
2364 IEEE TRANSACTIONS ON SIGNAL PROCESSING

Robust Multidimentional Chinese Remainder
Theorem for Integer Vector Reconstruction

Li Xiao , Haiye Huo , and Xiang-Gen Xia , Fellow, IEEE

Abstract—The problem of robustly reconstructing an integer
vector from its erroneous remainders appears in many applica-
tions in the field of multidimensional (MD) signal processing. To
address this problem, a robust MD Chinese remainder theorem
(CRT) was recently proposed for a special class of moduli, where
the remaining integer matrices left-divided by a greatest common
left divisor (gcld) of all the moduli are pairwise commutative
and coprime. The strict constraint on the moduli limits the
usefulness of the robust MD-CRT in practice. In this paper,
we investigate the robust MD-CRT for a general set of moduli.
We first introduce a necessary and sufficient condition on the
difference between paired remainder errors, followed by a simple
sufficient condition on the remainder error bound, for the robust
MD-CRT for general moduli, where the conditions are associated
with (the minimum distances of) these lattices generated by gcld’s
of paired moduli, and a closed-form reconstruction algorithm is
presented. We then generalize the above results of the robust
MD-CRT from integer vectors/matrices to real ones. Finally, we
validate the robust MD-CRT for general moduli by employing
numerical simulations, and apply it to MD sinusoidal frequency
estimation based on multiple sub-Nyquist samplers.

Index Terms—Chinese remainder theorem (CRT), integer vec-
tors/matrices, multidimensional frequency estimation, remainder
errors, robustness.
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I. INTRODUCTION

THE Chinese remainder theorem (CRT) [1] is known to
offer a solution to a system of linear congruence equa-

tions, namely, reconstructing a larger nonnegative integer from
its remainders modulo several smaller positive integers (called
moduli). It has a broad range of applications in many areas, such
as computer arithmetic, digital signal processing, and cryp-
tography [1], [2], [3]. Nevertheless, the CRT reconstruction is
extremely susceptible to errors in the remainders, which means
that a very small error in any remainder might yield a large
reconstruction error in the large integer of interest. This may
cause failures in applications of the CRT, considering that the
detected remainders are often erroneous due to environmental
noise contamination. As such, during the past decades, the prob-
lem of robust reconstructions from the erroneous remainders
has been continuously investigated, where “robustness” means
that the reconstruction error could be bounded by the remainder
error bound [4], [5], [6], [7], [8], [9], [10]. More specifically,
for addressing this robust remaindering problem, a robust CRT
has been introduced, of which the basic idea is to accurately
determine all the quotients (called folding numbers) of the large
integer divided by the moduli. An extensive review of the robust
CRT and its various generalizations is presented in [11]. To
distinguish from the robust multidimensional (MD) CRT for
integer vector reconstruction studied in this paper, we refer to
the robust CRT for integer reconstruction as the robust 1-DCRT,
which has been found to have potential applications to sinu-
soidal frequency estimation with sub-Nyquist samplings and
phase unwrapping for radar interferometry [12], [13], [14], [15],
[16], [17], grid cell neural coding [18], signal reconstruction
via multi-channel modulo samplers [19], and wireless sensor
networks with fault tolerance [20], [21], [22].
Considering that signals found in modern applications often

have a multidimensional structure, e.g., multiple input multiple
output (MIMO) communication and MIMO radar systems, we
recently studied exact and robust reconstructions of an integer
vector from its (erroneous) remainders modulo several moduli
in [23], where the moduli are nonsingular integer matrices and
the remainders are integer vectors. Concretely, we first derived
the MD-CRT for a general set of moduli, via which an integer
vector can be accurately reconstructed from the remainders, if
this integer vector is within the fundamental parallelepiped of
the lattice that is generated by a least common right multiple of
all the moduli. We then introduced the robust MD-CRT for a
special class of moduli, where these remaining integer matrices
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left-divided by a greatest common left divisor of all the moduli
are pairwise commutative and coprime. In this special case, the
robust MD-CRT basically states that an integer vector within a
certain reconstruction range can be robustly reconstructed from
its erroneous remainders and the moduli, if the remainder error
bound is smaller than a quarter of the minimum distance of
the lattice that is generated by a greatest common left divisor
(gcld) of all the moduli. One can obviously see that there is the
commutativity and coprimeness constraint on the moduli for
the robust MD-CRT in [23], which is very strict and therefore
might limit the applications of the robust MD-CRT in practice.
As an example, when applying the robust MD-CRT for animal
2-D location estimate in grid cell neural coding [18], different
grid cell populations have different lattice periods (actually the
moduli), which are intrinsical and in general do not satisfy the
commutativity and coprimeness constraint mentioned above so
that the robust MD-CRT in [23] cannot work here.
In this paper, we propose the robust MD-CRT for a general

set of moduli on which the undesirable matrix commutativity
and coprimeness constraint we imposed in [23] is no longer
required. Instead of accurately determining the folding vectors
{ni}Li=1 (namely, the quotients of an integer vector of interest m
left-divided by moduli {Mi}Li=1) in [23], we attempt to accurately
determine {Mini}Li=1, and thereby obtain a robust reconstruc-
tion m̃ of m by averaging the reconstructions calculated from
the determined folding vectors, i.e., m̃ = 1

L

∑L
i=1 (Mini + r̃i), in

this paper, where {r̃i}Li=1 denote the erroneous remainders. Of
note, this strategy actually facilitates the robust MD-CRT for
a general set of moduli by avoiding the difficulties brought
about by the non-commutativity of matrix multiplication. More
precisely, we first present a necessary and sufficient condition
on the difference between paired remainder errors, as well as
a simple sufficient condition on the remainder error bound, for
the robust MD-CRT for general moduli, where the conditions
are related with (the minimum distances of) the lattices that are
generated by greatest common left divisors of paired moduli.
At the same time, a closed-form reconstruction algorithm for
the derived robust MD-CRT is proposed as well. In addition,
we generalize the above results of the robust MD-CRT from
integer vector/matrix cases to real-valued vector/matrix cases.
We finally validate the robust MD-CRT for general moduli by
conducting some numerical simulations, and apply it to fre-
quency estimation for a complex MD sinusoidal signal under-
sampled with multiple sub-Nyquist samplers. It demonstrates
that the use of the robust MD-CRT with L properly chosen
moduli {Mi}Li=1 (whose inverses are referred to as sub-Nyquist
sampling matrices with sampling densities {|det(Mi)|}Li=1) can
result in significant sampling density reduction over the Nyquist
sampling density for MD sinusoidal frequency estimation.
The rest of this paper is organized as follows. We introduce

the preliminary knowledge associated with integer vectors and
integer matrices in Section II, as well as our previously derived
(robust) MD-CRT in Section III where the robust MD-CRT is
limited to a special class of moduli. In Section IV, we propose
the robust MD-CRT for a general set of moduli, together with
its closed-form reconstruction algorithm. We further generalize

the robust MD-CRT from integer vectors/matrices to real ones
in Section V. We illustrate simulation results of the robust MD-
CRT and its application to MD sinusoidal frequency estimation
with multiple sub-Nyquist samplers in noise in Section VI. We
conclude this paper in Section VII.
Notations: We utilize capital and lowercase boldfaced letters

to denote matrices and vectors, respectively. Let A(i, j) be the
(i, j)-th element of a matrix A, and a(i) be the i-th element of
a vector a. Let AT , A−1, A−T , and det(A) denote the transpose,
inverse, inverse transpose, and determinant of A, respectively.
We represent by diag(a1, a2, · · · , aD) the diagonal matrix with
a scalar ai being the i-th diagonal element. Let R and Z denote
the sets of reals and integers, respectively. For a D-dimensional
real vector a ∈ RD, a ∈ [c, d)D says that every element of a is
within the range of [c, d) and c, d ∈ R. Let I and 0 respectively
be the identity matrix and the all-zero vector/matrix (their sizes
are determined from the context). The symbol �·� denotes the
floor operation, and it is implemented element-wisely if acting
on one vector. We let adj(M) stand for the adjugate of a square
matrix M. According to the definition, one can see that adj(M)
is an integer matrix, if M is an integer matrix. Throughout this
paper, all matrices are square matrices, unless otherwise stated.

II. PRELIMINARIES

To make this paper self-contained, t his section reviews some
of formal definitions and basic properties pertaining to lattices,
integer vectors, and integer matrices [23], [24], [25], [26], [27].

