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Abstract—We propose Physics-Informed Fourier Networks for
Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep
learning-based method for EP reconstruction using noisy and/or in-
complete magnetic resonance (MR) measurements. Our approach
leverages the Helmholtz equation to constrain two networks, re-
sponsible for the denoising and completion of the transmit fields,
and the estimation of the object’s EP, respectively. We embed a ran-
dom Fourier features mapping into our networks to enable efficient
learning of high-frequency details encoded in the transmit fields.
We demonstrated the efficacy of PIFON-EPT through several sim-
ulated experiments at 3 and 7 T (T) MR imaging, and showed that
our method can reconstruct physically consistent EP and transmit
fields. Specifically, when only 20% of the noisy measured fields were
used as inputs, PIFON-EPT reconstructed the EP of a phantom
with ≤ 5% error, and denoised and completed the measurements
with ≤ 1% error. Additionally, we adapted PIFON-EPT to solve
the generalized Helmholtz equation that accounts for gradients
of EP between inhomogeneities. This yielded improved results at
interfaces between different materials without explicit knowledge
of boundary conditions. PIFON-EPT is the first method that can
simultaneously reconstruct EP and transmit fields from incomplete
noisy MR measurements, providing new opportunities for EPT
research.

Index Terms—Electrical property mapping, fourier features
mapping, magnetic resonance imaging, physics informed neural
networks.
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I. INTRODUCTION

E
LECTRICAL properties (EP), namely relative permittivity

and electric conductivity, determine the interactions be-

tween electromagnetic waves and biological tissue [1], [2]. EP

have the potential to be employed as biomarkers for pathologies

such as cerebral ischemia [3], [4] and cancer [5], [6], [7], [8].

EP could also be used to improve the effectiveness of existing

therapeutic modalities such as radiofrequency hyperthermia [9],

[10], [11].

Several EP tomography (EPT) methods have been proposed

that are based on MR measurements, such as the magnetic

transmit (B+

1 ) or receive (B−
1 ) field maps [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22]. These techniques

can be classified based on the form of Maxwell’s equations

(differential or integral) they use to fit the MR measurements.

Differential methods, such as the Helmholtz EPT (H-EPT) [14]

or the Convection-Reaction EPT (CR-EPT) [16], require the

calculations of spatial derivatives of noisy measured B+

1 maps,

which lead to errors and artifacts in the reconstructions [23]. On

the other hand, integral equation-based methods [19], [20] are

robust to noise, but require computationally expensive iterative

optimizations that rely on an accurate model of the transmit

coils [24], [25] and fine-tuned regularization parameters.

Recently, data-driven deep learning-based methods have been

introduced for EP reconstruction [26], [27], [28], [29] to mitigate

the noise amplifications and high computational cost of standard

methods. These methods treat MR measurements and EP distri-

butions as 2D images or 3D volumes, and train regression con-

volution neural networks as surrogate EP reconstruction models

from simulated training data. These supervised learning-based

techniques perform well in simulation, but they are not reliable

in vivo due to the necessarily limited number of different cases

included in the training data. To improve the generalization

to in-vivo data, hybrid techniques that embed deep learning

into conventional EP mapping methods were proposed [30],

[31]. These hybrid methods use neural networks to generate

initial guesses of EP for iterative reconstruction schemes [30], or

diffusion and convection coefficients for the convection-reaction

equation [31]. While these approaches improve generalization,

several electromagnetic simulations are still required to generate

training data, which can be very expensive and time-consuming,

thus there is only a limited amount of available datasets. A recent
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hybrid technique directly reconstructs conductivity from input

transceive phases [32]. In such a method, a neural network is

trained to represent the input transceive phase map, where the

gradients of the phase are computed by automatic differenti-

ation [33] and then used to solve the phase-only convection-

reaction EPT. The reconstructed conductivity is compared with

ground-truth values at the boundary, as a regularization for the

neural network that represents the phase. Since this method re-

tains the physics of EPT, it does not require a comprehensive set

of electromagnetic simulations. However, learning a single neu-

ral network that can simultaneously represent the ground-truth

phase and provide accurate gradient approximations directly

from noisy measured phase maps is challenging, which is shown

by the fact that they yielded highly inaccurate EP reconstructions

in most cases.

