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Abstract  
 

The dynamics of Faraday waves in a gas-fluidized bed vibrated in both the vertical and horizontal 

directions simultaneously were investigated using two-fluid model (TFM) simulations. Prior 

experimental and numerical studies have demonstrated the formation of Faraday waves in gas-

fluidized beds, and the TFM simulations here are validated against prior experimental studies. The 

novelty of this study is subjecting a gas-fluidized bed to combined vertical and horizontal 

vibrations. The key physical insights are that (1) Faraday waves can still form when horizontal 

vibration is added and (2) the horizontal mixing rate and extent increases markedly by adding 

horizontal vibration. Further, non-dimensional empirical correlations and regime maps for 

wavelength and wave height were established based on dimensional analysis. Increasing vertical 

vibration frequency decreased horizontal mixing, yet increasing horizontal vibration frequency 

increased horizontal mixing. Increasing gas flow rate increased the rate of vertical mixing, but 

decreased the rate of horizontal mixing. 
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1. Introduction  

Fluidization is a process in which granular particles are suspended in a fluid-like state, 

typically either via upward gas flow or vertical vibration overcoming gravitational force on the 

particles [1,2]. Fluidized beds are containers of fluidized particles and often used to induce particle 

mixing, heat transport and contact between gas and particles. Structures analogous to those in 

conventional fluids, notably gas bubbles [1,3] and Faraday waves [4,5], have been reported in 

fluidized beds subjected to either gas flow or vibration. These bubbles and surface waves can act 

to create bulk convection which mixes the particles, which is desirable for a range of industrial 

applications [6,7]. 

Prior studies on Faraday waves were first conducted in granular beds subject to vertical 

vibration alone and shown to form with and without the presence of interstitial gas [4,6,8,9]. Wave 

patterns tend to repeat themselves every two vibration periods due to collisions between particles 

and the bottom plate every vibration period causing a reversal of horizontal momentum in the 

particles which results in a reversal in crests and troughs in the waves [10]. Experiments showed 

the wavelength (𝜆) scaling linearly with 𝑓𝑣
−2 in which 𝑓𝑣 is the frequency of vertical vibrations, 

leading to the development of dispersion relationships to correlate for wavelength [11]. 

Experiments were conducted in both pseudo-2D systems, which are narrow in one horizontal 

direction to only allow for 2D waves [4], as well as 3D systems which allow for the formation of 

3D wave patterns [6]. Non-dimensionalization of the phenomenon has identified the vertical 

vibration strength: 

 Γ𝑣
∗ = 4𝜋2𝑓𝑣

2𝐴𝑣𝑔
−1 (1) 

and normalized frequency: 

 𝑓𝑣
∗ = 𝑓𝑣𝐻

1/2𝑔−1/2 (2) 

to be key parameters for describing the wave patterns and wavelength formed [6,11]. In Equations 

(1) and (2), 𝐴𝑣 is the amplitude of vertical vibration, 𝑔 is gravitational acceleration and 𝐻 is the 

height of particles in the bed. Further studies have shown that Faraday waves can also form in gas-

fluidized beds with no vibration subject to oscillating upward gas flow, with similar patterns 

observed [5]. While most industrial applications use bubbling to induce mixing in particles, bubble 

dynamics are typically chaotic and change with system size, making fluidized bed processes 

difficult to scale-up and optimize [12,13]. As such, the predictable, ordered dynamics of Faraday 

waves offer potential for use in industrial processes, addressing issues with scale-up of bubbling 

fluidized beds [12,14,15]. 

Vertically vibrated gas-fluidized beds have been used industrially largely to fluidize 

particles which would be difficult to fluidize with gas flow alone due to cohesive forces between 

particles [16]. Recently, vibrated gas-fluidized beds have been demonstrated to induce structured 

flow patterns in gas fluidized beds [17], including bubble-free convection cells [18], Rayleigh-

Taylor instabilities [19], structured bubbling [14] and Faraday waves [15]. The combined vibration 

and gas flow showed that Faraday waves could form at lower vibration strengths and persist to 

taller bed heights than using vibration alone, expanding the industrial potential for use [15]. 
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However, the compartmentalized convective behavior of structured flow phenomena, such as 

Faraday waves and structured bubbling, potentially limits the rate of horizontal mixing [7].  

While most studies of vibrating granular material and Faraday waves have involved 

vertical vibration, a number of prior studies have involved horizontal vibration. For fluidized beds, 

Ristow et al. [20] investigated the transition from solid-like to fluid-like behavior of granular 

material in a horizontally vibrated fluidized bed, observing unique convection patterns in 

horizontally vibrating granular material. Another study noted conditions for the onset of flow in 

horizontally vibrated 3D granular systems [21]. Medved et al. investigated the response of granular 

material to horizontal vibrations across various time scales [22]. Another study analyzed the 

movement of a single bubble in a fluidized bed, examining the influence of horizontal and vertical 

vibration directions on bubble behavior [23]. For surface waves, Khan and Eslamian [24] 

conducted experiments to investigate the synchronous nature of primary surface waves that form 

on a thin layer of water pinned to a glass surface and exposed to horizontal vibrations. Their 

findings revealed that the stability or instability of the surface waves depended on the amplitude 

and frequency of the vibrations and the thickness of the liquid layer. 

Gas-granular flows have been simulated in a number of ways [25–28], typically using 

continuum computational fluid dynamics (CFD) to model the gas phase, but differing in ways to 

model particles as well as gas-particle interactions. At the smallest scale, each particle can be 

modeled individually using the discrete element method (DEM) and CFD with grid sizes small 

enough to capture the no-slip boundary condition on the particles can be used [28]; however, these 

methods are too computationally expensive for most laboratory-scale fluidized beds. To simulate 

smaller laboratory-scale fluidized beds, the CFD-DEM method [25] is used in which particles are 

resolved individually [29], and CFD with grid cells larger than the particles are used to capture gas 

flow [30] with the two coupled using a drag law [31]. To simulate larger laboratory-scale systems 

and move toward industrial systems, two-fluid modeling (TFM) is often used, in which both gas 

and solids are modeled as interpenetrating continua using CFD [27]. In TFM, the solids phase is 

modeled as a non-Newtonian fluid to account for dissipative and frictional particle contacts [32], 

and the two phases interact via a drag law [31]. 

