
STABILITY OF THE BULK GAP FOR FRUSTRATION-FREE

TOPOLOGICALLY ORDERED QUANTUM LATTICE SYSTEMS

BRUNO NACHTERGAELE, ROBERT SIMS, AND AMANDA YOUNG

Abstract. We prove that uniformly small short-range perturbations do not close the bulk gap
above the ground state of frustration-free quantum spin systems that satisfy a standard local topo-
logical quantum order condition. In contrast with earlier results, we do not require a positive
lower bound for finite-system spectral gaps uniform in the system size. To obtain this result, we
extend the Bravyi-Hastings-Michalakis strategy so it can be applied to perturbations of the GNS
Hamiltonian of the infinite-system ground state.

1. Introduction

One of the characteristic properties of gapped topologically ordered ground state phases of quan-
tum many-body systems is the stability of the spectral gap above the ground state with respect
to small perturbations of the Hamiltonian. Stability results for the ground state gap have a long
history. The first result, due to Yarotsky [64], included the stability of the gap of the AKLT
chain, named after Affleck, Kennedy, Lieb, and Tasaki [1]. The approach we follow in this paper
has a much broader range of applicability; it was introduced by Bravyi, Hastings, and Micha-
lakis [12] and further developed in [13,26,41,48]. Other approaches have been introduced in recent
years [17,20–22]. These new approaches can also treat some cases of models with unbounded on-site
Hamiltonians, see [48, Section 1] for a more detailed discussion. The Bravyi-Hastings-Michalakis
strategy, however, is the only approach that handles general cases with non-trivial topological order.

One obstacle to proving spectral gaps for topological insulators is the common occurrence of
gapless edge states. Spectral analysis for interacting many-body systems is usually carried out for
finite systems for which edge states typically imply that there is no spectral gap uniform in the
system size. Nevertheless, there may be a bulk gap, meaning excitations away from the boundary
of the system have energy bounded below uniformly in the system size. The goal of this work is to
prove stability for the bulk gap in a way that does not require the assumption of a uniform positive
lower bound in the spectrum of finite systems. Previously, it was shown how certain cases can be
handled by considering sequences of finite systems with suitable boundary conditions. For example,
such an approach may work if the edge states are absent in the model considered with periodic
boundary conditions [41,48]. In general, however, there may not be a suitable boundary condition
that ‘gaps out’ the boundary modes or we may not know whether such a boundary condition exists.
Systems defined on a quasicrystal structure, for example, may be an instance where no simple way
of removing gapless edge modes is available [39]. In our approach here, we only assume that the
infinite system described in the Gelfand-Naimark-Segal (GNS) representation of the ground state
has a gap. Under natural assumptions consistent with the previous works cited above, we prove
that sufficiently small but extensive perturbations do not close the gap.

We adapt the strategy of Bravyi, Hastings, and Michalakis [12,13,41] and use the techniques we
developed in [47, 48] to handle the infinite system setting. From a certain perspective, and apart
from the technical aspects to deal with unbounded Hamiltonians, the infinite system setting allows
for a simplification in the statement of conditions and the main result. In particular, the local
topological quantum order (LTQO) condition is simpler to state directly for the infinite system.
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The LTQO property is well know to hold for one-dimensional systems with matrix product state
(MPS) ground states [48, Appendix B]. It is also well-established for Kitaev’s quantum double
models [16,34] and the Levin-Wen string-net model [37,57]. LTQO was recently also shown to hold
for the AKLT model on a decorated hexagonal lattice [40].

For concreteness, we work in the quantum spin system setting but, using the arguments of [46],
our approach is applicable to frustration-free lattice fermion systems too. We will provide a detailed
account of this in a forthcoming paper, thus providing an alternative and generalization of the gap
stability results for quasi-free lattice fermions in the literature [17,26,35].

The assumption that the bulk Hamiltonian has a gap in the spectrum above the ground state
appears in several important recent works. For example, the construction of an index for the
classification of symmetry-protected topological phases in the works of Ogata and co-authors makes
use of this assumption [43,49–51]. Other examples are in the recent work on adiabatic theorems for
infinite many-body systems [3, 4, 29]. All of these works use the same general setting as described
here in Section 2.

In addition to the main stability result, we also prove Theorem B.1, which shows that a differen-
tiability assumption introduced in [43] and also used in later work [49,51,52,56] is always satisfied.
A similar result appeared in the PhD dissertation of Moon [42, Appendix]. As a consequence, we
establish a stability theorem for the bulk gap in the exact setting of the series of works of Ogata
and others on the classification of Symmetry Protected Topological (SPT) phases cited above. This
was the main motivation for this work.

Before closing this introduction, we comment on two specific applications of the stability theorem
for infinite systems proved in this paper, and briefly elaborate on the relevance of the spectral
analysis for infinite systems.

The first concerns spin liquids, specifically the ongoing search for two-dimensional spin models
with topologically non-trivial spin liquid ground states characterized by a bulk gap and gapless edge
modes. A plausible example of a rich phase diagram showing such a phase is found based on various
numerical approaches for an SU(3)-invariant antiferromagnetic in [63]. As the discussion in that
work illustrates, the existence of such phases and the precise nature of the edge modes is a topic
of ongoing intense study. Assuming one has established the existence of such a phase, even if the
expected properties of the local gaps and LTQO can be demonstrated, the question of the nature
of the edge states may remain a challenge. What we can say based on our work is that the putative
chiral spin liquid phases, if predictions based on numerical results are confirmed, are stable gapped
phases in the usual sense. Granted, if the relevant models can be shown to be uniformly gapped
on finite volumes with a torus geometry, there would be no need work in the GNS representation
to prove stability of the gap. Next, we discuss an application where periodic boundary conditions
are not an option and a general strategy to exclude edge modes in finite volume is not known.

The second application is the case of models defined on quasi-crystal lattices we mentioned
before. Gapless edge modes are also expected to be relevant there. So far, they have been studied
only in the single-particle setting with the goal to numerically distinguish the behavior of edge
modes from bulk spectrum [39] or to prove the existence of a bulk gap in the presence of gapless
edge modes [28]. These approaches have yet to be generalized to the many-body setting. Our
approach here assumes only a general regularity property of the lattice, which is easily satisfied by
quasi-crystals.

As a final remark, we wish to emphasize that significant progress has been made over the years
studying both infinite systems as well as properties of finite systems and studying their asymptotics.
Valid points in favor of either approach have been made in the literature. For example, in [15,
Section 2.5], the authors argue that the mathematics of the infinite system setting could be a
distraction for the audience they have in mind. In [62], the authors are motivated by the common
observation that ‘many features of physical systems, both qualitative and quantitative, become
sharply defined or tractable only in some limiting situation’, and introduce a general approach to
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formulate the dynamics of such limiting systems. The infinite system setting has recently seen
increased interest and continues to serve as the setting of new interesting results, for example
in [31, 53]. In our view, both approaches are fruitful in their particular contexts, and so proving
stability directly in the infinite volume setting is interesting in its own right. Other works have
similarly obtained infinite-system results for automorphic equivalence [43], the Lieb-Schultz-Mattis
Theorem [54,55], invertible states [5], and adiabatic theory [29].

In a previous paper on the topic, we discussed in some detail the literature on spectral gap
stability, including historically important works and alternative methods [48]. Here, we just like
to add to that discussion by mentioning two recent works based on adaptions of the iterative Lie
Schwinger block-diagonalization method introduced by Fröhlich and Pizzo [22]. The new work
aims at a more detailed analysis of two well-known quantum spin chains, the XXZ chain [19] and
the AKLT model [18], supplementing the basic spectral gap stability obtained in previous works,
including [41,48,61,64].

The content of this paper is structured as follows. Section 2 provides the setup for interactions
with stretched exponential decay we use, and includes the statement of the main results. This
decay class can be regarded as a minor variation of the notions of almost-local observables used
in [5, 30] and the Banach spaces of g-local observables in [43]. The main technical advance in this
work is the incorporation of the (unbounded) GNS Hamiltonian in the development of the Bravyi-
Hastings-Michalakis (BHM) strategy for proving gap stability. Properties such as the definition of
the transformed Hamiltonian and its decomposition require a new look. Some properties that are
obvious in the finite-system setting become non-trivial because they involve super operators formally
acting on densely defined unbounded operators on a domain for which an explicit description is
not available. We lay the ground work for dealing with these issues in Section 3, and carry out the
BHM strategy in Section 4. Section 5 contains the proof of the form bound for the transformed
Hamiltonian, which is a mild adaptation of a result of Michalakis and Zwolak [41] to the GNS
setting. The final arguments needed to prove the main results are also contained in this section.
In two appendices we prove two result that may be of independent interest. The first is that the
LTQO property implies the kernel of the GNS Hamiltonian is one dimensional (something we use
and that is often introduced as a separate assumption on other works). The second is about the
differentiability of the quasi-adiabatic dynamics and is a variant of a result that first appeared in
the PhD dissertation of Moon [42].

2. Setup and statement of the main results

2.1. Setup and notation. The models considered in this work are defined on a ν-regular discrete
metric space (Γ, d), for some ν > 0. This means that there exists κ > 0 so that for all x ∈ Γ, n ≥ 1,
|bx(n)| ≤ κnν , where bx(n) = {y ∈ Γ | d(x, y) ≤ n}. For Λ ∈ P0(Γ), the finite subsets of Γ, and
n ≥ 0, we also define the sets Λ(n) by

(2.1) Λ(n) =
⋃
x∈Λ

bx(n).

The algebra of local observables of the system is the usual Aloc =
⋃

Λ∈P0(Γ)
AΛ. Here, AΛ is the

matrix algebra
⨂

x∈ΛMdx with dx the dimension of the spin at x. The C∗-algebra of quasi-local

observables A is the completion of Aloc with respect to the operator norm. For A ∈ Aloc, the
support of A, denoted by suppA, is the smallest X ⊂ Γ such that A ∈ AX . For any X ⊂ Γ,
ΠX : A → AX is the conditional expectation with respect to the tracial state ρ on A:

(2.2) ΠX = ρ ↾Γ\X ⊗idAX
.

In particular, for local A, ΠX(A) is a normalized partial trace.
We are specifically interested in systems defined on infinite Γ and often want to consider ap-

proximations An ∈ AΛn of A ∈ A, where Λn ∈ P0(Γ) is an increasing sequence of finite volumes
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such that
⋃

n Λn = Γ. We call such a sequence (Λn) an increasing and absorbing sequence (IAS). It
will often be important to have an estimate for the speed of convergence of An → A, in terms of a
non-increasing function g : [0,∞) → (0,∞) that vanishes at infinity, which we call a decay function.
In this paper we will only use decay functions that satisfy a moment condition of the form

(2.3)
∑
n≥0

(n+ 1)µg(n) <∞, for some µ ≥ ν.

In particular, we will often work with decay functions of the form

(2.4) g(r) =
1

(1 + r)ξ
e−arθ , ξ ≥ 0, a ≥ 0, θ ∈ [0, 1] .

For a > 0 and θ ∈ (0, 1), such functions g are said to have stretched exponential decay. One checks
that these functions satisfy

(2.5) g(n)g(m) ≤ Cg(n+m) for all n,m ≥ 0,

for some constant C.
Consider an IAS (Λn) in (Γ, d), and a decay function g. Define a norm ∥ · ∥(Λn),g on Aloc and a

Banach space A(Λn),g by

(2.6) ∥A∥(Λn),g = ∥A∥+ sup
n∈N

(
∥A−ΠΛn(A)∥

g(n)

)
, A(Λn),g = Aloc

∥·∥(Λn),g
.

For a proof that A(Λn),g is the Banach space of all A ∈ A for which ∥A∥(Λn),g < ∞, see [43]. In

fact, A(Λn),g is a Banach ∗-algebra.
For each x ∈ Γ, Λn := bx(n) defines a IAS. In this case we set ∥ · ∥(bx(n)),g = ∥ · ∥x,g. Define the

set

(2.7) Ag :=
⋃
x∈Γ

A(bx(n)),g.

For any decay function g satisfying (2.5), any two norms from {∥ · ∥x,g | x ∈ Γ} are equivalent.
Hence, for all x ∈ Γ

(2.8) A(bx(n)),g = Ag.

In this case, Ag is a Banach ∗-algebra. Elements A ∈ Ag are called g-local.
We will often also assume that a decay function g is uniformly summable over Γ, i.e.,

(2.9) ∥g∥1 := sup
x∈Γ

∑
y∈Γ

g(d(x, y)) <∞ ,

and additionally, that there is a constant C > 0 such that

(2.10)
∑
z∈Γ

g(d(x, z))g(d(z, y)) ≤ Cg(d(x, y)), for all x, y ∈ Γ.

Any decay function g satisfying (2.9) and (2.10) will be called an F -function. For any ν-regular Γ,
the following are F -functions appearing in this work:

(2.11) F (r) =
1

(1 + r)ξ
e−arθ , ξ > ν + 1, a ≥ 0, θ ∈ (0, 1].

In the case Γ = Zν , which is ν-regular, (2.11) defines an F -function for all ξ > ν. For a discussion
of these examples and some basic inequalities, see [47, Appendix].

Assumption 2.1 (Initial Interaction). We assume the initial model is defined by a finite-range,
uniformly bounded, frustration-free interaction h given in terms of a family h = {hx}x∈Γ which
satisfies:
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i. There is a number R ≥ 0, called the interaction radius, for which h∗x = hx ∈ Abx(R) for all
x ∈ Γ.

ii. These terms are uniformly bounded in the sense that

(2.12) ∥h∥∞ = sup
x∈Γ

∥hx∥ <∞ .

iii. The interaction is frustration-free, meaning that hx ≥ 0 for all x ∈ Γ and for any Λ ∈ P0(Γ),

(2.13) min spec(HΛ) = 0 where HΛ =
∑
x∈Λ:

supp(hx)⊂Λ

hx .

The frustration-free condition implies that the ground state space is ker(HΛ) for any finite volume
Λ. Moreover, ψ ∈ ker(HΛ) if and only if ψ ∈ ker(hx) for each x ∈ Λ with supp(hx) ⊂ Λ. Thus,
denoting by PΛ the orthogonal projection onto ker(HΛ), for any Λ0 ⊂ Λ, one has

(2.14) PΛPΛ0 = PΛ0PΛ = PΛ .

For such a model, the derivation δ0 determining the infinite system dynamics is given by

(2.15) δ0(A) =
∑

x∈Λ(R)

[hx, A] for any A ∈ AΛ and Λ ∈ P0(Γ).

It is a standard result that there is a closed derivation extending δ0, which we also denote by
δ0, with domain dom(δ0) for which Aloc is a core [11, Theorem 6.2.4] (note that the factor i is
absorbed in the definition of the derivation in this reference). The system dynamics is then the

strongly continuous one-parameter group of C∗-automorphisms {τ (0)t | t ∈ R} satisfying

(2.16)
d

dt
τ
(0)
t (A) = iτ

(0)
t (δ0(A)) for all A ∈ Aloc.

In fact, this differential equation holds for all A ∈ dom(δ0). Two other general properties are:

i. τ
(0)
t (dom(δ0)) ⊂ dom(δ0) for all t ∈ R;

ii. τ
(0)
t (δ0(A)) = δ0(τ

(0)
t (A)) for all A ∈ dom(δ0) and t ∈ R.

More generally, quantum spin models can be defined by an interaction on Γ which, by definition,
is a map Φ : P0(Γ) → Aloc, with the property that Φ(X)∗ = Φ(X) ∈ AX for all X ∈ P0(Γ). For
any decay function g, an interaction norm is defined by

(2.17) ∥Φ∥g = sup
x,y∈Γ

g(d(x, y))−1
∑

X∈P0(Γ):
x,y∈X

∥Φ(X)∥ .

When the above quantity is finite for some interaction Φ, the function g is said to measure the
decay of Φ. If g is an F -function, the norm ∥ · ∥g is called an F-norm. If g is summable, in the

sense of (2.9), and ∥Φ∥g <∞, then a closable derivation on Aloc can be defined by setting

(2.18) δ(A) =
∑

Y,Y ∩X ̸=∅

[Φ(Y ), A] for A ∈ Aloc with supp(A) ⊂ X ∈ P0(Γ) .

One can prove conditions that guarantee that the derivation δ defined on Aloc is a generator
of a strongly continuous dynamics given by automorphisms of A [10, 11]. In practice, however,
one usually directly proves the existence of the thermodynamic limit of the Heisenberg dynamics
{τt | t ∈ R}. Standard results along these lines prove the existence of the dynamics for Φ in a
suitable Banach space of interactions [11,59,60] starting from a convergent series for small |t|. An
alternative approach, based on Lieb-Robinson bounds [38], was introduced by Robinson [58]. Lieb-
Robinson bounds can be derived for any interaction Φ with a finite F -norm [44], and this allows
one to extend the results for existence of the dynamics beyond the Banach spaces of interactions
Bλ introduced by Ruelle [59]. These ideas are important for the construction of the spectral flow
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automorphisms [7]. This and some other generalizations relevant for the present work are discussed
in detail in [47].