Following our preliminary study [34], here we propose the

Physics-Informed Fourier Networks (PIFONs) Electrical Prop-

erties Tomography (PIFON-EPT) framework, which leverages

recent developments on physics-informed deep learning [35],

[36], [37], [38], and Fourier features mapping [39] to learn

both the EP distribution and the B+

1 field globally from noisy

and/or incomplete B̃+

1 measurements. The proposed framework

can efficiently de-noise the B̃+

1 measurements. Once trained,

PIFONs can accurately predict the EP and B+

1 field at any loca-

tion within the PDE domain, enhancing high-resolution imaging

capabilities. In contrast to integral equation-based methods [19],

[20], which necessitate repeated simulations of forward equa-

tions, PIFONs tackle the inverse problem directly. This approach

has the computational cost equivalent to solving a single for-

ward equation. Differently from other supervised learning-based

EPT methods [26], [27], [28], [29], our proposed PIFON-EPT

technique can reconstruct EP directly, without being trained on

known B+

1 and EP distribution pairs. Compared with recent

physics-aware hybrid EPT methods [31], [32] in which EP

are still solved numerically from convection-reaction equation

with boundary condition, our method represents EP as a neural

network constrained by the Helmholtz equations and does not

require any prior EP information.

The rest of the paper is organized as follows: In Section II, we

provide a brief overview of standard EPT methods. In Section III,

we describe the proposed novel PIFON-EPT framework. In

Section IV, we demonstrate the effectiveness of our PIFON-EPT

with four representative numerical experiments. Further discus-

sion is provided in Section V, whereas Section VI summarizes

the main points of this work.

II. TECHNICAL BACKGROUND

A. Fundamental Helmholtz Equations in MRI

The relation between the magnetic field (B) and the EP of a

medium can be described by the Helmholtz equation:

∇2B+ k20εcB+∇εc ×
∇×B

εc
= 0, (1)

where k0 is the wave number in vacuum and

εc = εr −
iσ

ωε0
, (2)

is the relative complex permittivity. Here, εr is the relative

permittivity and σ is the electric conductivity, i denotes the

imaginary unit, ω denotes the angular frequency, and ε0 denotes

the vacuum permittivity. Since the full transmit B1 cannot be

measured in an MRI scanner, but only its positively rotating

component B+

1 = (Bx + iBy)/2, we can re-write (1) with the

help of Gauss’ law (∇ ·B = 0) as:

∇2B+

1 + k20εcB
+

1 =

(

∂B+

1

∂x
− i

∂B+

1

∂y
+

1

2

∂Bz

∂z

)

(gx + igy)

+

(

∂B+

1

∂z
−

1

2

∂Bz

∂x
− i

1

2

∂Bz

∂y

)

gz. (3)

Here, g := (gx, gy, gz) := ∇ ln εc. If we assume a smooth dis-

tribution of the EP, their gradient g can be ignored, and (3)

becomes the homogeneous Helmholtz equation:

∇2B+

1 + k20εcB
+

1 = 0. (4)

B. Standard Differential EPT Methods

One can solve (3) and (4) for the EP, starting from measured

B+

1 maps. There are several methods based on such approach

(here is a non-exhaustive list [14], [15], [16], [17], [18], [19],

[20], [21]). Next, we provide a brief overview of two popular

ones: the Helmholtz EPT [14] and the Convection-Reaction

EPT [16]. Both techniques require the knowledge of absolute

phase of B+

1 , which, for birdcage coils, can be estimated with

the transceive assumption [14]. Open-source software imple-

mentations of these methods can be found in EPTlib [40].

1) Helmholtz EPT: Assuming a homogeneous distribution

of the EP and access to measured complex B̃+

1 maps, one can

directly invert the homogeneous Helmholtz (4) to estimate the

EP:

εc = −
∇2B̃+

1

k20B̃
+

1

. (5)

The second-order spatial derivatives of the measured B̃+

1 can

be computed via finite difference approaches. If the measured

fields are noisy, smoothing filters such as the 2nd order Savitzky-

Golay filter [41] can be applied to improve the numerical

derivatives.

2) Convection-Reaction EPT: High-field MRI scanners (<
7 T) utilize birdcage-based body coils [42] for transmission. In

these cases, the Bz component of the coil’s magnetic field can

be assumed negligible near the mid-plane of the scanner bore.

As a result, the generalized Helmholtz (3) can be simplified as:

∇2B̃+

1 + k20εcB̃
+

1 =

(

∂B̃+

1

∂x
− i

∂B̃+

1

∂y

)

(gx + igy)

+
∂B̃+

1

∂z
· gz. (6)
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Fig. 1. PIFON-EPT workflow. Two separate fully-connected neural networksB+

1
Net (B+

1
(r;θ1)) and EP Net (Ec(r;θ2)) are defined to take spatial coordinates

r = (x, y, z) as inputs and output the corresponding B+

1
field and the EP distributions, respectively at the same r locations. The B+

1
Net and EP Net are trained

jointly by minimizing a composite loss function that aims to fit the measured B̃+

1
data (blue dotted box) while also penalizing the PDE residual. Once trained, the

resulting physics-informed B+

1
Net and EP Net can be used to obtain physically consistent predictions of B+

1
and EP at any arbitrary 3D location. A representative

axial cut of the outputs of the neural networks obtained at different iterations during training is shown at the bottom (red dotted box).

