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Robust Multidimentional Chinese Remainder
Theorem for Integer Vector Reconstruction

Li Xiao”, Haiye Huo

Abstract—The problem of robustly reconstructing an integer
vector from its erroneous remainders appears in many applica-
tions in the field of multidimensional (MD) signal processing. To
address this problem, a robust MD Chinese remainder theorem
(CRT) was recently proposed for a special class of moduli, where
the remaining integer matrices left-divided by a greatest common
left divisor (gcld) of all the moduli are pairwise commutative
and coprime. The strict constraint on the moduli limits the
usefulness of the robust MD-CRT in practice. In this paper,
we investigate the robust MD-CRT for a general set of moduli.
We first introduce a necessary and sufficient condition on the
difference between paired remainder errors, followed by a simple
sufficient condition on the remainder error bound, for the robust
MD-CRT for general moduli, where the conditions are associated
with (the minimum distances of) these lattices generated by gcld’s
of paired moduli, and a closed-form reconstruction algorithm is
presented. We then generalize the above results of the robust
MD-CRT from integer vectors/matrices to real ones. Finally, we
validate the robust MD-CRT for general moduli by employing
numerical simulations, and apply it to MD sinusoidal frequency
estimation based on multiple sub-Nyquist samplers.

Index Terms—Chinese remainder theorem (CRT), integer vec-
tors/matrices, multidimensional frequency estimation, remainder
errors, robustness.
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I. INTRODUCTION

HE Chinese remainder theorem (CRT) [1] is known to
T offer a solution to a system of linear congruence equa-
tions, namely, reconstructing a larger nonnegative integer from
its remainders modulo several smaller positive integers (called
moduli). It has a broad range of applications in many areas, such
as computer arithmetic, digital signal processing, and cryp-
tography [1], [2], [3]. Nevertheless, the CRT reconstruction is
extremely susceptible to errors in the remainders, which means
that a very small error in any remainder might yield a large
reconstruction error in the large integer of interest. This may
cause failures in applications of the CRT, considering that the
detected remainders are often erroneous due to environmental
noise contamination. As such, during the past decades, the prob-
lem of robust reconstructions from the erroneous remainders
has been continuously investigated, where “robustness” means
that the reconstruction error could be bounded by the remainder
error bound [4], [5], [6], [7], [8], [9], [10]. More specifically,
for addressing this robust remaindering problem, a robust CRT
has been introduced, of which the basic idea is to accurately
determine all the quotients (called folding numbers) of the large
integer divided by the moduli. An extensive review of the robust
CRT and its various generalizations is presented in [11]. To
distinguish from the robust multidimensional (MD) CRT for
integer vector reconstruction studied in this paper, we refer to
the robust CRT for integer reconstruction as the robust 1-D CRT,
which has been found to have potential applications to sinu-
soidal frequency estimation with sub-Nyquist samplings and
phase unwrapping for radar interferometry [12], [13], [14], [15],
[16], [17], grid cell neural coding [18], signal reconstruction
via multi-channel modulo samplers [19], and wireless sensor
networks with fault tolerance [20], [21], [22].

Considering that signals found in modern applications often
have a multidimensional structure, e.g., multiple input multiple
output (MIMO) communication and MIMO radar systems, we
recently studied exact and robust reconstructions of an integer
vector from its (erroneous) remainders modulo several moduli
in [23], where the moduli are nonsingular integer matrices and
the remainders are integer vectors. Concretely, we first derived
the MD-CRT for a general set of moduli, via which an integer
vector can be accurately reconstructed from the remainders, if
this integer vector is within the fundamental parallelepiped of
the lattice that is generated by a least common right multiple of
all the moduli. We then introduced the robust MD-CRT for a
special class of moduli, where these remaining integer matrices
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left-divided by a greatest common left divisor of all the moduli
are pairwise commutative and coprime. In this special case, the
robust MD-CRT basically states that an integer vector within a
certain reconstruction range can be robustly reconstructed from
its erroneous remainders and the moduli, if the remainder error
bound is smaller than a quarter of the minimum distance of
the lattice that is generated by a greatest common left divisor
(gcld) of all the moduli. One can obviously see that there is the
commutativity and coprimeness constraint on the moduli for
the robust MD-CRT in [23], which is very strict and therefore
might limit the applications of the robust MD-CRT in practice.
As an example, when applying the robust MD-CRT for animal
2-D location estimate in grid cell neural coding [18], different
grid cell populations have different lattice periods (actually the
moduli), which are intrinsical and in general do not satisfy the
commutativity and coprimeness constraint mentioned above so
that the robust MD-CRT in [23] cannot work here.

In this paper, we propose the robust MD-CRT for a general
set of moduli on which the undesirable matrix commutativity
and coprimeness constraint we imposed in [23] is no longer
required. Instead of accurately determining the folding vectors
{n,~}iL=1 (namely, the quotients of an integer vector of interest m
left-divided by moduli {Mi}iL:l) in [23], we attempt to accurately
determine {M;n;}~,, and thereby obtain a robust reconstruc-
tion m of m by averaging the reconstructions calculated from
the determined folding vectors, i.e., m = % ZiL=1 M;n; + ), in
this paper, where {F;}%, denote the erroneous remainders. Of
note, this strategy actually facilitates the robust MD-CRT for
a general set of moduli by avoiding the difficulties brought
about by the non-commutativity of matrix multiplication. More
precisely, we first present a necessary and sufficient condition
on the difference between paired remainder errors, as well as
a simple sufficient condition on the remainder error bound, for
the robust MD-CRT for general moduli, where the conditions
are related with (the minimum distances of) the lattices that are
generated by greatest common left divisors of paired moduli.
At the same time, a closed-form reconstruction algorithm for
the derived robust MD-CRT is proposed as well. In addition,
we generalize the above results of the robust MD-CRT from
integer vector/matrix cases to real-valued vector/matrix cases.
We finally validate the robust MD-CRT for general moduli by
conducting some numerical simulations, and apply it to fre-
quency estimation for a complex MD sinusoidal signal under-
sampled with multiple sub-Nyquist samplers. It demonstrates
that the use of the robust MD-CRT with L properly chosen
moduli {M,-}ZAL:1 (whose inverses are referred to as sub-Nyquist
sampling matrices with sampling densities {Idet(Mi)I}l-Lzl) can
result in significant sampling density reduction over the Nyquist
sampling density for MD sinusoidal frequency estimation.

The rest of this paper is organized as follows. We introduce
the preliminary knowledge associated with integer vectors and
integer matrices in Section II, as well as our previously derived
(robust) MD-CRT in Section III where the robust MD-CRT is
limited to a special class of moduli. In Section IV, we propose
the robust MD-CRT for a general set of moduli, together with
its closed-form reconstruction algorithm. We further generalize

2365

the robust MD-CRT from integer vectors/matrices to real ones
in Section V. We illustrate simulation results of the robust MD-
CRT and its application to MD sinusoidal frequency estimation
with multiple sub-Nyquist samplers in noise in Section VI. We
conclude this paper in Section VIIL.

