spatial derivatives of noisy measured BI“ maps,
which lead to errors and artifacts in the reconstructions [23]. On
the other hand, integral equation-based methods [19], [20] are
robust to noise, but require computationally expensive iterative
optimizations that rely on an accurate model of the transmit
coils [24], [25] and fine-tuned regularization parameters.

Recently, data-driven deep learning-based methods have been
introduced for EP reconstruction [26], [27], [28], [29] to mitigate
the noise amplifications and high computational cost of standard
methods. These methods treat MR measurements and EP distri-
butions as 2D images or 3D volumes, and train regression con-
volution neural networks as surrogate EP reconstruction models
from simulated training data. These supervised learning-based
techniques perform well in simulation, but they are not reliable
in vivo due to the necessarily limited number of different cases
included in the training data. To improve the generalization
to in-vivo data, hybrid techniques that embed deep learning
into conventional EP mapping methods were proposed [30],
[31]. These hybrid methods use neural networks to generate
initial guesses of EP for iterative reconstruction schemes [30], or
diffusion and convection coefficients for the convection-reaction
equation [31]. While these approaches improve generalization,
several electromagnetic simulations are still required to generate
training data, which can be very expensive and time-consuming,
thus there is only a limited amount of available datasets. A recent
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hybrid technique directly reconstructs conductivity from input
transceive phases [32]. In such a method, a neural network is
trained to represent the input transceive phase map, where the
gradients of the phase are computed by automatic differenti-
ation [33] and then used to solve the phase-only convection-
reaction EPT. The reconstructed conductivity is compared with
ground-truth values at the boundary, as a regularization for the
neural network that represents the phase. Since this method re-
tains the physics of EPT, it does not require a comprehensive set
of electromagnetic simulations. However, learning a single neu-
ral network that can simultaneously represent the ground-truth
phase and provide accurate gradient approximations directly
from noisy measured phase maps is challenging, which is shown
by the fact that they yielded highly inaccurate EP reconstructions
in most cases.

Following our preliminary study [34], here we propose the
Physics-Informed Fourier Networks (PIFONs) Electrical Prop-
erties Tomography (PIFON-EPT) framework, which leverages
recent developments on physics-informed deep learning [35],
[36], [37], [38], and Fourier features mapping [39] to learn
both the EP distribution and the Bfr field globally from noisy
and/or incomplete Bf measurements. The proposed framework
can efficiently de-noise the Bf measurements. Once trained,
PIFONSs can accurately predict the EP and B;' field at any loca-
tion within the PDE domain, enhancing high-resolution imaging
capabilities. In contrast to integral equation-based methods [19],
[20], which necessitate repeated simulations of forward equa-
tions, PIFONS tackle the inverse problem directly. This approach
has the computational cost equivalent to solving a single for-
ward equation. Differently from other supervised learning-based
EPT methods [26], [27], [28], [29], our proposed PIFON-EPT
technique can reconstruct EP directly, without being trained on
known B and EP distribution pairs. Compared with recent
physics-aware hybrid EPT methods [31], [32] in which EP
are still solved numerically from convection-reaction equation
with boundary condition, our method represents EP as a neural
network constrained by the Helmholtz equations and does not
require any prior EP information.

The rest of the paper is organized as follows: In Section II, we
provide a brief overview of standard EPT methods. In Section I1I,
we describe the proposed novel PIFON-EPT framework. In
Section IV, we demonstrate the effectiveness of our PIFON-EPT
with four representative numerical experiments. Further discus-
sion is provided in Section V, whereas Section VI summarizes
the main points of this work.

II. TECHNICAL BACKGROUND
A. Fundamental Helmholtz Equations in MRI

The relation between the magnetic field (B) and the EP of a
medium can be described by the Helmholtz equation:

B
V2B 4 k22,B 4 Ve, x VB _, (1)

c

where kg is the wave number in vacuum and

ce=er— —, 2)

Wep

is the relative complex permittivity. Here, ¢, is the relative
permittivity and o is the electric conductivity, ¢ denotes the
imaginary unit, w denotes the angular frequency, and £ denotes
the vacuum permittivity. Since the full transmit B; cannot be
measured in an MRI scanner, but only its positively rotating
component Bf” = (B, + iB,)/2, we can re-write (1) with the
help of Gauss’ law (V - B = 0) as:
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Here, g := (¢x, 9y, 9-) '= V Ine.. If we assume a smooth dis-
tribution of the EP, their gradient g can be ignored, and (3)
becomes the homogeneous Helmholtz equation:

V2B +kie.Bf =0. )

B. Standard Differential EPT Methods

One can solve (3) and (4) for the EP, starting from measured
BT maps. There are several methods based on such approach
(here is a non-exhaustive list [14], [15], [16], [17], [18], [19],
[20], [21]). Next, we provide a brief overview of two popular
ones: the Helmholtz EPT [14] and the Convection-Reaction
EPT [16]. Both techniques require the knowledge of absolute
phase of Bf“ , which, for birdcage coils, can be estimated with
the transceive assumption [14]. Open-source software imple-
mentations of these methods can be found in EPTlib [40].

1) Helmholtz EPT: Assuming a homogeneous distribution
of the EP and access to measured complex Bf maps, one can
directly invert the homogeneous Helmholtz (4) to estimate the
EP:

_V2Bf
kSBY

®)

Ec =

The second-order spatial derivatives of the measured B; can
be computed via finite difference approaches. If the measured
fields are noisy, smoothing filters such as the 2" order Savitzky-
Golay filter [41] can be applied to improve the numerical
derivatives.

2) Convection-Reaction EPT: High-field MRI scanners (<
7 T) utilize birdcage-based body coils [42] for transmission. In
these cases, the B, component of the coil’s magnetic field can
be assumed negligible near the mid-plane of the scanner bore.
As a result, the generalized Helmholtz (3) can be simplified as:

_ . 9B  OBF .
VQBf'Jrkgach‘ = ( axl —1 ayl ) (gm+zgy)
OB+
+ a; - g (6)
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PIFON-EPT workflow. Two separate fully-connected neural networks Bf Net (BIr (r;61)) and EP Net (€. (7; O2)) are defined to take spatial coordinates

r = (z,y, 2) as inputs and output the corresponding Bl+ field and the EP distributions, respectively at the same 7 locations. The Bl+ Net and EP Net are trained

jointly by minimizing a composite loss function that aims to fit the measured B f’ data (blue dotted box) while also penalizing the PDE residual. Once trained, the

resulting physics-informed Bfr Net and EP Net can be used to obtain physically consistent predictions of Bfr and EP at any arbitrary 3D location. A representative
axial cut of the outputs of the neural networks obtained at different iterations during training is shown at the bottom (red dotted box).

If we let v =1/e., (6) can be rewritten as the convection-
reaction equation with a zero diffusion term with respect to ~y
[16]:

. . 0B aB+ oy Oy
2P+ 2+ _ 1 ar e
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By imposing appropriate boundary conditions (for example, the
value of ~ at the boundary of the domain), the convection-
reaction (7) can be solved with a mesh-based finite difference
scheme for . As for Helmholts EPT, also in this case the
gradients of the measured Bf‘ can be estimated using the
Savitzky-Golay filter [41]. Since at MRI frequencies below
3 T, the absolute phase of B; is almost independent from the
permittivity [13], it is possible to perform conductivity-only
reconstructions using only the absolute phase of Bf [22]. Tt
is also possible to include an artificial diffusion term to the
convection-reaction equation to stabilize and improve the re-
construction results [43].

III. METHODS

Our proposed PIFON-EPT is a deep learning-based
framework for robust EP estimation using noisy and/or incom-
plete complex-valued MR measurements. Note that since in MRI
we do not have direct access to the absolute phase of B, wecan
rely on symmetry assumptions to estimate the complex-valued
field in actual experiments. Specifically, at 1.5 and 3 T (T), when
RF birdcage coils are used for transmission and reception in
quadrature, the Bf' and B phases are approximately equal [13],
[14]. Therefore, since the transceive phase is measurable [44],
we can approximate the absolute phase of Bj" as half the
transceive phase. The goal of PIFON-EPT is to learn the EP
distributions globally that best describe the complex-valued B;
at any spatial location (z,y, 2), given {(7;, B (r;))}Y_, only
for a limited N locations 7; = (z;,y;, 2;). The workflow of
PIFON-EPT is summarized in Fig. 1.

