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Delay Doppler Transform
Xiang-Gen Xia , Fellow, IEEE

Abstract—This letter is to introduce delay Doppler transform
(DDT) for a time domain signal. It is motivated by the recent
studies in wireless communications over delay Doppler channels
that have both time and Doppler spreads, such as, satellite
communication channels. We present some simple properties of
DDT as well. The DDT study may provide insights of delay
Doppler channels.

Index Terms—OFDM, VOFDM, OTFS, delay Doppler trans-
form (DDT).

I. INTRODUCTION

THE SUCCESS of Starlink has re-generated world wide
interest on satellite communications. A special charac-

teristic of satellite communications is that its channel is not
only time spread but also Doppler spread for wideband trans-
missions [1], [2]. To deal with such channels, there have been
many studies, for example [1], [3], [4] for channel estimations.
A recent popular topic is orthogonal time frequency space
(OTFS) modulation [5] that has been shown identical to vector
OFDM (VOFDM) [6], [7] in [8], [9], [10], [12], at least, from
the transmission side.
For a delay Doppler channel, see for example [1], [3], [4],

at time delay τ , let

h(τ, t) = g(τ)e−jΩ(τ)t (1)

be its channel response with Doppler shift Ω(τ) that is a
function of time delay τ . This channel means that the path
h(τ, t) of time delay τ has Doppler shift Ω(τ) and in general,
different paths at different time delays may have different
Doppler shifts.
Let s(t) be a transmitted signal. Then, the received signal

y(t) at time t is

y(t) =

∫
h(τ, t)s(t − τ)dτ + w(t)

=

∫
g(τ)s(t − τ)e−jΩ(τ)tdτ + w(t), (2)

where w(t) is the additive noise.
When the Doppler shift function Ω(τ) in (2) is a constant Ω

that does not depend on τ , i.e., the trivial Doppler spread case,
it means that all the channel responses at all the time delays
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have the same Doppler shift Ω. In this case, this Doppler
shift can be compensated at either transmitter or receiver
and the compensated channel then becomes a time spread
only channel. Otherwise, different multipaths have different
Doppler shifts and it is called non-trivial Doppler spread case.
An example of such a non-trivial Doppler spread case is when
the reflection multipaths from different moving objects with
different locations move with different velocities.

II. DEFINITION

Motivated from the above delay Doppler channel model, we
define delay Doppler transform (DDT) below.
Definition 1: Let g(t) be a window function and s(t) be a

signal. The DDT of s(t) is defined as

DDTs(t ,Ω) =

∫
s(τ)g(t − τ)e−jΩ(τ)tdτ, (3)

where Ω(τ) is a function of τ .
When function Ω(τ) in (3) is linear in terms of τ , i.e,

Ω(τ) = Ωτ for a constant Ω, the above definition becomes

DDTs(t ,Ω) =

∫
s(τ)g(t − τ)e−jΩτ tdτ. (4)

In this case, we call Ω as the Doppler shift rate (or frequency
rate) of the transform (or the channel). The DDT in (4)
measures signal s(t) by window function g(−t) across its all
time shifts and Doppler shifts with a non-zero Doppler shift
rate Ω. It is different from the short time Fourier transform
(STFT) of s(t) with window function g(t), which is

STFTs(t ,Ω) =

∫
s(τ)g(τ − t)e−jΩτdτ. (5)

STFT is to measure s(t) by a given window function g(t)
across its all time and frequency shifts. The above DDT is
much different from Zak transform [18] that does not tell when
signal frequency changes as a typical joint time-frequency
analysis technique does [17].
Note that in the scenario when farther reflectors move

faster, their corresponding reflection mutlipaths may have their
Doppler shifts approximately linear in terms of time t as above.
Another note is that in the above DDT, window function g(−t)
is used, which is for notational convenience to better match
the above delay Doppler channel.
When function Ω(τ) in (3) is constant, the above definition

becomes

DDTs(t ,Ω) = e−jΩt
∫

s(τ)g(t − τ)dτ, (6)

where Ω is constant and does not depend on the time delay τ ,
i.e., a trivial Doppler spread. In this case, it is clear that after
the compensation of the common Doppler shift at transmitter,
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the DDT becomes the convolution, i.e., the channel is time
spread only.
It is known that OFDM (or Fourier transform) converts

a time spread only channel to multiple non-time spread
subchannels. To improve the transmission signal spectrum, a
pulse (or window) with better spectrum than the rectangular
pulse is added, which is the generalized frequency division
multiplexing (GFDM) [13]. Another purpose to use a window
in GFDM is to limit the OFDM block size, i.e., to have a
smaller block size than the conventional OFDM to adapt to
a time varying channel. GFDM is different from VOFDM
(or OTFS), unless the vector size in VOFDM is 1 and then
in this case, VOFDM returns to OFDM. VOFDM converts a
time spread only channel to multiple vector subchannels where
there is no time spread (or intersymbol interference (ISI))
across vector subchannels, while there is ISI inside each vector
subchannel. OFDM corresponds to discrete Fourier transform
(DFT) filterbank [16], VOFDM corresponds to vector DFT
filterbank [7], and GFDM corresponds to discrete Gabor
transform (DGT) [14], [15] (or STFT with a given window
function).
From (4), the DDT, that corresponds to a non-trivial but