Recall that infinite-volume ground states associated to δ are those states ω on A that satisfy

(2.19) ω(A∗δ(A)) ≥ 0 for all A ∈ Aloc.

In the case of a frustration-free model as in (2.13), a state ω is called a zero-energy ground state,
or a frustration free ground state, if ω(hx) = 0 for all x ∈ Γ. It is easy to see that a zero-energy
ground state satisfies (2.19).

Let (H, π,Ω) be the GNS triple of ω. This means that π : A → B(H) is a representation of
the C∗-algebra A on a Hilbert space H for which {π(A)Ω|A ∈ Aloc} is dense in H. Moreover, the
normalized vector Ω ∈ H is such that ω(A) = ⟨Ω, π(A)Ω⟩ for all A ∈ A. For the GNS representation
of a ground state, as in (2.19), there exists a unique, non-negative self-adjoint operator H on H,
with dense domain domH, satisfying HΩ = 0 and

(2.20) π(τt(A)) = eitHπ(A)e−itH for all A ∈ A and t ∈ R.

The full domain of H is seldom described explicitly. However, for all systems we consider in this
paper, π(Aloc)Ω is a core for H.

The (GNS) gap of the model in the state ω is defined as

(2.21) gap(H) = sup{γ > 0 | (0, γ) ∩ spec(H) = ∅}.

If the set on the RHS is empty, one defines gap(H) = 0. We say that a ground state ω is gapped
if gap(H) > 0.

The equivalence of the following two conditions is easy to verify:

i. For some γ > 0, ω satisfies

(2.22) ω(A∗δ(A)) ≥ γω(A∗A) for all A ∈ Aloc with ω(A) = 0;

ii. The ground state of the GNS Hamiltonian H is unique and gap(H) ≥ γ.

A case of special interest is when Γ is infinite and describes the bulk of a physical model while
the same system on a subset of Γ with a boundary would describe an edge. In the first situation
we will refer to the GNS gap as the bulk gap of the system. A model with the same interaction
restricted to a subspace of Γ describing an edge, may have a vanishing gap while the bulk gap is
positive. This is precisely the situation of interest here.

In this setting, the GNS representation π is an isometry. This follows from the fact that A is
simple [23, Theorem 5.1], which implies that kerπ = {0}. We find it convenient to use this fact, see
e.g. the proof of Lemma 4.5, however in many arguments the contraction property of π suffices.

2.2. Main results. We now state the assumptions for the main results.

Assumption 2.2 (Bulk gap). We assume γ0 := gap(H0) > 0, where H0 is the GNS Hamiltonian of
an infinite-volume, zero-energy ground state ω0 of a finite-range, uniformly bounded, frustration
free interaction {hx} as in Assumption 2.1.

We also need to impose a condition that the local gaps do not close too fast. There generally is
some freedom in choosing the family of finite volumes on which to impose this condition. We will
assume that there is a family S = {Λ(x, n) | n ≥ 0, x ∈ Γ} ⊂ P0(Γ), with bx(n) ⊂ Λ(x, n) for all x
and n, and an associated family of partitions of Γ which separates S and has at most polynomial
growth. Concretely, this means there is a family of sets T = {Tn | n ≥ 0} and positive numbers c
and ζ, such that for each n ≥ 0, Tn = {T i

n : i ∈ In} is a partition of Γ satisfying |In| ≤ cnζ and

(2.23) Λ(x, n) ∩ Λ(y, n) = ∅ for all x, y ∈ T i
n with x ̸= y.

In such cases, we say that T is of (c, ζ)-polynomial growth.
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As an example, in the case of Γ = Zν , we may take for Λ(x, n) the ℓ∞-ball of radius n centered
at x, define In = Λ(0, n) and, for each i ∈ In, set
(2.24) T i

n = {x ∈ Zν |xj = ij mod 2n+ 1, 1 ≤ j ≤ ν}.

Assumption 2.3 (Local gaps). For an interaction {hx} of range R, we assume there exist families
S and T , such that T separates S and is of ζ-polynomial growth, and an exponent α ≥ 0 and
constant γ1 > 0, and such that the finite-volume Hamiltonians satisfy:

(2.25) spec(HΛ(x,n)) ⊂ {0} ∪ [n−αγ1,∞) for all x ∈ Γ and n ≥ R.

It is important here that the local gaps are allowed to vanish in the limit of infinite system size.
For example, certain types of topologically ordered two-dimensional systems are expected to have
chiral edge modes with an energy of order L−1 on a finite volume of diameter L. Whether or not
such edge modes occur in frustration-free systems, however, is not clear. For the class of systems
studied in [36], the authors find that finite-volume gaps of a system with gapless edge modes in the

thermodynamic limit would have to decay at least as fast as L−3/2. Other results of this type are
in [2, 24, 32]. This is consistent with the gapless boundary modes found in a class of toy models
called Product Vacua with Boundary States which are of order L−2 [6, 8]. In any case, regardless
of the possible values of the exponent α, we will prove stability of the bulk gap.

The next assumption was introduced in the form we use here in [41] where it is called Local
Topological Quantum Order (LTQO).

Assumption 2.4 (LTQO). There is a decay function G0 : [0,∞) → [0,∞), with

(2.26)
∑
n≥0

nqG0(n) <∞ for some q > 2(ν + ζ + α),

and such that for all m ≥ k ≥ 0, x ∈ Γ, and A ∈ Abx(k), the ground state projections satisfy

(2.27) ∥Pbx(m)APbx(m) − ω0(A)Pbx(m)∥ ≤ ∥A∥(1 + k)νG0(m− k).

As explained in detail in [48, Section 8], if both the initial Hamiltonian and the perturbation (see
below) have a local gauge symmetry, only observables A that commute with this symmetry need to
satisfy (2.27). Other discrete symmetries can be treated similarly (see [48, Section 8]). Therefore,
the stability results proved here (Theorems 2.7 and 2.8) will also hold for symmetry-protected
topological phases.

An interesting observation is that the GNS Hamiltonians associated to frustration free models
which satisfy Assumption 2.4 automatically have a unique ground state. Since we also use this fact,
see e.g. Section 3.2.3, we include a short proof in Appendix A.

Next, we turn to the perturbations of the Hamiltonian H0. We consider Φ(x, n)∗ = Φ(x, n) ∈
Abx(n) for all x ∈ Γ and n ≥ 0. These define what we call an anchored interaction Φ. By regrouping,
we need only consider those terms with n ≥ R.

Assumption 2.5 (Short-range perturbation). There is a constant ∥Φ∥ ≥ 0, a > 0, and θ ∈ (0, 1]
such that for all x ∈ Γ

(2.28) ∥Φ(x, n)∥ ≤ ∥Φ∥e−anθ
for all n ≥ R.

Remark 2.6. For a particular perturbation Φ, Assumption 2.5 is typically straight forward to
check. Moreover, any such Φ also has a finite F -norm for some F as in (2.11). This implies the
general locality results found, e.g., in [47] necessarily hold. In fact, let Φ satisfy Assumption 2.5.
For any 0 < a′ < a and ξ > ν, the function F : [0,∞) → (0,∞) given by

(2.29) F (r) =
e−a′rθ

(1 + r)ξ
for all r ≥ 0,
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is an F -function on Γ. Let δ = a− a′ > 0 and note that for any x, y ∈ Γ with d(x, y) ≥ R, we have∑
z∈Γ

∑
n≥R:

x,y∈bz(n)

∥Φ(z, n)∥ =
∑

n≥d(x,y)

∑
z∈by(n)∩bx(n)

∥Φ(z, n)∥

≤ κ∥Φ∥
∑

n≥d(x,y)

nνe−anθ ≤ CF (d(x, y))(2.30)

with C := κ∥Φ∥
∑

n≥0(1 + n)ν+ξe−δnθ
<∞. Thus, ∥Φ∥F ≤ C, with F as in (2.29).

The focus of this work is to analyze the stability of the bulk gap under the presence of pertur-
bations given by an anchored interaction Φ satisfying Assumption 2.5. We will prove two different
stability results. The first, Theorem 2.7 below, establishes that finite-volume perturbations of the
GNS Hamiltonian H0 (defined in (2.31-2.32) below) have a stable spectral gap uniform in the sup-
port of the perturbation. In this case, the initial GNS Hamiltonian and the perturbed Hamiltonians
are all defined on the same GNS Hilbert space.

To describe the second result, Theorem 2.8 below, let δΦ denote the derivation defined by Φ
as in (2.18). This result shows that, for sufficiently small s, there exists a ground state ωs of the
perturbed derivation δ0 + sδΦ, whose GNS Hamiltonian has a positive gap. Although the GNS
representations of ωs are, in general, inequivalent for different values of s, Theorem 2.8 will follow
from Theorem 2.7 by a simple argument given in Section 5.2.

We consider perturbed Hamiltonians of the form

(2.31) H(Λ, s) = H0 + sπ0(VΛ), s ∈ R

where, for any finite volume Λ ∈ P0(Γ),

(2.32) VΛ =
∑
x∈Λ

∑
n≥R:

bx(n)⊂Λ

Φ(x, n).

Clearly, VΛ ∈ AΛ is bounded and self-adjoint, and so H(Λ, s) defines for all s ∈ R a self-adjoint
Hamiltonian on H with the same dense domain as H0.

In the next several sections we will prove the following theorem, which establishes that the
spectral gap of H(Λ, s) remains open for small |s| uniformly in the finite volume Λ.

Theorem 2.7 (Stability of the gap uniformly in the perturbation region). Suppose that {hx} and
ω0 satisfy Assumptions 2.2 – 2.4, and Φ is an anchored interaction satisfying Assumption 2.5.
Then, for all γ ∈ (0, γ0), there exists s0(γ) > 0, such that for all real s, |s| < s0(γ), and Λ ∈ P0(Γ),
we have

(2.33) specH(Λ, s) ⊂ {E(Λ, s)} ∪ [E(Λ, s) + γ,∞)

with H(Λ, s) as in (2.31) and

(2.34) E(Λ, s) = inf specH(Λ, s).

We remark that the quantity s0(γ) only depends on the values of κ and ν of the lattice, ∥h∥, the
gap γ0, the parameters in Assumption 2.3, the decay function in Assumption 2.4, and a suitable
F -norm of the perturbation Φ. In particular, s0(γ) is independent of the finite volume Λ. From
the arguments in this paper, one can derive an explicit lower bound for s0(γ) in terms of these
quantities, see Section 5.2.

We also investigate the situation where the perturbation region Λ tends to all of Γ. Consider

any IAS (Λn). We will denote by τ
(Λn,s)
t the dynamics on A generated by the derivation

(2.35) δΛn
s (A) = δ0(A) + [sVΛn , A] for A ∈ Aloc .
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As discussed in [47, Definition 3.7], the sequence of interactions h + sΦ ↾Λn converges locally in
F -norm to the interaction h + sΦ. Using [47, Theorem 3.8], we conclude local convergence in the
sense that

(2.36) lim
n→∞

τ
(Λn,s)
t (A) = τ

(s)
t (A) for all A ∈ Aloc

as well as

(2.37) lim
n→∞

δΛn
s (A) = δs(A) for all A ∈ Aloc

with τ
(s)
t (respectively, δs) being the a priori well-defined strongly continuous dynamics on A

(respectively, the closure of the derivation restricted to Aloc) generated by the interaction h+ sΦ.
Neither of these limits depend on the choice of IAS sequence Λn.

Our second result is then concerned with the ground state and its gap for a family of extensive
perturbations. In particular, the uniformity of the stability result in Theorem 2.7 allows one to
prove, almost as a corollary, that for all |s| ≤ s0(γ) there is a gapped ground state ωs of δs in the
sense of (2.22). To make this precise, we introduce the limiting spectral flow. For any γ > 0 and
IAS (Λn), take

(2.38) αs(A) = lim
n
αΛn
s (A) for all A ∈ A ,

where the spectral flows αΛn
s will be introduced in more detail in the next section, see (3.23).

For now, it suffices to observe that this limit exists and is independent of the choice of IAS. In
fact, the interactions defining the spectral flows αΛn

s converge locally in F -norm by arguments
as in [47, Section VI.E.2]. This limiting spectral flow αs defines a strongly continuous co-cycle of
automorphisms of A, and moreover, under the assumptions we have made, for A ∈ Aloc, s ↦→ αs(A)
is differentiable to all orders. We prove bounded differentiability for A ∈ Ag, for suitable g in
Theorem B.1.

Theorem 2.8 (Stability of the bulk gap). Under the assumptions of Theorem 2.7, let γ ∈ (0, γ0)
and take s with |s| < s0(γ). The state ωs = ω0 ◦αs is a gapped ground state of the perturbed infinite
dynamics δs, i.e.

(2.39) ωs(A
∗δs(A)) ≥ γωs(A

∗A) for all A ∈ Aloc with ωs(A) = 0 .

In particular, the GNS Hamiltonian Hs of ωs has a one-dimensional kernel and specHs has a gap
above its ground state bounded below by γ.

3. Quasi-locality, Domains and Local Decompositions

The strategy used here for proving spectral gap stability of infinite systems relies in an essen-
tial way on quasi-locality properties of the observables, the dynamics, and several transformations
defined in terms of the dynamics. To this end, we first review these locality properties of the
algebra and then, importantly, record how this local structure is mapped into the GNS space.
Quasi-locality of observables is the topic of Section 3.1. In Section 3.1.1, we recall general methods
for making strictly local approximations of both quasi-local observables and maps. The specific
quasi-local maps and estimates used in the stability proof are discussed in Sections 3.1.2 - 3.1.4.
Our stability results will follow from spectral perturbation theory applied in the GNS space. Sec-
tion 3.2 succinctly makes clear the distinction between the relevant objects in the algebra and
their counterparts in the GNS representation. Finally, in Section 3.3 we prove how the action of
certain unbounded operators on a dense domain can be expressed as limits of sequences of bounded
operators with finite support.

3.1. Quasi-Locality. We first recall some general features of quasi-locality estimates and then
turn to some important examples relevant for this work.
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3.1.1. Quasi-locality estimates. Let A ∈ A, X ∈ P0(Γ), and ϵ > 0. In [14,45] it was shown that if

(3.1) ∥[A,B]∥ ≤ ϵ∥B∥ , whenever B ∈ Aloc
Γ\X ,

then

(3.2) ∥A−ΠX(A)∥ ≤ ϵ .

A linear map K : A → A is said to be quasi-local with constant C ≥ 0, power p ≥ 0, and decay
function G if

(3.3) ∥[K(A), B]∥ ≤ C|X|p∥A∥∥B∥G(d(X,Y )) for all A ∈ AX and B ∈ AY .

Using (3.2), for such a map K and A ∈ Abx(k), we have

(3.4) ∥K(A)−Πbx(k+n)(K(A))∥ ≤ C|bx(k)|p∥A∥G(n).

When the corresponding decay function G is summable, this estimate guarantees the absolute
convergence of telescopic sums, i.e. for any n0 ≥ 0,

(3.5) K(A) = Πbx(k+n0)(K(A)) +
∞∑

n=n0+1

(
Πbx(k+n) −Πbx(k+n−1)

)
(K(A))

since the terms satisfy

(3.6) ∥
(
Πbx(k+n) −Πbx(k+n−1)

)
(K(A))∥ ≤ 2C|bx(k)|p∥A∥G(n− 1) for n ≥ 1.

A common choice is n0 = 0 and we adopt the notation

(3.7) K(A) =
∑
n≥k

∆n
bx(k)

(K(A)) where ∆n
bx(k)

=

{
Πbx(k), n = k

Πbx(n) −Πbx(n−1), n ≥ k + 1.

We now review a few examples of quasi-local maps and indicate some of their important properties
which will be used to prove stability of the gap. For more details of these maps see [47]. Throughout
Sections 3.1.2–3.2 we work under the assumptions of Theorem 2.7.