A. PIFON-EPT Workflow

Traditional EPT methods based on finite difference approx-
imation of derivatives of Bf' (5), (7) can lead to noise ampli-
fications in the reconstructed EP distributions. To prevent this,
we seek to solve an optimization problem constrained by the
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measured data and physical laws using physics-informed deep
learning [35]. We denote the Helmholtz equation that describes
the physical laws that must be satisfied by B in the general
form on a d-dimension domain 2 € R%:

N [Bi5e(r)](r) = 0, (8)

where 7 € R? is a spatial coordinate and N,.[; €] is a symbolic
representation of the Helmholtz (4) or (6). () denotes the
complex-valued EP at the location r and B; (r) describes the
hidden Bf“ field solution governed by (8). Given N noisy and/or
incomplete measurements {r;, By (r;)},, we aim to learn the
EP distributions ¢ as well as the Bf‘ for all . To do so, we define
a Fourier neural network B} (r;01), constructed by Gaussian
random Fourier features [39] followed by a fully-connected
neural network with a set of weights and biases 61, to represent
the complex B; field. The Gaussian random Fourier features
mapping is defined as:

cos(Br)] ©)

() = Lin(Br)

where each entry in B € R™*3 is sampled from a Gaussian
distribution N(0, s2). 2m equals the width of the fully-connected
neural network following the defined Fourier features and s > 0
is a task-specific hyperparameter. We use an additional fully-
connected neural network &.(r; O2) with independent weights
and biases 6, to estimate the distribution of EP. Hereinafter,
we refer to Bf (r;01) and &.(r;02) as B net and EP net,
respectively. The PDE residual of (8) is transformed to:

R(’I’,Gl,eg) = NT['BY(T‘701),8(.(T,02)](’I‘) (10)

Similar to other machine learning tasks [45], [46], here a
good set of candidate parameters {01, 02} can be obtained by
minimizing the following composite loss function via gradient
descent [47], [48], [49] with the Adam optimizer [50]:

L(017 02) = Ldata (01) + )\Lr(013 02)7
Laaa (01) = Z\Re{ﬁ(m@l)} Re{B{ (ri)}|?
Z Im{B (r;;61)} — Im{ By (r3)}|%,
N
»(61,02) = Z (ri,61,02)[. (11

Lgaa denotes the data mismatch and £, denotes the PDE resid-
ual. A denotes the weight coefficient in the loss function, which
balances the two loss terms in the composite loss. We remark
that A is a hyperparameter that can either be specified by the
user or be tuned automatically [51], [52]. All the derivatives of
BT (r;01) and &.(r; O2) with respect to the spatial coordinate
T as well as the gradient of the loss function with respect to
the neural network parameters {61, 02}, are computed using
automatic differentiation algorithms [33].

The workflow of our proposed PIFON-EPT (Fig. 1) can
be summarized as follow. First, we define two separate fully-
connected neural networks B;” Net and EP Net (€.(r; 02)) to

represent the B} and the EP, respectively. A random Fourier
features mapping (see Fig. 1 green dotted box) is embedded into
Bi" Net to learn high frequency components of the target B
field solution more efficiently [39]. Second, B+ Net and EP
Net are trained jointly by minimizing a composite loss function
that aims to fit the measured BJr data (see Fig. 1 blue dotted
box), while satisfying the phys1cs laws characterized by the
PDE residual. The trained physics-informed B, Net and EP
Net facilitate the generation of physically consistent Bf“ and EP
predictions at any desired spatial point, respectively (see Fig. 1
bottom red dotted boxes). In particular the B;" Net denoises and
completes the input By

B. Choice of Helmholtz Equation

If we assume piece-wise constant EP, then the Helmholtz
equation simplifies as in (4). Equation (6) is a generalized form of
the same equation, which accounts for gradients of EP, but is yet
not fully general because to reduce the number of unknowns, we
assumed that B, is equal to zero. Depending on which Helmholtz
equation is used, we introduced two variants of PIFON-EPT:
simplified PIFON-EPT and generalized PIFON-EPT.