Here, we study the effect of combined vertical and horizontal vibration on Faraday waves 

and particle mixing in vibrated gas-fluidized beds numerically using experimentally validated 

TFM simulations. We vary vertical and horizontal vibration conditions separately as well as gas 

flow conditions to create regime maps and non-dimensional correlations for wave dynamics as 

well as quantification of horizontal and vertical mixing over time. 

 

2. Methods 
2.1 TFM Model Equations 

For conducting the TFM simulations, the open source MFiX software [33] from the 

National Energy Technology Laboratory was employed. TFM is an approach for studying 

multiphase systems, in which the gas and solids phases are considered as fully interpenetrating 

continua [27]. Both phases coexist and interact within the system, with separate, locally-averaged 
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Navier-Stokes equations [30] used to solve their respective motions on a same fluid grid. The gas 

phase is governed by the continuity and momentum equations, which describe the conservation of 

mass and momentum of the phase: 

 
𝜕(𝜀𝑔𝜌𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀𝑔𝜌𝑔𝑢⃗ 𝑔) = 0 (3) 

 
𝜕(𝜀𝑔𝜌𝑔𝑢⃗ 𝑔)

𝜕𝑡
+ ∇ ∙ (𝜀𝑔𝜌𝑔𝑢⃗ 𝑔𝑢⃗ 𝑔) = −𝜀𝑔∇𝑝𝑔 + ∇ ∙ 𝝉̿𝒈 + 𝜀𝑔𝜌𝑔𝑔 + 𝛽(𝑢⃗ 𝑠 − 𝑢⃗ 𝑔) (4) 

Here, 𝜀𝑔, 𝜌𝑔, 𝑢⃗ 𝑔, 𝑝𝑔 and 𝝉̿𝒈 are the void fraction, density, velocity, pressure and stress of the gas 

phase, respectively. 𝑔  is the gravitational acceleration and 𝑡 is the time. The stress tensor of the 

gas phase 𝝉̿𝒈 is determined under the assumption of Newtonian behavior: 

 𝝉̿𝒈 = 𝜇𝑔(∇𝑢⃗ 𝑔 + ∇𝑢⃗ 𝑔
𝑇) −

2

3
𝜇𝑔(∇ ∙ 𝑢⃗ 𝑔)𝑰 (5) 

where 𝜇𝑔 and 𝑰 are the viscosity of the gas phase and identity tensor, respectively. 

The solids phase is characterized by its own continuity and momentum equations, 

governing the conservation of mass and momentum within this phase: 

 
𝜕(𝜀𝑠𝜌𝑠)

𝜕𝑡
+ ∇ ∙ (𝜀𝑠𝜌𝑠𝑢⃗ 𝑠) = 0 (6) 

 
𝜕(𝜀𝑠𝜌𝑠𝑢⃗ 𝑠)

𝜕𝑡
+ ∇ ∙ (𝜀𝑠𝜌𝑠𝑢⃗ 𝑠𝑢⃗ 𝑠) = −𝜀𝑠∇𝑝𝑔 − ∇𝑝𝑠 + ∇ ∙ 𝝉̿𝒔 + 𝜀𝑠𝜌𝑠𝑔 + 𝛽(𝑢⃗ 𝑔 − 𝑢⃗ 𝑠) (7) 

where 𝜀𝑠, 𝜌𝑠, 𝑢⃗ 𝑠, 𝑝𝑠 and 𝝉̿𝒔 are the volume fraction, density, velocity, pressure and stress of the 

solids phase, respectively. The stress tensor of the solids phase, denoted as 𝝉̿𝒔, is computed using 

the following equation: 

 𝝉̿𝒔 = 𝜇𝑠(∇𝑢⃗ 𝑠 + ∇𝑢⃗ 𝑠
𝑇) −

2

3
𝜇𝑠(∇ ∙ 𝑢⃗ 𝑠)𝑰 (8) 

where 𝜇𝑠 is the non-Newtonian viscosity (described below) of the solids phase. 

In Equations (4) and (7), the momentum exchange coefficient (𝛽) between the gas phase 

and solids phase is obtained by solving the Gidaspow drag law [31]. This law provides a 

relationship that quantifies the drag forces experienced by the gas and solids phases during their 

interaction: 

 𝛽 =

{
 
 

 
 150

(1 − 𝜀𝑔)𝜇𝑔

𝜀𝑔𝑑𝑠
2

+ 1.75
𝜌𝑔|𝑢⃗ 𝑔 − 𝑢⃗ 𝑠|

𝑑𝑠
      𝜀𝑔 < 0.8

3

4
𝐶𝐷
𝜌𝑔|𝑢⃗ 𝑔 − 𝑢⃗ 𝑠|𝜀𝑔

−1.65

𝑑𝑠
  𝜀𝑔 ≥ 0.8

 (9) 

 𝐶𝐷 = {
0.44           𝑅𝑒 > 1000
24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687)      𝑅𝑒 ≤ 1000

 (10) 
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 𝑅𝑒 =
𝜌𝑔𝜀𝑔𝑑𝑠|𝑢⃗ 𝑔 − 𝑢⃗ 𝑠|

𝜇𝑔
 (11) 

where 𝑑𝑠, 𝐶𝐷, and 𝑅𝑒 are the particle diameter of the solids phase, drag coefficient and Reynolds 

number, respectively. 