3.1.2. Dynamics. It is well-known that the unperturbed dynamics τ
(0)
t defined as in (2.16) satisfies

an exponential Lieb-Robinson bound [38]. Namely, for every µ > 0 there exists Cµ > 0 and vµ > 0
such that the bound

(3.8) ∥[τ (0)t (A), B]∥ ≤ Cµmin(|X|, |Y |)∥A∥∥B∥e−µ(d(X,Y )−vµ|t|)

holds for any X,Y ∈ P0(Γ), all A ∈ AX , B ∈ AY , and t ∈ R.
It is easy to check that the perturbed interaction h+ sΦ↾Λ has a finite F -norm for the same F

as Φ, and that this F -norm is uniformly bounded in |s| ≤ 1 and Λ. As a consequence, there are
CF > 0 and vF > 0, independent of s and Λ, such that for any choice of X,Y ∈ P0(Γ),

(3.9) ∥[τ (Λ,s)t (A), B]∥ ≤ CF ∥A∥∥B∥evF |t|
∑
x∈X

∑
y∈Y

F (d(x, y))

for all A ∈ AX , B ∈ AY , and t ∈ R.
Since each sVΛ is bounded and self-adjoint, [11, Proposition 5.4.1] implies that

(3.10) τ
(Λ,s)
t (A) = (K

(Λ,s)
t )∗τ

(0)
t (A)K

(Λ,s)
t for all A ∈ A and t ∈ R

where {K(Λ,s)
t | t ∈ R} is a one-parameter family of unitaries on A which are uniquely defined as

the A-valued solution of

(3.11)
d

dt
K

(Λ,s)
t = −iτ (0)t (sVΛ)K

(Λ,s)
t with K

(Λ,s)
0 = 1l .
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These unitaries are quasi-local as, for any A ∈ Aloc and t > 0,

∥[K(Λ,s)
t , A]∥ = ∥(K(Λ,s)

t )∗AK
(Λ,s)
t −A∥ =

∫ t

0

d

du

(
(K(Λ,s)

u )∗AK(Λ,s)
u

)
du


≤

∫ t

0
∥[τ (0)u (sVΛ), A]∥ du .(3.12)

An application of (3.8) then shows that for any µ > 0 and A ∈ AX with X ∈ P0(Γ \ Λ),

(3.13) ∥[K(Λ,s)
t , A]∥ ≤ Cµ|s||Λ|∥VΛ∥∥A∥|t|eµvµ|t|e−µd(Λ,X)

for any s, t ∈ R. Thus, K(Λ,s)
t ∈ Ag for any exponential g, by (3.2).

3.1.3. Weighted Integral Operators. Fix γ > 0. For each Λ ∈ P0(Γ) and s ∈ R, we define two
weighted integral operators FΛ

s : A → A and GΛ
s : A → A by

(3.14) FΛ
s (A) =

∫ ∞

−∞
τ
(Λ,s)
t (A)wγ(t) dt and GΛ

s (A) =

∫ ∞

−∞
τ
(Λ,s)
t (A)Wγ(t) dt ,

where the real-valued functions wγ ,Wγ ∈ L1(R), are defined in [47, Section VI.B]. In particular,
they decay faster than any stretched exponential. Both of these maps depend on the choice of
γ through their weight functions, wγ and Wγ respectively, but we suppress this in the notation.
Arguing as in [47, Section VI.E.1], see also [48, Section 4.3.2], we find that for all A ∈ A

(3.15) ∥FΛ
s (A)∥ ≤ ∥A∥ and ∥GΛ

s (A)∥ ≤ ∥Wγ∥1∥A∥ ,

where we have used that, by our choice of normalization, ∥wγ∥1 = 1. As a result, these maps are
bounded uniformly with respect to s ∈ R and Λ ∈ P0(Γ). Moreover, they are uniformly quasi-local
in the sense that for each K ∈ {F ,G} there is a decay function GK such that: for any choice of
X,Y ∈ P0(Γ), we have

(3.16) sup
s∈[−1,1]

∥[KΛ
s (A), B]∥ ≤ 2∥A∥∥B∥|X|GK(d(X,Y ))

for all A ∈ AX and B ∈ AY . As shown in [47, Lemma 6.10–6.11], the decay functions GK can be
made explicit. For our purposes here, we need only stress that they can be taken independent of
Λ ∈ P0(Γ) and s ∈ [−1, 1], and with decay faster than any power. Thus, for any µ ≥ 0,

(3.17)
∞∑
n=1

(n+ 1)µGK(n) <∞ .

3.1.4. The Spectral Flow. Fix γ > 0. For each Λ ∈ P0(Γ) and s ∈ R, denote by

(3.18) D(Λ, s) = GΛ
s (VΛ) =

∫ ∞

−∞
τ
(Λ,s)
t (VΛ)Wγ(t)dt

with GΛ
s as defined in (3.14). Clearly, D(Λ, s) is self-adjoint and s ↦→ D(Λ, s) is uniformly bounded

by (3.15).

For t ∈ R fixed, the strong derivative of s ↦→ τ
(Λ,s)
t is given by the Duhamel formula [47,

Proposition 2.7]:

(3.19)
d

ds
τ
(Λ,s)
t (A) = i

∫ t

0
τ (Λ,s)r ([VΛ, τ

(Λ,s)
t−r (A)]) dr .
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Using (3.19), one obtains the norm continuity of s ↦→ D(Λ, s) from the following estimate:

∥D(Λ, s)−D(Λ, s0)∥ ≤
∫ ∞

−∞
∥τ (Λ,s)t (VΛ)− τ

(Λ,s0)
t (VΛ)∥|Wγ(t)|dt

≤ 2∥VΛ∥2|s− s0|
∫ ∞

−∞
|t||Wγ(t)| dt.(3.20)

Given these properties of D(Λ, s), there is a unique solution of

(3.21)
d

ds
U(Λ, s) = −iD(Λ, s)U(Λ, s) with U(Λ, 0) = 1l ,

which is given by unitaries in A. Using similar arguments as in (3.13) with (3.16) and (3.18), one
can show that for s > 0

(3.22) ∥[U(Λ, s), A]∥ ≤
∫ s

0
∥[GΛ

r (VΛ), A]∥ dr ≤ 2s∥A∥|Λ|∥VΛ∥GG(d(X,Λ))

for any A ∈ AX with X ∈ P0(Γ \ Λ). Thus, U(Λ, s) ∈ Ag for some g with finite moments of all
orders by (3.17).

The spectral flow is then the family of inner automorphisms on A induced by U(Λ, s):

(3.23) αΛ
s (A) = U(Λ, s)∗AU(Λ, s) for all A ∈ A.

This is Hastings’ quasi-adiabatic evolution [25,27]. Quasi-locality of this map is then a consequnece
of a Lieb-Robinson bound. To this end, first rewrite the generator as

(3.24) D(Λ, s) = GΛ
s (VΛ) =

∑
x∈Λ

∑
n≥R:

bx(n)⊂Λ

GΛ
s (Φ(x, n))

using (2.32). Applying the conditional expectations and telescopic sum from (3.7), we further write

(3.25) D(Λ, s) =
∑
x∈Λ

∑
m≥R

ΨΛ(x,m, s) where ΨΛ(x,m, s) =
∑

R≤n≤m:

bx(n)⊂Λ

∆m
bx(n)

(GΛ
s (Φ(x, n))) .

Arguing as in [48, Appendix A], there is a decay function GΨ and a positive number ∥Ψ∥GΨ
such

that for all Λ ∈ P0(Γ), s ∈ [−1, 1], x ∈ Λ and k ≥ R,

(3.26)
∑
m≥k

∥ΨΛ(x,m, s)∥ ≤ ∥Ψ∥GΨ
GΨ(k) .

One can be explicit about estimates for GΨ, see [48, Corollary A.3], but for our purposes, we only
need that is has finite moments of all orders. Given (3.25) and (3.26), well-known Lieb-Robinson
bounds imply the existence of a decay function Gα so that for all X,Y ∈ P0(Γ),

(3.27) ∥[αΛ
s (A), B]∥ ≤ s∥A∥∥B∥|X|Gα(d(X,Y ))

for all A ∈ AX , B ∈ AY , and s ∈ R. Gα is independent of Λ ∈ P0(Γ) and has finite moments of all
orders.

3.2. In the GNS space. The spectral perturbation arguments are carried out in the GNS rep-
resentation of the reference state ω0. Recall that (H, π0,Ω) is our notation for the corresponding
GNS triple. In this subsection, the quasi-local maps discussed previously are lifted to the GNS
space. Here, and in what follows, we will use the notation Ã = π0(A) ∈ B(H) to describe the GNS
representative of an observable A ∈ A. We now present the necessary properties we will need in
this setting.
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3.2.1. Dynamics. As discussed in Section 2.1, the unperturbed dynamics τ
(0)
t is implemented in

the GNS representation of ω0 by the GNS Hamiltonian H0, as in (2.20). We further show that the

perturbed dynamics τ
(Λ,s)
t is implemented in the GNS representation of ω0 by the Hamiltonian

(3.28) H(Λ, s) = H0 + π0(sVΛ), s ∈ R,

from (2.31). Specifically,

(3.29) π0(τ
(Λ,s)
t (A)) = eitH(Λ,s)π0(A)e

−itH(Λ,s) for all A ∈ A and t ∈ R .

Applying the GNS representation to the interaction picture representation (3.10) gives

(3.30) π0(τ
(Λ,s)
t (A)) = (π0(K

(Λ,s)
t ))∗eitH0π0(A)e

−itH0π0(K
(Λ,s)
t ) .

Then, (3.29) follows by observing that

(3.31) e−itH(Λ,s) = e−itH0π0(K
(Λ,s)
t ) ,

as by (3.11) K̃
(Λ,s)
t := π0(K

(Λ,s)
t ) is the unique, unitary solution of

(3.32)
d

dt
K̃

(Λ,s)
t = −ieitH0π0(sVΛ)e

−itH0K̃
(Λ,s)
t with K̃

(Λ,s)
0 = 1l.

3.2.2. Weighted Integral Operators. For any γ > 0, Λ ∈ P0(Γ), and s ∈ R we map the weighted

integral operators of (3.14) to the GNS space by defining F̃Λ
s and G̃Λ

s by
(3.33)

F̃Λ
s (A) =

∫ ∞

−∞
eitH(Λ,s)Ae−itH(Λ,s)wγ(t) dt and G̃Λ

s (A) =

∫ ∞

−∞
eitH(Λ,s)Ae−itH(Λ,s)Wγ(t) dt

for all A ∈ B(H). Using (3.29), it is clear that

(3.34) π0(FΛ
s (A)) = F̃Λ

s (π0(A)) and π0(GΛ
s (A)) = G̃Λ

s (π0(A)) for all A ∈ A .

3.2.3. The Spectral Flow. For fixed Λ ∈ P0(Γ), following [47, Section VI.A] we define a norm-

continuous family of unitaries Ũ(Λ, s) ∈ B(H) as the unique solution of

(3.35)
d

ds
Ũ(Λ, s) = −iD̃(Λ, s)Ũ(Λ, s) with Ũ(Λ, 0) = 1l ,

where

(3.36) D̃(Λ, s) =

∫ ∞

−∞
eitH(Λ,s)π0(VΛ)e

−itH(Λ,s)Wγ(t) dt .

The spectral flow associated with H(Λ, s) is the family of automorphisms of B(H) defined by

(3.37) α̃Λ
s (A) = Ũ(Λ, s)∗AŨ(Λ, s).

By (3.34) it is clear that D̃(Λ, s) = π0(D(Λ, s)) with D(Λ, s) as in (3.18) and, hence, by the

uniqueness of the unitary solution of (3.35), Ũ(Λ, s) = π0(U(Λ, s)), where U(Λ, s) is as in (3.21).
Therefore, π0 lifts the spectral flow in A to the GNS space:

(3.38) π0(α
Λ
s (A)) = α̃Λ

s (π0(A)) for all A ∈ A .

Recall that E(Λ, s) denotes the ground state energy of H(Λ, s). Under our assumptions the
ground state space of H(Λ, 0) = H0 is one-dimensional by Proposition A.1, and γ0 := gap(H0) is
strictly positive. By standard results, see e.g [33], for |s| sufficiently small the kernel of H(Λ, s)−
E(Λ, s)1l is one-dimensional and the ground state gap does not immediately close. More precisely,
for any γ ∈ (0, γ0), there is sΛ0 (γ) > 0 so that

(3.39) gap(H(Λ, s)) := sup{δ > 0 : (E(Λ, s), E(Λ, s) + δ) ∩ spec(H(Λ, s)) = ∅} ≥ γ,



14 B. NACHTERGAELE, R. SIMS, AND A. YOUNG

for all |s| ≤ sΛ0 (γ). Although the existence of sΛ0 (γ) > 0 is trivial, the main objective for prov-
ing stability is to establish the existence of a Λ-independent s0(γ), e.g. as in the statement of
Theorem 2.7. Given this, an application of [47, Theorem 6.3] shows that

(3.40) α̃Λ
s (P

Λ(s)) = PΛ(0) whenever |s| ≤ sΛ0 (γ) ,

where by PΛ(s) we denote the orthogonal projection onto the ground state space of H(Λ, s).
For any Λ ∈ P0(Γ) and s ∈ R, the state ωΛ

s given by

(3.41) ωΛ
s (A) = ω0(α

Λ
s (A)) for all A ∈ A

is a vector state in the GNS space:

(3.42) ωΛ
s (A) = ⟨Ω(Λ, s), π0(A)Ω(Λ, s)⟩ for all A ∈ A ,

where Ω(Λ, s) = Ũ(Λ, s)Ω ∈ H. By our assumptions, PΛ(0) = |Ω⟩⟨Ω|. An application of (3.40)
then shows that

(3.43) PΛ(s) = Ũ(Λ, s)|Ω⟩⟨Ω|Ũ(Λ, s)∗ = |Ω(Λ, s)⟩⟨Ω(Λ, s)| for all |s| ≤ sΛ0 (γ),

and thus Ω(Λ, s) is the ground state of H(Λ, s).
Finally, we recall that with the parameters γ and s as above that the weighted integral operator

F̃Λ
s from (3.33) satisfies the relation

(3.44)
[
F̃Λ
s (A), |Ω(Λ, s)⟩⟨Ω(Λ, s)|

]
= 0 for all A ∈ B(H) .

See, e.g. [47, Lemma 6.8], for a proof of this property.

3.3. On Domains. Recall that (Γ, d) is a ν-regular metric space. Let F be an F -function on
(Γ, d), and Φ an interaction with ∥Φ∥F <∞. As in Section 2, let δΦ be the closed derivation with
dense domain dom(δΦ) ⊂ A, and which satisfies

(3.45) δΦ(A) =
∑

Y ∈P0(Γ):

Y ∩X ̸=∅

[Φ(Y ), A] for any A ∈ AX .

Although the sum on the right-hand-side above may be infinite, it is absolutely convergent when
Φ has a finite F -norm. In fact, δΦ is locally bounded:

(3.46) ∥δΦ(A)∥ ≤ 2∥F∥∥Φ∥F |X|∥A∥ for all X ∈ P0(Γ), A ∈ AX ,

see Example 4.7 of [47, Section IV.B.1]. We have the following lemma.

Lemma 3.1. Let (Γ, d) be ν-regular, F an F -function on (Γ, d), and g a decay function with a
finite ν-moment, i.e.,

(3.47)
∞∑
n=1

(n+ 1)νg(n) <∞ .

For any interaction Φ on Γ with ∥Φ∥F <∞, we have that Ag ⊂ dom(δΦ).

Proof. For n ≥ 1, and A ∈ Ag, for some x ∈ Γ, and observables An ∈ Abx(n) satisfying ∥A−An∥ ≤
∥A∥x,gg(n). In this case, the bound ∥An+1 − An∥ ≤ 2∥A∥x,gg(n) is clear. Using (3.46) and ν-
regularity of Γ, we conclude

(3.48) ∥δΦ(An+1)− δΦ(An)∥ ≤ 4∥F∥∥Φ∥Fκ∥A∥x,g(n+ 1)νg(n).

Thus, for all m < n,

(3.49) ∥δΦ(An)− δΦ(Am)∥ ≤ 4κ∥A∥x,g∥F∥∥Φ∥F
n−1∑
k=m

(k + 1)νg(k).
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Since we assumed that g has a finite ν-moment, this implies that δΦ(An) is a Cauchy sequence.
Since An → A and Aloc is a core for δΦ, it follows that A ∈ dom(δΦ). □

Given the assumptions of Theorem 2.7, Lemma 3.1 clearly applies to the derivation δ0. Using
that H0Ω = 0, one readily checks the relation

(3.50) eitH0π0(A)Ω = π0(τ
(0)
t (A))Ω ,

from which the inclusion π0(dom(δ0))Ω ⊂ dom(H0) is clear. As a result, if g is a decay function
with a finite ν-moment, then π0(Ag)Ω ⊂ dom(H0) = dom(H(Λ, s)) for any Λ ∈ P0(Γ) and s ∈ R.
Since U(Λ, s) ∈ Ag for some g with finite moments of all of orders by (3.22), it follows that
π0(AU(Λ, s))Ω ∈ dom(H(Λ, s)), for any A ∈ Aloc, s ∈ R.