If we let γ = 1/εc, (6) can be rewritten as the convection-

reaction equation with a zero diffusion term with respect to γ
[16]:

∇2B̃+

1 · γ + k20B̃
+

1 = −

(

∂B̃+

1

∂x
− i

∂B̃+

1

∂y

)

(

∂γ

∂x
+ i

∂γ

∂y

)

−
∂B̃+

1

∂z
·
∂γ

∂z
. (7)

By imposing appropriate boundary conditions (for example, the

value of γ at the boundary of the domain), the convection-

reaction (7) can be solved with a mesh-based finite difference

scheme for γ. As for Helmholts EPT, also in this case the

gradients of the measured B̃+

1 can be estimated using the

Savitzky-Golay filter [41]. Since at MRI frequencies below

3 T, the absolute phase of B+

1 is almost independent from the

permittivity [13], it is possible to perform conductivity-only

reconstructions using only the absolute phase of B̃+

1 [22]. It

is also possible to include an artificial diffusion term to the

convection-reaction equation to stabilize and improve the re-

construction results [43].

III. METHODS

Our proposed PIFON-EPT is a deep learning-based

framework for robust EP estimation using noisy and/or incom-

plete complex-valued MR measurements. Note that since in MRI

we do not have direct access to the absolute phase ofB+

1 , we can

rely on symmetry assumptions to estimate the complex-valued

field in actual experiments. Specifically, at 1.5 and 3 T (T), when

RF birdcage coils are used for transmission and reception in

quadrature, theB+

1 andB−
1 phases are approximately equal [13],

[14]. Therefore, since the transceive phase is measurable [44],

we can approximate the absolute phase of B+

1 as half the

transceive phase. The goal of PIFON-EPT is to learn the EP

distributions globally that best describe the complex-valued B+

1

at any spatial location (x, y, z), given {(ri, B̃
+

1 (ri))}
N
i=1 only

for a limited N locations ri = (xi, yi, zi). The workflow of

PIFON-EPT is summarized in Fig. 1.

A. PIFON-EPT Workflow

Traditional EPT methods based on finite difference approx-

imation of derivatives of B+

1 (5), (7) can lead to noise ampli-

fications in the reconstructed EP distributions. To prevent this,

we seek to solve an optimization problem constrained by the
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measured data and physical laws using physics-informed deep

learning [35]. We denote the Helmholtz equation that describes

the physical laws that must be satisfied by B+

1 in the general

form on a d-dimension domain Ω ∈ R
d:

Nr[B
+

1 ; ε(r)](r) = 0, (8)

where r ∈ R
d is a spatial coordinate and Nr[·; ε] is a symbolic

representation of the Helmholtz (4) or (6). ε(r) denotes the

complex-valued EP at the location r and B+

1 (r) describes the

hiddenB+

1 field solution governed by (8). GivenN noisy and/or

incomplete measurements {ri, B̃
+

1 (ri)}
N
i=1, we aim to learn the

EP distributions ε as well as theB+

1 for all r. To do so, we define

a Fourier neural network B
+

1 (r;θ1), constructed by Gaussian

random Fourier features [39] followed by a fully-connected

neural network with a set of weights and biases θ1, to represent

the complex B+

1 field. The Gaussian random Fourier features

mapping is defined as:

γ(r) =

[

cos(Br)
sin(Br)

]

, (9)

where each entry in B ∈ Rm×3 is sampled from a Gaussian

distributionN(0, s2). 2m equals the width of the fully-connected

neural network following the defined Fourier features and s > 0
is a task-specific hyperparameter. We use an additional fully-

connected neural network Ec(r;θ2) with independent weights

and biases θ2 to estimate the distribution of EP. Hereinafter,

we refer to B
+

1 (r;θ1) and Ec(r;θ2) as B+

1 net and EP net,

respectively. The PDE residual of (8) is transformed to:

R(r, θ1, θ2) := Nr[B
+

1 (r;θ1);Ec(r;θ2)](r). (10)

Similar to other machine learning tasks [45], [46], here a

good set of candidate parameters {θ1, θ2} can be obtained by

minimizing the following composite loss function via gradient

descent [47], [48], [49] with the Adam optimizer [50]:

L(θ1, θ2) = Ldata (θ1) + λLr(θ1, θ2),

Ldata (θ1) =
1

N

N
∑

i=1

|Re{B+

1 (ri;θ1)} − Re{B̃+

1 (ri)}|
2

+
1

N

N
∑

i=1

|Im{B+

1 (ri;θ1)} − Im{B̃+

1 (ri)}|
2,

Lr(θ1, θ2) =
1

N

N
∑

i=1

|R(ri,θ1, θ2)|
2. (11)

Ldata denotes the data mismatch and Lr denotes the PDE resid-

ual. λ denotes the weight coefficient in the loss function, which

balances the two loss terms in the composite loss. We remark

that λ is a hyperparameter that can either be specified by the

user or be tuned automatically [51], [52]. All the derivatives of

B
+

1 (r;θ1) and Ec(r;θ2) with respect to the spatial coordinate

r as well as the gradient of the loss function with respect to

the neural network parameters {θ1, θ2}, are computed using

automatic differentiation algorithms [33].