The solids pressure (𝑝𝑠 ) and solids viscosity (𝜇𝑠 ) include both kinetic and frictional 

contributions, reflecting the combined effects of particle movement and interactions within the 

solids phase. These contributions are crucial in accurately characterizing the behavior and flow 

properties of the solids phase in multiphase systems: 

 𝑝𝑠 = 𝑝𝑠
𝑘 + 𝑝𝑠

𝑓
 (12) 

 𝜇𝑠 = 𝜇𝑠
𝑘 + 𝜇𝑠

𝑓
 (13) 

where the superscripts k and f indicate the kinetic and frictional contributions, respectively. The 

kinetic theory of granular flows (KTGF) developed by Lun et al. [32] provides a comprehensive 

framework for determining the pressure and viscosity of solids resulting from kinetic effects. The 

complete set of equations defining these properties used in the numerical model here can be found 

in Musser and Carney [33]. The modeling of granular motion and void fraction largely relies on 

an appropriate model for determining the solids pressure and solids viscosity resulting from 

frictional effects. Among the available models, we used that developed by Guo et al. [14] because 

it has been demonstrated to accurately predict structured granular flow [14,15] without needing 

any modifications to the gas flow or vibration conditions encountered in experimental scenarios. 

The model proposed by Guo et al. [14] employs a critical state solids pressure formulation that is 

derived from a shear-induced dilation law [34,35] developed in Discrete Element Method (DEM) 

simulations. This formulation is built upon the Srivastava and Sundaresan model [36]. To address 

issues related to discontinuity, additional terms from the solids pressure formulation in the 

Schaeffer model [37] are incorporated. The complete expressions for the solids pressure and solids 

viscosity formulations in the Guo et al. [14] model can be found in Equations (14) – (16): 

 

𝑝𝑐

=

{
 
 
 

 
 
 [(𝜀𝑠,𝑚𝑎𝑥 − 𝜀𝑠,𝑚𝑖𝑛𝑓)√2𝑺̅̅: 𝑺̅̅𝑑𝑠]

2

𝜌𝑝

𝛿2
+ 𝐴𝑝𝑐(𝜀𝑠 + 𝛿 − 𝜀𝑠,𝑚𝑎𝑥)

𝑛𝑝𝑐
                           𝜀𝑠 > (𝜀𝑠,𝑚𝑎𝑥 − 𝛿)  

2 × arctan [104 × (𝜀𝑠 − 𝜀𝑠,𝑚𝑖𝑛𝑓)]

𝜋

[(𝜀𝑠,𝑚𝑎𝑥 − 𝜀𝑠,𝑚𝑖𝑛𝑓)√2𝑺̅̅: 𝑺̅̅𝑑𝑠]
2

𝜌𝑠

(𝜀𝑠,𝑚𝑎𝑥 − 𝜀𝑠)
2     𝜀𝑠,𝑚𝑖𝑛𝑓 ≤ 𝜀𝑠 ≤ (𝜀𝑠,𝑚𝑎𝑥 − 𝛿) 

0                                                                                                                                        𝜀𝑠 < 𝜀𝑠,𝑚𝑖𝑛𝑓

 (14) 

 

𝑝𝑠
𝑓

𝑝𝑐
=

[
 
 
 

1 −
∇ ∙ 𝑢⃗ 𝑠

𝑛√2sin (𝜙)√𝑺̅̅: 𝑺̅̅ + 𝛩𝑠/𝑑𝑠2]
 
 
 
𝑛−1

 (15) 
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𝜇𝑠
𝑓
=

√2𝑝𝑠
𝑓
sin (𝜙)

2√𝑺̅̅: 𝑺̅̅ + 𝛩𝑠/𝑑𝑠2
[𝑛 − (𝑛 − 1)(

𝑝𝑠
𝑓

𝑝𝑐
)
1

𝑛−1] 
(16) 

Here, 𝑝𝑐 represents the solids pressure at a critical state, in which the granular assembly undergoes 

deformation without any change in volume. 𝜀𝑠,𝑚𝑎𝑥 refers to the packing limit, which represents 

the maximum achievable solids concentration. 𝜀𝑠,𝑚𝑖𝑛𝑓  denotes the critical solids concentration 

above which the frictional contributions are taken into consideration. 𝛩𝑠 represents the granular 

temperature, which characterizes the fluctuating kinetic energy in the grains. 𝜙 represents the 

angle of internal friction, which is a measure of the resistance to shear deformation in the granular 

material. 𝛿 is a small constant value. 𝐴𝑝𝑐 and 𝑛𝑝𝑐 are two constants in the Schaeffer model [37] 

that are adapted and included in the formulation to avoid issues related to discontinuity. 

𝑺̅̅ in Equations (14) – (16) represents the deviatoric rate-of-strain tensor of the solids phase.: 

 𝑺̅̅ =
1

2
(∇𝑢⃗ 𝑠 + ∇𝑢⃗ 𝑠

𝑇) −
1

3
(∇ ∙ 𝑢⃗ 𝑠)𝑰 (17) 

The exponent 𝑛 in Equations (15) and (16) takes distinct values depending on whether the granular 

assembly is undergoing dilation or compaction.  

 𝑛 = {

√3

2sin (𝜙)
  ∇ ∙ 𝑢⃗ 𝑠 ≥ 0

1.03   ∇ ∙ 𝑢⃗ 𝑠 < 0

 (18) 

To quantify the mixing in various bed cases, an additional passive scalar equation is utilized 

to track the mass fraction of a tracer in the solids phase: 

 
𝜕(𝜀𝑠𝜌𝑠𝑥𝑠)

𝜕𝑡
+ ∇ ∙ (𝜀𝑠𝜌𝑠𝑥𝑠𝑢⃗ 𝑠) = 0 (19) 

where 𝑥𝑠 is the mass fraction of the tracer in the solids phase. 

 

2.2 Simulation Setup 

As illustrated in Figure 1, the pseudo-2D fluidized bed simulation was conducted with 

dimensions: 100 mm in width, 80 mm in height and 2 mm in depth. A reduction in bed freeboard 

height and bed depth as compared to prior experimental studies [15] was implemented to 

effectively reduce the computational costs. The simulated gas phase was characterized by a density 

of 1.2 kg/m³ and a viscosity of 1.8×10⁻⁵ Pa·s. The simulated solid phase was characterized by a 

density of 2500 kg/m³ and a particle size of 250 μm. The packing limit 𝜀𝑠,𝑚𝑎𝑥 , critical solid 

concentration above which frictional contributions to solid stress are considered 𝜀𝑠,𝑚𝑖𝑛𝑓, restitution 

coefficient, and angle of internal friction 𝜙 were set at 0.63, 0.5, 0.95, and 28.5°, respectively. 