1) Lattice: Given a D × D nonsingular matrix M ∈ RD×D, a
lattice generated by M is defined as

L(M) =
{
Mn |n ∈ ZD

}
. (1)

2) The shortest vector problem (SVP) on lattice: For a lattice
L(M) that is generated by a nonsingular matrix M ∈ RD×D, its
minimum distance, denoted as λL(M), is defined as the smallest
distance between any two distinct lattice points, i.e.,

λL(M) = min
w, v∈L(M),

w�v

‖w − v‖. (2)

As we know, a lattice is closed under addition and subtraction.
The minimum distance of L(M) is therefore equal to the length
(magnitude) of the shortest non-zero lattice point, i.e., λL(M) =

minv∈L(M)\{0} ‖v‖.
3) The closest vector problem (CVP) on lattice: For a lattice

L(M) that is generated by a nonsingular matrix M ∈ RD×D, the
closest lattice point in L(M) to a given arbitrary point w ∈ RD
is defined as

p = argmin
v∈L(M)

‖v − w‖. (3)

Remark: There have been many algorithms for handling the
SVP and CVP problems in the literature (see, e.g., [28], [29]).
Here, we only discuss some classical algorithms and the com-
plexity of exactly solving the CVP. For example, a deterministic
algorithm for exactly solving the CVP was developed in [28],
which runs in Õ(22D) time and needs Õ(2D) space. In [30], this
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was improved to achieve a 2D+o(D)-time and space randomized
algorithm. We note that the distance above in (2) and (3) can
be measured by an arbitrary vector norm, such as the �2 norm
‖v‖2 =

√∑
i|v(i)|2, the �1 norm ‖v‖1 =

∑
i|v(i)|, and the �∞ norm

‖v‖∞ =maxi|v(i)|. In this paper, the SVP and CVP problems are
identified as the integer quadratic programming problems, and
we can solve them (i.e., (2) and (3)) utilizing enumeration [31]
and MOSEK with CVX [32], respectively.
4)NotationN(M): Given a D × D nonsingular integer matrix

M ∈ ZD×D, the notation N(M) is defined as

N(M) =
{
k |k =Mx, x ∈ [0, 1)D and k ∈ ZD

}
. (4)

The number of elements in N(M) is equal to |det(M)|.
5) Division representation for integer vectors: Given

a D × D nonsingular integer matrix M ∈ ZD×D, any integer
vector m ∈ ZD can be uniquely represented as m =Mn + r
with r ∈ N(M) and n ∈ ZD. For modular representation, it is
denoted as

m ≡ r mod M, (5)

where M is a modulus, and n and r are the folding vector and
remainder of m with respect to M, respectively.
Remark: The folding vector and the remainder are computed

as n = �M−1m� and r =m −M�M−1m�. As M−1 is generally a
matrix with rational elements, �M−1m� may suffer from round-
off error owing to finite precision on computers, an alternative
for computing r is given by, [26],

r =M
(
adj(M)m mod det(M)

)
/det(M), (6)

in which the operation “mod” means that adj(M)m is element-
wisely modulo det(M). This approach is not subject to round-off
error, because all arithmetic operations in (6) are performed on
integers.
6) Unimodular matrix: A square matrix U is unimodular if it

is an integer matrix with |det(U)| = 1. For a unimodular matrix
U, its inverse U−1 is unimodular, due to U−1 = adj(U)/det(U).

7) Divisor: An integer matrix A is a left divisor of an integer
matrix M if A−1M is an integer matrix. If A is a left divisor of
each of all L ≥ 2 integer matrices M1,M2, · · · ,ML, we call A
a common left divisor (cld) of M1,M2, · · · ,ML. Moreover, if
any other cld is a left divisor of A, then A is a greatest common
left divisor (gcld) of M1,M2, · · · ,ML. One can readily see that
a gcld has the largest absolute determinant among all cld’s, and
it is unique (up to post-multiplication by a unimodular matrix).
8)Multiple: A nonsingular integer matrix A is a left multiple

of an integer matrix M, if there is a nonsingular integer matrix
P such that A = PM. We call A a common left multiple (clm)
of M1,M2, · · · ,ML, if A is a left multiple of each of all L ≥ 2
integer matrices M1,M2, · · · ,ML. In particular, A is termed a
least common left multiple (lclm) of M1,M2, · · · ,ML, if any
other clm is a left multiple of A. Apparently, an lclm has the
smallest absolute determinant among all clm’s, and it is unique
(up to pre-multiplication by a unimodular matrix).
Remark: Similar to 5) and 6) above, we can define right divi-

sor/multiple, common right divisor/multiple (crd/crm), greatest
common right divisor (gcrd), and least common right multiple

(lcrm), respectively. Both divisors and multiples are supposed
to be nonsingular integer matrices throughout this paper.
9) Coprimeness: A pair of integer matrices M and N are said

to be right (left) coprime, if their gcrd (gcld) is a unimodular
matrix. If M and N are commutative, i.e., MN = NM, the right
coprimeness and left coprimeness imply each other, and so we
use the one word “coprimeness”. If M and N are commutative
and coprime, MN is both an lcrm and an lclm, and so we use
the one word “lcm”.
10) Bezout’s theorem [23], [27]: Let L ∈ ZD×D stand for

a gcld of two integer matrices M and N ∈ ZD×D. There exist
integer matrices P and Q ∈ ZD×D satisfying

MP + NQ = L. (7)

Of note, how to compute the accompanying matrices P and Q
will be presented in 12) below. Similarly, if L ∈ ZD×D is a gcrd
of M and N, there exist integer matrices P and Q satisfying
PM +QN = L.
11) The Smith form [25], [27]: A rank-γ integer matrix M ∈

Z
D×K can be factorized as

UMV =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Λ 0

)
, if K > D,

Λ, if K = D,
⎛
⎜⎜⎜⎜⎜⎝
Λ

0

⎞
⎟⎟⎟⎟⎟⎠ , if K < D,

(8)

where U ∈ ZD×D and V ∈ ZK×K are unimodular matrices, and
Λ � diag(δ1, δ2, · · · , δγ, 0, · · · , 0) is a min(K,D) ×min(K,D)
diagonal integer matrix. Assume that δ1, δ2, · · · , δγ are positive
and δi divides δi+1 for each 1 ≤ i ≤ γ − 1, and then Λ is unique
for the given matrix M, while U and V are in general not. In
addition, δ1, δ2, · · · , δγ are termed the invariant factors and can
be obtained by δi = di/di−1 for 1 ≤ i ≤ γ, where di is the gcd of
all i × i determinantal minors of M and d0 = 1.
12) Calculation of gcld: To compute a gcld of two nonsin-

gular integer matrices M and N ∈ ZD×D, we let H =
(
M N

)
∈

Z
D×2D and obtain the Smith formU

(
M N

)
V =

(
Λ 0

)
, where

U ∈ ZD×D and V ∈ Z2D×2D are unimodular matrices, and Λ ∈
Z
D×D is a diagonal integer matrix (which is also nonsingular

due to rank(H) = D). After simple computations, we obtain(
M N

)
=
(
L 0

)
V−1, where L = U−1Λ. Since U−1 is unimod-

ular, L is a nonsingular integer matrix, i.e., L ∈ ZD×D. Since V−1

is unimodular, we can partition V−1 into four D × D integer
matrix blocks Ki j ∈ ZD×D for 1 ≤ i, j ≤ 2, and obtain

(
M N

)
=
(
L 0

)
(
K11 K12

K21 K22

)

. (9)

We therefore have M = LK11 and N = LK12. It is proved that
such L is in fact a gcld of M and N (see [23] for the proof).
Remark: We then provide a way to compute the accompa-

nying matrices P and Q in (7) for the Bezout’s theorem. From
the Smith form of H above, we get

(
M N

)
V =

(
L 0

)
. We

partition V into four D × D integer matrix blocks Vi j ∈ ZD×D
for 1 ≤ i, j ≤ 2, and have

(
M N

)
(
V11 V12

V21 V22

)

=
(
L 0

)
. (10)
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It implies the Bezout’s theorem, expressed by MV11 + NV21 =

L, i.e., P = V11 and Q = V21 in (7).
13) Calculation of lcrm: To calculate an lcrm of two non-

singular integer matrices M and N ∈ ZD×D, we let H =M−1N.
Because of M−1 = adj(M)/det(M), M−1 has all elements being
rational numbers, and so does H. Letting d be the lcm of the
denominators of all elements in H, we know that dH is a D × D
nonsingular integer matrix. We compute the Smith form of dH
as UdHV = Λ, i.e.,

M−1N = U−1diag(δ1/d, δ2/d, · · · , δD/d)V−1, (11)

where U and V are D × D unimodular matrices (i.e., U,V ∈
Z
D×D), and Λ = diag(δ1, δ2, · · · , δD) ∈ ZD×D as derived in (8).