The workflow of our proposed PIFON-EPT (Fig. 1) can

be summarized as follow. First, we define two separate fully-

connected neural networks B+

1 Net and EP Net (Ec(r;θ2)) to

represent the B+

1 and the EP, respectively. A random Fourier

features mapping (see Fig. 1 green dotted box) is embedded into

B+

1 Net to learn high frequency components of the target B+

1

field solution more efficiently [39]. Second, B+

1 Net and EP

Net are trained jointly by minimizing a composite loss function

that aims to fit the measured B̃+

1 data (see Fig. 1 blue dotted

box), while satisfying the physics laws characterized by the

PDE residual. The trained physics-informed B+

1 Net and EP

Net facilitate the generation of physically consistent B+

1 and EP

predictions at any desired spatial point, respectively (see Fig. 1

bottom red dotted boxes). In particular the B+

1 Net denoises and

completes the input B̃+

1 .

B. Choice of Helmholtz Equation

If we assume piece-wise constant EP, then the Helmholtz

equation simplifies as in (4). Equation (6) is a generalized form of

the same equation, which accounts for gradients of EP, but is yet

not fully general because to reduce the number of unknowns, we

assumed thatBz is equal to zero. Depending on which Helmholtz

equation is used, we introduced two variants of PIFON-EPT:

simplified PIFON-EPT and generalized PIFON-EPT.

1) Simplified PIFON-EPT: Assumes piece-wise constant EP

and does not require any assumption on Bz . Following (4), the

Helmholtz residual (10) can be represented as:

RH = ∇2
B

+

1 (r;θ1) + k20Ec(r;θ2)B
+

1 (r;θ1). (12)

2) Generalized PIFON-EPT: Assumes Bz ≈ 0 and uses the

generalized (6). The Helmholtz residual (10) becomes:

RGH = ∇2
B

+

1 (r;θ1) + k20Ec(r;θ2)B
+

1 (r;θ1)−
1

Ec(r;θ2)
(

∂B+

1 (r;θ1)

∂x
−i

∂B+

1 (r;θ1)

∂y

)(

∂Ec(r;θ2)

∂x
+i

∂Ec(r;θ2)

∂y

)

−
1

Ec(r;θ2)

(

∂B+

1 (r;θ1)

∂z
·
∂Ec(r;θ2)

∂z

)

. (13)

Both techniques rely on knowledge of the absolute phase

of B+

1 , which for a quadrature birdcage coil can be estimated

from the transceive phase assumption. Note that with a sufficient

number of transmit-receive coils, it is theoretically possible to

solve for both the unknown absolute phase andBz [53], although

the lack of suitable multi-channel coils and the computational

complexity of such solution has prevented practical implemen-

tations.

IV. RESULTS

We present a series of numerical examples to demonstrate

the effectiveness of our proposed PIFON-EPT framework.

Throughout all experiments, unless otherwise specified, we used

simulated complex B+

1 maps as measured data and corrupted

them with white Gaussian noise with a standard deviation equal

to the ratio of the peak value of |B+

1 | to a prescribed peak

signal-to-noise-ratio (SNR) value. The simulations were per-

formed with the volume [54] and the volume-surface integral

equation [55], [56] methods. The volume equations were solved

using higher-order polynomials [57] as basis functions to en-

sure accuracy in the B+

1 distributions. All experiments were
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performed on a server running Ubuntu 20.04.3 LTS operating

system, with an Intel(R) Xeon(R) Silver 4216 CPU at 2.10 GHz,

64 cores, 2 threads per core, and an NVIDIA RTX 3090 GPU

with 24 GB of memory.

To measure the discrepancy between the prediction (v̂) and

ground-truth (v ∈ R
N ) values we used the peak normalized

absolute error (PNAE), defined as:

PNAE(v̂,v) =
‖v − v̂‖1
‖v‖∞

. (14)

A. Validation Against the Analytical Solution

To verify our method, we used a complex B+

1 map obtained

from the Mie Scattering theory [58] for an infinitely long homo-

geneous dielectric cylinder of relative permittivity 3 and electric

conductivity 0.01 S/m, and it’s air outside the cylinder. The

operating wavelength was λ = 2.437 m and the cylinder had

a radius r equal to the wavelength. A TMz planewave was used

as the excitation.

1) Data Acquisition: We considered a representative section

of the cylinder and computed the B+

1 field distribution in the

domain [−2r, 2r]× [−2r, 2r] using Mie scattering theory [59].