A structured mesh was used with a uniform size of 1 mm in all directions, which 

corresponds to four particle diameters. The initial configuration involved loading the solids phase 

into the bed at a volume fraction of 0.55, with a solids fill height of H = 30 mm, as illustrated 

schematically in Figure 1. A constant superficial gas velocity, denoted as 𝑈, was applied as the 
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inlet boundary condition, uniform across the entire base of the fluidized bed. This velocity was 

determined to be 1.04 𝑈𝑚𝑓 , which was obtained from a separate simulation. This gas inlet 

condition was used to match the gas inlet in prior experiments [15], which used a porous sintered 

metal plate as the distributor to ensure a uniform gas inlet velocity. In the separate simulation, the 

superficial gas velocity was gradually reduced linearly from a state of strong bubbling to that of a 

packed bed while the bed pressure drop was continuously monitored.  𝑈𝑚𝑓 was determined to be 

0.048 m/s from this simulation. The outlet boundary condition maintained a constant atmospheric 

pressure. Side walls were considered periodic for both the gas and solids phases. Detailed 

parameters used in the simulations are provided in Table 1. 

Rather than vibrating the entire setup as done in experimental studies using a shaker [15], 

vibration effects were incorporated by oscillating gravity according to the equations: 𝑔𝑣⃗⃗⃗⃗ = 9.81 +

(2𝜋𝑓𝑣)
2𝐴𝑣𝑠𝑖𝑛(2𝜋𝑓𝑣𝑡)  for vertical vibration, and 𝑔ℎ⃗⃗ ⃗⃗ = (2𝜋𝑓ℎ)

2𝐴ℎ𝑠𝑖𝑛(2𝜋𝑓ℎ𝑡)  for horizontal 

vibration. The rationale behind applying this modeling approach was to reduce the computational 

costs and the lack of a moving mesh feature in MFiX. From the perspective of the laboratory 

reference frame, this modeling approach deviates from the actual experimental setup, where the 

bottom particles engage in collisions with the moving bottom boundary and the side wall particles 

experience frictional contacts while the central bed particles are less impacted by the applied 

vibration. Modeling vibration via oscillating gravity affects all particles uniformly, unlike real 

experiments with distinct localized impacts. Thus, deviations from experiments may arise. 

However, from the perspective of the vibrating fluidized bed, oscillating gravity is the only change 

to the governing equations needed to describe the entire fluidized bed moving up-and-down and 

side-to-side, as demonstrated in full mathematical detail and validated previously [38]. As such, 

modeling the vibration via oscillating gravity can be viewed as capturing the full physics of 

vibration, just through a moving reference frame rather than the laboratory reference frame. For 

the sake of obtaining a regime map of the Faraday wave pattern, the vibration amplitude was kept 

constant at 2 mm for all cases. However, the horizontal frequency varied between 2 and 24 Hz, 

while the vertical frequency ranged from 5 to 24 Hz. 
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Table 1. TFM Simulation parameters  
Quantity Symbol Unit Value 

System geometry 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧  mm 100 × 80 × 2 

Number of CFD cells  𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 - 100 × 80 × 2 

Gas density 𝜌𝑔 kg/m3 1.2 

Gas viscosity 𝜇𝑔 Pa·s 1.8 × 10-5 

Solids density 𝜌𝑠 kg/m3 2500 

Solids size 𝑑𝑠 μm 250 

Initial particle height 𝐻𝐵 mm 30 

Initial packing concentration 𝜀𝑠,𝑖𝑛𝑖𝑡 - 0.55 

Restitution coefficient 𝑒 - 0.95 

Angle of internal friction 𝜙 ° 28.5 

Angle of wall friction 𝜙𝑤 ° 12.3 

Packing limit 𝜀𝑠,𝑚𝑎𝑥 - 0.63 

Critical solids concentration 𝜀𝑠,𝑚𝑖𝑛𝑓  - 0.5 

Drag law model - - Gidaspow [26] 

Viscous solids stress model - - Lun et al. [28] 

Frictional solids stress model - - Guo et al. [8] 

Time step 𝑑𝑡  s 1 × 10-4 

Temporal discretization scheme - - Implicit Euler 

Spatial discretization scheme - - Superbee 

Horizontal Vibration frequency 𝑓 Hz 2 – 24 

Vertical Vibration frequency 𝑓 Hz 5 – 24 

Horizontal Vibration amplitude  A mm 2.0 

Vertical Vibration amplitude  A mm 2.0 

 

 

Figure 1. Schematic of the simulation setup and dimensions. 

 

2.3 Data Processing 

The wavelength and height (shown in Figure 2) were determined using digital image 

analysis based on the gas void fraction distribution. Initially, the gas void fraction distribution was 

averaged along the depth direction. Subsequently, a void fraction threshold of 0.75 was applied to 

binarize the distribution into two regions, allowing the identification of gas regions where the void 
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fraction exceeded 0.75. The average wavelength was computed as the distance between two 

consecutive wave crests, while the wave height was determined as the vertical distance between 

the wave's trough and its crest. Standard deviation values were also calculated for both wavelength 

and wave height to quantify their variations. 

 

 
Figure 2. Schematic of the determination of the wavelength and wave height. 