1) Simplified PIFON-EPT: Assumes piece-wise constant EP
and does not require any assumption on 3, . Following (4), the
Helmholtz residual (10) can be represented as:

Ry = V2B (1;01) + kEEc(r;02)B (1;01).  (12)

2) Generalized PIFON-EPT: Assumes B, = 0 and uses the
generalized (6). The Helmholtz residual (10) becomes:

1
Rer = VBT (r;01) + k3 (r;02) B (r;01) — E(ri03)
OBY (ri01) OBI(ri01)\ (09€c(r;02) 0&c(r;6s)
81: t ay 82: ! 8y
B 1 OB (r;04) 0€c(r;02) (13)
E(ri0:) \ 0z 0z )

Both techniques rely on knowledge of the absolute phase
of By, which for a quadrature birdcage coil can be estimated
from the transceive phase assumption. Note that with a sufficient
number of transmit-receive coils, it is theoretically possible to
solve for both the unknown absolute phase and B, [53], although
the lack of suitable multi-channel coils and the computational
complexity of such solution has prevented practical implemen-
tations.

IV. RESULTS

We present a series of numerical examples to demonstrate
the effectiveness of our proposed PIFON-EPT framework.
Throughout all experiments, unless otherwise specified, we used
simulated complex B;" maps as measured data and corrupted
them with white Gaussian noise with a standard deviation equal
to the ratio of the peak value of |B; | to a prescribed peak
signal-to-noise-ratio (SNR) value. The simulations were per-
formed with the volume [54] and the volume-surface integral
equation [55], [56] methods. The volume equations were solved
using higher-order polynomials [57] as basis functions to en-
sure accuracy in the B distributions. All experiments were
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performed on a server running Ubuntu 20.04.3 LTS operating
system, with an Intel(R) Xeon(R) Silver 4216 CPU at 2.10 GHz,
64 cores, 2 threads per core, and an NVIDIA RTX 3090 GPU
with 24 GB of memory.

To measure the discrepancy between the prediction () and
ground-truth (v € RY) values we used the peak normalized
absolute error (PNAE), defined as:

lv = lls

0]l

PNAE(9, v) = (14)

A. Validation Against the Analytical Solution

To verify our method, we used a complex B;" map obtained
from the Mie Scattering theory [58] for an infinitely long homo-
geneous dielectric cylinder of relative permittivity 3 and electric
conductivity 0.01 S/m, and it’s air outside the cylinder. The
operating wavelength was A = 2.437 m and the cylinder had
aradius r equal to the wavelength. A TMz planewave was used
as the excitation.

1) Data Acquisition: We considered a representative section
of the cylinder and computed the B field distribution in the
domain [—2r, 2r] x [—2r, 2r] using Mie scattering theory [59].
The pixel isotropic resolution was set to 0.051 so that the
section was 81 x 81 for a total of 6561 voxels. We corrupted the
synthetic By field with Gaussian noise of peak SNR of 200 and
then scaled the noisy field with the peak value of | B"| to obtain
synthetic B;” measurements. The resulting B fields were used
as the measured data for PIFON-EPT.

2) PIFON Training Settings: B Net was constructed by a
Fourier features mapping initialized with s = 2 as a coordinate
embedding of the input, followed by a fully-connected neural
network with 3 layers, 128 units per layer. EP Net was con-
structed using a fully-connected neural network with 3 layers,
128 units per layer. We set all the activation functions as the
Sine function. We set A = 104 in (11). We trained Bfr Net and
EP Net jointly using the Adam optimizer for 120 k iterations
in total, with a decaying schedule of learning rates 1073, 1074,
1072 decreased every 40 k iterations, which took ~ 30 minutes
and ~40 minutes for employing simplified PIFON-EPT and
generalized PIFON-EPT, respectively.

3) Results: We tested the performance of the simplified and
generalized PIFON-EPT using the same training settings. Figs. 2
and 3 compare the reconstructed EP against the ground truth val-
ues for the simplified and generalized PIFON-EPT, respectively.
Figs. 4 and 5 compare ground truth and reconstructed B;” maps
for the simplified and generalized PIFON-EPT, respectively. The
average PNAE over the domain for the relative permittivity, con-
ductivity, and B fr was 3.96%,9.67% and 0.22%, respectively for
the simplified PIFON-EPT. The error decreased to 1.80%, 1.11%
and 0.20%, when the generalized PIFON-EPT was used. The
lower error in this case is because the generalized PIFON-EPT
is able to approximate better EPs at the boundary.