Notations: We utilize capital and lowercase boldfaced letters
to denote matrices and vectors, respectively. Let A(i, j) be the
(i, j)-th element of a matrix A, and a(i) be the i-th element of
avectora. Let AT, A™", A", and det(A) denote the transpose,
inverse, inverse transpose, and determinant of A, respectively.
We represent by diag(ay, as, - - ,ap) the diagonal matrix with
a scalar a; being the i-th diagonal element. Let R and Z denote
the sets of reals and integers, respectively. For a D-dimensional
real vector a€R”, a € [c,d)” says that every element of a is
within the range of [c,d) and c,d € R. Let I and 0 respectively
be the identity matrix and the all-zero vector/matrix (their sizes
are determined from the context). The symbol |-] denotes the
floor operation, and it is implemented element-wisely if acting
on one vector. We let adj(M) stand for the adjugate of a square
matrix M. According to the definition, one can see that adj(M)
is an integer matrix, if M is an integer matrix. Throughout this
paper, all matrices are square matrices, unless otherwise stated.

II. PRELIMINARIES

To make this paper self-contained, t his section reviews some
of formal definitions and basic properties pertaining to lattices,
integer vectors, and integer matrices [23], [24], [25], [26], [27].

1) Lattice: Given a D x D nonsingular matrix M € RP*P_ a
lattice generated by M is defined as

L) ={Mn|nez”}. (1)

2) The shortest vector problem (SVP) on lattice: For a lattice
L(M) that is generated by a nonsingular matrix M € RP*P its
minimum distance, denoted as A g, is defined as the smallest
distance between any two distinct lattice points, i.e.,

A = min |w-—vV]|. 2
Lom = L(M),” | 2

W#V

As we know, a lattice is closed under addition and subtraction.
The minimum distance of £(M) is therefore equal to the length
(magnitude) of the shortest non-zero lattice point, i.e., Az =
minye cov\jo; [IVI-

3) The closest vector problem (CVP) on lattice: For a lattice
L(M) that is generated by a nonsingular matrix M € RP*P | the
closest lattice point in £(M) to a given arbitrary point w € R”
is defined as

p = argmin||v — w||. 3)
veL(M)

Remark: There have been many algorithms for handling the
SVP and CVP problems in the literature (see, e.g., [28], [29]).
Here, we only discuss some classical algorithms and the com-
plexity of exactly solving the CVP. For example, a deterministic
algorithm for exactly solving the CVP was developed in [28],
which runs in 0(22?) time and needs O(2”) space. In [30], this
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was improved to achieve a 2°7°(P)_time and space randomized
algorithm. We note that the distance above in (2) and (3) can
be measured by an arbitrary vector norm, such as the £ norm
[[V]l2 = v Xilv(@)[?, the €1 norm ||v]|; = X;|v(i)|, and the £+, norm
[[Vllo = max;[v(7)|. In this paper, the SVP and CVP problems are
identified as the integer quadratic programming problems, and
we can solve them (i.e., (2) and (3)) utilizing enumeration [31]
and MOSEK with CVX [32], respectively.

4) Notation N(M): Given a D X D nonsingular integer matrix
M € ZP*P | the notation N (M) is defined as

NM) = {k |k =Mx,x €[0,1)” and k € Z°}. )

The number of elements in N (M) is equal to |det(M)|.

5) Division representation for integer vectors: Given
a D x D nonsingular integer matrix M € ZP*P_ any integer
vector m € ZP can be uniquely represented as m=Mn +r
with r € N(M) and n € ZP. For modular representation, it is
denoted as

m=r mod M, ©)

where M is a modulus, and n and r are the folding vector and
remainder of m with respect to M, respectively.

Remark: The folding vector and the remainder are computed
asn=|M"'m]and r=m - MM 'm]. As M! is generally a
matrix with rational elements, I_M’lmJ may suffer from round-
off error owing to finite precision on computers, an alternative
for computing r is given by, [26],

r =M (adj(M)m mod det(M)) /det(M), ()

in which the operation “mod” means that adj(M)m is element-
wisely modulo det(M). This approach is not subject to round-off
error, because all arithmetic operations in (6) are performed on
integers.

6) Unimodular matrix: A square matrix U is unimodular if it
is an integer matrix with |det(U)| = 1. For a unimodular matrix
U, its inverse U™! is unimodular, due to U™! = adj(U)/det(U).

7) Divisor: An integer matrix A is a left divisor of an integer
matrix M if A~'M is an integer matrix. If A is a left divisor of
each of all L > 2 integer matrices My, My, --- ,M,, we call A
a common left divisor (cld) of M, Mo, --- ,M;. Moreover, if
any other cld is a left divisor of A, then A is a greatest common
left divisor (gcld) of My, Mo, - -+ ,Mj. One can readily see that
a gcld has the largest absolute determinant among all cld’s, and
it is unique (up to post-multiplication by a unimodular matrix).

8) Multiple: A nonsingular integer matrix A is a left multiple
of an integer matrix M, if there is a nonsingular integer matrix
P such that A = PM. We call A a common left multiple (clm)
of My, Mo, --- ,My, if A is a left multiple of each of all L >2
integer matrices My, Mo, --- , M. In particular, A is termed a
least common left multiple (Iclm) of M, Mo, --- ,M_, if any
other clm is a left multiple of A. Apparently, an Iclm has the
smallest absolute determinant among all clm’s, and it is unique
(up to pre-multiplication by a unimodular matrix).

Remark: Similar to 5) and 6) above, we can define right divi-
sor/multiple, common right divisor/multiple (crd/crm), greatest
common right divisor (gcrd), and least common right multiple
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(Icrm), respectively. Both divisors and multiples are supposed
to be nonsingular integer matrices throughout this paper.

9) Coprimeness: A pair of integer matrices M and N are said
to be right (left) coprime, if their gerd (geld) is a unimodular
matrix. If M and N are commutative, i.e., MN = NM, the right
coprimeness and left coprimeness imply each other, and so we
use the one word “coprimeness”. If M and N are commutative
and coprime, MN is both an lcrm and an Iclm, and so we use
the one word “lem”.

10) Bezout’s theorem [23], [27]: Let L € ZP*P stand for
a geld of two integer matrices M and N € ZP*P. There exist
integer matrices P and Q € ZP*P satisfying

MP + NQ =L. @)

Of note, how to compute the accompanying matrices P and Q
will be presented in 12) below. Similarly, if L € ZP*P is a gcrd
of M and N, there exist integer matrices P and Q satisfying
PM +QN=L.

11) The Smith form [25], [27]: A rank-y integer matrix M €
ZP*K can be factorized as

(A 0), ifk>D,
A, if K=D,

[A] ~
s if K< D,
0

where U € ZP*P and V € Z¥*K are unimodular matrices, and
A = diag(61,02, -+ ,0,,0,---,0) is a min(K, D) X min(K, D)
diagonal integer matrix. Assume that 61, 02, - - , d, are positive
and ¢; divides ¢;,1 for each 1 <i <y — 1, and then A is unique
for the given matrix M, while U and V are in general not. In
addition, 61, 02, - , 0, are termed the invariant factors and can
be obtained by 0; = d;/d;—1 for 1 <i <7, where d; is the gcd of
all i X i determinantal minors of M and dy = 1.

12) Calculation of gcld: To compute a gcld of two nonsin-
gular integer matrices M and N € ZP*P | we let H = (M N) €

ZP*2D and obtain the Smith form U (M N) V= (A 0), where
U e ZP*P and V € Z2P*2D yre unimodular matrices, and A €
ZP*P is a diagonal integer matrix (which is also nonsingular
due to rank(H) = D). After simple computations, we obtain
(M N) = (L 0) V!, where L = U'A. Since U! is unimod-
ular, L is a nonsingular integer matrix, i.e., L € Z?”_ Since V™
is unimodular, we can partition V™! into four D x D integer
matrix blocks K;; € ZP*P for 1 <, j < 2, and obtain

(M N)=(L ())(K11 K”).