 

To investigate the mixing characteristics in various vertical bed configurations, the bed was 

initially divided into four regions of equal volume along its height. The tracer's mass fraction in 

the solid phase, 𝑥𝑠, was set to 0 in the first and third regions, while 𝑥𝑠 was set to 1 in the remaining 

two regions, as depicted in Figure 3 (a). A similar approach was used to evaluate the vertical 

mixing, as illustrated in Figure 3 (b). The degree of mixing within the bed, based on the tracer's 

distribution in the solid phase, was quantified by analyzing the Segregation Intensity (𝑆𝐼) [39]: 

 
𝑆𝐼 =

𝜎(𝑥𝑆)

√
𝑁𝑡𝑟𝑎𝑐𝑒𝑟
𝑁𝑡𝑜𝑡𝑎𝑙

(1 −
𝑁𝑡𝑟𝑎𝑐𝑒𝑟
𝑁𝑡𝑜𝑡𝑎𝑙

)

  
(20) 

where 𝜎(𝑥𝑆) represents the standard deviation of the tracer particles’ mass fraction within all the 

CFD cells. 𝑁𝑡𝑟𝑎𝑐𝑒𝑟 and 𝑁𝑡𝑜𝑡𝑎𝑙 denote the total number of tracer particles and the total number of 

particles in the system [9]. The 𝑆𝐼 ranges from 0 to 1, where a value of 0 indicates a fully mixed 

state, and a value of 1 corresponds to a fully segregated state. 

 

 
Figure 3. Schematic of the initial positions of the passive scalars used to assess (a) horizontal 

mixing and (b) vertical mixing. 
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3. Results and Discussion  

3.1 Validation Against Experimental Results with Only Vertical Vibration 

To validate the numerical simulation results, four cases with various bed heights (ℎ𝑠) and 

with only vertical vibration were compared with the prior experimental data [15]. Prior data was 

only available in gas-fluidized beds with vertical vibration alone. The frequency of vibration was 

10 Hz and superficial gas velocity was 1.04 𝑈𝑚𝑓. Table 2 presents the information of validation 

case setup.  

Figure 4 presents a qualitative comparison between the results obtained from TFM 

simulations and experimental observations over the course of two vibration periods. This 

comparison specifically focuses on a case with a solids fill height of 35 mm. The graphical 

representation in Figure 4 demonstrates that the positions of wave crests and the fundamental 

characteristics of Faraday waves in TFM simulations closely resemble the experimental behavior. 

To facilitate a more comprehensive analysis, additional comparisons were conducted for four 

different bed heights, as depicted in Figure 5.  

Figure 5(a) provides a quantitative assessment of the wavelength by comparing the results 

obtained from TFM simulations with the experimental data. The error bars in these plots indicate 

the standard deviation of the experimental measurements. Similarly, Figure 5(b) provides a 

comparison of wave heights between TFM simulations and experimental results. The numerical 

simulation error ranges for wavelength are reported to be between 2.23% and 7.35%, whereas for 

wave height, the error ranges between 5.96% and 10.05%. A detailed summary of these error 

ranges is available in Table 2.  

Based on the comprehensive analysis conducted, the TFM simulations exhibit a strong 

agreement with the experimental results, as evidenced by the similarity in wave positions, main 

characteristics, and the overall consistency observed in the quantitative comparisons. 

 

 
Figure 4. Time series of images of wave dynamics over the course of two vibration periods for 

experiments and simulations (Av = 2 mm, fv = 10 Hz, Γ𝑣
∗  = 0.80,  𝑓𝑣

∗  = 5.9,  U/Umf = 1.04, 

experimental Umf = 0.062 m/s, numerical Umf = 0.050 m/s, H = 35 mm). 
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Figure 5. (a) Wavelength and (b) wave height vs. bed height from TFM simulations and 

experiments [6]; Av = 2 mm, fv = 10 Hz, Γ𝑣
∗ = 0.80, U/Umf = 1.04. 

 

Table 2. Validation case setup and comparison of wave properties with experimental results [6]. 

Exp. 

𝑼𝒎𝒇 

m/s 

Num. 

𝑼𝒎𝒇 

m/s 

𝒇𝒗  

Hz 

𝒇𝒉 

Hz 

𝒅𝒔𝒔 
μm 

𝝆𝒔 
kg/m3 

𝒉𝒔 
mm 

Wave 

length 

Num. 

mm 

Wave 

length 

Exp. 

mm 

Wave 

length 

Error 

% 

Wave 

Height 

Num. 

mm 

Wave 

Height 

Exp. 

mm 

Wave 

Height 

Error 

% 
0.062 0.050 10 0 250 2500 30 65 62 5.4 2.2 2.4 5.96 

0.062 0.050 10 0 250 2500 35 66 65 2.2 2.0 1.8 9.89 

0.062 0.050 10 0 250 2500 40 64 60 7.4 0.94 1.1 9.48 

0.062 0.050 10 0 250 2500 45 63 59 6.9 1.9 1.7 10.05 

  

3.2 Faraday Wave Properties 

3.2.1 Effects of Vertical and Horizontal Vibration Frequencies on Wave Dynamics 

Here, we conduct a sensitivity analysis to examine the impact of horizontal and vertical 

vibration conditions on Faraday waves in gas-fluidized beds under bubble-free conditions, as 

depicted in Figure 6. In this subsection, bed height H = 30 mm, Ah= 2 mm, Av = 2 mm and U/Umf= 

1.04. Figure 6(a) demonstrates that as the horizontal frequency increases from zero to 18 while 

maintaining a constant vertical frequency of 20 Hz, the wavelength increases. The wave height is 

not affected significantly by horizontal frequency. 
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Figure 6. Images of wave dynamics formed with (a) varying horizontal vibration frequency and 

constant vertical vibration frequency fv = 20 Hz and (b) varying vertical vibration frequency and 

constant horizontal vibration frequency fh = 5 Hz (Ah = 2 mm, Av = 2 mm, U/Umf = 1.04, H = 30 

mm). 

 

In contrast, when the vertical frequency is increased from 12 to 23 Hz while maintaining a 

constant horizontal frequency of 5 Hz (Figure 6 (b)), as the vertical frequency increases, both 

wavelength and wave height decrease significantly. Thus, vertical frequency exerts a more 

dominant influence on wave dynamics than horizontal frequency. 