All the rational numbers δ1/d, δ2/d, · · · , δD/d are represented
by their irreducible forms; that is to say, for 1 ≤ i ≤ D, δi/d =
αi/βi where αi and βi are coprime positive integers. Let Λα =
diag(α1, α2, · · · , αD) and Λβ = diag(β1, β2, · · · , βD). Based on
(11), we obtain M−1N = U−1ΛαΛ−1β V−1. Let P = U−1Λα and
Q = VΛβ, which are clearly nonsingular integer matrices and
right coprime. We hence have M−1N = PQ−1, i.e., MP = NQ.
It is proved that R �MP = NQ is actually an lcrm of M and N
(see [25] for the proof).

Remark: For L ≥ 3 nonsingular integer matrices {Mi}Li=1, we
can compute an lcrm of {Mi}Li=1 via computing an lcrm
of two matrices iteratively, due to the fact that lcrm
(M1,M2, · · · ,ML)= lcrm (lcrm (M1,M2, · · · ,ML−1) ,ML)
holds, which has been proved in [23]. Besides, similar to the
calculations of gcld and lcrm above, the calculations of gcrd
and lclm can be obtained. For more details, we refer the reader
to [23], [25].

III. PREVIOUS RESULTS ON (ROBUST) MD-CRT

Consider a system of congruences
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m ≡ r1 mod M1

m ≡ r2 mod M2

...
m ≡ rL mod ML,

(12)

where moduli {Mi}Li=1 ∈ ZD×D are nonsingular integer matrices,
and R ∈ ZD×D is anyone of their lcrm’s. With respect to (12),
let us recall the results about the (robust) MD-CRT we recently
proposed in [23] as follows. For simplicity of notation, we will
use r = 〈m〉M to denote the remainder r of m modulo M.

A. MD-CRT

Proposition 1 ([23]): Let moduli {Mi}Li=1 in (12) be arbitrary
nonsingular integer matrices. An integer vector m ∈ N(R) can
be accurately reconstructed from its remainders {ri}Li=1.

Notice that a cascaded reconstruction algorithm for the MD-
CRT in Proposition 1 is introduced in [23]. For 2 ≤ i ≤ L, let Ri

be an lcrm of {Mk}i−1k=1, Gi be a gcld of Mi and Ri, and Pi and
Qi be the accompanying matrices in the Bezout’s theorem with
RiPi +MiQi =Gi. On the basis of 12) and 13) in Sec. II, all
these involved matrices can be computed in advance. Here, we

briefly summarize the core steps of the cascaded reconstruction
algorithm for the MD-CRT.
• A solution (denoted as m1 ∈ N(R3)) to

{
m ≡ r1 mod M1

m ≡ r2 mod M2
(13)

is obtained as m1 =
〈
r1 +M1P2 G−12 (r2 − r1)

〉

R3
.

• Based on the cascade architecture of the congruences, we
next obtain a solution (denoted as m2 ∈ N(R4)) to

{
m ≡m1 mod R3

m ≡ r3 mod M3
(14)

as m2 =
〈
m1 + R3P3 G−13 (r3 −m1)

〉

R4
.

• Following the above steps, we assemble two congruences
at a time, until a solution (denoted as mL−1 ∈ N(R)) to

{
m ≡mL−2 mod RL

m ≡ rL mod ML
(15)

is calculated as mL−1 =
〈
mL−2 + RLPLG−1L

(rL −mL−2)〉R. As verified in [23], the lcrm (i.e., R)
of {Mi}Li=1 is an lcrm of RL and ML, and mL−1 is a unique
solution to (12) from the MD-CRT if m ∈ N(R), i.e.,
m =mL−1.

Remark: If the moduli {Mi}Li=1 ∈ ZD×D are pairwise com-
mutative and coprime, it is clear that R =M1M2 · · ·MLU ∈
Z
D×D is an lcrm of all the moduli for any unimodular ma-

trix U, and the MD-CRT in Proposition 1 has a closed-form
solution as

m =
〈 L∑

i=1

WiŴiri

〉

R

, (16)

where Wi =M1 · · ·Mi−1Mi+1 · · ·ML, and Ŵi is the accompa-
nying matrix in the Bezout’s theorem (WiŴi +MiQi = I with
Qi ∈ ZD×D) and can be calculated in advance.

B. Robust MD-CRT for a Special Class of Moduli

In [23], the robust MD-CRT was first proposed for a special
class of moduli, i.e., moduli {Mi}Li=1 in (12) are given by

Mi =MΓi for 1 ≤ i ≤ L, (17)

where {Γi}Li=1 ∈ ZD×D are pairwise commutative and coprime,
and M ∈ ZD×D. In this special case, R =MΓ1Γ2 · · ·ΓLU for any
unimodular matrix U is an lcrm of {Mi}Li=1, and the basic idea
of the robust MD-CRT in [23] is to accurately determine the
folding vectors {ni}Li=1 from the erroneous remainders

r̃i � ri + �ri ∈ N(Mi) for 1 ≤ i ≤ L, (18)

and afterwards obtain a robust reconstruction of m as

m̃ =
1

L

L∑

i=1

(Mini + r̃i) , (19)

where {�ri}Li=1 ∈ ZD are the remainder errors. Define

Ai �
{
m ∈ ZD | �M−1

i m� ∈ N(Γ1 · · ·Γi−1Γi+1 · · · ΓLUi)
}

(20)
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for 1 ≤ i ≤ L, where {Ui}Li=1 are any unimodular matrices. The
robust MD-CRT for this special class of moduli expressed in
(17) was obtained in [23], as stated below.

Proposition 2 ([23]): Let moduli {Mi}Li=1 in (12) be given by
(17). We can accurately determine the folding vectors {ni}Li=1 of
an integer vector m ∈⋃L

i=1Ai (without loss of generality, we
suppose that m ∈ A1) from the erroneous remainders {r̃i}Li=1, if
and only if

0 = argmin
h∈L(M)

‖h − (�ri − �r1)‖ for 2 ≤ i ≤ L. (21)

Moreover, letting τ be the remainder error bound, i.e., ‖�ri‖ ≤ τ
for 1 ≤ i ≤ L, a simple sufficient condition is

τ <
λL(M)

4
. (22)

Once {ni}Li=1 are accurately determined, we can obtain a robust
reconstruction m̃ of m by (19) such that ‖m̃ −m‖ ≤ τ.
The necessary and sufficient condition (21) means that the

lattice point 0 in L(M) is the only closest lattice point to the
difference of the remainder errors �ri and �r1 for every i, 2 ≤
i ≤ L.
Remark: In [23], a closed-form reconstruction algorithm for

the robust MD-CRT in Proposition 2 was also provided.

IV. ROBUST MD-CRT FOR GENERAL MODULI

When moduli do not satisfy the constraint in (17), the results
(i.e., Proposition 2 above) and reconstruction algorithm in [23]
cannot be directly applied, which might limit the applications
of the robust MD-CRT in practice. In this section, we consider
the robust MD-CRT for a general set of moduli on which the
constraint imposed in [23] is no longer required.
We can equivalently write (12) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m =M1n1 + r1
m =M2n2 + r2
...

m =MLnL + rL,

(23)

where {ni}Li=1 are the folding vectors. Without loss of generality,
letting the first equation in (23) be a reference, we subtract it
from the last L − 1 equations, i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M1n1 −M2n2 = r2 − r1
M1n1 −M3n3 = r3 − r1

...
M1n1 −MLnL = rL − r1.

(24)

Define M1i = gcld(M1,Mi), Γ1i =M−1
1i M1, and Γi1 =

M−1
1i Mi for 2 ≤ i ≤ L. Then, left-multiplying M−1

1i on both
sides of the (i − 1)-th equation in (24) for 2 ≤ i ≤ L, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Γ12n1 − Γ21n2 =M−1
12(r2 − r1)

Γ13n1 − Γ31n3 =M−1
13(r3 − r1)

...