UMV = ®)

Ko K22 ©)
We therefore have M = LK;; and N = LK. It is proved that
such L is in fact a gcld of M and N (see [23] for the proof).
Remark: We then provide a way to compute the accompa-
nying matrices P and Q in (7) for the Bezout’s theorem. From
the Smith form of H above, we get (M N)V = (L 0). We
partition V into four D x D integer matrix blocks V;; € ZP*P
for 1 <i, j <2, and have

(M N) (V“

Vo (10)

vi)= o).
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It implies the Bezout’s theorem, expressed by MVy; + NVg; =
L, i.e., P= V11 and Q = V21 in (7)

13) Calculation of Icrm: To calculate an lcrm of two non-
singular integer matrices M and N € Z?*P | we let H=M"'N.
Because of M~! = adj(M)/det(M), M has all elements being
rational numbers, and so does H. Letting d be the Icm of the
denominators of all elements in H, we know that dH isa D X D
nonsingular integer matrix. We compute the Smith form of /JH
as UdHV = A, i.e.,

M™IN = U'diag(8,/d, 62/d, - ,6p/d)V7L,  (11)

where U and V are D X D unimodular matrices (i.e., U,V €
ZP*D) and A = diag(6y, 52, -+ ,0p) € ZP*P as derived in (8).
All the rational numbers 6;/d, d2/d,--- ,0p/d are represented
by their irreducible forms; that is to say, for 1 <i< D, ¢;/d =
a;/B; where @; and 3; are coprime positive integers. Let A, =
diag(ay, @z, - ,ap) and Ag = diag(B,,B2,--- ,Bp). Based on
(11), we obtain M™'N=U"'A,A;'V™". Let P=U"A, and
Q = VAy, which are clearly nonsingular integer matrices and
right coprime. We hence have M !N = PQ_l, i.e., MP = NQ.
It is proved that R = MP = NQ is actually an lcrm of M and N
(see [25] for the proof).

Remark: For L > 3 nonsingular integer matrices {M,}1-,, we
can compute an lecrm of {M,-}iL:1 via computing an lcrm
of two matrices iteratively, due to the fact that lcrm
(Ml’ M2, cee ,ML)Z lerm (lcrm (Ml: MQ, N ML—I) »ML)
holds, which has been proved in [23]. Besides, similar to the
calculations of gcld and lcrm above, the calculations of gerd
and Iclm can be obtained. For more details, we refer the reader
to [23], [25].

III. PREVIOUS RESULTS ON (ROBUST) MD-CRT
Consider a system of congruences

m=r; mod M;

m=ro mod M2
(12)

m=ry; mod ML,

where moduli {M;}%, € ZP*P are nonsingular integer matrices,
and R € ZP*P is anyone of their lcrm’s. With respect to (12),
let us recall the results about the (robust) MD-CRT we recently
proposed in [23] as follows. For simplicity of notation, we will
use r = {m)y to denote the remainder r of m modulo M.

A. MD-CRT

Proposition 1 ([23]): Let moduli {M,~}iL=1 in (12) be arbitrary
nonsingular integer matrices. An integer vector m € N'(R) can
be accurately reconstructed from its remainders {ri}f‘: 1

Notice that a cascaded reconstruction algorithm for the MD-
CRT in Proposition 1 is introduced in [23]. For2<i< L, letR;
be an lcrm of {Mk}k 1> Gi be a gcld of M; and R;, and P; and
Q; be the accompanying matrices in the Bezout’s theorem with
R/P; + M;Q; = G;. On the basis of 12) and 13) in Sec. II, all
these involved matrices can be computed in advance. Here, we
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briefly summarize the core steps of the cascaded reconstruction
algorithm for the MD-CRT.
e A solution (denoted as m; € N(Rj3)) to
m=r; mod Ml
{m =ry; mod My (13)
is obtained as m; = <r1 +M;:Py Ggl(rg - r1)>R
e Based on the cascade architecture of the congrue3nces, we
next obtain a solution (denoted as my € N(Ry)) to

{m =m; mod Rj

m=r3; mod Mj (14)

as mo = <m1 + R3P3 GS (I‘g - m1)>
e Following the above steps, we assembie two congruences
at a time, until a solution (denoted as m;_; € N(R)) to

m=my;_o mod RL
m=r; mod M,

s)

is calculated as m;_| = <mL_2 +R,P;G;!
(rL—mL 2)r. As verified in [23], the lerm (i.e., R)
of (M }, 1 is an lerm of Ry and My, and m;_; is a unique
solution to (12) from the MD-CRT if m e N(R), i.e.,

m=my;_i.

Remark: If the moduli {M;}%, € ZP*P are pairwise com-
mutative and coprime, it is clear that R=M;Ms---M,;U e
ZP*P is an lerm of all the moduli for any unimodular ma-
trix U, and the MD-CRT in Proposition 1 has a closed-form

solution as
L
= <Z WiWil‘i> s
i=1 R

where W; =M ---M,;_1M;;1 ---M;, and \:?:V,- is the accompa-
nying matrix in the Bezout’s theorem (W;W,; + M;Q; =1 with
Q, € ZP*P) and can be calculated in advance.

(16)

B. Robust MD-CRT for a Special Class of Moduli

In [23], the robust MD-CRT was first proposed for a special
class of moduli, i.e., moduli {M;}%, in (12) are given by

M, =MT; for 1 <i<L, (17)

where {T';}-, € ZP*P are pairwise commutative and coprime,
and M e ZDXD In this special case, R = MI'1 T’y - - - I', U for any
unimodular matrix U is an lerm of {M;}7,, and the basic idea
of the robust MD-CRT in [23] is to accurately determine the

folding vectors {n,}L from the erroneous remainders

Fisri+ane NM,) for1<i<lL, (18)
and afterwards obtain a robust reconstruction of m as
1 &
n= - Zl (Min; + ), (19)
where {Ar,;}-, € ZP are the remainder errors. Define
A £ (mezP| IM;'m] € Ny T Ty - LU
(20)
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for 1 <i<L, where {U,-}iL:1 are any unimodular matrices. The
robust MD-CRT for this special class of moduli expressed in
(17) was obtained in [23], as stated below.

Proposition 2 ([23]): Let moduli {M,-}I-L=1 in (12) be given by
(17). We can accurately determine the folding vectors {ni}l.L= , of
an integer vector m € (%, A; (without loss of generality, we
suppose that m € A;) from the erroneous remainders {f'i}f‘: 1, if

and only if

0 =argmin|h — (Ar; — Ary)|| for2<i<L.
heL(M)

ey

Moreover, letting 7 be the remainder error bound, i.e., ||[Ar|| < T
for 1 <i< L, a simple sufficient condition is

A
< £ (22)
4
Once {ni}iL= , are accurately determined, we can obtain a robust

reconstruction m of m by (19) such that [ — m|| < 7.

The necessary and sufficient condition (21) means that the
lattice point 0 in £(M) is the only closest lattice point to the
difference of the remainder errors Ar; and Ar; for every i, 2 <
i<L.

Remark: In [23], a closed-form reconstruction algorithm for
the robust MD-CRT in Proposition 2 was also provided.

IV. ROBUST MD-CRT FOR GENERAL MODULI

When moduli do not satisfy the constraint in (17), the results
(i.e., Proposition 2 above) and reconstruction algorithm in [23]
cannot be directly applied, which might limit the applications
of the robust MD-CRT in practice. In this section, we consider
the robust MD-CRT for a general set of moduli on which the
constraint imposed in [23] is no longer required.