The investigation of combined horizontal and vertical frequency effects was conducted 

over an extensive range of frequencies. Figure 7 presents two regime maps that provide 

comprehensive information on wavelength and wave height variations across different horizontal 

and vertical frequency values. The horizontal frequency ranges from 0 to 24 Hz, while the vertical 

frequency spans from 5 to 24 Hz. The vertical axis of the plot represents the vertical vibration 

strength, calculated using 𝛤𝑣 = 4𝜋2𝑓𝑣
2𝐴𝑣/𝑔 , while the horizontal axis depicts the ratio of 

horizontal to vertical frequency, 𝑓𝑟
∗ = 𝑓ℎ/𝑓𝑣 . The color-coded regions in Figure 7 (a) and (b) 

correspond to wavelength and wave height values, respectively. Additionally, black points indicate 

instances where Faraday waves were not detectable in the system. In all cases shown in the regime 

maps, H = 30 mm, Av = 2 mm, Ah = 2 mm and U/Umf = 1.04. 
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Figure 7. Regime map showing (a) wavelength and (b) wave height as a function of vertical 

vibration strength (𝛤𝑣
∗) and vibration frequency ratio (fh/fv). (Ah = 2 mm, Av = 2 mm, U/Umf = 1.04, 

H = 30 mm) 

 

As seen in Figure 7, with increasing vertical vibration strength, the wavelength and wave 

height decrease significantly. Increasing horizontal frequency also tends to decrease wavelength 

and wave height; however, the effects of horizontal vibration are much smaller than vertical 

vibration. Increasing horizontal vibration frequency tends to eliminate the formation of waves, 

particularly at high and low vertical vibration strengths. Vertical vibration strengths close to 3.0 

create Faraday waves across the widest range of horizontal vibration conditions.  

 

3.2.2 Effects of Gas Velocity on Wave Dynamics 

Here, we investigate influence of superficial gas velocity on wave dynamics. Figure 8 

displays the structured Faraday waves under two distinct conditions for five values of 𝑈/𝑈𝑚𝑓, 

namely 0, 0.5, 1.0, 1.5, and 2.0. The first condition involves only vertical vibration in the system 

(Figure 8 (a)), while the other represents a combination of horizontal and vertical vibrations 

(Figure 8 (b)). For this investigation, the horizontal and vertical frequencies were set at 5 Hz and 

16 Hz, respectively. The bed height is H = 30 mm, Ah = 2 mm and Av = 2 mm.  

In the absence of gas flow with only vertical vibration, the crest of the waves exhibits 

bending, and the wavelengths are unevenly distributed. However, upon adding horizontal 

vibration, even without gas flow, the wave shapes are no longer bent, and the wavelengths become 

equal. With only vertical vibration, introducing gas flow also acts to straighten the waves formed. 

In both cases with only vertical vibration and combined horizontal and vertical vibration, 

increasing gas flow increases the wavelength.  
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Figure 8. Images of wave dynamics formed with varying U/Umf for (a) only vertical vibration and 

(b) combined vertical and horizontal vibration (Ah = 2 mm, Av = 2 mm, fh = 5 Hz, fv = 16 Hz, H = 

30 mm, Γ𝑣
∗ = 2.1, 𝑓𝑣

∗ = 8.7) 

 

3.2.3 Dimensional Analysis for Predicting Wavelength and Wave Height 

 Here, we conduct Buckingham-Pi dimensional analysis [40] to develop non-dimensional 

correlations for predicting wavelength and wave height, based on dimensional input parameters 

summarized in Table 3. There are 13 total dimensional parameters (4 material properties, 7 input 

parameters and 2 output parameters) and 3 dimensions (mass, length and time), and thus 10 non-

dimensional parameters are needed to describe the system. As such we have chosen 10 non-

dimensional parameters to describe the system, largely based on prior studies [6,11,41,42], 

determining their importance for capturing dynamics in gas fluidized beds and vibrated grains. 
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Table 3. Dimensional analysis for correlating wavelength and wave height to known parameters, 

based on material properties and input parameters. 
Material 

Property 

Unit Input 

Parameter 

Unit Output 

Parameter 

Unit Problem 

Dimension 

Dimensionless 

Group 

Equation 

Particle 

diameter, 

𝒅𝒔 

m Gravitational 

acceleration, 

𝑔 

m s-2 Wavelength, 

𝜆 

m Mass (kg) Particle Reynolds 

Number, 𝑅𝑒𝑠
∗ 

𝑅𝑒𝑠
∗ = 

𝜌𝑔𝑈𝑑𝑠𝜇
−1 

Particle 

density, 

𝝆𝒔 

kg m-

3 

Particle bed 

height, 𝐻 

m Wave height, 

𝜆𝑉 

m Length (m) Archimedes 

Number, 𝐴𝑟∗ 
𝐴𝑟∗ = 

(𝜌𝑠 − 𝜌𝑔) 

𝜌𝑔𝑑𝑠
3𝜇−2 

 

Gas 

density, 

𝝆𝒈 

kg m-

3 

Superficial 

gas velocity, 

𝑈 

   Time (s) Normalized 

frequency, 𝑓𝑣
∗ 

𝑓𝑣𝐻
1/2𝑔−1/2 

Gas 

viscosity, 

𝝁 

kg m 

s-1 

Vertical 

vibration 

amplitude, 𝐴𝑣 

    Vertical Vibration 

Strength, 𝛤𝑣
∗ 

4𝜋2𝐴𝑣𝑓𝑣
2𝑔−1 

  Vibration 

frequency, 𝑓𝑣 

    Strouhal Number, 

𝑆𝑡𝑟∗ 
𝑓𝑣𝐴𝑣𝑈

−1 

  Horizontal 

vibration 

amplitude, 𝐴ℎ 

    Frequency Ratio, 

𝑓𝑟
∗ 

𝑓ℎ𝑓𝑣
−1 

  Horizontal 

frequency, 𝑓ℎ 

    Amplitude Ratio, 

𝐴𝑟
∗  

𝐴ℎ𝐴𝑣
−1 

       Horizontal 

Vibration 

Strength, 𝛤ℎ
∗ 

4𝜋2𝐴ℎ𝑓ℎ
2𝑔−1 

       𝜆∗ 𝜆𝑓𝑣
2𝑔−1 

       𝜆𝑣
∗  𝜆𝑣𝜆

−1 

Total: 4  Total: 7  Total: 2  Total: 3 Total: 10 Max. 