B. Concentric Cylindrical Phantom

We considered a two-compartment concentric cylindri-
cal phantom with relative permittivity ¢ = {70,78} and
conductivity o = {0.5,1} S/m (outer, inner). The cylinder
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Fig. 2. EP reconstruction with simplified PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth EP,
including relative permittivity (top) and conductivity (bottom), predicted EP
using BIL measurements with peak SNR of 200, peak-normalized absolute
errors, distribution of the error in 6561 voxels.
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Fig. 3. EP reconstruction with generalized PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth EP,
including relative permittivity (top) and conductivity (bottom), predicted EP
using Bf measurements with peak SNR of 200, peak-normalized absolute
errors, distribution of the error in 6561 voxels.
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Fig. 4. Reconstructed B;r with simplified PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth

noise-free synthetic BT ,including magnitude (top) and transmit phase (bottom),

reconstructed Bfr from noisy synthetic Bfr measurements with peak SNR of
200, peak-normalized absolute errors, distribution of the error in 6561 voxels.

loaded a high-pass birdcage coil with eight legs as shown in
Fig. 6. The outer and inner radius of the cylinder were 6 cm and
3 cm, respectively, and its length was 14 cm. For this example,
we compared the proposed PIFON-EPT with the Helmholtz-
EPT (H-EPT) and the Convection-Reaction EPT (CR-EPT) (see
II-B). In particular, we used the implementations in EPTIib [40],
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Fig. 5. Reconstructed Bf with generalized PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth

noise-free synthetic B, including magnitude (top) and transmit phase (bottom),

reconstructed Bfr from noisy synthetic B;r measurements with peak SNR of
200, peak-normalized absolute errors, distribution of the error in 6561 voxels.

Fig. 6. Geometry of the high-pass birdcage coil loaded with a two-
compartments cylindrical phantom.

with the Savitzky-Golay filter with an ellipsoid-shaped kernel
of size 2 X 2 x 2 to approximate all the gradients. For CR-EPT,
we set the diffusion coefficient to 0.02 and the conductivity
boundary condition to 0.55 S/m.

1) Data Acquisition: We used the volume-surface integral
equation method [56] to simulate the circularly polarized (CP)
mode of the birdcage coil loaded with the cylindrical phantom
at 3 T. The resolution was set to 2 mm?>. We used B and By
from the central region of the cylinder (12 x 12 x 2 cm?,
MR measurements out of cylindrical phantom were not used)
and corrupted them with Gaussian noise of peak SNR of 200.
We approximated the complex B; using the transceive phase
assumption (TPA) and constructed the MR measurements |Bf‘ |
and ¢+

2) PIFON Training Settings: The B, field of a birdcage is
negligible around the mid-plane of the coil. For this reason, we
used the generalized PIFON-EPT to perform the reconstruction.
For Bf' Net, the Fourier feature mapping was initialized with
s = 40 as a coordinate embedding of the input, followed by a
fully-connected neural network with 6 layers, 128 units per layer.
EP Net was an additional Fourier neural network constructed by
a Fourier feature mapping initialized with s = 2, followed by a
fully-connected neural network with 6 layers, 128 units per layer.
We set all the activation functions as the Sine function and set
A =10"%in (11). We trained B;" Net and EP Net jointly using
the Adam optimizer for 120 k iterations in total, with a decaying
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Fig. 7. EP reconstructed with generalized PIFON-EPT for the two-
compartment cylindrical phantom. From left to right, ground truth EP for
the central axial cut of the phantom, including relative permittivity (top) and
conductivity (bottom), estimated EP using synthetic Bf measurements with
peak SNR of 200, peak-normalized absolute errors, distribution of the error in

31031 voxels.
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Fig. 8. Reconstructed Bi" with generalized PIFON-EPT for the two-
compartment cylindrical phantom. From left to right, noise-free synthetic Bf
for the central axial cut, including magnitude (top) and transmit phase (bot-
tom), reconstructed Bf' field from noisy Bf' measurements, peak-normalized
absolute errors, distribution of the error in 31031 voxels.
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schedule of learning rates 1073, 104, 107> decreased every
40 k iterations. Note that the network settings have to change
for different experimental setups”. In particular, the total number
of iterations is determined based on the network size, and deep
neural networks usually require more iterations to converge than
shallow networks. The overall training time was 220 minutes on
our GPU.