We can equivalently write (12) as

m=M;n; +r;

m=Msn, + 1y
(23)

m=M;n; +r;,

where {n;} | are the folding vectors. Without loss of generality,

letting the first equation in (23) be a reference, we subtract it
from the last L — 1 equations, i.e.,

Min; —Mong =13 — 11
M1n1 - M3n3 =r3—rI
(24)

M1n1 - MLl'lL =r;—1ry.

Define Mli = gCld(Ml, M,‘), Fli = MiilMl, and I‘,~1 =

M;;M; for 2<i<L. Then, left-multiplying M;; on both
sides of the (i — 1)-th equation in (24) for 2 <i < L, we get

Tyon; — Tong = My (re — 1)

T30y —T3ing = Mp3(r3 — 1)

. (25)

-1
yng —Tping =M (rp —ry).
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. .. _ L
According to (25), it is easy to know that {Mlil(r,- - rl)}A , are
. . . =
integer vectors, i.e., for 2<i <L,

r; —r; € L(My)). (26)

In the same way as that used in [23], for each 2<
i<L, we estimate r; —r; from the erroneous remainders
{f',-},-L=1 through finding a closest lattice point v; in £(Mj;) to
l~'i - f']_, i.e.,

v; = argmin ||v — (¥ — F1)||.
veL(My;)

@7

Instead of accurately determining the folding vectors {ni}iL=1 in
[23], we intend to accurately determine {Mini}iLzl. Specifically,
by taking the modulo-M; on both sides of the (i — 1)-th equation

in (24) for 2 <i < L, we have

Min; =0 mod M,
M1n1 =T2— I mod MQ
M1n1 =r3—I; mod M3

(28)

M1n1 =TI, — I mod ML,
where the first equation spontaneously holds. Once
{r,-—rl}iL:2 are accurately estimated from (27), ie., v;=

r; —r; for 2 <i <L, we can accurately determine M;n; from
(28) according to the MD-CRT (see Proposition 1 above),
provided that Min; eN (Ilerm(M;, My, - - - , M})), equivalently
written as [M;'m] €N (M 'lerm(My, My, -+ . My)). Then,
M;n; can be accurately determined as Min; —v; for each
2 <i<L. In this end, we derive the following lemma, which
can be proved similarly to Theorem 3 in [23].

Lemma 1: Let moduli {M,'},«L:1 in (12) be L distinct arbitrary
nonsingular integer matrices, and an integer vector m be within

the range
IMi'm] e N (M7 lerm(My, Mg, -+, Mp)).  (29)

We can accurately determine {Mini}l.L: | from the erroneous re-
mainders {f'i}f‘zl, if and only if

0 =argmin|h — (Ar; — Ary)|| for2<i<L.
heL(My;)

(30)

Moreover, letting 7 be the remainder error bound, i.e., ||[Ar]| < T
for 1 <i< L, a simple sufficient condition is

. Aoy,
7 < min =MD

2<i<l. 4 (D

After {M,-ni}iL: , are accurately determined, a robust reconstruc-
tion m of m can be obtained by (19) with |l —m|| < 7.

Proof: From (27), we have, for 2<i<L,
v; = argmin |[v — (r; — r1) — (Ar; — Ary)||.
veL(My;)

Due to ve £L(My;) and r; —r; € L(My;), we have v—(r; —
r1) € L(My;), and (32) can be equivalently written as

(32)

h; = argmin ||h — (Ar; — Ary))||
heL(My;)

(33)

by taking h=v — (r; — ry).
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We first prove the sufficiency of (30). If h; =0 for2<i<L,
wegetv; =r; —ry,i.e,{r—r; }iL:2 are accurately obtained from
(27). Hence, as mentioned before, {Min,-}l’f: 1 can be accurately
determined, when (29) satisfies.

We next prove the necessity of (30). Assume that there ex-
ists at least one hy, that does not satisfy (30), i.e., hy, #0,
for some ko with 2 < kg < L. Furthermore, due to vy, = hy, +
(ry, —r1), we know vy, # 1y, — r;. We then have the following
two cases.

Case A: h;, ¢ L(M,,) for some [, with 2 <[y < L (where [,
is not necessarily equal to ko), i.e., h;, # M;,n for any n € ZP.
In this case, it is ready to see that v;, and r;, — ry have different
remainders modulo M;,. Thus, according to the uniqueness of
the reconstruction in the MD-CRT, M n; cannot be accurately
determined from {V,-}I-L=1 in (28).

Case B: For each 2<i<L, h; € L(M;), i.e., h; =M;n for
some n € ZP. In this case, considering that v; = h; + (r; — ry),
we know that v; and r; — r; have the same remainders mod-
ulo M; for each 2 <i<L, and therefore, Min; can be ac-
curately determined from {v,-}iL:1 in (28) using the MD-CRT.
However, since vy, # Iy, — Iy, the reconstruction of My ny, as
Min; — v, is not accurate. This completes the proof of the
necessity part.

Ultimately, we prove the simple sufficient condition in (31)
for accurately determining {M,-ni}iL: 1- Assume that there exists
one h,, in (33) satisfying h,, # 0 for some gg with 2 < gg < L.
We have

lIhgll = Ilhg, = (Arg, — Ary) = (0 = (Ary, — Ary))||
<lhhg, = (Arg, — Ary|[ +[larg, — arq|
<2ljary, — Arq||

<4r < /lL(Mh,O) s (34)

in which the second inequality follows from the fact that hy, is
one closest lattice point in £(My,,) to Ar,, — Ary, and the last
inequality holds since 47 < ming<;<c; Az, < Agovy,,)- Hence,
it contradicts with h,, € L(M,), i.e., [lhy |l > 4 LMy)» which
indicates that the condition in (31) implies (30).

Once {M,-n,'}iL:1 are accurately determined, we have a robust
reconstruction m of m as m = % Z[L:l (M;n; + 1)), i.e.,

i — ml| =

L

1

ZZ(M, Il,'+l','+AI',')—m|
i=1

L
- AT;
LL

L
1
<7 ; lar| < 7. (35)

This completes the proof of the lemma. [ ]
Note that in the aforementioned analysis, we just arbitrarily
select the first equation (or the first remainder ry) in (23) as a
reference to be subtracted from the other equations to acquire
(24), followed by Lemma 1. In fact, we can further improve the
reconstruction robustness of the robust MD-CRT via selecting
a proper reference equation in (23). Define M;; = gcld(M;, M ;)
for 1 <i+# j< L. Find the index [y with 1 <[y < L such that

min A = max min A 3. 36
1sjes L Mig) 1<i<L 1<jsL L) (36)
Jj#lg Jj#i
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Algorithm 1

1: According to 12) in Sec. II, calculate M, ; = gcld(M;,, M ;)
for 1< j<Land j+#l.

2: According to 13) in Sec. II, calculate R3 = lerm(M;, M),
Ry =lcrm(M7, My, M3) = lerm(R3, M3), Rjy =Ilcrm(My,
M2, M3, M4) = ICI‘III(R4, M4), """ 5 R= RL+1 = ICI'III(
M1, MQ, ey, ML) = ICI'III(RL, ML)

3: According to 3) in Sec. II, from the given {f‘i}f‘:l, calculate
viforl1<j<Land j#las

v; = argmin ||v — (§; — ). (40)

veL(My )
4: Calculate M fi;, € N(R) = N(Ierm(M, My, --- ,Mp)) via
the cascaded reconstruction algorithm for the MD-CRT in
Proposition 1 from the following system of congruences

M, ,n;, =vi mod M,

Mloﬁlo =V-1 mod Mlo—l
Mlo fl[o =0 mod Mlo
Mloﬁl() = vlo+1 mOd M]0+1

(41)

M, iy, = v, mod M;.