Γ1Ln1 − ΓL1nL =M−1
1L(rL − r1).

(25)

According to (25), it is easy to know that
{
M−1

1i (ri − r1)
}L

i=2
are

integer vectors, i.e., for 2 ≤ i ≤ L,

ri − r1 ∈ L(M1i). (26)

In the same way as that used in [23], for each 2 ≤
i ≤ L, we estimate ri − r1 from the erroneous remainders
{r̃i}Li=1 through finding a closest lattice point vi in L(M1i) to
r̃i − r̃1, i.e.,

vi = argmin
v∈L(M1i)

‖v − (r̃i − r̃1)‖. (27)

Instead of accurately determining the folding vectors {ni}Li=1 in
[23], we intend to accurately determine {Mini}Li=1. Specifically,
by taking the modulo-Mi on both sides of the (i − 1)-th equation
in (24) for 2 ≤ i ≤ L, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1n1 ≡ 0 mod M1

M1n1 ≡ r2 − r1 mod M2

M1n1 ≡ r3 − r1 mod M3

...
M1n1 ≡ rL − r1 mod ML,

(28)

where the first equation spontaneously holds. Once
{ri − r1}Li=2 are accurately estimated from (27), i.e., vi =

ri − r1 for 2 ≤ i ≤ L, we can accurately determine M1n1 from
(28) according to the MD-CRT (see Proposition 1 above),
provided that M1n1 ∈N (lcrm(M1,M2, · · · ,ML)), equivalently
written as �M−1

1 m� ∈N
(
M−1

1 lcrm(M1,M2, · · · ,ML)
)
. Then,

Mini can be accurately determined as M1n1 − vi for each
2 ≤ i ≤ L. In this end, we derive the following lemma, which
can be proved similarly to Theorem 3 in [23].
Lemma 1: Let moduli {Mi}Li=1 in (12) be L distinct arbitrary

nonsingular integer matrices, and an integer vector m be within
the range

�M−1
1 m� ∈ N

(
M−1

1 lcrm(M1,M2, · · · ,ML)
)
. (29)

We can accurately determine {Mini}Li=1 from the erroneous re-
mainders {r̃i}Li=1, if and only if

0 = argmin
h∈L(M1i)

‖h − (�ri − �r1)‖ for 2 ≤ i ≤ L. (30)

Moreover, letting τ be the remainder error bound, i.e., ‖�ri‖ ≤ τ
for 1 ≤ i ≤ L, a simple sufficient condition is

τ < min
2≤i≤L

λL(M1i)

4
. (31)

After {Mini}Li=1 are accurately determined, a robust reconstruc-
tion m̃ of m can be obtained by (19) with ‖m̃ −m‖ ≤ τ.

Proof: From (27), we have, for 2 ≤ i ≤ L,

vi = argmin
v∈L(M1i)

‖v − (ri − r1) − (�ri − �r1)‖. (32)

Due to v ∈ L(M1i) and ri − r1 ∈ L(M1i), we have v − (ri −
r1) ∈ L(M1i), and (32) can be equivalently written as

hi = argmin
h∈L(M1i)

‖h − (�ri − �r1)‖ (33)

by taking h = v − (ri − r1).
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We first prove the sufficiency of (30). If hi = 0 for 2 ≤ i ≤ L,
we get vi = ri − r1, i.e., {ri − r1}Li=2 are accurately obtained from
(27). Hence, as mentioned before, {Mini}Li=1 can be accurately
determined, when (29) satisfies.
We next prove the necessity of (30). Assume that there ex-

ists at least one hk0 that does not satisfy (30), i.e., hk0 � 0,
for some k0 with 2 ≤ k0 ≤ L. Furthermore, due to vk0 = hk0 +

(rk0 − r1), we know vk0 � rk0 − r1. We then have the following
two cases.
Case A: hl0 �L(Ml0 ) for some l0 with 2 ≤ l0 ≤ L (where l0

is not necessarily equal to k0), i.e., hl0 �Ml0n for any n ∈ ZD.
In this case, it is ready to see that vl0 and rl0 − r1 have different
remainders modulo Ml0 . Thus, according to the uniqueness of
the reconstruction in the MD-CRT, M1n1 cannot be accurately
determined from {vi}Li=1 in (28).
Case B: For each 2 ≤ i ≤ L, hi ∈ L(Mi), i.e., hi =Min for

some n ∈ ZD. In this case, considering that vi = hi + (ri − r1),
we know that vi and ri − r1 have the same remainders mod-
ulo Mi for each 2 ≤ i ≤ L, and therefore, M1n1 can be ac-
curately determined from {vi}Li=1 in (28) using the MD-CRT.
However, since vk0 � rk0 − r1, the reconstruction of Mk0nk0 as
M1n1 − vk0 is not accurate. This completes the proof of the
necessity part.
Ultimately, we prove the simple sufficient condition in (31)

for accurately determining {Mini}Li=1. Assume that there exists
one hq0 in (33) satisfying hq0 � 0 for some q0 with 2 ≤ q0 ≤ L.
We have

‖hq0‖ = ‖hq0 − (�rq0 − �r1) − (0 − (�rq0 − �r1))‖
≤ ‖hq0 − (�rq0 − �r1)‖ + ‖�rq0 − �r1‖
≤ 2‖�rq0 − �r1‖
≤ 4τ < λL(M1q0 )

, (34)

in which the second inequality follows from the fact that hq0 is
one closest lattice point in L(M1q0 ) to �rq0 − �r1, and the last
inequality holds since 4τ <min2≤i≤L λL(M1i) ≤ λL(M1q0 )

. Hence,
it contradicts with hq0 ∈ L(M1q0 ), i.e., ‖hq0‖ ≥ λL(M1q0 )

, which
indicates that the condition in (31) implies (30).
Once {Mini}Li=1 are accurately determined, we have a robust

reconstruction m̃ of m as m̃ = 1
L

∑L
i=1 (Mini + r̃i), i.e.,

‖m̃ −m‖ =

∥∥∥∥∥∥∥

1

L

L∑

i=1

(Mi ni + ri + �ri) −m

∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥

1

L

L∑

i=1

�ri

∥∥∥∥∥∥∥
≤ 1

L

L∑

i=1

‖�ri‖ ≤ τ. (35)

This completes the proof of the lemma. �
Note that in the aforementioned analysis, we just arbitrarily

select the first equation (or the first remainder r1) in (23) as a
reference to be subtracted from the other equations to acquire
(24), followed by Lemma 1. In fact, we can further improve the
reconstruction robustness of the robust MD-CRT via selecting
a proper reference equation in (23). Define Mi j = gcld(Mi,M j)
for 1 ≤ i � j ≤ L. Find the index l0 with 1 ≤ l0 ≤ L such that

min
1≤ j≤L
j�l0

λL(Ml0 j) = max
1≤i≤L

min
1≤ j≤L
j�i

λL(Mi j). (36)

Algorithm 1

1: According to 12) in Sec. II, calculate Ml0 j = gcld(Ml0 ,M j)
for 1 ≤ j ≤ L and j � l0.

2: According to 13) in Sec. II, calculate R3 = lcrm(M1,M2),
R4 = lcrm(M1,M2,M3) = lcrm(R3,M3), R5 = lcrm(M1,
M2,M3,M4) = lcrm(R4,M4), · · · · · · , R = RL+1 = lcrm(
M1,M2, · · · ,ML) = lcrm(RL,ML).

3: According to 3) in Sec. II, from the given {r̃i}Li=1, calculate
v j for 1 ≤ j ≤ L and j � l0 as

v j = argmin
v∈L(Ml0 j)

‖v − (r̃ j − r̃l0 )‖. (40)

4: Calculate Ml0 ñl0 ∈ N(R) =N(lcrm(M1,M2, · · · ,ML)) via
the cascaded reconstruction algorithm for the MD-CRT in
Proposition 1 from the following system of congruences

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ml0 ñl0 ≡ v1 mod M1

...
Ml0 ñl0 ≡ vl0−1 mod Ml0−1
Ml0 ñl0 ≡ 0 mod Ml0
Ml0 ñl0 ≡ vl0+1 mod Ml0+1

...
Ml0 ñl0 ≡ vL mod ML.