A consequence of this is a gap inequality for the perturbed ground state ωΛ
s from (3.41). Namely,

we show that for γ ∈ (0, γ0),Λ ∈ P0(Γ), and |s| ≤ sΛ0 (γ):

(3.51) ωΛ
s (A

∗δΛs (A)) ≥ γωΛ
s (A

∗A), for all A ∈ Aloc with ωΛ
s (A) = 0.

To see this, fix |s| ≤ sΛ0 (γ). Since Ω(Λ, s) is the unique ground state of H(Λ, s),

(3.52) ⟨ψ, (H(Λ, s)− E(Λ, s)1l)ψ⟩ ≥ γ⟨ψ,ψ⟩

for all ψ ∈ dom(H0) with ⟨Ω(Λ, s), ψ⟩ = 0. In particular, if ωΛ
s (A) = 0 for some A ∈ Aloc, then

(3.52) holds for ψ = π0(A)Ω(Λ, s) = π0(AU(Λ, s))Ω since

⟨Ω(Λ, s), ψ⟩ = ⟨Ω(Λ, s), π0(A)Ω(Λ, s)⟩ = ωΛ
s (A).

Then (3.51) follows from rewriting (3.52).
It will be important that on an appropriate dense domain, the action of the unbounded Hamil-

tonians can be expressed as a limit of finite-volume quantities. This is the content of the next
lemma.

Lemma 3.2. Let (H, π0,Ω) be the GNS representation of ω0, an infinite-volume, zero energy,
ground state of a frustration free model as in Assumption 2.1. For any decay function g with a
finite ν-moment and any IAS (Λn),

(3.53) lim
n→∞

π0(HΛn)ψ = H0ψ for all ψ ∈ π0(Ag)Ω ,

where HΛn ∈ AΛn is as in (2.13) and H0 is the GNS Hamiltonian.

Proof. Note that (3.53) is trivially satisfied for ψ = π0(A)Ω, for A ∈ Aloc since

(3.54) lim
n→∞

π0(HΛn)π0(A)Ω = lim
n→∞

π0([HΛn , A])Ω = π0(δ0(A))Ω = H0π0(A)Ω.

For the first equality we used π0(HΛn)Ω = 0, which is a consequence of the frustration-free property.
Then, by the finite-range condition on the unperturbed model, [HΛn , A] becomes constant for n
sufficiently large.

Take ψ = π0(A)Ω for any A ∈ Ag. By the definition of Ag, there exists x ∈ Γ and observables
Am ∈ Abx(m) so that ∥A − Am∥ ≤ ∥A∥x,gg(m) for all m ≥ 1, and so the vectors ψm := π0(Am)Ω
satisfy

(3.55) ∥ψ − ψm∥ ≤ ∥A∥x,gg(m).

Moreover, since the interaction h is uniformly bounded with range R, it follows from (3.45) and
ν-regularity that for any k ≥ 1,

∥δ0(Aℓ+1 −Aℓ)∥ ≤
∑

x∈bx(ℓ+1+R)

∥[hx, Aℓ+1 −Aℓ]∥ ≤ 2κ2Rν(ℓ+ 1)ν∥h∥∞∥Aℓ+1 −Aℓ∥
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where we use the bound |bx(n + m)| ≤ |bx(n)||bx(m)|. Then, by the last equality of (3.54), one
finds that (H0ψm)m∈N is Cauchy as

(3.56) ∥H0ψm −H0ψk∥ ≤ ∥δ0(Am)− δ0(Ak)∥ ≤ D
m−1∑
ℓ=k

(ℓ+ 1)νg(ℓ) .

where we set D = 4κ2Rν∥h∥∞∥A∥x,g. Since H0 is closed, and ψ ∈ dom(H0) by Lemma 3.1 and the
subsequent discussion, the bound

(3.57) ∥H0ψ −H0ψk∥ ≤ D
∞∑
ℓ=k

(ℓ+ 1)νg(ℓ)

follows immediately from (3.55)-(3.56).
In the case of a local Hamiltonian, using again the first equality in (3.54), a similar argument

shows that for all n ≥ 1,

∥π0(HΛn)ψ − π0(HΛn)ψk∥ = lim
m→∞

∥π0(HΛn)ψm − π0(HΛn)ψk∥

≤ lim
m→∞

∥[HΛn , Am −Ak]∥ ≤ D

∞∑
ℓ=k

(ℓ+ 1)νg(ℓ) .(3.58)

Putting all of this together, one finds that for any n ≥ 1 and each k ≥ 1,

∥π0(HΛn)ψ −H0ψ∥ ≤ ∥π0(HΛn)ψ − π0(HΛn)ψk∥+ ∥π0(HΛn)ψk −H0ψk∥+ ∥H0ψk −H0ψ∥
(3.59)

For k ≥ 1 sufficiently large, (3.57) and (3.58) guarantee that the first and last term above can be
made arbitrarily small. Given such a k, the middle term vanishes for n sufficiently large, see the
comment following (3.54). This completes the proof. □

Lemma 3.2 also trivially applies to the perturbed system in the GNS space. In fact, for Λ ∈ P0(Γ)
and s ∈ R, under assumptions as above, a direct application of Lemma 3.2 shows that we also have

(3.60) lim
n
π0(HΛn + sVΛ)ψ = H0ψ + sπ0(VΛ)ψ = H(Λ, s)ψ for all ψ ∈ π0(Ag)Ω.

Remark 3.3. An analogue of Lemma 3.2 holds more generally. In fact, if F is an F -function with a
finite ν-moment, then for any frustration free interaction Φ with ∥Φ∥F <∞, the GNS Hamiltonian
again satisfies (3.53). The argument is identical to the above except that one uses the more general
estimate in Lemma 3.1 and bounds the middle term in (3.59) by

(3.61)
∑

X∈P0(Γ):

X∩bx(k)̸=∅,X∩Λc
n ̸=∅

∥π0(Φ(X))ψk∥ ≤ ∥Φ∥F (1 + g(0))∥A∥x,g
∑

y∈bx(k),z∈Λc
n

F (d(y, z))

For fixed k, the above is the sum of finitely many ‘tails’ of the uniformly summable function F .

We now investigate how the weighted integral operator F̃Λ
s from (3.33) can be applied to the

unbounded Hamiltonian H(Λ, s). To begin, we prove an analogue of the desired statement for the
unperturbed dynamics; this is Lemma 3.4 below. To this end, assume w ∈ L1(R) satisfies

(3.62)

∫
R
w(u) du = 1 and

∫
R
|u|ν |w(u)| du <∞ ,

and define a weighted integral operator F̃ : B(H) → B(H) by setting

(3.63) F̃(A) =

∫ ∞

−∞
eiuH0Ae−iuH0w(u) du for all A ∈ B(H) .

To simplify notation, let us also write

(3.64) τ̃ (0)u (A) = eiuH0Ae−iuH0 .
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Our first result is as follows.

Lemma 3.4. Let (Γ, d) be ν-regular, g be a decay function with a finite 2ν-moment, and w ∈ L1(R)
satisfies (3.62). For each choice of IAS (Λn), the weighted integral operator F̃ from (3.63) satisfies

(3.65) lim
n→∞

F̃(π0(HΛn))ψ = H0ψ for all ψ ∈ π0(Ag)Ω ,

where HΛn ∈ AΛn is as in (2.13).

Proof. Fix an IAS (Λn) and take ψ = π0(A)Ω for some A ∈ Ag. We can rewrite the convergence
claimed in (3.65) as the convergence of integrals of a sequence of functions fn : R → H given by

(3.66) fn(u) = w(u)τ̃ (0)u (π0(HΛn))ψ for all u ∈ R .
Since H0Ω = 0, the above can be re-written as

(3.67) fn(u) = w(u)eiuH0π0(HΛn)π0(τ
(0)
−u(A))Ω

using (2.20). We claim that there is a decay function gτ with a finite ν-moment such that τ
(0)
−u(A) ∈

Agτ for all u ∈ R. Given this, Lemma 3.2 applies and we find that

(3.68) lim
n→∞

fn(u) = w(u)eiuH0H0π0(τ
(0)
−u(A))Ω = w(u)H0ψ for all u ∈ R .

By (3.62), the integral of this limit coincides with the right-hand-side of (3.65). Therefore, to
complete the proof we only need to justify an application of dominated convergence.

Let us first prove the existence of a decay function gτ as claimed. Fix A ∈ Ag. In this case,
there is x ∈ Γ, C ≥ 0, and observables Am ∈ Abx(m) for which ∥A− Am∥ ≤ Cg(m) for all m ∈ N.
Let u ∈ R and for any n ∈ N, set

(3.69) An(u) = Πn(τ
(0)
u (A⌈n/2⌉)) ∈ Abx(n)

where, to ease notation, we have written Πn = Πbx(n), for the conditional expectation from Sec-
tion 3.1.1. A straightforward estimate shows that for any µ > 0,

∥τ (0)u (A)−An(u)∥ ≤ ∥τ (0)u (A)− τ (0)u (A⌈n/2⌉)∥+ ∥τ (0)u (A⌈n/2⌉)−An(u))∥

≤ Cg(n/2) + κCµe
µ(vµ|u|+1)(1 + g(0))∥A∥x,g(n/2 + 1)νe−µn/2(3.70)

where we used (3.8) and (3.4) for the final bound. The existence of the decay function gτ follows
from the moment condition on g and the decay of the exponential term..

We now turn to finding a dominating function for fn. Recall that for any m0 ∈ N, A can be
written as an absolutely convergent, telescopic sum:

(3.71) A = Am0 +

∞∑
k=m0+1

Bk where Bk = Ak −Ak−1 and ∥Bk∥ ≤ 2Cg(k − 1).

Inserting this decomposition of A into (3.67), we find that for any n ∈ N and each u ∈ R:

(3.72) ∥fn(u)∥ ≤ |w(u)|

⎛⎝∥π0(HΛn)π0(τ
(0)
−u(Am0))Ω∥+

∞∑
k=m0+1

∥π0(HΛn)π0(τ
(0)
−u(Bk))Ω∥

⎞⎠ .

Now, by the zero-energy property of the ground state we find the bound

(3.73) ∥π0(HΛn)π0(A)Ω∥ ≤ κ(k +R)ν∥h∥∞∥A∥ for all A ∈ Abx(k) ,

which we stress is uniform in n. This suggests a mechanism for bounding the first term in (3.72).
Let ℓ0 ≥ m0 and write

(3.74) τ
(0)
−u(Am0) =

∑
ℓ≥ℓ0

∆ℓ
ℓ0(τ

(0)
−u(Am0)) ,
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where we have used the short-hand ∆ℓ
m for ∆ℓ

bx(m) as in (3.7). For ℓ = ℓ0, the bound

∥π0(HΛn)π0(∆
ℓ0
ℓ0
(τ

(0)
−u(Am0)))Ω∥ = ∥π0(HΛn)π0(Πℓ0(τ

(0)
−u(Am0)))Ω∥

≤ κ∥h∥∞(ℓ0 +R)ν∥Am0∥(3.75)

follows from (3.73). For ℓ ≥ ℓ0, the estimate

∥π0(HΛn)π0(∆
ℓ
ℓ0(τ

(0)
−u(Am0)))Ω∥ ≤ κ∥h∥∞(ℓ+R)ν∥∆ℓ

ℓ0(τ
(0)
−u(Am0))∥

≤ 2κ2∥h∥∞Cµm
ν
0(ℓ+R)ν∥Am0∥e−µ(ℓ−m0−1−vµ|u|)(3.76)

follows from another application of (3.73) and the quasi-locality estimate for the unperturbed
dynamics in combination with (3.6). We conclude that

∥π0(HΛn)π0(τ
(0)
−u(Am0))Ω∥ ≤

∑
ℓ≥ℓ0

∥π0(HΛn)π0(∆
ℓ
ℓ0(τ

(0)
−u(Am0)))Ω∥

≤ κ∥h∥∞∥Am0∥

⎛⎝(ℓ0 +R)ν + 2κCµm
ν
0

∑
ℓ≥ℓ0+1

(ℓ+R)νe−µ(ℓ−m0−1−vµ|u|)

⎞⎠ .(3.77)

If we now take ℓ0 = ⌈vµ|u|+m0⌉, then we have found that there is K ≥ 0 for which

(3.78) ∥π0(HΛn)π0(τ
(0)
−u(Am0))Ω∥ ≤ K∥h∥∞∥Am0∥

(
m2ν

0 + |u|ν + (m0|u|)ν + 1
)

and here K = K(κ, µ, ν,R).
The terms Bk in (3.72) can be estimated similarly. Regarding k as m0 and arguing as in (3.74)

- (3.77) with some ℓ0 ≥ k, a bound analogous to (3.78) can be found. Of course, here one replaces
∥Am0∥ with ∥Bk∥. Since ∥Bk∥ ≤ 2Cg(k − 1) and g has a finite 2ν-moment, we have obtained a
bound on the right-hand-side of (3.72) of the form:

(3.79) ∥fn(u)∥ ≤ K̃∥h∥∞(1 + |u|ν)|w(u)| for all u ∈ R .

By the assumption on w, i.e. (3.62), the above is a dominating function for the sequence fn. This
justifies dominated convergence and completes the proof. □

We will also need a version of Lemma 3.4 for the perturbed system. Recall that for any γ > 0,
s ∈ R, and Λ ∈ P0(Γ), the weighted integral operator F̃Λ

s : B(H) → B(H) are defined by

(3.80) F̃Λ
s (A) =

∫ ∞

−∞
eitH(Λ,s)Ae−itH(Λ,s)wγ(t) dt for all A ∈ B(H) .

We note that wγ from [47, Section VI.B] satisfies (3.62). It is clear that

(3.81) F̃Λ
s (e

iuH(Λ,s)) = eiuH(Λ,s) for all u, s ∈ R ,

since the dynamics leaves this bounded operator invariant and wγ integrates to 1. Lemma 3.5
provides a differential version of this fact.

Lemma 3.5. Let (Γ, d) be ν-regular, g be a decay function with a finite 2ν-moment. Let Λ ∈ P0(Γ)

and take s ∈ R. For each choice of IAS (Λn), consider the weighted integral operator F̃Λ
s , as in

(3.80), with arbitrary w ∈ L1(R) satisfying (3.62). Then

(3.82) lim
n→∞

F̃Λ
s (π0(HΛn + sVΛ))ψ = H(Λ, s)ψ for all ψ ∈ π0(Ag)Ω ,

with HΛn ∈ AΛn as in (2.13) and VΛ as in (2.32).
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Proof. Fix an IAS (Λn) where we assume for convenience that Λ ⊂ Λ1. As in the proof of Lemma
3.4, take ψ = π0(A)Ω with A ∈ Ag, and for each n ∈ N, consider fn : R → H given by

(3.83) fn(u) = w(u)τ̃ (Λ,s)u (π0(HΛn + sVΛ))π0(A)Ω for all u ∈ R ,

where, in analogy to (3.64), we have set

(3.84) τ̃
(Λ,s)
t (A) = eitH(Λ,s)Ae−itH(Λ,s) for all A ∈ B(H) and t ∈ R .

Using (3.29), (3.10), and (2.20), we may write

(3.85) τ̃ (Λ,s)u (π0(HΛn + sVΛ)) = π0(K
(Λ,s)
u )∗eiuH0π0(HΛn + sVΛ)e

−iuH0π0(K
(Λ,s)
u )

for all u ∈ R. In this case, we find that

(3.86) fn(u) = w(u)π0(K
(Λ,s)
u )∗eiuH0π0(HΛn + sVΛ)π0(τ

(0)
−u(K

(Λ,s)
u A))Ω.

Following a similar argument and using (3.13), one shows that there is a decay function g′ with a

finite ν-moment such that τ
(0)
−u(K

(Λ,s)
u A) ∈ Ag′ . As a result, the point-wise limit

(3.87) lim
n
fn(u) = w(u)π0(K

(Λ,s)
u )∗eiuH0(H0 + sπ0(VΛ))π0(τ

(0)
−u(K

(Λ,s)
u A))Ω = w(u)H(Λ, s)ψ

is clear from properties of the interaction picture dynamics, see the discussion following (3.10).
The argument demonstrating that we can apply the dominated convergence theorem also pro-

ceeds as in the proof of Lemma 3.4. Since the differences stemming from the presence of the
u-dependence in the operators Am0 and Bk are minor, we leave the details to the reader. □

4. Construction of a unitarily equivalent perturbed system

The crux of the stability strategy, as introduced in [12], is to use the spectral flow (aka quasi-
adiabatic evolution) to construct a unitarily equivalent perturbed system for which one can prove
a relative form bound using quasi-locality estimates and LTQO. In the infinite-system setting, this
begins by justifying that the unbounded Hamiltonian H(Λ, s) from (2.31) can be transformed by
the spectral flow defined in the GNS space, see (3.37). To this end, note that in Section 3.1.4 we
proved that U(Λ, s) ∈ Ag for some g with finite moments of all orders, and thus, an application

of Lemma 3.2 shows that Ũ(Λ, s)π0(A)Ω ∈ domH(Λ, s) for A ∈ Aloc. As a consequence, one may
write

(4.1) Ũ(Λ, s)∗H(Λ, s)Ũ(Λ, s)ψ = H0ψ +W (Λ, s)ψ + E(Λ, s)ψ for all ψ ∈ π0(Aloc)Ω ,

where E(Λ, s) the ground state energy of H(Λ, s) from (2.34), and W (Λ, s) is well-defined since all
other quantities in (4.1) are well-defined. Our goal now is to show that this defines W (Λ, s) as a
bounded operator with an explicit, Λ-independent form-bound with respect to H0.