The pixel isotropic resolution was set to 0.05λ so that the

section was 81× 81 for a total of 6561 voxels. We corrupted the

synthetic B+

1 field with Gaussian noise of peak SNR of 200 and

then scaled the noisy field with the peak value of |B+

1 | to obtain

synthetic B̃+

1 measurements. The resulting B̃+

1 fields were used

as the measured data for PIFON-EPT.

2) PIFON Training Settings: B+

1 Net was constructed by a

Fourier features mapping initialized with s = 2 as a coordinate

embedding of the input, followed by a fully-connected neural

network with 3 layers, 128 units per layer. EP Net was con-

structed using a fully-connected neural network with 3 layers,

128 units per layer. We set all the activation functions as the

Sine function. We set λ = 10−4 in (11). We trained B+

1 Net and

EP Net jointly using the Adam optimizer for 120 k iterations

in total, with a decaying schedule of learning rates 10−3, 10−4,

10−5 decreased every 40 k iterations, which took ∼30 minutes

and ∼40 minutes for employing simplified PIFON-EPT and

generalized PIFON-EPT, respectively.

3) Results: We tested the performance of the simplified and

generalized PIFON-EPT using the same training settings. Figs. 2

and 3 compare the reconstructed EP against the ground truth val-

ues for the simplified and generalized PIFON-EPT, respectively.

Figs. 4 and 5 compare ground truth and reconstructed B+

1 maps

for the simplified and generalized PIFON-EPT, respectively. The

average PNAE over the domain for the relative permittivity, con-

ductivity, andB+

1 was 3.96%, 9.67% and 0.22%, respectively for

the simplified PIFON-EPT. The error decreased to 1.80%, 1.11%

and 0.20%, when the generalized PIFON-EPT was used. The

lower error in this case is because the generalized PIFON-EPT

is able to approximate better EPs at the boundary.

B. Concentric Cylindrical Phantom

We considered a two-compartment concentric cylindri-

cal phantom with relative permittivity ε = {70, 78} and

conductivity σ = {0.5, 1} S/m (outer, inner). The cylinder

Fig. 2. EP reconstruction with simplified PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth EP,
including relative permittivity (top) and conductivity (bottom), predicted EP

using B̃+

1
measurements with peak SNR of 200, peak-normalized absolute

errors, distribution of the error in 6561 voxels.

Fig. 3. EP reconstruction with generalized PIFON-EPT for a representative
section of the uniform dielectric cylinder. From left to right, ground truth EP,
including relative permittivity (top) and conductivity (bottom), predicted EP

using B̃+

1
measurements with peak SNR of 200, peak-normalized absolute

errors, distribution of the error in 6561 voxels.

Fig. 4. Reconstructed B+

1
with simplified PIFON-EPT for a representative

section of the uniform dielectric cylinder. From left to right, ground truth

noise-free syntheticB+

1
, including magnitude (top) and transmit phase (bottom),

reconstructed B+

1
from noisy synthetic B̃+

1
measurements with peak SNR of

200, peak-normalized absolute errors, distribution of the error in 6561 voxels.

loaded a high-pass birdcage coil with eight legs as shown in

Fig. 6. The outer and inner radius of the cylinder were 6 cm and

3 cm, respectively, and its length was 14 cm. For this example,

we compared the proposed PIFON-EPT with the Helmholtz-

EPT (H-EPT) and the Convection-Reaction EPT (CR-EPT) (see

II-B). In particular, we used the implementations in EPTlib [40],
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Fig. 5. Reconstructed B+

1
with generalized PIFON-EPT for a representative

section of the uniform dielectric cylinder. From left to right, ground truth

noise-free syntheticB+

1
, including magnitude (top) and transmit phase (bottom),

reconstructed B+

1
from noisy synthetic B̃+

1
measurements with peak SNR of

200, peak-normalized absolute errors, distribution of the error in 6561 voxels.

Fig. 6. Geometry of the high-pass birdcage coil loaded with a two-
compartments cylindrical phantom.

with the Savitzky-Golay filter with an ellipsoid-shaped kernel

of size 2× 2× 2 to approximate all the gradients. For CR-EPT,

we set the diffusion coefficient to 0.02 and the conductivity

boundary condition to 0.55 S/m.

1) Data Acquisition: We used the volume-surface integral

equation method [56] to simulate the circularly polarized (CP)

mode of the birdcage coil loaded with the cylindrical phantom

at 3 T. The resolution was set to 2 mm3. We used B+

1 and B−
1

from the central region of the cylinder (12 × 12 × 2 cm3,

MR measurements out of cylindrical phantom were not used)

and corrupted them with Gaussian noise of peak SNR of 200.