Needed: 10 

 

 Based on the chosen parameters, we developed the following non-dimensional correlations 

to predict wavelength and wave height based on parameters known a priori: 

 𝜆∗ = 𝑐ℎ𝑅𝑒𝑠
∗𝑐1,ℎ𝐴𝑟∗𝑐2,ℎ𝑓𝑣

∗𝑐3,ℎ𝛤𝑣
∗𝑐4,ℎ𝑆𝑡𝑟∗𝑐5,ℎ𝑓𝑟

∗𝑐6,ℎ𝐴𝑟
∗ 𝑐7,ℎ𝛤ℎ

∗𝑐8,ℎ   (21) 

 𝜆𝑣
∗ = 𝑐𝑣𝑅𝑒𝑠

∗𝑐1,𝑣𝐴𝑟∗𝑐2,𝑣𝑓𝑣
∗𝑐3,𝑣𝛤𝑣

∗𝑐4,𝑣𝑆𝑡𝑟∗𝑐5,𝑣𝑓𝑟
∗𝑐6,𝑣𝐴𝑟

∗𝑐7,𝑣𝛤ℎ
∗𝑐8,𝑣   (22) 

In the above equations, the 𝑐 values are fitted by comparison with the numerical simulation data 

using least squares regression. Least squares regression was performed between 𝑐 values of -5 to 

5 in increments of 1. More precise least squares regression was performed on the optimum 𝑐 values 

to obtain better agreement to numerical simulation data; for this, increments were one order of 

magnitude less than the previous least squares regression (0.1) and the range was half the value of 

the previous least squares regression (± 0.5) . This method was repeated, with decreasing 

increment size, until the difference between the sum of squares for the previous least squares 

regression and current least squares regression was less than 1%. The values yielded from this are 

shown in Table 4. Using the 𝑐 values in Table 4, the predicted values of dimensional and non-

dimensional wavelength and wave height are shown in Figure 9. Values for 𝑐7,ℎ and 𝑐7,𝑣 were not 

fitted because 𝐴𝑟
∗  has a value of 𝐴𝑟

∗ = 1 for all investigated parameters in the numerical study. 
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Table 4. Non-dimensional correlation values for Equations (21) and (22) based on least squared 

fitting from of the simulation data with varying vibration and gas flow conditions. 

Wavelength 

Constant 
Value 

Wave Height 

Constant 
Value 

𝒄𝒉 2.54 𝒄𝒗 1.70 

𝒄𝟏,𝒉 -4.33 𝒄𝟏,𝒗 -5.47 

𝒄𝟐,𝒉 -1.10 𝒄𝟐,𝒗 -0.99 

𝒄𝟑,𝒉 -4.49 𝒄𝟑,𝒗 -1.51 

𝒄𝟒,𝒉 3.28 𝒄𝟒,𝒗 1.66 

𝒄𝟓,𝒉 -4.44 𝒄𝟓,𝒗 -5.17 

𝒄𝟔,𝒉 -1.99 𝒄𝟔,𝒗 -4.49 

𝒄𝟕,𝒉 - 𝒄𝟕,𝒗 - 

𝒄𝟖,𝒉 1.01 𝒄𝟖,𝒗 2.21 

 

Figure 9 shows that the values of dimensional and non-dimensional wavelength and wave 

height obtained from the least squares method are comparable to those obtained from the numerical 

simulations. The values from the least squares method are a good match to the values from the 

simulations at small wavelength and wave height, where the simulation data is most concentrated. 

A fair match is obtained for specific cases at high wavelength and wave height. The difference 

between the values from the least squares method and simulations is small for all varying 

conditions. Thus, the accuracy of the model is independent of which conditions are varied. The 

mean difference between values for wavelength and wave height from the least squares model and 

simulations was found to be 9.5% and 8.0%, respectively. The good agreement between the values 

from the least squares model and the values from the simulations suggests that the model may be 

applicable for other systems at different conditions. 
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Figure 9. Value from simulations vs. value predicted by correlations (Equations (21) and (22)) for 

(a,c) dimensional and (b,d) non-dimensional (a,b) wavelength and (c,d) wave height for varying 

vibration and gas flow conditions. The plot markers represent ( ) varying vertical vibration 

strength, 𝛤𝑣
∗ (constant 𝛤ℎ

∗, 𝑈∗), ( ) varying horizontal vibration strength, 𝛤ℎ
∗ (constant 𝛤𝑣

∗, 𝑈∗),( ) 

varying gas velocity, 𝑈∗ (constant 𝛤𝑣
∗, 𝛤ℎ

∗), and ( ) varying all three main parameters (𝛤𝑣
∗, 𝛤ℎ

∗, 𝑈∗). 
The line of equality between simulated values as regression values is given by (---). The shaded 

region in each plot shows the ± 10% error region.   

3.2.4 Effect of Relative Vertical and Horizontal Vibration Phase on Wave Dynamics 

Here, we explore the effects of phase offset between horizontal and vertical vibrations on 

Faraday wave patterns. By analyzing various phase offsets and comparing the results to the in-

phase condition, we aim to gain insights into the behavior of these patterns. The numerical setup 

includes a bed with a height of 30 mm and applied horizontal and vertical frequencies of 17 Hz. 

Additionally, a superficial gas velocity of 1.04 𝑈𝑚𝑓 was maintained. To examine the impact of 

phase offset, we employed three different phase settings: 𝜋/4 , 𝜋/2 , and 𝜋  ( 𝑔ℎ⃗⃗ ⃗⃗ =

(2𝜋𝑓ℎ)
2𝐴ℎ𝑠𝑖𝑛(2𝜋𝑓ℎ(𝑡 + 𝜏)) in which 𝜏 is phase offset), in addition to the in-phase condition. The 

comparison was performed for two periods of wave stationary displacement, as depicted in Figure 

10. 