In fact, the proof of Theorem 2.7 follows as a consequence of two results. The first, Theorem 4.1,
establishes that W (Λ, s) is indeed bounded and can be decomposed in a way that is suitable for
deriving a relative form bound. The second, Theorem 5.1 in Section 5, is the relative form bound
itself.

Theorem 4.1. Suppose Assumptions 2.1–2.2 and 2.4–2.5 hold, and fix Λ ∈ P0(Γ). Then, for any

γ ∈ (0, γ0) and |s| ≤ sΛ0 (γ), there is a family of self-adjoint observables Φ(2)(x,m, s) ∈ Abx(m), for
each x ∈ Γ and m ≥ R, with the following properties:

(i) Φ(2)(x,m, s)Pbx(m) = Pbx(m)Φ
(2)(x,m, s) = 0;

(ii) ∥Φ(2)(x,m, s)∥ ≤ 2sG
(2)
Λ (x,m) with
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(4.2) G
(2)
Λ (x,m) = GΛ(x,m/2) + 2G

(1)
Λ (x, ⌈m/2⌉) + 2G

(1)
Λ (x,R)

√
⌈m/2⌉νG0(m/2)

where Pbx(m) is the ground state projection associated to Hbx(m), GΛ(x,m) is as in Theorem 4.2,

G
(1)
Λ (x,m) =

∑
n≥mGΛ(x, n), and G0 is from Assumption 2.4. Furthermore, W (Λ, s) is given by

the absolutely convergent sum

(4.3) W (Λ, s) =
∑
x∈Γ

∑
m≥R

π0(Φ
(2)(x,m, s)).

Note that the operator W (Λ, s) is a priori defined in the GNS representation. A posteriori,
however, (4.3) implies that W (Λ, s) is the image of a quasi-local observable in A.

The decomposition from Theorem 4.1 is proved in two steps. The first uses quasi-locality and
conditional expectations to prove that for all |s| ≤ sΛ0 (γ), the action of the spectral flow on the
GNS Hamiltonian H(Λ, s) can be again realized as a perturbation of H0. Namely, we show that
for all ψ ∈ π0(Aloc)Ω

(4.4) Ũ(Λ, s)∗H(Λ, s)Ũ(Λ, s)ψ = H0ψ +
∑
x∈Γ

∑
m≥R

Φ̃(1)(x,m, s)ψ

where the perturbation terms Φ̃(1)(x,m, s) ∈ π0(Abx(m)) are self-adjoint, satisfy a norm bound
that is linear in s, and are absolutely summable over x ∈ Γ and m ≥ R. This is accomplished in
Theorem 4.2 of Section 4.1 below.

In the second step, carried out in Section 4.2, the final form of (4.3) from Theorem 4.1 is proved
using the frustration-free and LTQO ground state properties to produce a refined decomposition
of the perturbation terms from (4.4).

4.1. Quasilocal decomposition of the transformed perturbation. We now turn to estab-
lishing the first decomposition (4.4), which is the content of the following theorem.

Theorem 4.2. Under the conditions of Theorem 4.1, there exists a function GΛ : Γ × [0,∞) →
[0,∞) for which

(4.5)
∑
x∈Γ

∑
m≥R

GΛ (x,m) <∞

and a self-adjoint operator Φ̃(1)(x,m, s)∗ = Φ̃(1)(x,m, s) ∈ π0(Abx(m)) for each x ∈ Γ and m ≥ R,

such that ∥Φ̃(1)(x,m, s)∥ ≤ sGΛ(x,m) and

(4.6) W (Λ, s) + E(Λ, s)1l =
∑
x∈Γ

∑
m≥R

Φ̃(1)(x,m, s).

Moreover, for each x ∈ Γ, the operator Φ̃(1)(x, s) :=
∑

m≥R Φ̃(1)(x,m, s) belongs to π0(A) and

commutes with the ground state projection |Ω⟩⟨Ω|.

The global term Φ̃(1)(x, s) above will result from applying quasi-local maps Ki,Λ
s , i = 1, 2, to the

interaction and perturbation terms associated to the site x. These maps are defined in terms of
the examples introduced in Section 3.1, and emerge from fixing any IAS (Λn) and then applying
Lemmas 3.4-3.5 to rewrite

(4.7) (W (Λ, s) + E(Λ, s)1l)ψ = lim
n→∞

(
Ũ(Λ, s)∗F̃Λ

s (π0(HΛn + sVΛ))Ũ(Λ, s)ψ − F̃(π0(HΛn))ψ
)

where we choose F̃ = F̃Λ
0 . As the argument in the above limit is a finite sum of bounded operators,

the various relationships (3.34)-(3.38) between the quasi-local maps in the GNS representation to
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those on the C∗-algebra implies that for each n:

α̃Λ
s ◦ F̃Λ

s (H̃Λn + sṼΛ)− F̃(H̃Λn) =
∑
x∈Λn

π0
(
αΛ
s ◦ FΛ

s (hx)−F(hx)
)

+
∑
x∈Λ

∑
k≥R:

bx(k)⊆Λ

π0
(
sαΛ

s ◦ FΛ
s (Φ(x, k))

)
.(4.8)

Given this, for i = 1, 2 the map Ki,Λ
s : A → A are defined by

(4.9) K1,Λ
s (A) = αΛ

s (FΛ
s (A))−F(A) and K2,Λ

s (A) = sαΛ
s (FΛ

s (A)).

It was proved, e.g. in [48, Lemma 4.4], that both of these maps satisfy a local bound and quasi-
local estimate that is independent of the finite volume Λ. Specifically, for each i = 1, 2 there are
non-negative numbers pi, qi and Ci, and a decay function GKi (all independent of Λ) such that

∥Ki,Λ
s (A)∥ ≤ sCi|X|pi∥A∥(4.10)

∥[Ki,Λ
s (A), B]∥ ≤ s|X|qi∥A∥∥B∥GKi(d(X,Y ))(4.11)

hold for any X,Y ∈ P0(Γ), A ∈ AX , B ∈ AY , and s ∈ R. In fact, one can take p1 = q1 = 2, p2 = 0
and q2 = 1 and make explicit estimates on the decay function, see e.g. [48, Remark 4.7]. However,
it suffices to note that each GKi have finite moments of all orders in the sense of (3.17).

However, as Λn ↑ Γ when n → ∞, to prove that the decomposition in (4.6) is absolutely

summable, we will need refinements of (4.10)-(4.11) for K1,Λ
s that also decay in the distance d(X,Λ).

Both of these bounds will be a consequence of the perturbation VΛ being locally supported, which
implies that the spectral flow αΛ

s is approximately the identity far from Λ. The necessary bounds
are the content of Lemmas 4.3 and 4.4 below.

Lemma 4.3 (Distance Locality Bound for K1
s). There exists a decay function FK1, with finite

moments of all orders for which, given any X,Λ ∈ P0(Γ) with d(X,Λ) > 0, A ∈ AX , and any
s ∈ R, the following local bound holds:

(4.12) ∥K1,Λ
s (A)∥ ≤ s|X|2∥A∥FK1 (d(X,Λ)) .

It is easy to check that for fixed ϵ ∈ (0, 1) and any decay function F with finite ν-moment, the
function M ϵ

F : [0,∞) → [0,∞) defined by

(4.13) M
(ϵ)
F (r) =

∑
n≥r

(n+ 1)νF (ϵn)

is also a decay function. The proof of Lemma 4.3 shows that one may take

(4.14) FK1(r) = 2κ∥Ψ∥GΨ

(
M

(1−ϵ)
GΨ

(r) + 2GΨ(R)M
(ϵ)
GF

(r)
)

where GF and GΨ are the decay functions previously discussed in (3.16) and (3.26). Since GF and
GΨ both have finite moments of all orders, the same is true for FK1 .

The proof of Lemma 4.3 will also make use of the following bound, which holds for any F and ϵ
as in (4.13), and Λ, X ∈ P0(Γ) such that d(X,Λ) > 0:

(4.15)
∑
z∈Λ

F (ϵd(z,X)) ≤ κ|X|M (ϵ)
F (d(X,Λ)).

This follows from the following simple calculation∑
z∈Λ

F (ϵd(z,X)) ≤
∑
z∈Γ:

d(z,X)≥d(X,Λ)

F (ϵd(z,X)) ≤
∑

n≥d(X,Λ)

∑
z∈Γ:

n≤d(z,X)<n+1

F (ϵd(z,X))

≤ κ|X|
∑

n≥d(X,Λ)

(n+ 1)νF (ϵn)(4.16)
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where the last inequality uses that |X(n)| ≤ κnν |X| for any n ≥ 1 by ν-regularity, see (2.1).

Proof of Lemma 4.3: Fix X,Λ ∈ P0(Γ) such that X ∩ Λ = ∅, and let A ∈ AX be arbitrary. Recall

that K1,Λ
s is as defined in (4.9), and that D(Λ, s) from (3.18) is the generator of the spectral flow.

Then, since α0 = id and F = FΛ
0 , it follows that

(4.17) K1,Λ
s (A) =

∫ s

0

d

dr
αΛ
r (FΛ

r (A))dr = i

∫ s

0
αΛ
r ([D(Λ, r),FΛ

r (A)])dr

where one uses (3.19) and [47, Equation (6.37)] to obtain

d

ds
FΛ
s (A) = i

∫ ∞

−∞

∫ t

0
τ (Λ,s)r ([VΛ, τ

(Λ,s)
t−r (A)]) dr wγ(t) dt

= i

∫ ∞

−∞

∫ t

0
τ (Λ,s)r ([VΛ, τ

(Λ,s)
t−r (A)]) dr

(
− d

dt
Wγ(t) + δ0(t)

)
dt

= i

∫ ∞

−∞
τ
(Λ,s)
t ([VΛ, A])Wγ(t) dt = 0 .(4.18)

Here, the final two equalities follow from integration by parts, and the fact that the supports of VΛ
and A are disjoint.

Returning to (4.17), we expand the generator as in (3.25) to write

(4.19) [D(Λ, r),FΛ
r (A)] =

∑
z∈Λ

∑
n≥R

[ΨΛ(z, n, r),FΛ
r (A)]

Fix ϵ ∈ (0, 1), and for each z ∈ Λ, set kz(ϵ) = ϵd(z,X). For each term in (4.19), we approximate
FΛ
r (A) with a strictly local approximation:

(4.20) [ΨΛ(z, n, r),FΛ
r (A)] = [ΨΛ(z, n, r),ΠX(kz(ϵ))(F

Λ
r (A)) +

(
FΛ
r (A)−ΠX(kz(ϵ))(F

Λ
r (A))

)
]

where one uses conditional expectation associated with the inflated set X(kz(ϵ)), see (2.1)-(2.2).
For the second term, one can apply the quasi-local bound for FΛ

r from (3.16) coupled with (3.4) to
produce

(4.21) ∥[ΨΛ(z, n, r),FΛ
r (A)−ΠX(kz(ϵ))(F

Λ
r (A))]∥ ≤ 4∥A∥|X|∥ΨΛ(z, n, r)∥GF (kz(ϵ)) .

Then, summing over z ∈ Λ and n ≥ R, and applying (3.26) and (4.15) gives the final estimate
(4.22)∑

z∈Λ

∑
n≥R

∥[ΨΛ(z, n, r),FΛ
r (A)−ΠX(kz(ϵ))(F

Λ
r (A))]∥ ≤ 4κ∥A∥|X|2∥Ψ∥GΨ

GΨ(R)M
(ϵ)
GF

(d(X,Λ)).

To estimate the remaining terms in (4.20), note that for each z ∈ Λ, bz(n) ∩X(kz(ϵ)) ̸= ∅ only
when n ≥ kz(1− ϵ). As a result, arguments similar to the prior estimate produce the bound∑

z∈Λ

∑
n≥R

∥[ΨΛ(z, n, r),ΠX(kz(ϵ))(F
Λ
r (A))]∥ =

∑
z∈Λ

∑
n≥kz(1−ϵ)

∥[ΨΛ(z, n, r),ΠX(kz(ϵ))(F
Λ
r (A))]∥

≤ 2∥A∥∥Ψ∥GΨ

∑
z∈Λ

GΨ(kz(1− ϵ))

≤ 2κ∥A∥|X|∥Ψ∥GΨ
M

(1−ϵ)
GΨ

(d(X,Λ)).(4.23)

Recalling the specific decay function from (4.14), the bound claimed in (4.12) now follows by
inserting (4.19) into (4.17) and using the estimates found in (4.22) and (4.23) above. □

By combining the estimate in Lemma 4.3 and the original quasi-locality bound from (4.11), one

arrives that the following quasi-locality bound for ∥[K1,Λ
s (A), B]∥, which decays in both the distance

between X = supp(A) and Y = supp(B) as well as the distance between Λ and X. This is the
content of the next lemma.
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Lemma 4.4 (Distance Quasi-Locality for K1). There exists a function G : [0,∞)×[0,∞) → [0,∞),
non-increasing in both variables, such that given any Λ, X, Y ∈ P0(Γ) with d(X,Λ) > 0, the bound

(4.24) ∥[K1,Λ
s (A), B]∥ ≤ s∥A∥∥B∥|X|2G (d(X,Λ), d(X,Y ))

holds for all A ∈ AX , B ∈ AY , and s ∈ R. More precisely, for any δ ∈ (0, 1), one may choose

(4.25) G(m,n) = max
{
2F δ

K1(m)F 1−δ
K1 (n), Gδ

K1(m)G1−δ
K1 (n)

}
where FK1 and GK1 are the decay functions from Lemma 4.3 and (4.11), and Gδ(m) := (G(m))δ.

In applications, it can be convenient to bound G(n,m) by a function that separates over the two
arguments. In this case, taking δ as in (4.25),

(4.26) G(m,n) ≤ 2Fδ(m) · F1−δ(n) with Fδ(m) = max{F δ
K1(m), Gδ

K1(m)}.

Proof. Fix 0 < δ < 1. In the case that d(X,Λ) ≤ d(X,Y ), the quasi-locality estimate (4.11) shows
that

(4.27) ∥[K1,Λ
s (A), B]∥ ≤ s|X|2∥A∥∥B∥Gδ

K1(d(X,Λ))G
1−δ
K1 (d(X,Y ))

where we have used that GK1 is non-increasing.
Alternatively, if d(X,Λ) > d(X,Y ), the local bound from Lemma 4.3 implies

(4.28) ∥[K1,Λ
s (A), B]∥ ≤ 2∥K1,Λ

s (A)∥∥B∥ ≤ 2s|X|2∥A∥∥B∥FK1 (d(X,Λ)) .

Since FK1 is also non-increasing, the bound FK1(d(X,Λ)) ≤ F δ
K1 (d(X,Λ))F

1−δ
K1 (d(X,Y )) follows.

The bound (4.24) is then a consequence of (4.27) and (4.28). □

We conclude this section by proving Theorem 4.2, which will proceed as follows. We first define
the global terms Φ̃(1)(x, s) ∈ π0(A) and show that they commute with the ground state projection

|Ω⟩⟨Ω|. Then, we use the localizing operators from (3.7) to define the local terms Φ(1)(x,m, s)
for m ≥ R and show that they formally satisfy (4.6). The third and final step of the proof uses
Lemmas 4.3-4.4 to show that these new local interaction terms satisfy the desired norm bound for
a function GΛ(x,m) satisfying (4.5). This justifies the above-mentioned formal equality, and will
be a consequence of considering the cases x ∈ Λ(R) and x ∈ Γ \ Λ(R) separately.

Proof of Theorem 4.2. Fix γ ∈ (0, γ0), Λ ∈ P0(Γ), and take any IAS (Λn) such that Λ ⊆ Λn for all
n. Define the spectral flow αΛ

s and the weighted integral operators FΛ
s , F = FΛ

0 with respect to

the choices of γ and Λ as in (3.23) and (3.14), and then take Ki,Λ
s , i = 1, 2, as defined (4.9).