We approximated the complex B+

1 using the transceive phase

assumption (TPA) and constructed the MR measurements |B̃+

1 |
and ϕ̃±.

2) PIFON Training Settings: The Bz field of a birdcage is

negligible around the mid-plane of the coil. For this reason, we

used the generalized PIFON-EPT to perform the reconstruction.

For B+

1 Net, the Fourier feature mapping was initialized with

s = 40 as a coordinate embedding of the input, followed by a

fully-connected neural network with 6 layers, 128 units per layer.

EP Net was an additional Fourier neural network constructed by

a Fourier feature mapping initialized with s = 2, followed by a

fully-connected neural network with 6 layers, 128 units per layer.

We set all the activation functions as the Sine function and set

λ = 10−8 in (11). We trained B+

1 Net and EP Net jointly using

the Adam optimizer for 120 k iterations in total, with a decaying

Fig. 7. EP reconstructed with generalized PIFON-EPT for the two-
compartment cylindrical phantom. From left to right, ground truth EP for
the central axial cut of the phantom, including relative permittivity (top) and

conductivity (bottom), estimated EP using synthetic B̃+

1
measurements with

peak SNR of 200, peak-normalized absolute errors, distribution of the error in
31031 voxels.

Fig. 8. Reconstructed B+

1
with generalized PIFON-EPT for the two-

compartment cylindrical phantom. From left to right, noise-free synthetic B+

1

for the central axial cut, including magnitude (top) and transmit phase (bot-

tom), reconstructed B+

1
field from noisy B̃+

1
measurements, peak-normalized

absolute errors, distribution of the error in 31031 voxels.

schedule of learning rates 10−3, 10−4, 10−5 decreased every

40 k iterations. Note that the network settings have to change

for different experimental setups”. In particular, the total number

of iterations is determined based on the network size, and deep

neural networks usually require more iterations to converge than

shallow networks. The overall training time was 220 minutes on

our GPU.

3) Results: The reconstructed EP (Fig. 7) andB+

1 (Fig. 8) are

presented for the central axial cut of the cylinder. The average

PNAE over the entire volume of the cylinder was 4.84%, 3.20%

and 0.25% for the relative permittivity, conductivity and B+

1 ,

respectively.

Figs. 9 and 10 present the conductivity reconstruction results

for H-EPT and CR-EPT, respectively, along with the PNAE

distribution and the error histogram. The average PNAE over

the volume of the phantom was 51.80% and 11.28% for H-EPT

and CR-EPT, respectively.

C. Four-Compartment Phantom

In this example, we explore the performance of PIFON-EPT

at 7 T. We considered a previously used [19] tissue-mimicking
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Fig. 9. Conductivity reconstructed with phase-based H-EPT for the two-
compartment cylindrical phantom. From left to right, ground truth conductivity
for the central axial cut of the phantom, estimated conductivity using ϕ̃±

measurements with peak SNR of 200, the peak-normalized absolute errors, the
distribution of the error in 17423 voxels.

Fig. 10. Conductivity reconstructed with phase-based CR-EPT for the two-
compartment cylindrical phantom. From left to right, ground truth conductivity
for the central axial cut of the phantom, estimated conductivity using ϕ̃±

measurements with peak SNR of 200, the peak-normalized absolute errors, the
distribution of the error in 11645 voxels.

Fig. 11. Noisy synthetic B̃+

1
measurements. Magnitude (left) and transmit

phase (right) are shown for the central axial cut of the Four-compartment
phantom. The peak SNR was set to 50.

four-compartment phantom shaped as a 20× 20× 20 cm3 rect-

angular parallelepiped. The relative permittivity values of the

four compartments were 51, 56, 65, and 76. The corresponding

electric conductivity values were 0.56, 0.69, 0.84, and 1.02 S/m.

1) Data Acquisition: We used a single external excitation to

illuminate the phantom, generated from a numerical electromag-

netic basis [60], similar to previous work [19]. We used 6 mm

isotropic voxel resolution. We corrupted the synthetic B+

1 with

different levels of Gaussian noise (Peak SNR = 200, 100, 50,

20) and then scaled each field map by the corresponding peak

value of |B+

1 | to obtain synthetic B̃+

1 measurements. The case

of peak SNR = 50 is shown in Fig. 11.

2) PIFON Training Settings: Since the B1 field in the z
direction cannot be assumed zero at 7 T, we used the simplified

PIFON-EPT. The B+

1 Net was constructed using a Fourier fea-

ture mapping initialized with s = 40 as a coordinate embedding

of the input, followed by a fully-connected neural network with

3 layers, 128 units per layer. For EP Net, we used a second

fully-connected neural network with 3 layers, 128 units per layer.