(41)

5: Calculate M jñ j =Ml0 ñl0 − v j for 1 ≤ j ≤ L and j � l0.
Then, a reconstruction of m is m̃ = 1

L

∑L
i=1(Miñi + r̃i).

By treating the l0-th remainder as the reference and following
the above procedures utilized in Lemma 1, we obtain the result
below straightforwardly, along with a closed-form reconstruc-
tion algorithm (see Algorithm 1) for the robust MD-CRT.
Theorem 1: Let moduli {Mi}Li=1 in (12) be L different arbitrary

nonsingular integer matrices. Suppose that the index l0 with 1 ≤
l0 ≤ L satisfies (36). For an integer vector m with

�M−1
l0

m� ∈ N
(
M−1

l0
lcrm(M1,M2, · · · ,ML)

)
, (37)

we can accurately determine {Mini}Li=1 from the erroneous re-
mainders {r̃i}Li=1 by Algorithm 1, if and only if

0 = argmin
h∈L(Ml0 j)

‖h − (�r j − �rl0 )‖ for 1 ≤ j ≤ L and j � l0. (38)

Moreover, letting τ be the remainder error bound, i.e., ‖�ri‖ ≤ τ
for 1 ≤ i ≤ L, a simple sufficient condition is

τ < max
1≤i≤L

min
1≤ j≤L
j�i

λL(Mi j)

4
= min

1≤ j≤L
j�l0

λL(Ml0 j)

4
. (39)

After {Mini}Li=1 are accurately determined, a robust reconstruc-
tion m̃ of m can be obtained by (19) with ‖m̃ −m‖ ≤ τ.

Let us briefly analyze the complexity of Algorithm 1. From
12) and 13) in Sec. II, each of the computations of gcld and
lcrm needs the Smith form once. To solve (41) via the cascaded
reconstruction algorithm for the MD-CRT, one can readily see
from (13)-(15) that it requires the Smith form 2L − 2 times,
since we have to calculate R3,R4, · · · ,RL,R (i.e., L − 1 lcrm’s)
and G2,G3, · · · ,GL (i.e., L − 1 gcld’s). Suppose that the index
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l0 is known. Calculating {Ml0 j}Lj=1; j�l0 requires the Smith form
L − 1 times. Therefore, the Smith form is implemented 3L − 3
times in total. Moreover, we need to solve the CVP L − 1 times
for (40), and the computational complexity of exactly solving
the CVP is discussed in Sec. II.
Remark: When the moduli {Mi}Li=1 in Theorem 1 satisfy

the constraint (i.e., (17)) imposed in [23], Theorem 1 reduces
to Proposition 2. It should also be pointed out that the MD-
CRT reconstruction range m ∈ N (lcrm(M1,M2, · · · ,ML)) and
the robust MD-CRT reconstruction range in (37) do not im-
ply each other, unless for the (robust) 1-D CRT and the (ro-
bust) MD-CRT with moduli being nonsingular diagonal integer

matrices. We take an example as follows. Let M1 =

(
1 3
3 1

)

and M2 =

(
1 2
2 1

)

, whose product R =M1M2 =

(
7 5
5 7

)

is their

lcrm.When m =
(
5
4

)

= R
(
5/8
1/8

)

∈ N(R), we obtain n1 =

(
0
1

)

=

M2

(
2/3
−1/3

)

, indicating n1 �N(M−1
1 R) =N(M2). On the other

hand, when m =
(
10
9

)

= R
(
25/24
13/24

)

�N(R), we get n1 =
(
2
2

)

=M2

(
2/3
2/3

)

, implying n1 ∈ N(M−1
1 R) =N(M2). Owing to

this reconstruction range inequivalence, we cannot obtain a
further improved variant of the robust MD-CRT as in [8], where
a multi-stage (e.g., second-stage) robust 1-D CRT was general-
ized by first splitting the congruences into several groups, then
applying the robust 1-D CRT to each group independently, and
finally applying the robust 1-D CRT again to a new system of
congruences with the reconstructions and lcm’s in all the groups
being the remainders and moduli, respectively.
For a better understanding of Theorem 1, we next present an

example to explain our implementation of the robust MD-CRT
through the step-by-step procedures in Algorithm 1.

Example 1: Consider L = 3 moduli M1 =

(
5850 9000
2580 2940

)

,

M2 =

(
28950 24150
14140 11680

)

, and M3 =

(
3440 3460
1540 1160

)

. Let m =
(
−5365350
−2402280

)

, then the remainders of m modulo {Mi}3i=1 can

be calculated from (6) as r1 =
(
0
0

)

, r2 =
(
37650
18320

)

, and r3 =
(
4490
1660

)

. Correspondingly, the folding vectors are given by

n1 =

(
−971
35

)

, n2 =

(
1390
−1890

)

, and n3 =

(
−1561

0

)

. Let the erro-

neous remainders be r̃1 =
(
52
36

)

, r̃2 =
(
37673
18243

)

, and r̃3 =
(
4446
1610

)

,

with their respective remainder errors �r1 =
(
52
36

)

, �r2 =
(
23
−77

)

,

and �r3 =
(
−44
−50

)

. In the following, we elaborate how to ro-

bustly reconstruct m from the erroneous remainders {r̃i}3i=1 by
Algorithm 1.

i) First, calculate M12 =

(
−2272650 −2274600
−1002640 −1003500

)

, M13 =
(
−604610 −454920
−266740 −200700

)

, M23 =

(
−3632710 −3661660
−1774320 −1788460

)

,

according to 12) in Sec. II. Under the �2 norm, we then obtain
λL(M12) = 637.89, λL(M13) = 352.28, λL(M23) = 178.04. Finally,
from (36), we regard the first remainder as the reference,
and the reconstruction robustness bound is 352.28/4 = 88.07.
One can easily see that the remainder error bound τ satisfies
‖�ri‖ ≤ τ < 88.07 for 1 ≤ i ≤ 3.

ii) According to 13) in Sec. II, calculate R3 =

lcrm(M1,M2)=

(
86850 −101250
42420 −49800

)

, followed by R = lcrm

(M1,M2,M3)= lcrm(R3,M3) =

(
774000 −6133500
346500 −2746200

)

. In

addition, based on 12) in Sec. II, we calculate

the accompanying matrices P2=

(
−10 −12
−69 −69

)

and

Q2 =

(
−25 −28
−36 −32

)

satisfying M1P2 +M2Q2 =M12, and

calculate the accompanying matrices P3=

(
−108 −65
85 51

)

and Q3 =

(
−40 −24
−45 −27

)

satisfying R3P3 +M3Q3 =G3 �

gcld(R3,M3) =

(
−18279350 −10984980
−8928160 −5365380

)

.

iii) According to 3) in Sec. II, calculate v2 and v3 from

(40) as v2 =

(
37650
18320

)

and v3 =
(
4490
1660

)

. One can easily con-

firm that �M−1
1 m� = n1 ∈ N

(
M−1

1 R
)
=N

((
140 −1110
−5 40

))

, i.e.,
(
−971
35

)

=

(
140 −1110
−5 40

) (
0.2
0.9

)

, and ‖�ri‖ ≤ τ < 88.07 for 1 ≤
i ≤ 3. Therefore, Theorem 1 holds.
iv) Via the cascaded reconstruction algorithm for the MD-

CRT in Proposition 1, calculate ζ �M1ñ1 from

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ζ ≡ 0 mod M1

ζ ≡ v2 mod M2

ζ ≡ v3 mod M3.
(42)

• From (13), we acquire ζ1 = 〈0+
M1P2M−1

12(v2 − 0)
〉

R3
=

(
−20250
−9960

)

.

• From (14), we get ζ = ζ2 =
〈
ζ1+

R3P3G−13 (v3 − ζ1)
〉

R
=

(
−5365350
−2402280

)

.