3) Results: The reconstructed EP (Fig. 7) and Bf’ (Fig. 8) are
presented for the central axial cut of the cylinder. The average
PNAE over the entire volume of the cylinder was 4.84%, 3.20%
and 0.25% for the relative permittivity, conductivity and B,
respectively.

Figs. 9 and 10 present the conductivity reconstruction results
for H-EPT and CR-EPT, respectively, along with the PNAE
distribution and the error histogram. The average PNAE over
the volume of the phantom was 51.80% and 11.28% for H-EPT
and CR-EPT, respectively.

C. Four-Compartment Phantom

In this example, we explore the performance of PIFON-EPT
at 7 T. We considered a previously used [19] tissue-mimicking
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Fig. 9. Conductivity reconstructed with phase-based H-EPT for the two-
compartment cylindrical phantom. From left to right, ground truth conductivity
for the central axial cut of the phantom, estimated conductivity using G+

measurements with peak SNR of 200, the peak-normalized absolute errors, the
distribution of the error in 17423 voxels.
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Fig. 10.
compartment cylindrical phantom. From left to right, ground truth conductivity
for the central axial cut of the phantom, estimated conductivity using @*
measurements with peak SNR of 200, the peak-normalized absolute errors, the
distribution of the error in 11645 voxels.
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Fig. 11. Noisy synthetic Bfr measurements. Magnitude (left) and transmit
phase (right) are shown for the central axial cut of the Four-compartment
phantom. The peak SNR was set to 50.

o

four-compartment phantom shaped as a 20 x 20 x 20 cm?® rect-
angular parallelepiped. The relative permittivity values of the
four compartments were 51, 56, 65, and 76. The corresponding
electric conductivity values were 0.56, 0.69, 0.84, and 1.02 S/m.

1) Data Acquisition: We used a single external excitation to
illuminate the phantom, generated from a numerical electromag-
netic basis [60], similar to previous work [19]. We used 6 mm
isotropic voxel resolution. We corrupted the synthetic B;~ with
different levels of Gaussian noise (Peak SNR = 200, 100, 50,
20) and then scaled each field map by the corresponding peak
value of |B;"| to obtain synthetic Bf' measurements. The case
of peak SNR = 50 is shown in Fig. 11.

2) PIFON Training Settings: Since the B; field in the z
direction cannot be assumed zero at 7 T, we used the simplified
PIFON-EPT. The B;" Net was constructed using a Fourier fea-
ture mapping initialized with s = 40 as a coordinate embedding
of the input, followed by a fully-connected neural network with
3 layers, 128 units per layer. For EP Net, we used a second
fully-connected neural network with 3 layers, 128 units per layer.
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Fig. 12. EP reconstructed with simplified PIFON-EPT for the four-
compartment phantom. From left to right, ground truth EP for the central
axial cut of the phantom, including relative permittivity (top) and conductivity
(bottom), EP reconstructed from synthetic B;r measurements with peak SNR
of 50, peak-normalized absolute errors, error distribution in 32768 voxels.
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Fig. 13. Reconstructed Bl+ with simplified PIFON-EPT for the four-
compartment phantom. From left to right, ground truth synthetic B;r for
the central axial cut of the phantom, including magnitude (top) and transmit
phase (bottom), reconstructed B;" field from noise-corrupted synthetic Bf'
measurements with peak SNR of 50, the peak-normalized absolute errors, the
distribution of the error in 32768 voxels.
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We set all the activation functions as the Sine function. We set
A =10"%1in (11). We trained B;" Net and EP Net jointly using
the Adam optimizer for 30 k iterations in total, with a decaying
schedule of learning rates 1073, 10~#, 10~° decreased every 10k
iterations, which took 21.4 minutes on our GPU.

3) Results: Figs. 12 and 13 presents the reconstructed EP and
B; map (absolute value and phase) for the central slice of the
four-compartment phantom, respectively. Our method removed
the noise from the noisy synthetic measurements (Fig. 11) and
the reconstructed Bf' (Fig. 13) was indistinguishable from the
noise-free ground truth. The average PNAE over the volume of
the phantom was 2.47%, 4.01%, 0.24% for the relative permit-
tivity, conductivity and B;", respectively.