Fig. 12. EP reconstructed with simplified PIFON-EPT for the four-
compartment phantom. From left to right, ground truth EP for the central
axial cut of the phantom, including relative permittivity (top) and conductivity

(bottom), EP reconstructed from synthetic B̃+

1
measurements with peak SNR

of 50, peak-normalized absolute errors, error distribution in 32768 voxels.

Fig. 13. Reconstructed B+

1
with simplified PIFON-EPT for the four-

compartment phantom. From left to right, ground truth synthetic B+

1
for

the central axial cut of the phantom, including magnitude (top) and transmit

phase (bottom), reconstructed B+

1
field from noise-corrupted synthetic B̃+

1

measurements with peak SNR of 50, the peak-normalized absolute errors, the
distribution of the error in 32768 voxels.

We set all the activation functions as the Sine function. We set

λ = 10−8 in (11). We trained B+

1 Net and EP Net jointly using

the Adam optimizer for 30 k iterations in total, with a decaying

schedule of learning rates 10−3, 10−4, 10−5 decreased every 10 k

iterations, which took 21.4 minutes on our GPU.

3) Results: Figs. 12 and 13 presents the reconstructed EP and

B+

1 map (absolute value and phase) for the central slice of the

four-compartment phantom, respectively. Our method removed

the noise from the noisy synthetic measurements (Fig. 11) and

the reconstructed B+

1 (Fig. 13) was indistinguishable from the

noise-free ground truth. The average PNAE over the volume of

the phantom was 2.47%, 4.01%, 0.24% for the relative permit-

tivity, conductivity and B+

1 , respectively.

The average PNAE for the reconstructed EP andB+

1 for differ-

ent levels of noise in the synthetic measurements are summarized

in Table I. The reconstructions were robust for a wide range of

noise levels.

D. Incomplete Four-Compartment Phantom

In this final numerical experiment, we used the same four-

compartment phantom as before, but we assumed the synthetic
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TABLE I
ROBUSTNESS ANALYSIS OF PIFON-EPT WITH RESPECT TO THE NOISE LEVEL

Fig. 14. Incomplete noisy synthetic B̃+

1
measurements with 50% of the voxels

set to zero. Magnitude (left) and transmit phase (right) are shown for the central
axial cut of the Four-compartment phantom. The peak SNR was set to 50.

B̃+

1 measurements were incomplete, which could happen in

reality if the measured MR signal used to reconstruct the B+

1

maps is too low or corrupted for certain voxels. We tested

whether PIFON-EPT could reconstruct the EP and a complete,

denoised B+

1 for the entire volume.

1) Data Acquisition: We randomly set to zero from 20% to

90% of the voxels in the synthetic B̃+

1 measurements with peak

SNR of 50. As a result, only 10% to 80% of the measurements

were used as input for simplified PIFON-EPT. Fig. 14 shows

one of the resulting B̃+

1 measurements for the central axial cut,

where 50% of the B̃+

1 values were set to zero.

2) Results: We used the same training settings as for the

previous experiment. The total training time when we used

10%, 20%, 50%, and 80% of the measurements was 10, 11,

15, and 18 minutes, respectively. For the case where only 50%

of the synthetic B̃+

1 measurements were used, Figs. 15 and 16

show the ground truth EP and noise-free synthetic B+

1 (first

column), the reconstructed EP and the denoised and completed

B+

1 (second column), and the PNAE of the predicted EP andB+

1

(third column) for the central slice of the phantom. The fourth

column presents the error distribution over the entire volume

of the phantom. We found that our method could accurately

reconstruct the EP and B+

1 for the whole domain, despite using

partial measurements as the input. The average PNAE over the

entire volume of the phantom was 2.49%, 4.09% and 0.32% for

the relative permittivity, conductivity, and B+

1 , respectively.

Table II summarizes the average PNAE for the EP and B+

1

when different percentages of the synthetic measurements were

used. The error for the B+

1 reconstruction increased when a

smaller percentage of the data was used. However, PIFON-EPT

yielded robust results for the EP maps until as little as 20% of

the measurements were used as inputs.

Fig. 15. Reconstructed EP with simplified PIFON-EPT for the incomplete
four-compartment phantom. From left to right, ground truth EP for the central
axial cut of the phantom, including relative permittivity (top) and conductivity

(bottom), estimated EP using 50% of B̃+

1
with peak SNR of 50, the peak-

normalized absolute errors, the distribution of the error in 32768 voxels.

Fig. 16. Reconstructed B+

1
with simplified PIFON-EPT for the incomplete

four-compartment phantom. From left to right, magnitude (top) and transmit

phase (bottom) of the syntheticB+

1
field for the central axial cut of the phantom,

reconstructedB+

1
field using 50% of B̃+

1
with peak SNR of 50, peak-normalized

absolute errors, error distribution in 32768 voxels.