5: Calculate M;n; =M, f;,, —v; for 1<j<L and j#l.
Then, a reconstruction of m is m = % Zle(Miﬁ; +T).

By treating the /p-th remainder as the reference and following
the above procedures utilized in Lemma 1, we obtain the result
below straightforwardly, along with a closed-form reconstruc-
tion algorithm (see Algorithm 1) for the robust MD-CRT.

Theorem 1: Let moduli {Mi}iL:1 in (12) be L different arbitrary
nonsingular integer matrices. Suppose that the index [y with 1 <
lp < L satisfies (36). For an integer vector m with

LMI—UlmJ € N<Mijllcrm(M1, M,,--- ’ML))’ (37)

we can accurately determine {M;n;}- , from the erroneous re-

mainders {f'i}iL=1 by Algorithm 1, if azmd only if

0 = argmin |lh — (aAr; — Ary)l| for 1< j<Land j#1ly. (38)
heL(M; ;)

Moreover, letting 7 be the remainder error bound, i.e., ||[Ar|| < T
for 1 <i <L, a simple sufficient condition is

Az )
7 < max min = min . 39)
1<i<L 1<jsL 1<j<L 4
j#i J#lo

After {M,'ni}l.L= , are accurately determined, a robust reconstruc-
tion m of m can be obtained by (19) with |m —m|| < 7.

Let us briefly analyze the complexity of Algorithm 1. From
12) and 13) in Sec. II, each of the computations of gcld and
lcrm needs the Smith form once. To solve (41) via the cascaded
reconstruction algorithm for the MD-CRT, one can readily see
from (13)-(15) that it requires the Smith form 2L — 2 times,
since we have to calculate R3, R4, --- ,R;,R (i.e., L — 1 lcrm’s)
and G2, Gs, -, G (i.e., L — 1 gcld’s). Suppose that the index
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lp 1s known. Calculating {M,, j}jle jtlo requires the Smith form
L — 1 times. Therefore, the Smith form is implemented 3L — 3
times in total. Moreover, we need to solve the CVP L — 1 times
for (40), and the computational complexity of exactly solving
the CVP is discussed in Sec. II.

Remark: When the moduli {M,'}iL=1 in Theorem 1 satisfy
the constraint (i.e., (17)) imposed in [23], Theorem 1 reduces
to Proposition 2. It should also be pointed out that the MD-
CRT reconstruction range m € N (lerm(My, Mo, - -+ ,M})) and
the robust MD-CRT reconstruction range in (37) do not im-
ply each other, unless for the (robust) 1-D CRT and the (ro-
bust) MD-CRT with moduli being nonsingular diagonal integer

matrices. We take an example as follows. Let M; = ; Z1’>
1 2 7 95). .
and M5 = 2 1) whose product R=M;M; = 5 7 is their

4 1/8
M (_21//33)’ indicating n; ¢ N(M;'R) = N(M,). On the other

lecrm. Whenm = (5 ) = R(5/8 ) e N(R), we obtainn; = ((1)) =

(10} 5 (25/24 B
hand, when m—(9 )_R(13/24 )¢N(R), we get nj =
2/3

(; ) =M, (2/3), implying n; € N(M;'R) = N(M5). Owing to

this reconstruction range inequivalence, we cannot obtain a
further improved variant of the robust MD-CRT as in [8], where
a multi-stage (e.g., second-stage) robust 1-D CRT was general-
ized by first splitting the congruences into several groups, then
applying the robust 1-D CRT to each group independently, and
finally applying the robust 1-D CRT again to a new system of
congruences with the reconstructions and lcm’s in all the groups
being the remainders and moduli, respectively.

For a better understanding of Theorem 1, we next present an
example to explain our implementation of the robust MD-CRT
through the step-by-step procedures in Algorithm 1.

Example 1: Consider L =3 moduli M; =(g§gg 3828),

28950 24150 3440 3460
M2‘(14140 11680)’ and M3‘(1540 1160
(—5365350

). Let m=

. 3
9 402280)’ then the remainders of m modulo {M;};_; can

o) ~ (37650
> 2=

be calculated from (6) as r; = (O 18320

4490
1660/

= (_??;1) g = (—11389900)’ and n3 = _1861 . Let the erro-

. - 52\ . (37673 . [4446
neous remainders be ¥y = a6) T2 = (18243) and F3 = 1610}

), and r3 =

Correspondingly, the folding vectors are given by

. . . . 52 2
with their respective remainder errors Ar; = 36) Arg =| 7]

and Ars :( ) In the following, we elaborate how to ro-

=50
bustly reconstruct m from the erroneous remainders {f','}f-)’:1 by
Algorithm 1.
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. (-2272650 —2274600 .
i) First, calculate My, = _1002640 —1003500)" M3 =
—604610 —454920 Mo — (73632710 3661660
—266740 —200700) 27\ 1774320 —1788460)

according to 12) in Sec. II. Under the {5 norm, we then obtain
/lL(Mlz) =637.89, /1[(M13) = 352.28, /IL(Mgg) =178.04. Finally,
from (36), we regard the first remainder as the reference,
and the reconstruction robustness bound is 352.28/4 = 88.07.
One can easily see that the remainder error bound 7 satisfies
[lar]| <7< 88.07 for 1 <i<3.

ii) According to 13) in Sec. II, calculate Rj3=
86850 —101250
lerm(Mq, Ms)= 642420 49800 followed by R =Ilcrm
774000 —6133500

(M, Mz, M)= lerm(Rs, M) = (346500 —2746200)' I

addition, based on 12) in Sec. II, we calculate

th . i P -10 -12 d

e accompanying  matrices 2=_60 _69 an

-25 =28 e

Q= 36 -39 satisfying M;Ps + MxQ, = Mo, and

. . -108 —65

calculate the accompanying matrices Ps= 85 51

-40 -24 e A

and ng(_45 _o7 satisfying RsP3 + M3Q3 =G3 =
—18279350 —10984980
geld(Rs, My) ={ 9998160  —5365380 |

iii) According to 3) in Sec. II, calculate vy and vs from

37650 4490 .
(40) as vy _(18320) and v3 = (1660 . One can easily con-
140

firm that [M7'm| = n; € N (M;'R) = N(( s _141010)), ie.,

-971 140 -1110)(0.2
( a5 )_(_5 40 )(0.9), and ||ar|| <7< 88.07 for 1<

i < 3. Therefore, Theorem 1 holds.
iv) Via the cascaded reconstruction algorithm for the MD-
CRT in Proposition 1, calculate £ £ Mfi; from

{=0 mod M;
{=vy mod My 42)
{ =V3 mod M3.
e From (13), we acquire & =0+
—20250
-1 _
M, P, M3 (v, — 0))R3 = ( 9960 )
e From (14), we get {=80 =+
1 _ [—5365350
R3P3G3 (V3 - {1)>R - (—2402280 .
- -971 L
We so have ii; = 35 | which is equal to n;.
o - _ [—5403000
v) Calculate Mosilo = M fi; — vy = (—2420600) well
S - _ [—5369840 .
as Mgz =Mjfi; —v3 = 9403940 ) It also implies
. (1390 . [—1561 .
that 1y _(—1890) and fi3 = ( 0 ) which are equal

to ny and ng, respectively. Therefore, {M,-n,-}?=1 (i.e.,
{ni}f’zl) are accurately determined from the erroneous
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remainders {¥,;}>,, and a robust reconstruction of m can be

-5365339.67
i f=Lly3 Ao+ P) =
obtained as m= 33 (M + ;)= (_2402310.33),

|m —mfy = 32.05 < 7 < 88.07. ]

Since in the above new results in Theorem 1 there is no any
constraint on moduli {M;}% ; (i.e., moduli {M;}~ , are arbitrary
nonsingular integer matrices), some of these moduli might be
redundant with respect to the reconstruction robustness bound
(i.e., (39)), while retaining the reconstruction range (i.e., (37)).
We investigate the case when there exists a pair of moduli M;,
and M, such that M;, = M, P for P € ZP*P ie., M, is a right
multiple of M;,. For this, we have the following corollary.