We so have ñ1 =

(
−971
35

)

, which is equal to n1.

v) Calculate M2ñ2 =M1ñ1 − v2 =

(
−5403000
−2420600

)

as well

as M3ñ3 =M1ñ1 − v3 =
(
−5369840
−2403940

)

. It also implies

that ñ2 =

(
1390
−1890

)

and ñ3 =

(
−1561

0

)

, which are equal

to n2 and n3, respectively. Therefore, {Mini}3i=1 (i.e.,
{ni}3i=1) are accurately determined from the erroneous

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 15,2024 at 19:47:26 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: ROBUST MULTIDIMENTIONAL CRT FOR INTEGER VECTOR RECONSTRUCTION 2371

remainders {r̃i}3i=1, and a robust reconstruction of m can be

obtained as m̃ = 1
3

∑3
i=1(Miñi + r̃i) =

(
−5365339.67
−2402310.33

)

, i.e.,

‖m̃ −m‖2 = 32.05 ≤ τ < 88.07. �
Since in the above new results in Theorem 1 there is no any

constraint on moduli {Mi}Li=1 (i.e., moduli {Mi}Li=1 are arbitrary
nonsingular integer matrices), some of these moduli might be
redundant with respect to the reconstruction robustness bound
(i.e., (39)), while retaining the reconstruction range (i.e., (37)).
We investigate the case when there exists a pair of moduli Mi1
and Mi2 such that Mi1=Mi2P for P ∈ ZD×D, i.e., Mi1 is a right
multiple of Mi2 . For this, we have the following corollary.

Corollary 1: If there are two moduli Mi1 and Mi2 in {Mi}Li=1
in Theorem 1 such that Mi1=Mi2P for P ∈ ZD×D, the modulus
Mi2 is redundant, in the sense that the appearance of Mi2 does
not help increase (and might even decrease) the reconstruction
robustness bound, meanwhile keeping the reconstruction range
unchanged. As such, Mi2 can be deleted from the set of moduli
in this case.

Proof:Without loss of generality, let us assume that M1 =

MLP for P ∈ ZD×D. We first prove λL(M1 j) ≥ λL(ML j) for any 2 ≤
j ≤ L − 1. Since ML j = gcld(ML,M j) and M1 =MLP for any
2 ≤ j ≤ L − 1, it is ready to confirm that ML j is a cld of M1 and
M j. Therefore,ML j is a left divisor ofM1 j from the definition of
gcld, i.e., M1 j =ML jQ j for Q j ∈ ZD×D. That is to say,L(M1 j) ⊆
L(ML j), and so λL(M1 j) ≥ λL(ML j).
For the set of moduli {Mi}L−1i=1 , let s denote

the reconstruction robustness bound, i.e., s =
max1≤i≤L−1 min 1≤ j≤L−1

j�i
λL(Mi j)/4. For the set of moduli

{Mi}Li=1, the reconstruction robustness bound can be
expressed as

max
1≤i≤L

min
1≤ j≤L
j�i

λL(Mi j)

4

=max
{

max
1≤i≤L−1

min
1≤ j≤L
j�i

λL(Mi j)

4
︸������������������︷︷������������������︸

(a)

, min
1≤ j≤L−1

λL(ML j)

4
︸�������������︷︷�������������︸

(b)

}

. (43)

As for (a), due to min 1≤ j≤L
j�i
λL(Mi j)/4 ≤min 1≤ j≤L−1

j�i

λL(Mi j)/4, we have max1≤i≤L−1 min 1≤ j≤L
j�i
λL(Mi j)/4 ≤ s. As

for (b), since it has been proved above that λL(M1 j) ≥ λL(ML j)

for any 2 ≤ j ≤ L − 1, we have

min
1≤ j≤L−1

λL(ML j)

4
≤ min

2≤ j≤L−1

λL(ML j)

4
≤ min

2≤ j≤L−1

λL(M1 j)

4
≤ s. (44)

Thus, from (43), we get max1≤i≤L min 1≤ j≤L
j�i
λL(Mi j)/4 ≤ s, which

suggests that the appearance of ML does not help increase the
reconstruction robustness bound and might even worsen it.
For the set of moduli {Mi}Li=1, it is straightforward that

ML is impossible to be a reference modulus (i.e., l0 �
L in Theorem 1), on account of λL(M1 j) ≥ λL(ML j) for any
2 ≤ j ≤ L − 1. So, for the set of moduli {Mi}L−1i=1 , we can

choose the same Ml0 as the reference modulus. Further-
more, owing to M1 =MLP, we get lcrm(M1,M2, · · · ,ML) =
lcrm(M1,M2, · · · ,ML−1), which implies from (37) that the re-
construction range remains uncha- nged after deleting ML from
moduli {Mi}Li=1. �

Going back to the necessary and sufficient condition in (38)
for the robust MD-CRT in Theorem 1, one can readily see that
the remainder error difference bound depends on λL(Ml0 j), i.e.,

‖�r j − �rl0‖ <
λL(Ml0 j)

2
, (45)

for 1 ≤ j ≤ L and j � l0. It means that if we let τi denote the
remainder error bound for the i-th remainder, i.e., ‖�ri‖ ≤ τi,
for 1 ≤ i ≤ L, then {τi}Li=1 will have different requirements for
the robust reconstruction of m in (37), as stated below.
Corollary 2: Let moduli {Mi}Li=1 in (12) be L different arbi-

trary nonsingular integer matrices, the index l0 with 1 ≤ l0 ≤ L
satisfy (36), and an integer vector m be with (37), as the same as
those in Theorem 1. Let τi denote the remainder error bound for
the i-th remainder, i.e., ‖�ri‖ ≤ τi, for 1 ≤ i ≤ L, among which
the remainder error bound τl0 for the reference modulus Ml0 is
given by τl0 <min 1≤ j≤L

j�l0
λL(Ml0 j)/4. If the remainder error bound

τi for 1 ≤ i ≤ L and i � l0 satisfies

‖�ri‖ ≤ τi ≤
λL(Ml0 i)

2
− min

1≤ j≤L
j�l0

λL(Ml0 j)

4
, (46)

we can accurately determine {Mini}Li=1 from the erroneous re-
mainders {r̃i}Li=1 by Algorithm 1, and therefore, a robust recon-
struction m̃ of m is obtained by (19), i.e., ‖m̃ −m‖ ≤∑L

i=1 τi/L.
Proof: As ‖�rl0‖ ≤ τl0 <min 1≤ j≤L

j�l0
λL(Ml0 j)/4 and ‖�ri‖ ≤

τi ≤ λL(Ml0 i)/2 −min 1≤ j≤L
j�l0
λL(Ml0 j)/4 for 1 ≤ i ≤ L and i � l0,

we have

‖�r j − �rl0‖ ≤ ‖�r j‖ + ‖�rl0‖ ≤ τl0 + τi <
λL(Ml0 j)

2
, (47)

which indicates (38) in Theorem 1. As a result, {Mini}Li=1 can
be accurately determined from the erroneous remainders {r̃i}Li=1
by Algorithm 1, and we can obtain a robust reconstruction m̃
of m as m̃ = 1

L

∑L
i=1 (Mini + r̃i), i.e.,

‖m̃ −m‖ =

∥∥∥∥∥∥∥

1

L

L∑

i=1

�ri

∥∥∥∥∥∥∥
≤ 1

L

L∑

i=1

‖�ri‖ ≤
1

L

L∑

i=1

τi. (48)

Therefore, Corollary 2 is proved. �
Remark: Of note, owing to λL(Ml0 i)/2 −min 1≤ j≤L

j�l0
λL(Ml0 j)/4 ≥

min 1≤ j≤L
j�l0
λL(Ml0 j)/4 for 1 ≤ i ≤ L and i � l0, the allowed remain-

der error bounds we derived by approaching them individually
as above are larger than or equal to that in (39) for all the remain-
der errors in Theorem 1, while the reconstruction range (i.e.,
(37)) remains unchanged. In addition, note that the counterpart
results of Corollary 1 and Corollary 2 were also obtained for
the robust 1-D CRT in [8].
Example 2: Let us consider the L = 3 moduli as in Ex-

ample 1. According to Corollary 2, for the robust MD-CRT,
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we obtain the remainder error bounds as τ1 < 352.28/4, τ2 ≤
923.5/4, τ3 ≤ 352.28/4. One can obviously see that the al-
lowed remainder error bounds here are larger than or equal
to 352.28/4 obtained in Theorem 1. Moreover, the reconstruc-
tion range in Corollary 2 is the same as that (i.e., (37)) in
Theorem 1. �

V. GENERALIZATION OF ROBUST MD-CRT FROM INTEGER
VECTORS/MATRICES TO REAL ONES

The above studies are all for integer vectors/matrices. Con-
sidering that in practical applications, an unknown vector (e.g.,
the phase of interest in multi-dimensional phase unwrapping in
MIMO radar systems) is real-valued in general, we next gen-
eralize the robust MD-CRT results in Theorem 1 from integer
vectors/matrices to real ones in this section. Note that we adopt
boldfaced Sans-Serif letters to denote real vectors/matrices for
distinguishing them from integer vectors/matrices.
Let m be a D-dimensional real vector (i.e., m ∈ RD), which

can be uniquely expressed as

m =MΨini + ri for 1 ≤ i ≤ L, (49)

where {Ψi}Li=1 ∈ ZD×D are known nonsingular integer matrices,
M ∈ RD×D is a known nonsingular real matrix, and {ni}Li=1 ∈ ZD
are unknown integer vectors (or folding vectors). In particular,
{ri}Li=1 ∈ RD are real vectors with ri ∈ F (MΨi) for each 1 ≤ i ≤
L, which are real-valued versions of the previously mentioned
integer remainders {ri}Li=1 in (23). Here, F (MΨi) is termed the
fundamental parallelepiped of L(MΨi), defined as

F (MΨi) =
{
MΨix | x ∈ [0, 1)D

}
. (50)

The volume of F (MΨi) equals |det(MΨi)|[27]. F (MΨi) does
not comprise any other lattice points in L(MΨi), except for the
origin 0. One can easily see that F (MΨi) and its shifted copies
(i.e., F (MΨi) + v for any nonzero v ∈ L(MΨi)) constitute the
whole real vector space RD.
Let us define Ψi j = gcld(Ψi,Ψ j) for 1 ≤ i � j ≤ L. Without

loss of generality, we assume that Ψ1 satisfies

min
2≤ j≤L

λL(MΨ1 j) = max
1≤i≤L

min
1≤ j≤L
j�i

λL(MΨi j). (51)

By treating MΨ1 as the reference and following the operations
used in (24) and (25), we have, from (49),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1n1 −Ψ2n2 =M−1(r2 − r1)
Ψ1n1 −Ψ3n3 =M−1(r3 − r1)

...
Ψ1n1 −ΨLnL =M−1(rL − r1)

(52)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

K12n1 −K21n2 = (MΨ12)
−1 (r2 − r1)

K13n1 −K31n3 = (MΨ13)
−1 (r3 − r1)

...

K1Ln1 −KL1nL = (MΨ1L)
−1 (rL − r1),

(53)

in which K1 j =Ψ
−1
1 jΨ1 and K j1 =Ψ

−1
1 jΨ j for 2 ≤ j ≤ L. From

(52) and (53),
{
M−1(ri − r1)

}L

i=2
and

{
(MΨ1i)

−1 (ri − r1)
}L

i=2
are

all integer vectors; that is,

ri − r1 ∈ L(MΨ1i) for 2 ≤ i ≤ L. (54)

For every 2 ≤ i ≤ L, we then estimate ri − r1 from the known
erroneous remainders {r̃i}Li=1 via finding a closest lattice point
vi in L(MΨ1i) to r̃i − r̃1, i.e.,

vi = argmin
v∈L(MΨ1i)

‖v − (r̃i − r̃1)‖, (55)

where r̃ j � r j + �r j ∈ F (MΨ j) for each 1 ≤ j ≤ L is defined, and
{�ri}Li=1 ∈ RD are the remainder errors. We try to accurately
determine {Ψini}Li=1. Specifically, we take the modulo-Ψi on
both sides of the (i − 1)-th equation in (52) for 2 ≤ i ≤ L, and
we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1n1 ≡ 0 mod Ψ1

Ψ1n1 ≡M−1(r2 − r1) mod Ψ2

Ψ1n1 ≡M−1(r3 − r1) mod Ψ3

...
Ψ1n1 ≡M−1(rL − r1) mod ΨL,

(56)

where the first equation spontaneously holds. Once
{ri − r1}Li=2 are accurately estimated from (55), i.e.,
vi = ri − r1 for 2 ≤ i ≤ L, we can accurately determine
Ψ1n1 from (56) according to the MD-CRT (see Proposition 1
above), provided that Ψ1n1 ∈ N (lcrm(Ψ1,Ψ2, · · · ,ΨL)),
equivalently written as MΨ1n1 ∈ F (M lcrm(Ψ1,Ψ2, · · · ,ΨL)),
and also as

�Ψ−11 M−1m� ∈ N
(
Ψ−11 lcrm(Ψ1,Ψ2, · · · ,ΨL)

)
. (57)

Next, Ψini can be accurately determined from (52) as Ψ1n1 −
M−1vi for each 2 ≤ i ≤ L. One can see that the proposed robust
MD-CRT for integer vectors/matrices (i.e., Theorem 1) and its
closed-form reconstruction algorithm (i.e., Algorithm 1) can
be directly applied to (52) (or (56)). Thus, the following result
is straightforwardly obtained.
Corollary 3: Let {Ψi}Li=1 andM in (49) be L different arbitrary

nonsingular integer matrices and an arbitrary nonsingular real
matrix, respectively. Without loss of generality, we assume that
the index l0 with 1 ≤ l0 ≤ L satisfies

min
1≤ j≤L
j�l0

λL(MΨl0 j) = max
1≤i≤L

min
1≤ j≤L
j�i

λL(MΨi j). (58)

For a real vector m with

�Ψ−1l0 M−1m� ∈ N
(
Ψ−1l0 lcrm(Ψ1,Ψ2, · · · ,ΨL)

)
, (59)

we can accurately determine {Ψini}Li=1 from the erroneous re-
mainders {r̃i}Li=1, if and only if

0 = argmin
h∈L(MΨl0 j)

‖h − (�r j − �rl0 )‖ for 1 ≤ j ≤ L and j � l0.

(60)
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Moreover, letting τ be the remainder error bound, i.e., ‖�ri‖ ≤ τ
for 1 ≤ i ≤ L, a simple sufficient condition is

τ < max
1≤i≤L

min
1≤ j≤L
j�i

λL(MΨi j)

4
= min

1≤ j≤L
j�l0

λL(MΨl0 j)

4
. (61)

After {Ψini}Li=1 are accurately determined, a robust reconstruc-
tion m̃ of m can be obtained by m̃ = 1

L

∑L
i=1 (MΨini + r̃i) with

‖m̃ −m‖ ≤ τ.

VI. SIMULATIONS

In this section, we first conduct some numerical simulations
to verify the theoretical results of the robust MD-CRT in Theo-
rem 1 (see Sec. III above), and then illustrate the performance
of the robust MD-CRT in frequency estimation for a complex
MD sinusoidal signal based on multiple sub-Nyquist samplers.
For all experiments below, without loss of generality, we focus
on the two-dimensional case, i.e., D = 2, and the vector norm
‖·‖ involved is assumed to be the �2 norm, i.e., ‖·‖2.

We consider three moduli as M1 =

(
1360 1788
960 1728

)

, M2 =
(
656 488
256 448

)

, and M3 =

(
1532 1576
1392 1656

)

, which clearly do not

satisfy the constraint (i.e., (17)) used in [23]. We calculate

an lcrm of {Mi}3i=1 as R =
(
733248 540744
655488 483264

)

, and the mini-

mum distance of the lattice that is generated by a gcld of any
pair of moduli as λL(M12) = 85.0412, λL(M13) = 127.5617, and
λL(M23) = 42.5206. According to Theorem 1, we should choose
M1 as the reference moduli, i.e., l0 = 1, and the reconstruction
robustness bound is 85.0412/4 = 21.2603. For comparison, we
also choose M2 as the reference moduli, and the reconstruction
robustness bound is 42.5206/4 = 10.6302. For these two cases,

they have different reconstruction ranges. Let m =
(
515545
460771

)

be an integer vector we need to estimate, which obviously
falls into the reconstruction ranges of the two cases. Therefore,
with respect to each case, we investigate the remainder error
bounds τ = 0, 2, 4, · · · , 30, and for each of them, we uniformly
select the remainder errors ‖�ri‖2 ≤ τ, 1 ≤ i ≤ 3, and run 2000
trails. For every trail, we utilize Algorithm 1 to obtain one
estimate m̃. In Fig. 1, we illustrate the mean error E(‖m − m̃‖2)
in terms of different remainder error bounds for each of the
two cases. One can see from Fig. 1 that the performance is
completely in line with the results of our proposed robust MD-
CRT. That is to say, the mean error curve always lies beneath
the remainder error bound curve when the remainder error
bound is less than the reconstruction robustness bound, and
then is about to break through the remainder error bound curve
(i.e., robust reconstruction fails). Moreover, Fig. 1 shows that
choosing a proper modulus as the reference in Algorithm 1 is
beneficial to improved robustness performance for the robust
MD-CRT.
We next show a direct application of the robust MD-CRT to