The average PNAE for the reconstructed EP and B;" for differ-
entlevels of noise in the synthetic measurements are summarized
in Table I. The reconstructions were robust for a wide range of
noise levels.

D. Incomplete Four-Compartment Phantom

In this final numerical experiment, we used the same four-
compartment phantom as before, but we assumed the synthetic
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TABLE I
ROBUSTNESS ANALYSIS OF PIFON-EPT WITH RESPECT TO THE NOISE LEVEL
Peak SNR
cak S 200 100 50 20
PNAE
e 256% | 2.64% | 247% | 2.56%
p 400% | 4.10% | 401% | 3.96%
B 0.15% | 0.17% | 024% | 0.49%

Incomplete noisy synthetic é{ measurements

—n

Fig. 14.  Incomplete noisy synthetic BIL measurements with 50% of the voxels
set to zero. Magnitude (left) and transmit phase (right) are shown for the central
axial cut of the Four-compartment phantom. The peak SNR was set to 50.

Bf“ measurements were incomplete, which could happen in
reality if the measured MR signal used to reconstruct the B
maps is too low or corrupted for certain voxels. We tested
whether PIFON-EPT could reconstruct the EP and a complete,
denoised B; for the entire volume.

1) Data Acquisition: We randomly set to zero from 20% to
90% of the voxels in the synthetic Bf measurements with peak
SNR of 50. As a result, only 10% to 80% of the measurements
were used as input for simplified PIFON-EPT. Fig. 14 shows
one of the resulting Bf measurements for the central axial cut,
where 50% of the B; values were set to zero.

2) Results: We used the same training settings as for the
previous experiment. The total training time when we used
10%, 20%, 50%, and 80% of the measurements was 10, 11,
15, and 18 minutes, respectively. For the case where only 50%
of the synthetic Bf measurements were used, Figs. 15 and 16
show the ground truth EP and noise-free synthetic B (first
column), the reconstructed EP and the denoised and completed
By (second column), and the PNAE of the predicted EP and B}
(third column) for the central slice of the phantom. The fourth
column presents the error distribution over the entire volume
of the phantom. We found that our method could accurately
reconstruct the EP and B; for the whole domain, despite using
partial measurements as the input. The average PNAE over the
entire volume of the phantom was 2.49%, 4.09% and 0.32% for
the relative permittivity, conductivity, and Bi", respectively.

Table 1T summarizes the average PNAE for the EP and B}
when different percentages of the synthetic measurements were
used. The error for the B; reconstruction increased when a
smaller percentage of the data was used. However, PIFON-EPT
yielded robust results for the EP maps until as little as 20% of
the measurements were used as inputs.
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Fig. 15.  Reconstructed EP with simplified PIFON-EPT for the incomplete
four-compartment phantom. From left to right, ground truth EP for the central
axial cut of the phantom, including relative permittivity (top) and conductivity
(bottom), estimated EP using 50% of Bf‘ with peak SNR of 50, the peak-
normalized absolute errors, the distribution of the error in 32768 voxels.
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Fig. 16. Reconstructed BfL with simplified PIFON-EPT for the incomplete
four-compartment phantom. From left to right, magnitude (top) and transmit
phase (bottom) of the synthetic Bfr field for the central axial cut of the phantom,
reconstructed Bf field using 50% of BfL with peak SNR of 50, peak-normalized
absolute errors, error distribution in 32768 voxels.
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TABLE 11
PERFORMANCE OF PIFON-EPT WITH RESPECT TO THE PERCENTAGE OF
MEASUREMENTS USED AS INPUT FOR THE RECONSTRUCTIONS

Jbofthe Data | oo | oy | 20% | 10%
PNAE
er 241% | 249% | 2.77% | 1.22%
o 3.94% | 4.09% | 4.06% | 7.58%
B 0.26% | 0.32% | 0.57% | 2.69%