simply a linear Doppler spread in terms of time delay, is
different from all the existing joint time-frequency trans-
forms/distributions in the literature. This means that the
existing joint time-frequency transforms may not be helpful to
deal with non-trivial Doppler spread and time-spread channels.
It also implies that it is not possible to well compensate
non-trivial Doppler spread at either transmitter or receiver.
So, neither GFDM nor VOFDM (OTFS) can compensate a
non-trivial Doppler spread well. However, since for VOFDM
(OTFS) it is demodulated vector-wisely and in the mean
time due to its inherited structure, VOFDM is able to collect
multipath diversity for time varying channels in general [11].
Thus, VOFDM (OTFS) performs better than OFDM over delay
Doppler channels. For more details, see [10], [11].
From (1), one can see that the delay Doppler channel

response function is a special case of general two dimensional
delay Doppler channel response function h(τ, t) that can be an
arbitrary two dimensional function of time delay variable τ and
time variable t. Thus, it is even more difficult to compensate
the Doppler spread in a more general two dimensional delay
Doppler channel.
For the inverse DDT, when the window function g(t)

is known, s(t) can be obtained from the deconvolution of
DDTs(t ,Ω) at Ω = 0, or similar to the inverse STFT.

III. PROPERTIES

We now present some simple properties of the DDT in (4).
We first consider the DDT of a time shifted signal s(t − t0)
with time shift t0. Then, from (4) we have

DDTs(t−t0)(t ,Ω)

=

∫
s(τ − t0)g(t − τ)e−jΩτ tdτ

=

∫
s(τ − t0)g(t − t0 − (τ − t0))

Fig. 1. The DDT and STFT of signal s1(t) = ejt
2
: (a) DDT; (b) STFT.

·e−jΩ(τ−t0)(t−t0)e−jΩ(τ−t0)t0−jΩt0tdτ

=

∫
s(τ − t0)e

−jΩ(τ−t0)t0g(t − t0 − (τ − t0))

·e−jΩ(τ−t0)(t−t0)dτe−jΩt0t

= DDTs(t)e−jΩt0t (t − t0,Ω)e
−jΩt0t . (7)

We know that the Fourier transform or STFT of a time shifted
signal is that of the orignal signal modulated in frequency.
However, from (7), one can see that it is different from the
Fourier transform or STFT in the sense that the DDT of a
time shifted s(t) is the time shifted and additionally modulated
DDT of the modulated s(t).
For the delay and Doppler channel (2), the received signal

can be represented by the DDT of the transmitted signal s(t)
with the channel response amplitude function g(t) as the
window function below:

y(t) = DDTs(t ,−Ω)e−jΩt2 + w(t). (8)

From (8), one can see that the signal part of the received signal
is the linear chirp modulated DDT of the transmitted signal
evaluated at the negative Doppler shift rate, i.e., −Ω. In other
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Fig. 2. The DDT and STFT of signal s2(t) = ejt
3/10: (a) DDT; (b) STFT.

words, the dechirped received signal y(t)ejΩt2 is a DDT of
the transmitted signal. This implies that the study of DDT
is important for the communication over the delay Doppler
channel (2).
We next consider a transmitted signal in a communication

system:

s(t) =
∑
n

snp(t − nT ), (9)

where sn are the information symbols to transmit, p(t) is
the pulse, and T is the symbol duration. Then, using the
property (7), its DDT is

DDTs(t ,Ω) =
∑
n

snDDTpn (t − nT ,Ω)e−jnTtΩ, (10)

where pn is the modulated p(t):

pn = pn(t) = p(t)e−jnTΩt . (11)

From (8) and (10), at the receiver we have the following new
channel:

y ′(t) =
∑
n

snDDTpn (t − nT ,−Ω)ejnTtΩ + w ′(t), (12)

Fig. 3. The DDT and STFT of signal s3(t) = s1(t) + s2(t) = ejt
2
+

ejt
3/10: (a) DDT; (b) STFT.

where y ′(t) = y(t)ejΩt2 and w ′(t) = w(t)ejΩt2 . Since the
above dechirping is a unitary operation, it does not change the
received signal or the noise property. The above DDT based
receive signal model (12) might provide insights in designing
pulses p(t) in better dealing with delay Doppler channels in
communications systems. It might have applications in radar
waveform designs to deal with multiple maneuvering moving
objects.

IV. SIMULATIONS

We now see some plots of the DDT in (4) and STFT in (5)
for some simple signals. The window function we use is a
Gassian function g(t) = e−t2 . Three signals are tested. The
first is a linear chirp s1(t) = ejt

2
, the second is a quadratic

chirp s2(t) = ejt
3/10, and the third is their sum, i.e., s3(t) =

s1(t) + s2(t). All of them are supported on [−10,10]. The
magnitudes of DDT and STFT of these three signals in the
region (t ,Ω) ∈ [−5, 5]× [−5, 5] are shown in Figs. 1-3.
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We know that the STFT roughly tells the joint time
frequency distribution property for a signal, although its
resolution may not be as high as those of non-linear time
frequency distributions [17], such as Wigner-Ville distribution.
From these figures, we find that the DDT of a signal is much
different from a joint time frequency distribution, which may
help to understand a delay Doppler channel more.

V. CONCLUSION

In this letter, we introduced delay Doppler transform (DDT)
for a signal. It was motivated from the recent interest in
wireless communications over delay Doppler channels, such
as satellite channels. We also provided some simple properties
about DDT. One can see that DDT is different from all the
existing joint time frequency analysis techniques and may pro-
vide more insights for delay Doppler channels, such as more
characteristics for a radio map. From the study in this letter,
we may see that for a non-trivial Doppler spread channel,
no existing modulation scheme (neither VOFDM/OTFS nor
GFDM) can deal with it well.
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