Corollary I: If there are two moduli M;, and M;, in {M,v}iL=1
in Theorem 1 such that M;, = M, P for P € ZP*P| the modulus
M,, is redundant, in the sense that the appearance of M;, does
not help increase (and might even decrease) the reconstruction
robustness bound, meanwhile keeping the reconstruction range
unchanged. As such, M;, can be deleted from the set of moduli
in this case.

Proof: Without loss of generality, let us assume that M; =
M_P for P € ZP*P. We first prove Az, ) = Az, ) for any 2 <
J<L-1. Since My; = gcld(M,M;) and M; = M/P for any
2< j<L-1,itisready to confirm that M, is a cld of M; and
M. Therefore, My is a left divisor of M ; from the definition of
geld, ie., My; =M ;Q; forQ; € ZP*P Thatis to say, L(M1 ) €
.E(MLJ‘), and so /lL(My) > /]'L(ML/')'

i)

For the set of moduli {Mi}fz_ll, let s denote
the reconstruction robustness bound, i.e., s =
maxi<i<r-1 Minis-1 Agov,/4. For  the  set of  moduli

J#i !
{M;}2,, the reconstruction robustness bound can be
expressed as
Ao
max min ———
1<i<L 1sst 4
J#I
Az Az
:max{ max min —=—, —L’} (43)
lsisL-1 1sjst 4 1<j<l-1 4
J#E [ —

@ @

As for (a),
/IL(M”)/ZL we have maxj<i<s 1m1n1<,<L /Q(M,)/4< s. As

for (b), since it has been proved above 'that A Lo = Aoy
for any 2 < j< L -1, we have

due to minige A /4 < min 15/l
J#

Arony, Arony, Aoy,
min —EME) o i 22 i ZEMW o (44

1<j<l-1 4 T 2<j<i-1 4 T oe2gj<i-1 40 T

Thus, from (43), we get max;<;<; min 1sjst Az /4 < s, which
suggests that the appearance of M, does not help increase the
reconstruction robustness bound and might even worsen it.
For the set of moduli {Mi},-Lzl, it is straightforward that
M, is impossible to be a reference modulus (i.e., [y #
L in Theorem 1), on account of Ay, > Agmm,, for any
2<j<L-1. So, for the set of moduli {M,-}iL:_1 , We can
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choose the same M;, as the reference modulus. Further-
more, owing to My = M/ P, we get lerm(M;,My,--- , M) =
lerm(M;,Ma, - -+ ,M;_1), which implies from (37) that the re-
construction range remains uncha- nged after deleting M; from
moduli {M;}2,. n

Going back to the necessary and sufficient condition in (38)
for the robust MD-CRT in Theorem 1, one can readily see that
the remainder error difference bound depends on A LM, ) ie.,

Az, )

5
for 1 <j<L and j+#ly. It means that if we let 7; denote the
remainder error bound for the i-th remainder, i.e., ||Ar;|| < 75,
for 1 <i<L, then {‘ri}iL: , will have different requirements for
the robust reconstruction of m in (37), as stated below.

Corollary 2: Let moduli {M;}l-L:1 in (12) be L different arbi-
trary nonsingular integer matrices, the index /o with 1 <[y <L
satisfy (36), and an integer vector m be with (37), as the same as
those in Theorem 1. Let 7; denote the remainder error bound for
the i-th remainder, i.e., ||Ar|| < 7, for 1 <i < L, among which
the remainder error bound 7, for the reference modulus M, is
given by 7;, < min e Az, /4. If the remainder error bound
7; for 1 <i< L and i # [ satisfies

llar; — arg, | < (45)

Az, Az, )
llaril| < 7; < 07 _ min ——2-,
2 1<jsL 4
J#ly

(46)

we can accurately determine {M;n,-}[L: , from the erroneous re-
mainders {f’,-}iL:1 by Algorithm 1, and therefore, a robust recon-
struction 1 of m is obtained by (19), i.e., [ —m| < Y& | /L.

Proof: As ||Ar, || < 1/, < min isjsL Agamy, /4 and [lar]| <
T7; < /IL(MIO,)/Q m1n1<,<L /IL(M, ,)/4 %or 1<i<L and i#l,
we have

Ay
llar; — arg || < llavj|l + [larg || < 7 + 73 < —5

47)
which indicates (38) in Theorem 1. As a result, {M,-n,‘}l.L= 1 can
be accurately determined from the erroneous remainders {f',v}l.L=1
by Algorithm 1, and we can obtain a robust reconstruction m
of mas m= LZ -, Mn; + 1)), ie.,

1< 1<
SZ;”AI‘,'”SZzTi.

L

2o

i=1

[ — m]| = (48)

Therefore, Corollary 2 is proved. [ ]

Remark: Of note, OWIHg to /1.L(M, /2 min LsjsL /l.C(Mzg,)/4 >
min s Az, /4 for 1 <i<Landi#l, the alfowed remain-
der error bounds we derived by approaching them individually
as above are larger than or equal to that in (39) for all the remain-
der errors in Theorem 1, while the reconstruction range (i.e.,
(37)) remains unchanged. In addition, note that the counterpart
results of Corollary 1 and Corollary 2 were also obtained for
the robust 1-D CRT in [8].

Example 2: Let us consider the L =3 moduli as in Ex-
ample 1. According to Corollary 2, for the robust MD-CRT,
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we obtain the remainder error bounds as 71 < 352.28/4, 15 <
923.5/4, 13 <352.28/4. One can obviously see that the al-
lowed remainder error bounds here are larger than or equal
to 352.28/4 obtained in Theorem 1. Moreover, the reconstruc-
tion range in Corollary 2 is the same as that (i.e., (37)) in
Theorem 1. [ |

V. GENERALIZATION OF ROBUST MD-CRT FROM INTEGER
VECTORS/MATRICES TO REAL ONES

The above studies are all for integer vectors/matrices. Con-
sidering that in practical applications, an unknown vector (e.g.,
the phase of interest in multi-dimensional phase unwrapping in
MIMO radar systems) is real-valued in general, we next gen-
eralize the robust MD-CRT results in Theorem 1 from integer
vectors/matrices to real ones in this section. Note that we adopt
boldfaced Sans-Serif letters to denote real vectors/matrices for
distinguishing them from integer vectors/matrices.