V. DISCUSSION

In this work, we reformulated EPT as a physics-constrained
optimization problem with the goal to train two independent
neural networks (B; Net and EP Net) to represent the B; and
EP at any location of interest. To achieve that, we minimized a
composite loss that aims to fit B measurements while penal-
izing the PDE residual (see Fig. 1) via gradient descent with
Adam optimizer [50]. Penalizing the PDE residual not only
helps EP Net predict the EP distributions that best describe
the measured data but also prevents B;” Net from fitting the
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noise. Compared with standard EPT methods [14], [16] that
rely on numerical derivatives to approximate gradients of noisy
Bf measurements, which is prone to noise amplifications and
artifacts, PIFON-EPT uses automatic differentiation [33] to
calculate all the necessary gradients from de-noised Bf maps
provided by B; Net. This way of computing derivatives makes
our method robust to noise. Unlike previous supervised deep
learning-based EPT methods [26], [27], [28], [29], [30], our
approach does not require a large amount of known data pairs
to supervise the training. Compared with previous hybrid deep
learning EPT methods [31], [32], which combine deep learning
and CR-EPT to solve EP from convection-reaction equations,
our method directly trains a neural network (EP Net) to represent
the EP based on measured data and the Helmholtz PDE without
requiring any boundary conditions and hyperparameter tuning
for the diffusion coefficient.

A major concern for B 1+ maps represented by neural networks
is that deep fully-connected networks could fail to learn high-
frequency components of the target functions because of the
spectral bias [61], [62], [63], [64]. To overcome the spectral
bias and ensure that B;" Net would efficiently learn the high-
frequency details of B;", we applied Fourier features mapping
as an input embedding to the B;". In the concentric cylindrical
phantom example, we also applied Fourier features mapping
to EP Net because it could help the network avoid predicting
homogeneous EP distributions.

In simplified PIFON-EPT, we assume a homogeneous dis-
tribution of EP. This assumption introduces errors near the
interface between regions of different EP values and can de-
teriorate the quality of the reconstructions. When B, is negli-
gible, the generalized PIFON-EPT can be used which allows
the estimation of inhomogeneous EP distributions based on the
generalized Helmholtz (6) which can greatly decrease the errors
near the tissue boundaries (see IV-A). In fact, we showed that
PIFON-EPT returned 48.6% and 8.08% more accurate results
on average compared to H-EPT and CR-EPT (see IV-B). Fur-
thermore, CR-EPT required tuning of the boundary condition
value and the diffusion coefficient parameter until the recon-
structed conductivity was close to the ground-truth value, which
is not practical in experiments where the ground-truth values are
unknown.

To the best of our knowledge, PIFON-EPT is the only EPT
method that can reconstruct EP and B; for an entire object, us-
ing incomplete and noisy B;” measurements. We demonstrated
this for an ultra-high field MRI example, using complex-valued
synthetic B;” measurements. The same approach would be
impractical in actual experiments because the absolute phase
of the Bj is not measurable and the TPA does not hold at 7 T.
However, note that PIFON-EPT could be adapted to work with
multiple transmit coils, which could provide enough degrees of
freedom to enable EP reconstruction using the relative phase of
Bf“ between the coil channels [19], [53], which can be measured.
This approach will be explored in future work.

The current version of PIFON-EPT has a limitation when
B, can not be assumed equal to zero. In this case, boundary
artifacts appearing in the reconstructed EP cannot be eliminated.

Previous work suggests that this limitation could be overcome
by using multiple transmit-receive coils [53]. In this work, we
used instead a birdcage coil, for which B, can be assumed
negligible if the main field strength is lower or equal to 3 T.
However, we found that our network’s expressive power was
not enough to reconstruct both the EP and the B in such a
case. To address this, we made our network deeper and used
more complex architectures (for example, we included Fourier
mapping also in the EP Net) to accurately represent the EP and
Bf' , which ultimately increased the network’s training time.
This problem could be solved by designing compressed network
architectures [65], [66] to replace the current fully-connected
neural networks.

VI. CONCLUSION

We introduced PIFON-EPT, a new technique to estimate
EP and magnetic transmit field distributions from noisy and/or
incomplete MR measurements. We demonstrated our new ap-
proach using a series of numerical examples, showing that
PIFON-EPT is accurate and robust even when its input is cor-
rupted with a significant amount of noise. Since PIFON-EPT
can efficiently de-noise MR measurements, it has the potential
to improve other MR-based EPT methods that rely on magnetic
transmit fields as inputs. In future work, we will investigate the
performance of the proposed algorithms with realistic human
head models and perform experimental validation.
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