MD sinusoidal frequency estimation with multiple sub-Nyquist
samplers in noise. To do so, let us first recall multidimensional
sampling. Sampling of a 1-D signal is performed on a line with
samples located at equally spaced points of the line (generated

Fig. 1. Mean error and theoretical error bound for the two cases using
different reference moduli in Algorithm 1.

or periodically extended by a sampling interval), whereas for
an MD signal x(t) with t ∈ RD to be considered in this paper,
its samples are taken at a series of vertex points of a sampling
lattice (generated by a sampling matrix) and have more degrees
of freedom. For example, a sampled signal xs(t) of x(t) over a
sampling latticeL(M) that is generated by a D × D nonsingular
matrix M ∈ RD×D is defined as

xs(t) =
∑

n∈ZD
x(t)δ(t −Mn), t ∈ RD, (62)

where δ(t) is the unit impulse function, and M is the sampling
matrix with the sampling density 1/|det(M)|. Sampling density,
also called sampling rate, is the density of sampling points per
unit spatial volume in RD, and therefore, the cost of an analog-
to-digital converter increases with increasing sampling density.
Assume without loss of generality that f ∈ ZD is an unknown

D-dimensional integer frequency of interest in a complex MD
sinusoidal signal x(t) with noise ω(t), i.e.,

x(t) = e j2πf
T t + ω(t), t ∈ RD. (63)

Let M−T
1 ,M

−T
2 , · · · ,M−T

L be L different sampling matrices with
the sampling densities {|det(Mi)|}Li=1, where {Mi}Li=1∈ ZD×D are
nonsingular integer matrices. We obtain the sampled sinusoidal
signal of x(t) with the sampling matrix M−T

i as

xi[n] = e j2πf
T M−Ti n + ωi[n], n ∈ ZD. (64)

The MD discrete Fourier transform (DFT) with respect to MT
i

is then implemented on xi[n], n ∈ N(MT
i ) [33], and we have

Xi[k] =
∑

n∈N(MT
i )

e j2πf
T M−Ti ne− j2πk

T M−Ti n + Ωi[k]

=
∑

n∈N(MT
i )

e− j2π(k−f)T M−Ti n + Ωi[k]

= |det(Mi)| �[k − ri] + Ωi[k] (65)

for k ∈ N(Mi), where ri is the remainder of f modulo Mi, i.e.,
ri = 〈f〉Mi , Ωi[k] is the MD DFT of ωi[n] with respect to MT

i ,
and the last equation holds due to the unitarity property of the
MD DFT [34]. Note that �[n] stands for the MD discrete delta
function, which equals 1 if n = 0 and 0 otherwise. Hence, the
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Fig. 2. Mean relative error in terms of various SNR’s for the two
different M’s.

remainder ri can be accurately detected as the peak in the MD
DFT magnitude of xi[n] in (65), when the signal-to-noise ratio
(SNR, quantified as SNR = −10 log10(2σ2) dB where ωi[n] in
(64) is zero-mean complex white Gaussian noise with variance
2σ2) is not too low. Accordingly, f can be accurately obtained
from the detected remainders {ri}Li=1 based on the MD-CRT in
Proposition 1, if f ∈ N(R), where R is an lcrm of {Mi}Li=1. At
this point, the Nyquist sampling density defined by |det(R)| is
considerably greater than the sampling densities {|det(Mi)|}Li=1.
More interestingly, when the SNR is not too high, the detected
remainders are likely to have errors, and thereby our proposed
robust MD-CRT in Theorem 1 offers an efficient approach for
robustly estimating f from the erroneous remainders.
To illustrate the performance of the robust MD-CRT in MD

sinusoidal frequency estimation, we consider two sampling ma-
trices

{
M−T

i

}2

i=1
for simplicity, where Mi =MΓi, i = 1, 2, with

Γ1 =

(
2 1
1 2

)

and Γ2 =

(
2 2
1 3

)

. It is easily known that Γ1 and

Γ2 are left coprime but not commutative. Hence, M1 and M2

do not satisfy the constraint (i.e., (17)) placed in [23], and M
is their gcld. In these simulations, we investigate two cases

of M, i.e., M =
(
48 20
8 40

)

and M =
(
96 40
16 80

)

. Based on the

robust MD-CRT for the moduli M1 and M2, we reconstruct
an MD frequency f ∈ Z2 from the detected remainders in the
MD DFT domains of undersampled waveforms in (65). From
Theorem 1, the two different M’s yield different reconstruction
robustness bounds 10.6302 and 21.2603, respectively. We take

f =
(
443
388

)

, which is clearly within the reconstruction ranges

of the two cases. In Fig. 2, we present the mean relative er-
ror E(‖f − f̃‖2/‖f‖2) between f and the reconstruction f̃ verse
various SNR’s for the two cases. Moreover, Fig. 3 shows the
probability of detection verse different SNR’s to indicate the
estimation accuracy for the two cases. In the experiments, we
implement 2000 trails for every SNR. From Figs. 2 and 3,
the second case with a larger reconstruction robustness bound
results in better performance (i.e., lower mean relative error and
higher probability of detection) than the first case with a smaller
reconstruction robustness bound.

Fig. 3. Probability of detection in terms of various SNR’s for the two
different M’s.

Fig. 4. Mean relative error in terms of various SNR’s for the two different
sampling strategies.

Furthermore, we compare two different sampling strate-
gies with sampling matrices

{
M−T

i

}2

i=1
, where M1 =MΓ1 and

M2 =MΓ2 are given as follows. Strategy I: M =
(
96 30
12 90

)

,

Γ1 =

(
1 3
3 1

)

, Γ2 =

(
5 2
5 3

)

; and Strategy II: M =
(
10 32
30 4

)

, Γ1 =
(
7 5
5 7

)

, Γ2 =

(
5 1
5 4

)

. It is easy to see that in each of the two

strategies, the moduli do not satisfy the constraint (i.e., (17))
enforced in [23], and M = gcld(M1,M2). In addition, the two
strategies possess the same Nyquist sampling density, i.e., share

an identical lcrm R =
(
−4782 5712
−6894 8304

)

with |det(R)| = 331200.
According to Theorem 1, the two strategies have reconstruc-
tion robustness bounds 23.7171 and 7.9057, respectively. Let

f =
(
810
1181

)

, which simultaneously satisfies f ∈ N(R) and falls

into the reconstruction ranges of these two strategies. Figs.
4 and 5 illustrate the performance of the mean relative error
and the probability of detection versus various SNR’s for the
two strategies, respectively, where 2000 trails are implemented
for every SNR. As a consequence, Strategy I achieves better
performance than Strategy II, while the sub-Nyquist sampling
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Fig. 5. Probability of detection in terms of various SNR’s for the two
different sampling strategies.

densities in Strategy I are larger than those in Strategy II, but
far less than the Nyquist sampling density.
As a final comment, the release of the matrix commutativity

and coprimeness constraint (used in [23]) on the moduli makes
our proposed robust MD-CRT in this paper much more flexible
for designing the optimal sampling matrices/lattices to achieve
the best undersampling efficiency (e.g., the minimum sampling
density as well as maximum robustness against noise). This is
of great interest and will be studied in our future work.

VII. CONCLUSION

In this paper, we investigated the problem of robust recon-
structions of an integer vector from the erroneous remainders.
We introduced a theoretically well-founded solution to this
problem by developing the robust MD-CRT for a general set
of moduli that do not necessarily satisfy the strict constraint
(i.e., the remaining integer matrices left-divided by a gcld of
all the moduli are pairwise commutative and coprime) needed
in the previous robust MD-CRT in [23]. Specifically, we first
proved a necessary and sufficient condition on the difference
between paired remainder errors, as well as a simple sufficient
condition on the remainder error bound, for the robust MD-
CRT for general moduli, where a closed-form reconstruction
algorithm was presented. We then generalized the proposed
robust MD-CRT from integer vectors/matrices to real ones.
We finally validated the robust MD-CRT for general moduli
by conducting numerical simulations, and showed its perfor-
mance in MD sinusoidal frequency estimation using multiple
sub-Nyquist samplers. We believe that beyond MD sinusoidal
frequency estimation from undersampled waveforms, the robust
MD-CRT will have many other potential applications.
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