TABLE II
PERFORMANCE OF PIFON-EPT WITH RESPECT TO THE PERCENTAGE OF

MEASUREMENTS USED AS INPUT FOR THE RECONSTRUCTIONS

V. DISCUSSION

In this work, we reformulated EPT as a physics-constrained

optimization problem with the goal to train two independent

neural networks (B+

1 Net and EP Net) to represent the B+

1 and

EP at any location of interest. To achieve that, we minimized a

composite loss that aims to fit B̃+

1 measurements while penal-

izing the PDE residual (see Fig. 1) via gradient descent with

Adam optimizer [50]. Penalizing the PDE residual not only

helps EP Net predict the EP distributions that best describe

the measured data but also prevents B+

1 Net from fitting the
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noise. Compared with standard EPT methods [14], [16] that

rely on numerical derivatives to approximate gradients of noisy

B̃+

1 measurements, which is prone to noise amplifications and

artifacts, PIFON-EPT uses automatic differentiation [33] to

calculate all the necessary gradients from de-noised B+

1 maps

provided by B+

1 Net. This way of computing derivatives makes

our method robust to noise. Unlike previous supervised deep

learning-based EPT methods [26], [27], [28], [29], [30], our

approach does not require a large amount of known data pairs

to supervise the training. Compared with previous hybrid deep

learning EPT methods [31], [32], which combine deep learning

and CR-EPT to solve EP from convection-reaction equations,

our method directly trains a neural network (EP Net) to represent

the EP based on measured data and the Helmholtz PDE without

requiring any boundary conditions and hyperparameter tuning

for the diffusion coefficient.

A major concern forB+

1 maps represented by neural networks

is that deep fully-connected networks could fail to learn high-

frequency components of the target functions because of the

spectral bias [61], [62], [63], [64]. To overcome the spectral

bias and ensure that B+

1 Net would efficiently learn the high-

frequency details of B+

1 , we applied Fourier features mapping

as an input embedding to the B+

1 . In the concentric cylindrical

phantom example, we also applied Fourier features mapping

to EP Net because it could help the network avoid predicting

homogeneous EP distributions.

In simplified PIFON-EPT, we assume a homogeneous dis-

tribution of EP. This assumption introduces errors near the

interface between regions of different EP values and can de-

teriorate the quality of the reconstructions. When Bz is negli-

gible, the generalized PIFON-EPT can be used which allows

the estimation of inhomogeneous EP distributions based on the

generalized Helmholtz (6) which can greatly decrease the errors

near the tissue boundaries (see IV-A). In fact, we showed that

PIFON-EPT returned 48.6% and 8.08% more accurate results

on average compared to H-EPT and CR-EPT (see IV-B). Fur-

thermore, CR-EPT required tuning of the boundary condition

value and the diffusion coefficient parameter until the recon-

structed conductivity was close to the ground-truth value, which

is not practical in experiments where the ground-truth values are

unknown.

To the best of our knowledge, PIFON-EPT is the only EPT

method that can reconstruct EP and B+

1 for an entire object, us-

ing incomplete and noisy B+

1 measurements. We demonstrated

this for an ultra-high field MRI example, using complex-valued

synthetic B+

1 measurements. The same approach would be

impractical in actual experiments because the absolute phase

of the B+

1 is not measurable and the TPA does not hold at 7 T.

However, note that PIFON-EPT could be adapted to work with

multiple transmit coils, which could provide enough degrees of

freedom to enable EP reconstruction using the relative phase of

B+

1 between the coil channels [19], [53], which can be measured.

This approach will be explored in future work.

The current version of PIFON-EPT has a limitation when

Bz can not be assumed equal to zero. In this case, boundary

artifacts appearing in the reconstructed EP cannot be eliminated.

Previous work suggests that this limitation could be overcome

by using multiple transmit-receive coils [53]. In this work, we

used instead a birdcage coil, for which Bz can be assumed

negligible if the main field strength is lower or equal to 3 T.

However, we found that our network’s expressive power was

not enough to reconstruct both the EP and the B+

1 in such a

case. To address this, we made our network deeper and used

more complex architectures (for example, we included Fourier

mapping also in the EP Net) to accurately represent the EP and

B+

1 , which ultimately increased the network’s training time.

This problem could be solved by designing compressed network

architectures [65], [66] to replace the current fully-connected

neural networks.

VI. CONCLUSION

We introduced PIFON-EPT, a new technique to estimate

EP and magnetic transmit field distributions from noisy and/or

incomplete MR measurements. We demonstrated our new ap-

proach using a series of numerical examples, showing that

PIFON-EPT is accurate and robust even when its input is cor-

rupted with a significant amount of noise. Since PIFON-EPT

can efficiently de-noise MR measurements, it has the potential

to improve other MR-based EPT methods that rely on magnetic

transmit fields as inputs. In future work, we will investigate the

performance of the proposed algorithms with realistic human

head models and perform experimental validation.
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