For the first step, let χΛ be the characteristic function of Λ ⊂ Γ. Then, for each x ∈ Γ and s ∈ R
such that |s| ≤ sΛ0 (γ), the self-adjoint operator Φ̃(1)(x, s) = π0(Φ

(1)(x, s)) ∈ B(H) is defined by

(4.29) Φ(1)(x, s) = K1,Λ
s (hx) + χΛ(x)

∑
k≥R:

bx(k)⊂Λ

K2,Λ
s (Φ(x, k)) ∈ A.

To show that each Φ̃(1)(x, s) commutes with the ground state projection |Ω⟩⟨Ω|, recall that the
ground state of the perturbed system is Ω(Λ, s) = Ũ(Λ, s)Ω if |s| ≤ sΛγ . Then, recalling the relations
(3.34)-(3.38), a simple calculation shows that for all A ∈ A[

π0(α
Λ
s (FΛ

s (A))), |Ω⟩⟨Ω|
]

=
[
Ũ(Λ, s)∗F̃Λ

s (π0(A))Ũ(Λ, s), |Ω⟩⟨Ω|
]

= Ũ(Λ, s)∗
[
F̃Λ
s (π0(A)), |Ω(Λ, s)⟩⟨Ω(Λ, s)|

]
Ũ(Λ, s) = 0,(4.30)

where the final equality uses that (3.44) holds since |s| ≤ sΛ0 (γ). Since (4.30) trivially holds for
s = 0, considering (4.9), the above implies that

(4.31)
[
π0(K1,Λ

s (A)), |Ω⟩⟨Ω|
]
=
[
π0(K2,Λ

s (A)), |Ω⟩⟨Ω|
]
= 0 .
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Hence, [Φ̃(1)(x, s), |Ω⟩⟨Ω|] = 0 for all x ∈ Γ and |s| ≤ sΛ0 (γ) as claimed.
We now turn to the second step of the proof. To establish (4.6), use the conditional expectations

from (3.7) to decompose each Φ̃(1)(x, s) as

(4.32) Φ̃(1)(x, s) =
∑
m≥R

Φ̃(1)(x,m, s)

where Φ̃(1)(x,m, s) = π0(Φ
(1)(x,m, s)) ∈ π0(Abx(m)) is defined for each m ≥ R by

(4.33) Φ(1)(x,m, s) := ∆m
bx(R)(K

1,Λ
s (hx)) + χΛ(x)

∑
R≤k≤m:
bx(k)⊆Λ

∆m
bx(k)

(K2,Λ
s (Φ(x, k))) .

With respect to this notation, (4.7), (4.8) and (4.29) show that for all ψ ∈ π0(Aloc)Ω,

(W (Λ, s) + E(Λ, s)1l)ψ = lim
n→∞

∑
x∈Λn

Φ̃(1)(x, s)ψ

= lim
n→∞

∑
x∈Λn

∑
m≥R

Φ̃(1)(x,m, s)ψ.(4.34)

Since this π0(Aloc)Ω ⊆ H is dense, the equality in (4.6) follows from establishing absolute summa-

bility of the terms Φ̃(1)(x,m, s). This is achieved by defining a function

(4.35) GΛ(x,m) = χΛ(R)(x)G1(m) + χΓ\Λ(R)(x)G2 (d(bx(R),Λ),m)

which bounds the norms of these terms and satisfies (4.5). Here, we note that Λ(R) is as in (2.1),
and the functions G1 : [0,∞) → [0,∞) and G2 : [0,∞)× [0,∞) → [0,∞) will be independent of Λ.

We now proceed to the final step of the proof. First, suppose x ∈ Γ \ Λ(R). As R ≥ 0 is the
finite range of the unperturbed interaction, (4.33) simplifies to

(4.36) Φ(1)(x,m, s) = ∆m
bx(R)(K

1,Λ
s (hx)) .

Then, applying Lemmas 4.3 and 4.4 with the local approximation bound (3.6) one finds

(4.37) ∥Φ̃(1)(x,m, s)∥ = ∥Φ(1)(x,m, s)∥ ≤ sG2 (d(bx(R),Λ),m)

where for any fixed δ ∈ (0, 1), the function G2 can be taken to be

(4.38) G2(l,m) = C ·
{

FK1(l), if m = R,
4Fδ(l) · F1−δ(m−R− 1), if m ≥ R+ 1.

Here, C = κ2R2ν∥h∥∞, FK1 is the function from Lemma 4.3, and

(4.39) Fδ(l) = max
{
(FK1(l))δ, (GK1(l))δ

}
.

More specifically, the bound in (4.37) for m = R is a direct application of Lemma 4.3 while the
bound for m ≥ R+1 follows from the quasi-local estimate in Lemma 4.4 and the subsequent bound
(4.26) coupled with (3.3)-(3.6).

Given (4.35), the summability of GΛ over the sites x ∈ Γ \ Λ(R) follows from observing that∑
x∈Λ(R)c

∑
m≥R

G2 (d(bx(R),Λ),m) = C
∑

x∈Λ(R)c

FK1(d(bx(R),Λ))

+ 4C
∑

x∈Λ(R)c

Fδ(d(bx(R),Λ))
∑

m≥R+1

F1−δ(m−R− 1) <∞(4.40)
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as both FK1 and GK1 (and, thus, Fδ) have finite moments of all orders. In particular, for any decay
function F : [0,∞) → [0,∞) with a finite ν-moment,∑

x∈Λ(R)c

F (d(bx(R),Λ)) ≤
∑
n≥R

∑
x∈Λ(n+1)\Λ(n)

F (n−R) ≤ κ|Λ|
∑
n≥R

(n+ 1)νF (n−R) <∞.

We now turn to the sites x ∈ Λ(R), for which we demonstrate that

(4.41) ∥Φ(1)(x,m, s)∥ ≤ sG1(m)

where G1 is a summable function. First consider (4.33) when m = R. Combining the local bounds
(4.10), the uniform bound (2.12), and the interaction bound in Assumption 2.5, one produces the
x-independent bound

∥Φ(1)(x,R, s)∥ ≤ ∥K1,Λ(hx)∥+ ∥K2,Λ(Φ(x,R))∥
≤ sC1κ

2R2ν∥h∥∞ + sC2∥Φ∥e−aRθ
.(4.42)

Alternatively, for m ≥ R+ 1, (4.33) can be estimated as

∥Φ(1)(x,m, s)∥ ≤ ∥∆m
bx(R)(K

1,Λ
s (hx))∥+ χΛ(x)

∑
R≤k≤m:
bx(k)⊆Λ

∥∆m
bx(k)

(K2,Λ
s (Φ(x, k)))∥

≤ 2sκ2R2ν∥h∥∞GK1(m−R− 1) + 2sκ
∑

R≤k≤m:
bx(k)⊆Λ

kν∥Φ(x, k)∥GK2(m− k − 1)(4.43)

where one uses the quasi-local estimates from (4.11) and the local approximation bound in (3.6).
Given Assumption 2.5, the final sum above can be further estimated as∑
R≤k≤m:
bx(k)⊆Λ

kν∥Φ(x, k)∥GK2(m− k − 1) ≤ ∥Φ∥
m∑

k=R

kνe−akθGK2(m− k − 1)

≤ ∥Φ∥

⎛⎝GK2(m/2)

m/2−1∑
k=R

kνe−akθ +GK2(0)
∑

k≥m/2

kνe−akθ

⎞⎠ .(4.44)

To simplify notation, let MΦ(r) :=
∑

k≥r k
νe−akθ denote the ν-th moment of the decay function

associated with the perturbation Φ from Assumption 2.5. Then, in summary, one has that for
x ∈ Λ(R), (4.41) holds for the decay function G1 defined by

(4.45) G1(R) = C1κ
2R2ν∥h∥∞ + C2∥Φ∥e−aRθ

and for m ≥ R+ 1,

(4.46) G1(m) = 2CGK1(m−R− 1) + 2κ∥Φ∥ (MΦ(R)GK2(m/2) +GK2(0)MΦ(m/2)) .

Since each of the decay functions in (4.46) has finite moments of all orders, it is clear that∑
m≥RG1(m) <∞. As a consequence, GΛ as in (4.35) satisfies∑

x∈Λ(R)

∑
m≥R

GΛ(x,m) ≤ κRν |Λ|
∑
m≥R

G1(m) <∞.

This demonstrates absolute summability of the terms in (4.6), and hence, completes the proof of
Theorem 4.2. □
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4.2. The final decomposition of the transformed perturbation via LTQO. We now turn
our attention to proving Theorem 4.1, which is a consequence of one last decomposition of the
transformed perturbation from Theorem 4.2, i.e.{

Φ̃(1)(x,m, s) ∈ π0(Abx(m)) : x ∈ Γ, m ≥ R
}
.

The key component for proving the desired norm bounds for this final decomposition is Lemma 4.5
below, and it is in the proof of this result where one needs the LTQO property from Assumption 2.4.
To this end, we first shift the transformed perturbation terms by their expectation in the ground
state Ω, as this will put us in the appropriate setting to apply LTQO.

Throughout this section, we assume γ ∈ (0, γ0) is fixed and that s ∈ R is such that |s| ≤ sΛ0 (γ).

As such, Ω(Λ, s) = Ũ(Λ, s)Ω is the ground state of H(Λ, s), and one finds that W (Λ, s)Ω = 0 from
considering (4.1) in the case ψ = Ω. Thus, Theorem 4.2 implies that for any ψ ∈ π0(Aloc)Ω

(4.47) W (Λ, s)ψ = Ũ(Λ, s)∗H(Λ, s)Ũ(Λ, s)ψ −H0ψ − E(Λ, s)ψ =
∑
x∈Γ

∑
m≥R

Φ̃(1)
ω (x,m, s)ψ,

where the (self-adjoint) observables Φ̃
(1)
ω (x,m, s) ∈ π0(Abx(m)) are defined by

(4.48) Φ̃(1)
ω (x,m, s) = Φ̃(1)(x,m, s)− ⟨Ω, Φ̃(1)(x,m, s)Ω⟩1l

and normalized to have zero ground state expectation: ⟨Ω, Φ̃(1)
ω (x,m, s)Ω⟩ = 0. For the proofs of

Lemma 4.5 and Theorem 4.1, it is also convenient to set

(4.49) Φ̃(1)
ω (x, s) :=

∑
m≥R

Φ̃(1)
ω (x,m, s), x ∈ Γ

which belongs to π0(A) by Theorem 4.2.

Lemma 4.5. Let P̃bx(n) = π0(Pbx(n)) ∈ B(H) denote the representation of the ground state projec-
tion Pbx(n) in the GNS space. Then, under the assumptions of Theorem 4.1, the bound

(4.50)


m∑

k=R

Φ̃(1)
ω (x, k, s)P̃bx(n)

 ≤ 2s
(
G

(1)
Λ (x,m+ 1) +G

(1)
Λ (x,R)

√
(1 +m)νG0(n−m)

)
holds where G0 is the decay function from Assumption 2.4, and G

(1)
Λ (x,m) =

∑
k≥mGΛ(x, k) with

GΛ as in Theorem 4.2.

Proof. To begin, one uses the LTQO property (2.27) to show that

(4.51)
⏐⏐⏐∥ÃP̃bx(n)∥ − ∥ÃPΩ∥

⏐⏐⏐ ≤ ∥A∥
√
(1 +m)νG0(n−m) for all A ∈ Abx(m)

where PΩ = |Ω⟩⟨Ω| and Ã = π0(A). To see this, first note that the inequality |a − b|2 ≤ |a2 − b2|
for any a, b ≥ 0, implies that⏐⏐⏐∥ÃP̃bx(n)∥ − ∥ÃPΩ∥

⏐⏐⏐2 ≤ ⏐⏐⏐∥ÃP̃bx(n)∥
2 − ∥ÃPΩ∥2

⏐⏐⏐ .
Recalling that (H, π0,Ω) is the GNS representation of the unperturbed ground state ω0, the second
term on the right-hand-side above is simply

∥ÃPΩ∥2 = ⟨Ω, π0(A∗A)Ω⟩ ∥PΩ∥ = ω0(A
∗A)∥Pbx(n)∥.

Here we find it convenient to use that π0 is norm-preserving. From this, it follows that

∥ÃP̃bx(n)∥
2 = ∥π0(APbx(n))∥

2 = ∥Pbx(n)A
∗APbx(n)∥.
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Given these observations, Assumption 2.4 then implies that⏐⏐⏐∥ÃP̃bx(n)∥ − ∥ÃPΩ∥
⏐⏐⏐2 ≤ ⏐⏐∥Pbx(n)A

∗APbx(n)∥ − ω0(A
∗A)∥Pbx(n)∥

⏐⏐
≤ ∥Pbx(n)A

∗APbx(n) − ω0(A
∗A)Pbx(n)∥

≤ ∥A∥2(1 +m)νG0(n−m),(4.52)

which establishes (4.51).

Now using (4.51) with Ã =
∑m

k=R Φ̃
(1)
ω (x, k, s) ∈ π0(Abx(m)), one finds that for any n ≥ m,

m∑
k=R

Φ̃(1)
ω (x, k, s)P̃bx(n)

 ≤


m∑

k=R

Φ̃(1)
ω (x, k, s)PΩ

+


m∑
k=R

Φ̃(1)
ω (x, k, s)

√(1 +m)νG0(n−m)

≤


m∑

k=R

Φ̃(1)
ω (x, k, s)PΩ

+ 2sG
(1)
Λ (x,R)

√
(1 +m)νG0(n−m)(4.53)

where the last inequality follows from Theorem 4.2 as ∥Φ̃(1)
ω (x, k, s)∥ ≤ 2∥Φ̃(1)(x, k, s)∥ ≤ 2sGΛ(x, k).

The remaining operator norm from (4.53) can then be trivially bounded in terms of Φ̃
(1)
ω (x, s)

from (4.49) as follows:

(4.54)


m∑

k=R

Φ̃(1)
ω (x, k, s)PΩ

 ≤
Φ̃(1)

ω (x, s)PΩ

+ ∞∑
k=m+1

Φ̃(1)
ω (x, k, s)PΩ

 .
Once again applying Theorem 4.2 then shows that

(4.55)

∞∑
k=m+1

Φ̃(1)
ω (x, k, s)PΩ

 ≤ 2

∞∑
k=m+1

Φ̃(1)(x, k, s)
 ≤ 2sG

(1)
Λ (x,m+ 1),

and, moreover, [Φ̃
(1)
ω (x, s), PΩ] = [Φ̃(1)(x, s), PΩ] = 0. As a result,

Φ̃(1)
ω (x, s)PΩ

 = 0 since

Φ̃(1)
ω (x, s)PΩ = PΩΦ̃

(1)
ω (x, s)PΩ =

⟨
Ω, Φ̃(1)

ω (x, s)Ω
⟩
PΩ = 0,(4.56)

where the last equality follows from (4.48)-(4.49). Thus, inserting (4.55) into (4.53) proves (4.50).
□

We now prove Theorem 4.1, which uses both Lemma 4.5 and the frustration-free property.

Proof of Theorem 4.1. Fix x ∈ Γ and recall that PΩ = |Ω⟩⟨Ω|. Since [Φ̃
(1)
ω (x, s), PΩ] = 0, one can

write

Φ̃(1)
ω (x, s) = PΩΦ̃

(1)
ω (x, s)PΩ + (1l− PΩ)Φ̃

(1)
ω (x, s)(1l− PΩ) = (1l− PΩ)Φ̃

(1)
ω (x, s)(1l− PΩ),

where the last equality uses (4.56). The terms Φ̃(2)(x,m, s) are defined by decomposing 1l− PΩ in

terms of the finite volume ground state projections P̃n := P̃bx(n) ∈ π0(Abx(n)).

First, note that P̃n converges strongly to PΩ for all ψ ∈ H by the frustration-free and LTQO
properties. As a consequence, the collection of operators

Ẽn =

{
1l− P̃R, n = R

P̃n−1 − P̃n, n ≥ R+ 1
(4.57)

forms a family of orthogonal projections that are mutually orthogonal and sum to 1l−PΩ. That is,

(4.58) Ẽ∗
n = Ẽn, ẼnẼm = δm,nẼn, and (1l− PΩ)ψ =

∑
n≥R

Ẽnψ ∀ ψ ∈ H,
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where the second equality holds since the frustration-free property implies P̃nP̃m = P̃m for m ≥ n.
Moreover, it trivially holds that

(4.59) 1l− P̃m =
m∑

n=R

Ẽn.

Using (4.49), the above properties imply that for all ψ, ϕ ∈ H,⟨
ϕ, (1l− PΩ)Φ̃

(1)
ω (x, s)(1l− PΩ)ψ

⟩
=

∑
k,m,n≥R

⟨
ϕ, ẼnΦ̃

(1)
ω (x, k, s)Ẽmψ

⟩
(4.60)

We note that the triple sum of operators actually converges absolutely in norm, and so the operator
equality holds in the norm sense.