Let m be a D-dimensional real vector (i.e., m € R?), which
can be uniquely expressed as

m= M‘Pilli +r; for1<i< L, (49)
where {¥;}%, € ZP*P are known nonsingular integer matrices,
M € RP*P is a known nonsingular real matrix, and {n;}~, € Z
are unknown integer vectors (or folding vectors). In particular,
{r,-}l-L:l € RP are real vectors with r; € 7 (MY¥;) for each 1 <i <
L, which are real-valued versions of the previously mentioned
integer remainders {r,-}iLz1 in (23). Here, ¥ (MY¥;) is termed the
fundamental parallelepiped of L(MY¥;), defined as

F(M¥) = (M¥;x | x € [0, 1)"}. (50)
The volume of ¥ (MY;) equals [det(M¥,)|[27]. ¥ (MY¥;) does
not comprise any other lattice points in L(MY¥;), except for the
origin 0. One can easily see that ¥ (MY¥;) and its shifted copies
(i.e., F(MY¥;) + v for any nonzero v € L(M¥;)) constitute the
whole real vector space RP.

Let us define ¥;; = gcld('W;, ¥;) for 1 <i# j< L. Without
loss of generality, we assume that ¥ satisfies

min /l.C(M‘l‘lj) = max min /l.C(M‘I’;j)' (51)

2< <L 1<i<L 125l
By treating M¥; as the reference and following the operations
used in (24) and (25), we have, from (49),

¥in; - ¥ono = M (ry — 1)
¥in; — ¥inz =M'(r; —ry)

(52)
¥in; -¥n, =M"'(r,—rp)
and
Kion; — Koinp = (M¥10) 7" (12 — 1)
Kizn; — Kzing = (M¥13) 7! (r3 — 1)
. (53)

King —Kping = (M¥) 7! (r — 1),
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in which Ky; = W;;¥; and K;; = ¥;;¥; for 2 < j < L. From
L L
(52) and (53), {M~(r; - rl)}i=2 and {(MW)™" (r; - rl)}i=2 are
all integer vectors; that is,
rr—rie LMYy, for2<i<L. 54)
For every 2 <i < L, we then estimate r; — r; from the known
erroneous remainders {f,-}[L:1 via finding a closest lattice point
v; in LIM¥q,) to ¥; — Fq, i.e.,

v; = argmin |lv — (F; — F)ll, (55)

veL(M¥y;)

where ¥; =r; + Ar; € F(MY;) foreach 1 < j < Lis defined, and
{ar}E € RP are the remainder errors. We try to accurately
determine {‘I‘,-n,-}iLzl. Specifically, we take the modulo-¥; on
both sides of the (i — 1)-th equation in (52) for 2 <i< L, and
we have

‘I’1n1 =0 mod ‘I’l
¥.n, =M '(ry —r;) mod ¥s

¥in; = Mfl(rg —ry) mod Y3 (56)
Y., =M (r, - r;) mod ¥y,
where the first equation spontaneously holds. Once
{r; — rl}iL:2 are accurately estimated from (55), i.e.,
vi;=r;—r; for 2<i<L, we can accurately determine

W¥in; from (56) according to the MD-CRT (see Proposition 1
above), provided that ¥in; € N (Ierm(¥1,¥so, - ,%¥YL)),
equivalently written as M¥n; € ¥ (Mlcrm(¥,, Wa,--- ,¥1)),
and also as

[P M'm] e N (W7 lerm(Wy, Wa, -+, WL)). (57)
Next, ¥;n; can be accurately determined from (52) as ¥1n; —
M~!v; for each 2 <i < L. One can see that the proposed robust
MD-CRT for integer vectors/matrices (i.e., Theorem 1) and its
closed-form reconstruction algorithm (i.e., Algorithm 1) can
be directly applied to (52) (or (56)). Thus, the following result
is straightforwardly obtained.

Corollary 3: Let {‘I’;}f;l and M in (49) be L different arbitrary
nonsingular integer matrices and an arbitrary nonsingular real
matrix, respectively. Without loss of generality, we assume that
the index /o with 1 <[y < L satisfies

min Azay,,,) = Max min Azae,)- (38)
J#lo J#
For a real vector m with
¥, '"M~"'m] e N(‘I’I_Ollcrrn(‘l’l, ¥, - ,‘I’L)), (59)

we can accurately determine {¥;n;}-, from the erroneous re-
mainders {fi}le, if and only if

0 = argmin ||lh —(ar; — ar)l| for 1< j<Land j # lo.
heL(M¥,, )

(60)
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Moreover, letting 7 be the remainder error bound, i.e., ||Ar;|| < T
for 1 <i< L, a simple sufficient condition is

Army;,)

1<j<L
Jj#lg

Azony,, )

7 < max min (61)

1<i<L 1sjst
J#E
After {¥;n;}%, are accurately determined, a robust reconstruc-
tion m of m can be obtained by m = % Z,-L:1 (M¥;n; + F;) with
[M—-m| <.

VI. SIMULATIONS

In this section, we first conduct some numerical simulations
to verify the theoretical results of the robust MD-CRT in Theo-
rem 1 (see Sec. III above), and then illustrate the performance
of the robust MD-CRT in frequency estimation for a complex
MD sinusoidal signal based on multiple sub-Nyquist samplers.
For all experiments below, without loss of generality, we focus
on the two-dimensional case, i.e., D = 2, and the vector norm
|-l involved is assumed to be the {5 norm, i.e., ||*||>.

; . 1360 1788
We consider three moduli as M; = 960 1728)’ M, =
656 488 1532 1576 .
(256 448) and M; = 1392 1656/ which clearly do not

satisfy the constraint (i.e., (17)) used in [23]. We calculate

an lcrm of {M,-}?=1 as R= 733248 5407442 and the mini-

655488 483264)
mum distance of the lattice that is generated by a gcld of any

pair of moduli as A gm,,) = 85.0412, Apmm,,) = 127.5617, and
Armys) = 42.5206. According to Theorem 1, we should choose
M, as the reference moduli, i.e., [j = 1, and the reconstruction
robustness bound is 85.0412/4 = 21.2603. For comparison, we
also choose My as the reference moduli, and the reconstruction

robustness bound is 42.5206/4 = 10.6302. For these two cases,
515545

460771
be an integer vector we need to estimate, which obviously

falls into the reconstruction ranges of the two cases. Therefore,
with respect to each case, we investigate the remainder error
bounds 7=0,2,4,---,30, and for each of them, we uniformly
select the remainder errors ||Ar;|l; < 7,1 <i <3, and run 2000
trails. For every trail, we utilize Algorithm 1 to obtain one
estimate m. In Fig. 1, we illustrate the mean error £(|lm — m||3)
in terms of different remainder error bounds for each of the
two cases. One can see from Fig. 1 that the performance is
completely in line with the results of our proposed robust MD-
CRT. That is to say, the mean error curve always lies beneath
the remainder error bound curve when the remainder error
bound is less than the reconstruction robustness bound, and
then is about to break through the remainder error bound curve
(i.e., robust reconstruction fails). Moreover, Fig. 1 shows that
choosing a proper modulus as the reference in Algorithm 1 is
beneficial to improved robustness performance for the robust
MD-CRT.

We next show a direct application of the robust MD-CRT to
MD sinusoidal frequency estimation with multiple sub-Nyquist
samplers in noise. To do so, let us first recall multidimensional
sampling. Sampling of a 1-D signal is performed on a line with
samples located at equally spaced points of the line (generated

they have different reconstruction ranges. Let m =

2373

E(|m —m|,)

—6—mean error with the reference M;
—=—mean error with the reference M,
—o—remainder error bound

2 6 10 14 18 22 26 30
remainder error bound 7

Fig. 1. Mean error and theoretical error bound for the two cases using
different reference moduli in Algorithm 1.

or periodically extended by a sampling interval), whereas for
an MD signal x(t) with t € RP to be considered in this paper,
its samples are taken at a series of vertex points of a sampling
lattice (generated by a sampling matrix) and have more degrees
of freedom. For example, a sampled signal x,(t) of x(t) over a
sampling lattice £ (M) that is generated by a D X D nonsingular
matrix M € RP*P is defined as

x,(t) = Z x(£)5(t — Mn), t € RP, (62)

nezP

where o(t) is the unit impulse function, and M is the sampling
matrix with the sampling density 1/|det(M)|. Sampling density,
also called sampling rate, is the density of sampling points per
unit spatial volume in R”, and therefore, the cost of an analog-
to-digital converter increases with increasing sampling density.