Each term Φ(2)(x,m, s) ∈ Abx(m) will be defined as a sum of two self-adjoint terms

π0(Φ
(2)(x,m, s)) = Θ1(x,m, s) + Θ2(x,m, s)

each of which is annihilated by the ground state projection P̃m. Fix k ≥ R, and use the properties
in (4.58)-(4.59) to write

(4.61)
∑

n,m≥R

ẼnΦ̃
(1)
ω (x, k, s)Ẽm = (1l− P̃2k)Φ̃

(1)
ω (x, k, s)(1l− P̃2k) +

∑
m>2k

Φ̃k,m,

where Φ̃k,m = Φ̃∗
k,m is defined by

(4.62) Φ̃k,m = ẼmΦ̃(1)
ω (x, k, s)(1l− P̃m−1) + (1l− P̃m)Φ̃(1)

ω (x, k, s)Ẽm ∈ π0(Abx(m)).

Self-adjointness follows from noting that 1l− P̃m = 1l− P̃m−1 + Ẽm.
For each m ≥ R, define Θ1(x,m, s) ∈ π0(Abx(m)), by

(4.63) Θ1(x,m, s) =

{
(1l− P̃m)Φ̃

(1)
ω (x,m/2, s)(1l− P̃m), m even

0, m odd

These operators are self-adjoint, satisfy Θ1(x,m, s)P̃m = 0, and Theorem 4.2 implies that their
norm is bounded from above by 2sGΛ(x,m/2) as for m even:

(4.64) ∥Θ1(x,m, s)∥ ≤ ∥Φ(1)
ω (x,m/2, s)∥ ≤ 2sGΛ(x,m/2).

For the Θ2 terms, one sums the remaining terms
∑

m>2k Φ̃k,m over k, and then uses the indicator
function χm>2k to exchange the summations as follows:∑

k≥R

∑
m>2k

Φ̃k,m =
∑
k≥R

∑
m>2R

Φ̃k,mχ{m>2k}

=
∑

m>2R

∑
R≤k<m/2

Φ̃k,m

=
∑

m>2R

Θ2(x,m, s)

where, for m > 2R one recalls (4.62) and defines

(4.65) Θ2(x,m, s) =

⌈m/2⌉−1∑
k=R

ẼmΦ̃(1)
ω (x, k, s)(1l− P̃m−1) + (1l− P̃m)Φ̃(1)

ω (x, k, s)Ẽm.

This definition is extended by setting Θ2(x,m, s) = 0 forR ≤ m ≤ 2R. One sees that Θ2(x,m, s)P̃m =

0 by applying P̃mP̃m−1 = P̃m to verify

ẼmP̃m = (P̃m − P̃m−1)P̃m = 0.
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Finally, applying Lemma 4.5,

∥Θ2(x,m, s)∥ ≤ 2


⌈m/2⌉−1∑

k=R

Φ̃(1)
ω (x, k, s)(1l− P̃m−1)


≤ 4s

(
G

(1)
Λ (x, ⌈m/2⌉) +G

(1)
Λ (x,R)

√
⌈m/2⌉νG0(m/2)

)
(4.66)

where G
(1)
Λ (x,m) =

∑
n≥mGΛ(x, n).

Therefore, setting Φ̃(2)(x,m, s) = Θ1(x,m, s) + Θ2(x,m, s) for all m, we have constructed self-
adjoint operators such that

(4.67) W (Λ, s) =
∑
x∈Γ

∑
m≥R

Φ̃(2)(x,m, s).

Moreover, these operators satisfy that for all m ≥ R and x ∈ Γ,

Φ̃(2)(x,m, s)P̃m = P̃mΦ̃(2)(x,m, s) = 0

and, combining (4.64) and (4.66), their norms can be bounded above by

(4.68) ∥Φ̃(2)(x,m, s)∥ ≤ 2sG
(2)
Λ (x,m)

where

(4.69) G
(2)
Λ (x,m) = GΛ(x,m/2) + 2G

(1)
Λ (x, ⌈m/2⌉) + 2G

(1)
Λ (x,R)

√
⌈m/2⌉νG0(m/2).

The absolute summability of the series in (4.67) is a direct consequence of G0 being summable

as well as that both GΛ and G
(1)
Λ satisfy (4.5). For G

(1)
Λ this can easily be seen from the fact that

GΛ is a combination of functions with finite moments of all orders, see specifically (4.35), (4.38)
and (4.46). □

5. Proving Theorems 2.7 and 2.8 via a form bound for the GNS Hamiltonian

In this section, we generalize [48, Theorem 3.8], which was itself based off [41, Proposition 2], so
that it is applicable to the setting of infinite systems in their GNS representation. Afterwards, we
apply the form bound in conjunction with Theorem 4.1 to prove Theorem 2.7. We then conclude
with the proof of Theorem 2.8, which follows as a consequence of Theorem 2.7.

5.1. The Michalakis-Zwolak relative form bound. The form bound result is stated in the
setting described in Section 2 and, in particular, under Assumption 2.3. Thus, there is a family of
sets

S = {Λ(x, n)|x ∈ Γ, n ≥ 0 s.t. bx(n) ⊆ Λ(x, n)} ,
accompanied with a family T = {Tn : n ≥ 0} of separating partitions of (c, ζ)-polynomial growth,
for which the associated finite volume Hamiltonians satisfy

(5.1) HΛ(x,n) ≥ γ(n)PΛ(x,n), for all n ≥ R .

Moreover, the local gaps are further assumed to satisfy γ(n) ≥ γ1/n
α for some γ1 > 0 and α ≥ 0.

Theorem 5.1 (Michalakis-Zwolak [41]). Let H0 be the GNS Hamiltonian associated with a zero-
energy ground state of an initial system satisfying Assumptions 2.1 and 2.3, and let V ∈ A be a
perturbation associated with an absolutely-summable, anchored interaction on (Γ, d). That is, there
exist Φ(x, n)∗ = Φ(x, n) ∈ Abx(n) for all x ∈ Γ and n ≥ R such that

(5.2) V =
∑
x∈Γ

∑
n≥R

Φ(x, n),
∑
x∈Γ

∑
n≥R

∥Φ(x, n)∥ <∞.
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In addition, assume that terms of V annihilate the finite-volume ground state projections of the
initial system, i.e.

(5.3) Φ(x, n)Pbx(n) = Pbx(n)Φ(x, n) = 0 for all x ∈ Γ and n ≥ R ,

and that there is a decay function G with finite (ζ+α)-moment such that supx∈Γ ∥Φ(x, n)∥ ≤ G(n) .
Then, for all ψ ∈ domH0,

(5.4) |⟨ψ, πω(V )ψ⟩| ≤ β ⟨ψ,H0 ψ⟩ where β = c
∑
n≥R

nζG(n)

γ(n)
≤ c

γ1

∑
n≥R

nζ+αG(n).

In keeping with the notation from the previous sections, denote by Ã = π0(A) the image of any
observable A ∈ A under the GNS representation (H, π0,Ω) of the zero-energy ground state ω0.
The proof of Theorem 5.1 follows closely the argument proving [48, Theorem 3.8], with the proviso
that one must check that the infinite operator sums replacing the finite operator sums from [48]
are well-defined.

To this end, let n ≥ R, and consider the n-th separating partition Tn = {T i
n : i ∈ In}. For each

i ∈ In and any choice of x, y ∈ T i
n , one has that

(5.5) [H̃Λ(x,n), H̃Λ(y,n)] = 0 and [P̃Λ(x,n), P̃Λ(y,n)] = 0 .

This follows since the corresponding algebra elements HΛ(x,n), HΛ(y,n) ∈ A are supported on disjoint
sets (and similarly for the ground state projections), which carries over to the GNS space by the
homomorphism property.

With n ≥ R and i ∈ In fixed, denote by Ci
n the collection of all configurations associated to T i

n .
More precisely,

(5.6) Ci
n = {0, 1}T i

n =
{
σ : σ = {σx} where σx ∈ {0, 1} for all x ∈ T i

n

}
.

For each σ ∈ Ci
n, we define |σ| by

(5.7) |σ| =
∑
x∈T i

n

σx.

Recall that π0(Aloc)Ω is a dense subspace of H. Let ψ = ÃΩ for some A ∈ AX , and set

Q̃Λ(x,n) = 1l− P̃Λ(x,n). In this case, one has that

(5.8) P̃Λ(x,n)ψ = ψ and Q̃Λ(x,n)ψ = 0

whenever Λ(x, n) satisfies Λ(x, n) ∩X = ∅. It is also clear that for any X ∈ P0(Γ), the set of sites
{x ∈ T i

n : Λ(x, n) ∩X ̸= ∅} is finite. Thus, for any ψ ∈ π0(Aloc)Ω, define the operator S(σ) by

(5.9) S(σ)ψ =

{ ∏
x∈T i

n

[
σxQ̃Λ(x,n) + (1− σx)P̃Λ(x,n)

]
ψ if |σ| <∞,

0 otherwise.

Note that, if |σ| < ∞, then at most finitely many of these factors act non-trivially, and moreover,
by (5.5), all factors above commute. Since π0(Aloc)Ω is dense, there is a unique extension of S(σ)
to an element of B(Hω) for each σ ∈ Ci

n. One checks that these operators satisfy:

(5.10) S(σ)∗ = S(σ), S(σ)S(σ′) = δσ,σ′S(σ), and
∑
σ∈Ci

n

S(σ) = 1l .

Since Q̃Λ(x,n) = 1l− P̃Λ(x,n), by (5.5) one clearly has that

(5.11) [Q̃Λ(x,n), P̃Λ(y,n)] = 0 for all x, y ∈ T i
n

and as a result, also

(5.12) [Q̃Λ(x,n), S(σ)] = 0 for each x ∈ T i
n and all σ ∈ Ci

n.
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For σ ∈ Ci
n with |σ| <∞, (5.11) implies 0 = [Q̃Λ(x,n), S(σ)]ψ for all ψ ∈ π0(Aloc)Ω and, hence, for

all ψ ∈ H. If |σ| = ∞, then the commutator is zero by definition. Combining (5.10) and (5.12), we
find that

(5.13) S(σ)Q̃Λ(x,n)S(σ
′) = δσ,σ′Q̃Λ(x,n)S(σ) = δσ,σ′(1l− P̃Λ(x,n))S(σ) = δσ,σ′σxS(σ)

for all σ, σ′ ∈ Ci
n and each x ∈ T i

n .
We use these families of orthogonal projections in the following proof.

Proof of Theorem 5.1. In the GNS representation, the terms of Ṽ can be rearranged using the
family of separating partitions from Assumption 2.3 as

(5.14) Ṽ =
∑
x∈Γ

∑
n≥R

Φ̃(x, n) =
∑
n≥R

∑
i∈In

Ṽ i
n, Ṽ i

n :=
∑
x∈T i

n

Φ̃(x, n)

since V is absolutely summable. As a result, for any ψ ∈ H, one has the bound

(5.15) |⟨ψ, Ṽ ψ⟩| ≤
∑
n≥R

∑
i∈In

|⟨ψ, Ṽ i
nψ⟩| with |⟨ψ, Ṽ i

nψ⟩| ≤
∑
x∈T i

n

|⟨ψ, Φ̃(x, n)ψ⟩| .

Now, since bx(n) ⊂ Λ(x, n) for all Λ(x, n) ∈ S, the frustration free property implies

(5.16) PΛ(x,n) = Pbx(n)PΛ(x,n) = PΛ(x,n)Pbx(n),

and so by (5.3) it follows that that for each x ∈ T i
n , the term Φ̃(x, n) satisfies

(5.17) [Φ̃(x, n), P̃Λ(y,n)] = 0 for all y ∈ T i
n .

Arguing as in (5.12)-(5.13) above, one then finds that for all x ∈ T i
n and σ, σ′ ∈ Ci

n

(5.18) [Φ̃(x, n), S(σ)] = 0

and, moreover,

S(σ)Φ̃(x, n)S(σ′) = δσ,σ′S(σ)Φ̃(x, n)

= δσ,σ′σxS(σ)Φ̃(x, n)

= δσ,σ′S(σ)Q̃Λ(x,n)Φ̃(x, n)Q̃Λ(x,n)S(σ) .(5.19)

As a consequence, one can use (5.10) and (5.19) to bound

|⟨ψ, Φ̃(x, n)ψ⟩| ≤
∑
σ,σ′

|⟨ψ, S(σ)Φ̃(x, n)S(σ′)ψ⟩| =
∑
σ

|⟨ψ, S(σ)Q̃Λ(x,n)Φ̃(x, n)Q̃Λ(x,n)S(σ)ψ⟩|

≤ G(n)
∑
σ

∥Q̃Λ(x,n)S(σ)ψ∥2.(5.20)

Summing these orthogonal projections again, one obtains

(5.21)
∑
σ

∥Q̃Λ(x,n)S(σ)ψ∥2 =
∑
σ

⟨ψ, Q̃Λ(x,n)S(σ)ψ⟩ = ⟨ψ, Q̃Λ(x,n)ψ⟩ ≤
1

γ(n)
⟨ψ, H̃Λ(x,n)ψ⟩

where, the final bound follows since the representation preserves positivity and the operator in-
equality γ(n)QΛ(x,n) ≤ HΛ(x,n) holds in the algebra.

Given the above, one concludes that for any ψ ∈ dom(H0),

(5.22) |⟨ψ, Ṽ i
nψ⟩| ≤

∑
x∈T i

n

|⟨ψ, Φ̃(x, n)ψ⟩| ≤ G(n)

γ(n)

∑
x∈T i

n

⟨ψ, H̃Λ(x,n)ψ⟩ ≤
G(n)

γ(n)
⟨ψ,H0ψ⟩
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where the last inequality uses that Λ(x, n)∩Λ(y, n) = ∅ for distinct x, y ∈ T i
n . Returning to (5.15),

since these partitions satisfy the (c, ζ)-polynomial growth bound it is clear that

(5.23) |⟨ψ, Ṽ ψ⟩| ≤
∑
n≥R

∑
i∈In

|⟨ψ, Ṽ i
nψ⟩| ≤ β⟨ψ,H0ψ⟩ ,

with β as in (5.4). This completes the proof. □

5.2. Proofs of Theorems 2.7 and 2.8. Theorem 4.1 showed that for every finite Λ ⊂ Γ, the
Hamiltonian

H(Λ, s) = H0 + sπ0(VΛ) = H0 + s
∑

bx(n)⊂Λ

π0(Φ(x, n))

transforms under the spectral flow unitary as follows

Ũ(Λ, s)∗H(Λ, s)Ũ(Λ, s)ψ − E(Λ, s)ψ = H0ψ +
∑
x∈Γ

∑
m≥R

π0(Φ
(2)
Λ (x,m, s))ψ,

where E(Λ, s) is the ground state energy of H(Λ, s), and Φ
(2)
Λ (x,m, s) is a balled interaction satis-

fying the conditions of Theorem 5.1 with norm bounds that are linear in |s| and given in terms of a
Λ-dependent decay function. However, we will show below that the constant β from Theorem 5.1
can be taken independent of Λ. Theorem 2.7 will then follow from applying [48, Corollary 3.3].
In our context, the latter result states the following. Suppose that H0 is a self-adjoint, positive
operator on a Hilbert space H with min specH0 = 0 and (0, γ0) ∩ spec(H0) = ∅. Then, for any
V = V ∗ ∈ B(H) such that there exists 0 ≤ β < 1 for which

| ⟨ψ, V ψ⟩ | ≤ β ⟨ψ,H0ψ⟩ ∀ψ ∈ dom(H0),

one has that

(5.24) spec(H0 + V ) ∩ (0, (1− β)γ0) = ∅.

Proof of Theorem 2.7. Fix γ ∈ (0, γ0) where γ0 is as in Assumption 2.2, and let Λ ∈ P0 be arbitrary.
Given Theorem 4.1, it is clear that Theorem 5.1 applies and produces a non-trivial form bound
(see (5.4)) so long as

G
(2)
Λ (m) := sup

x∈Γ
G

(2)
Λ (x,m)

has a finite (ζ + α)-moment where, as stated in Assumption 2.3, ζ is the polynomial growth of the
separating partitions and γ(n) ≥ γ1n

−α is the lower bound on the local gaps. Moreover, to show
that

(5.25) s0(γ) := inf
Λ∈P0

sΛ0 (γ) > 0,

see (3.39), we wish to show this form bound is uniform in Λ.
To this end, recall that GΛ from (4.35) is defined in terms of two functions G1, G2 that are

independent of Λ and decay faster than any polynomial. It is then clear that for all Λ ∈ P0, x ∈ Γ
and m ≥ R,

GΛ(x,m) ≤ G1(m) +G2(0,m) =: G(m),

and similarly, G
(1)
Λ (x,m) ≤ G(1)(m) where G(1)(m) =

∑
m≥RG(m). It follows immediately that

sup
Λ∈P0

G
(2)
Λ (m) ≤ G(2)(m) := G(m/2) + 2G(1)(m/2) + 2G(1)(R)

√
(1 +m)νG0(m/2)

and that G(2) has a finite (ζ + α)-moment as long as G0 satisfies (2.26).
Given the norm bound from Theorem 4.1, it follows from Theorem 5.1 that for all ψ ∈ dom(H0)

⟨ψ,W (Λ, s)ψ⟩ ≤ sβ ⟨ψ,H0ψ⟩ where β = 2c
∑
m≥R

nζG(2)(m)

γ(m)
.
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Thus, gap(H(Λ, s)) ≥ γ0 − sβγ0 by (5.24) and, in particular, (5.25) holds since this implies

sΛ0 (γ) ≥
γ0 − γ

βγ0
.

□

We conclude with using the uniform estimate from Theorem 2.7 to establish the claimed lower
bound estimate on the gap of the extensively perturbed system from Theorem 2.8.

Proof of Theorem 2.8. Let 0 < γ < γ0 and consider |s| ≤ s0(γ). Recall that for any IAS (Λn), the
following limits hold in A as n→ ∞:

αΛn
s (A) → αs(A), for all A ∈ A(5.26)

δΛn
s (A) → δs(A), for all A ∈ Aloc,(5.27)

see (2.37) and (2.38). As a consequence, ωΛn
s (A) = ω0 ◦ αΛn

s (A) → ωs(A) for all A ∈ A and,
moreover, ωs is a ground state of δs.

Now consider A ∈ Aloc for which ωs(A) = 0. Given Theorem 2.7, the GNS Hamiltonian H(Λn, s)
along any IAS (Λn) has a gap above its unique ground state lower bounded by γ for all |s| ≤ s0(γ).
Therefore, ωΛn

s satisfies (2.22) and, in particular, the inequality

(5.28) ωΛn
s (B∗

nδ
Λn
s (Bn)) ≥ γωΛn

s (B∗
nBn)

holds for the observable Bn = A − ωΛn
s (A)1l ∈ Aloc. Combining (5.27) and the local uniform

convergence of αΛn
s , the limit n → ∞ can be taken on both sides of (5.28) to obtain (2.39). The

remaining claims follow as in (2.22). □

Appendix A. LTQO implies uniqueness of the ground state

In this section, we prove a simple, yet general, uniqueness result within the framework of Sec-
tion 2. To this end, let A be a C∗-algebra of quasi-local observables associated to a quantum spin
system defined over a ν-regular, discrete metric space (Γ, d). Let Φ be a non-negative, frustration-
free interaction on (Γ, d) for which the corresponding derivation δ, defined initially on the local
observable algebra as in (2.18), is a generator of a strongly continuous dynamics, denoted by
{τt | t ∈ R}. Let ω be an infinite-volume, zero-energy ground state associated to δ, i.e. ω satisfies
(2.19) and ω(Φ(X)) = 0 for all finite X ⊂ Γ. Denote by (H, π,Ω) the GNS triple associate to ω.

To simplify notation, let us set Ã := π(A) the representative of A ∈ A in the GNS space. We say
that ω satisfies LTQO if there is a function G : [0,∞) → [0,∞) with limm→∞G(m) = 0 for which:
given any choices m ≥ k ≥ 0, x ∈ Γ, and A ∈ Abx(k),

(A.1) ∥P̃bx(m)ÃP̃bx(m) − ⟨Ω, ÃΩ⟩P̃bx(m)∥ ≤ ∥A∥(1 + k)νG(m− k) .

Note that the above is simply the reformulation of (2.27) in B(H). The following result holds.

Proposition A.1. Let ω be an infinite-volume, zero-energy ground state of a frustration-free model.
If ω satisfies LTQO, then the kernel of the GNS Hamiltonian H is one-dimensional.

Proof. By way of contradiction, assume there is a unit vector ψ ∈ ker(H) with ⟨ψ,Ω⟩ = 0. First,

since π(Aloc)Ω is dense in H, there is x ∈ Γ and operators An ∈ Abx(n) for which ψn = ÃnΩ → ψ.
In this case,

(A.2) lim
n→∞

⟨Ω, ÃnΩ⟩ = lim
n→∞

⟨Ω, ψn⟩ = ⟨Ω, ψ⟩ = 0.

Thus, there is n1 ∈ N so that |⟨Ω, ÃnΩ⟩| ≤ 1/3 for all n ≥ n1.

Next, since ker(H) ⊂ ker(H̃bx(m)) for all m ≥ 0 and x ∈ Γ, we have

(A.3) ⟨ψ, P̃bx(m)ÃnP̃bx(m)Ω⟩ = ⟨ψ, ÃnΩ⟩ = ⟨ψ,ψn⟩
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for all m ≥ 0. Since 1 = limn→∞⟨ψ,ψn⟩, there is some n2 ∈ N for which |⟨ψ,ψn⟩| ≥ 2/3 for all
n ≥ n2. Combining this with (A.3), we find that for any m ≥ n ≥ n2,

(A.4) 2/3 ≤ ∥P̃bx(m)ÃnP̃bx(m)∥.
It follows that for n ≥ max{n1, n2},

(A.5) 1/3 ≤ ∥P̃bx(m)ÃnP̃bx(m) − ⟨Ω, ÃnΩ⟩P̃bx(m)∥ ≤ ∥An∥(1 + n)νG(m− n),

where we have applied (A.1). This is a contradiction as the decay function G satisfies G(m−n) → 0
as m→ ∞. □

Appendix B. Proof of bounded differentiability of the spectral flow

In this section, we demonstrate that the derivative of the spectral flow is a well-defined bounded
operator when restricted to appropriate collections of quantifiably local observables A(Λn),g. A
related result also appears in [42, Appendix].

To state this result, we consider models of quantum spin systems defined over a ν-regular,
discrete metric space (Γ, d). More specifically, we investigate differentiable curves of interactions
[0, 1] ∋ s ↦→ Φ(s), i.e. for each finite X ⊂ Γ and 0 ≤ s ≤ 1, Φ(X, s)∗ = Φ(X, s) ∈ AX and
Φ(X, ·) : [0, 1] → AX is differentiable. We assume that these curves have a finite norm of the
following form:

(B.1) ∥Φ∥1F = sup
s∈[0,1]

sup
x,y∈Γ

1

F (d(x, y))

∑
X∈P0(Γ):

x,y∈X

(
∥Φ(X, s)∥+ |X|∥Φ′(X, s)∥

)
where F is an F -function on (Γ, d) of stretched exponential decay, i.e. as in (2.11). In this case,
it was shown in [47, Section VI.E.2] that for any differentiable curves of interactions Φ with finite

norm ∥Φ∥1F , there is an F -function F̃ and an s-dependent interaction Ψ(s) with

∥Ψ∥F̃ := sup
s∈[0,1]

∥Ψ(s)∥F̃ <∞,

for which Ψ(s) is a generator of the infinite volume spectral flow automorphisms αs. We further
know by [47, Theorem 3.9], that this infinite volume spectral flow is differentiable on Aloc

Γ with

(B.2)
d

ds
αs(A) = i

∑
X∈P0(Γ)

αs([Ψ(X, s), A]) for all A ∈ Aloc
Γ .

Our aim is the show that

α′
s :=

d

ds
αs

is a bounded map when defined on a suitable Banach algebra of g-local obervables, in the sense
discussed in Section 2.1.

Theorem B.1 (Bounded Differentiability). Let g : [0,∞) → [0,∞) be non-increasing and satisfy
limn→∞ g(n) = 0. Let (Λn) be any increasing and absorbing sequence of finite subsets of Γ satisfying

(B.3)
∑
n≥1

|Λn+1|g(n) <∞.

Then, the derivative α′
s of the spectral flow αs is a well-defined bounded linear map A(Λn),g → A,

satisfying

(B.4) ∥α′
s(A)∥ ≤ 2∥Ψ∥F̃ ∥F̃∥1

(
|Λ1|+ 2

∞∑
n=1

|Λn+1|g(n)

)
∥A∥(Λn),g ,

with ∥F̃∥1 as defined in (2.9).
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Proof. We start by noting that for any local observable A ∈ AY with Y ⊂ Γ finite, we have the
following estimate: ddsαs(A)

 ≤
∑
X:

X∩Y ̸=∅

∥[Ψ(X, s), αs(A)]∥ ≤ 2∥A∥
∑
y∈Y

∑
z∈Γ

∑
X:

y,z∈X

∥Ψ(X, s)∥

≤ 2∥Ψ∥F̃ ∥A∥
∑
y∈Y

∑
z∈Γ

F̃ (d(y, z))

≤ 2∥Ψ∥F̃ ∥F̃∥1|Y |∥A∥(B.5)

Let A ∈ A(Λn),g. By (2.6),

(B.6) ∥A−Πn(A)∥ ≤ ∥A∥(Λn),gg(n)

which implies that the sequence {Πn(A)}∞n=1 converges to A (in norm) at a rate governed by g.

Define a map α′
s : A(Λn),g → A by setting

(B.7) α′
s(A) = lim

n→∞

d

ds
αs (Πn(A)) for all A ∈ A(Λn),g .

Note that for any strictly local observable A, Πn(A) = A if n is sufficiently large, and thus this
definition agrees with the standard definition of the derivative of αs(A) for A ∈ Aloc.

Now, consider integers 1 ≤M < N <∞. For any observable A,

(B.8) ΠN (A)−ΠM (A) =
N−1∑
n=M

(Πn+1(A)−Πn(A))

and for A ∈ A(Λn),g, we also have that for any n ≥ 1,

∥Πn+1(A)−Πn(A)∥ ≤ ∥Πn+1(A)−A∥+ ∥A−Πn(A)∥
≤ 2∥A∥(Λn),gg(n)(B.9)

where we have used (B.6) and the fact that g is non-increasing. We conclude that

∥α′
s(ΠN (A))− α′

s(ΠM (A))∥ ≤
N−1∑
n=M

∥α′
s (Πn+1(A)−Πn(A)) ∥

≤ 2∥Ψ∥F̃ ∥F̃∥1
N−1∑
n=M

|Λn+1|∥Πn+1(A)−Πn(A)∥

≤ 4∥Ψ∥F̃ ∥F̃∥1∥A∥(Λn),g

N−1∑
n=M

|Λn+1|g(n) .(B.10)

Here, for the second inequality above we used (B.5), and the final bound comes from (B.9). We
conclude that whenever g satisfies (B.3), the sequence {α′

s(Πn(A))}∞n=1 is norm Cauchy; hence,
norm convergent. This shows that α′

s as given in (B.7) is well-defined and equals the derivative of

αs(A), for A ∈ A(Λn),g. Moreover, for any N ≥ 1,

∥α′
s(ΠN (A))∥ ≤ ∥α′

s(Π1(A))∥+ ∥α′
s(ΠN (A))− α′

s(Π1(A))∥

≤ 2∥Ψ∥F̃ ∥F̃∥1|Λ1|∥Π1(A)∥+ 4∥Ψ∥F̃ ∥F̃∥1∥A∥(Λn),g

N−1∑
n=1

|Λn+1|g(n)(B.11)

and therefore,

(B.12) ∥α′
s(A)∥ = lim

N→∞
∥α′

s(ΠN (A))∥ ≤ 2∥Ψ∥F̃ ∥F̃∥1

(
|Λ1|+ 2

∞∑
n=1

|Λn+1|g(n)

)
∥A∥(Λn),g



36 B. NACHTERGAELE, R. SIMS, AND A. YOUNG

as claimed. □

As an application of this result we can establish a relation between spectral gap stability, auto-
morphic equivalence, and differentiability of the ground state. In particular, we find that Assump-
tion 1.2 (vii) in [43], i.e. uniform differentiability of the ground state, follows from automorphic
equivalence. Therefore, for perturbation that leave the gap stable, the differentiability assumption
is always satisfied under the other items in [43, Assumption 1.2] (see also [9, 51]). Given [43, The-
orem 1.3], one can also regard Assumption 1.2 (vii) as equivalent to automorphic equivalence. To
clarify the relation between differentiability of the ground state and automorphic equivalence, we
first define a notion of stable perturbations.

As before in this appendix, consider differentiable curves of interactions Φ. Let ω0 be a ground
state of the derivation defined by Φ(·, 0) as in (2.18)-(2.19), and let H0 denote the GNS Hamiltonian
of ω0. In this discussion we assume that all interactions have stretched exponential decay.

Definition B.2. We say that Φ is stable with respect to ω0 if there exists an IAS (Λn) and a
sequence of differentiable interactions Φn converging locally in F -norm to Φ (see [47, Definition
3.7]), such that sequence of perturbed Hamiltonians of the form

(B.13) H(Λn, s) = H0 + π0(VΛn(s)), with VΛn(s) =
∑

X⊂Λn

Φn(X, s)

has a positive spectral gap above the ground state uniformly in n and s ∈ [0, s0], for some s0 > 0.
In this situation we refer to [0, s0] as the stability range.

The main result of this work establishes conditions under which an interaction Φ(·, s) is stable
for sufficiently small values of s, meaning there exists s0 > 0 such that Φ(·, s) is stable with respect
to ω0 with stability range [0, s0].

To make the connection with the results in [43], assume that Φ(·, s) has a unique ground state
ωs for s ∈ [0, s0] and that Φ is stable with respect to ω0 with stability range [0, s0]. By automor-

phic equivalence ( [7, Theorem 5.5], applied to the GNS representation), the spectral flows α
(Λn)
s

associated with the perturbations VΛn(s) satisfy the following properties:
(i) they converge strongly to a co-cycle of automorphisms in the thermodynamic limit:

αs = lim
n→∞

α(Λn)
s , s ∈ [0, s0];

(ii) ωs = limn→∞ ω0 ◦ α(Λn)
s = ωs ◦ αs, s ∈ [0, s0];

(iii) Theorem B.1 applies to αs, s ∈ [0, s0].
Therefore, differentiability of the ground state follows from the differentiability of αs provided

by Theorem B.1. As a result, [43, Assumption 1.2 (vii)] holds in the stability range.
We note that in the same way one obtains the extension of the invariants constructed by Ogata

in [49,51,52] from models with finite-range interactions to the setting with interactions of stretched
exponential decay.

Using methods as in [47], a similar result is seen to hold for more general quantum lattice
models. In fact, equipped with these methods, see specifically [47, Section VI], minor modifications
of the above proof demonstrate boundedness of the derivative of the spectral flow for models with
unbounded on-sites perturbed by smooth bounded interactions.
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Ann. Henri Poincaré 19 (2018), 695–708.
[4] , Rational indices for quantum ground state sectors, J. Math. Phys. 62 (2021), 011901, arXiv:2001.06458.
[5] S. Bachmann, W. De Roeck, B. Donvil, and M. Fraas, Stability of invertible, frustration-free ground states against

large perturbations, Quantum (2022), 2022–06–11.
[6] S. Bachmann, E. Hamza, B. Nachtergaele, and A. Young, Product Vacua and Boundary State models in d

dimensions, J. Stat. Phys. 160 (2015), 636–658.
[7] S. Bachmann, S. Michalakis, B. Nachtergaele, and R. Sims, Automorphic equivalence within gapped phases of

quantum lattice systems, Comm. Math. Phys. 309 (2012), 835–871.
[8] M. Bishop, B. Nachtergaele, and A. Young, Spectral gap and edge excitations of d-dimensional PVBS models on

half-spaces, J. Stat. Phys. 162 (2016), 1485–1521.
[9] C. Bourne and Y. Ogata, The classification of symmetry protected topological phases of one-dimensional fermion

systems, Forum of Mathematics, Sigma 9 (2021), E25.
[10] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, 2 ed., vol. 1, Springer

Verlag, Berlin-Heidelberg-New York, 1987.
[11] , Operator algebras and quantum statistical mechanics, 2 ed., vol. 2, Springer Verlag, 1997.
[12] S. Bravyi, M. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations, J.

Math. Phys. 51 (2010), 093512.
[13] S. Bravyi and M. B. Hastings, A short proof of stability of topological order under local perturbations, Commun.

Math. Phys. 307 (2011), 609.
[14] S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson bounds and the generation of correlations and

topological quantum order, Phys. Rev. Lett. 97 (2006), 050401.
[15] C.-F. Chen, A. Lucas, and C. Yin, Speed limits and locality in many-body quantum dynamics, arXiv:2303.07386,

2023.
[16] S. X. Cui, D. Dawei, X. Han, G. Penington, D. Ranard, B. C. Rayhaun, and Z. Shangnan, Kitaev’s quantum

double model as an error correcting code, Quantum 4 (2020), 331, arXiv:1908.02829.
[17] W. De Roeck and M. Salmhofer, Persistence of exponential decay and spectral gaps for interacting fermions,

Commun. Math. Phys. 365 (2019), 773–796.
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