Assume without loss of generality that f € Z? is an unknown
D-dimensional integer frequency of interest in a complex MD
sinusoidal signal x(t) with noise w(t), i.e.,

x(t) =™+ w(t), t eRP. (63)

Let M;”",M;",--- ,M;" be L different sampling matrices with
the sampling densities {|det(M;)[}~,, where {M;}% € ZP*P are
nonsingular integer matrices. We obtain the sampled sinusoidal
signal of x(t) with the sampling matrix M;T as

= pf2nt"M;Tn

x;[n] + w;[n], neZP. (64)

The MD discrete Fourier transform (DFT) with respect to M,T
is then implemented on x;[n],n € N (MiT) [33], and we have
Z e j2nf"M; "n e—j2nkTM;Tn + Qi[K]
neN(M;)
Z o J2nk-D'M;Tn | QK]
neN(M;)
= |det(M)| o[k — r;] + Q;[K]

Xilk] =

(65)

for k € N(M;), where r; is the remainder of f modulo M,, i.e.,
r; = (H)m,, Qi[k] is the MD DFT of w;[n] with respect to MiT,
and the last equation holds due to the unitarity property of the
MD DFT [34]. Note that o[n] stands for the MD discrete delta
function, which equals 1 if n =0 and 0 otherwise. Hence, the
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=
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SNR (dB)
Fig. 2. Mean relative error in terms of various SNR’s for the two
different M’s.

remainder r; can be accurately detected as the peak in the MD
DFT magnitude of x;[n] in (65), when the signal-to-noise ratio
(SNR, quantified as SNR = —101log;,(20?) dB where w;[n] in
(64) is zero-mean complex white Gaussian noise with variance
202) is not too low. Accordingly, f can be accurately obtained
from the detected remainders {r,'}iLz1 based on the MD-CRT in
Proposition 1, if fe€ N(R), where R is an lcrm of {M,-}I.L:I. At
this point, the Nyquist sampling density defined by |det(R)] is
considerably greater than the sampling densities {|det(Ml-)|}iL:1.
More interestingly, when the SNR is not too high, the detected
remainders are likely to have errors, and thereby our proposed
robust MD-CRT in Theorem 1 offers an efficient approach for
robustly estimating f from the erroneous remainders.

To illustrate the performance of the robust MD-CRT in MD
sinusoidal frequency estimation, we consider two sampling ma-

2
trices {M; "} for simplicity, where M; = MI;,i = 1,2, with

I = ? ; and I's = (? 3) It is easily known that I'y and

I’ are left coprime but not commutative. Hence, M; and My

do not satisfy the constraint (i.e., (17)) placed in [23], and M
is their gcld. In these simulations, we investigate two cases

. 48 20 96 40
of M, ie., M= 8 40 and M—(16 80)' Based on the

robust MD-CRT for the moduli M; and M,, we reconstruct
an MD frequency f € Z? from the detected remainders in the
MD DFT domains of undersampled waveforms in (65). From
Theorem 1, the two different M’s yield different reconstruction

robustness bounds 10.6302 and 21.2603, respectively. We take

f= ggg) which is clearly within the reconstruction ranges

of the two cases. In Fig. 2, we present the mean relative er-
ror E(||If — fll2/IIfll2) between f and the reconstruction f verse
various SNR’s for the two cases. Moreover, Fig. 3 shows the
probability of detection verse different SNR’s to indicate the
estimation accuracy for the two cases. In the experiments, we
implement 2000 trails for every SNR. From Figs. 2 and 3,
the second case with a larger reconstruction robustness bound
results in better performance (i.e., lower mean relative error and
higher probability of detection) than the first case with a smaller
reconstruction robustness bound.
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probability of detection
© & o =2 o o
B w (=)} ~ oo =}

o
W

—o— M=[48,20;8 40]
—o—M=[96,40;16,80]

o
s

-34 -32 -30 -28 -26 -24 =22
SNR (dB)

o

Fig. 3. Probability of detection in terms of various SNR’s for the two
different M’s.

—o—Strategy 1
—O—Strategy 11|

-6 L L L L L L
-38 -36 -34 =32 =30 -28 -26 -24
SNR (dB)

Fig. 4. Mean relative error in terms of various SNR’s for the two different
sampling strategies.

Furthermore, we compare two different sampling strate-
. . . — 2
gies with sampling matrices {Mi T},_l, where M; = MI'; and

M, =MTI'; are given as follows. Strategy I: M = ?g 38 ,
L3 5 2 10 32
I'; —(3 1), Iy = (5 3), and Strategy II: M = (30 p )’ I, =
75 5 1 . )
5 7) Iy = 5 4f It is easy to see that in each of the two

strategies, the moduli do not satisfy the constraint (i.e., (17))
enforced in [23], and M = gcld(M1, M>). In addition, the two
strategies possess the same Nyquist sampling density, i.e., share

—4782 5712\ .
—6894 8304 with |det(R)| = 331200.

According to Theorem 1, the two strategies have reconstruc-
tion robustness bounds 23.7171 and 7.9057, respectively. Let

f= 810) which simultaneously satisfies f € N(R) and falls

an identical lecrm R =

1181)
into the reconstruction ranges of these two strategies. Figs.
4 and 5 illustrate the performance of the mean relative error
and the probability of detection versus various SNR’s for the
two strategies, respectively, where 2000 trails are implemented
for every SNR. As a consequence, Strategy I achieves better
performance than Strategy 11, while the sub-Nyquist sampling
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e
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Fig. 5. Probability of detection in terms of various SNR’s for the two
different sampling strategies.

densities in Strategy I are larger than those in Strategy II, but
far less than the Nyquist sampling density.

As a final comment, the release of the matrix commutativity
and coprimeness constraint (used in [23]) on the moduli makes
our proposed robust MD-CRT in this paper much more flexible
for designing the optimal sampling matrices/lattices to achieve
the best undersampling efficiency (e.g., the minimum sampling
density as well as maximum robustness against noise). This is
of great interest and will be studied in our future work.

VII. CONCLUSION

In this paper, we investigated the problem of robust recon-
structions of an integer vector from the erroneous remainders.
We introduced a theoretically well-founded solution to this
problem by developing the robust MD-CRT for a general set
of moduli that do not necessarily satisfy the strict constraint
(i.e., the remaining integer matrices left-divided by a gcld of
all the moduli are pairwise commutative and coprime) needed
in the previous robust MD-CRT in [23]. Specifically, we first
proved a necessary and sufficient condition on the difference
between paired remainder errors, as well as a simple sufficient
condition on the remainder error bound, for the robust MD-
CRT for general moduli, where a closed-form reconstruction
algorithm was presented. We then generalized the proposed
robust MD-CRT from integer vectors/matrices to real ones.
We finally validated the robust MD-CRT for general moduli
by conducting numerical simulations, and showed its perfor-
mance in MD sinusoidal frequency estimation using multiple
sub-Nyquist samplers. We believe that beyond MD sinusoidal
frequency estimation from undersampled waveforms, the robust
MD-CRT will have many other potential applications.
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