The comparison illustrated in Figure 10 reveals differences when phase offsets are 

introduced into the system. For most cases, there are 6 waves in the system, yet for the fully out-

of-phase condition, the wavelength increases and there are 5 waves in the system. 
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Figure 10. Time series of images of wave dynamics over the course of two vibration periods for 

(a) vertical and horizontal vibration in-phase, (b) 𝜋/4 out-of-phase, (c) 𝜋/2 out-of-phase, and (d) 𝜋 

out-of-phase; (Ah = Av = 2 mm, fh = fv = 17 Hz, U/Umf = 1.04, H = 30 mm, Γ𝑣
∗ = 2.1, 𝑓𝑣

∗ = 2.3). 

 

3.2.5 Dynamics with Only Horizontal Vibration 

In this section, by exclusively applying horizontal vibration and simulating various cases 

using the TFM model, the impact of only horizontal vibration on the patterns of granular flow is 

analyzed. Figure 11 presents the results of these simulations, showcasing two-period time series 

for four different horizontal frequencies: 5, 10, 15, and 20 Hz. The vibration amplitude for this 

study was set to 2 mm, and the superficial gas velocity was maintained at 1.04 𝑈𝑚𝑓. 

Figure 11 highlights the absence of Faraday waves in the system when only horizontal 

vibration is applied. Despite varying the amplitude from 2 to 5 and 10 mm, no discernible impact 

on the appearance of these patterns was observed. Similarly, increasing the superficial gas velocity 

ratio from 1.04 to 1.5 and 2.0 yielded no observable effect on the presence of Faraday waves within 

the system. The absence of Faraday waves in the system when subjected solely to horizontal 

vibration indicates that other factors, such as vertical vibrations, play a crucial role in their 
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formation. These results can be explained by the particle bed needing to leave the base of the 

system and then impact with the base periodically to produce waves. 

 

 
Figure 11. Time series of images of wave dynamics over the course of two vibration periods for 

different horizontal frequencies with no vertical vibration (Ah = 2 mm, U/Umf = 1.04, H = 30 mm). 

 

3.3 Particle Mixing 

3.3.1 Effect of Vibration Conditions on Mixing 

Here, we examine the influence of horizontal and vertical frequencies on the degree of 

mixing within the system over time. Figure 12 presents a time series of mixing contours in the 

fluidized bed during the initial 30 seconds, with horizontal frequencies of 0, 5, 10, and 15 Hz, 

while maintaining a constant vertical frequency of 20 Hz. Notably, Figure 12 (a) demonstrates that 

changes in horizontal frequency have minimal impact on the vertical mixing. However, an increase 

in horizontal frequency has a considerable effect on mixing in the horizontal direction, speeding 

up the rate of horizontal mixing with increasing horizontal frequency.  
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Figure 12. Time series of images of mixing dynamics formed with varying horizontal vibration 

frequency and constant vertical vibration frequency fv = 20 Hz for (a) vertical mixing and (b) 

horizontal mixing (Ah = 2 mm, Av = 2 mm, U/Umf = 1.04, H = 30 mm, Γ𝑣
∗ = 3.2). 

 

An analogous analysis was conducted, considering changes in vertical frequencies of 0, 13, 

15, and 18 Hz, while maintaining a constant horizontal frequency of 5 Hz. Figure 13 depicts the 

time series of mixing contours for these cases, representing various particle layers in both 

horizontal and vertical directions. In Figure 13, where only horizontal vibration is applied (𝑓𝑣 =

0), mixing in the vertical direction maintains a consistent shape over time, while some degree of 

mixing is observed in the horizontal direction. However, this mixing is notably weaker compared 

to the combined horizontal and vertical vibration case, indicating that horizontal vibration alone is 

not effective for generating mixing in the system. Incorporating vertical vibration is essential to 

fully observe the impact of horizontal vibration. As vertical frequencies increase from 13 Hz to 18 

Hz, a reduction in mixing occurs, suggesting that lower vertical frequencies result in more efficient 

mixing in the fluidized bed system. This reduction in mixing at high vertical frequencies is likely 

due to the wavelength and wave height decreasing at high vertical frequencies. 
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Figure 13. Time series of images of mixing dynamics formed with varying vertical vibration 

frequency and constant horizontal vibration frequency fh = 5 Hz for (a) vertical mixing and (b) 

horizontal mixing; (Ah = 2 mm, Av = 2 mm, U/Umf = 1.04, H = 30 mm). 

 

For the quantification of mixing results, segregation intensity was utilized, calculated 

according to Equation (18). In this section, first three cases of (i) gas flow only, (ii) vertical 

vibration with gas flow, and (iii) combined horizontal and vertical vibration with gas flow are 

compared. The simulations were conducted with a gas velocity 1.04 𝑈𝑚𝑓 , while keeping the 

horizontal and vertical frequencies fixed at 10 Hz. Figure 14 show these quantitative mixing 

results. 

In Figure 14 (a), focused on mixing analysis in the horizontal direction, the case with gas 

flow alone exhibits no significant effect on mixing, resulting in a constant segregation intensity 

value of 1. Comparatively, the case with only vertical vibration demonstrates a similar degree of 

mixing to the case of combined horizontal and vertical vibrations, albeit with a slightly slower rate. 

Thus, the introduction of horizontal vibration to the system accelerates the mixing process, leading 

to more accurate and expedited mixing outcomes in comparison to the case with only vertical 

vibration. Furthermore, Figure 14 (b) reveals a substantial effect of adding horizontal vibration to 

the system for mixing in the horizontal direction. Notably, vertical vibration alone is insufficient 

to achieve effective mixing of particles in the horizontal direction. These findings emphasize the 

significant role played by combined horizontal and vertical vibrations in enhancing mixing 

efficiency within the fluidized bed system. 
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Figure 14. Segregation intensity vs. time for (i) no vibration (only gas flow), (ii) only vertical 

vibration and (iii) combined vertical and horizontal vibration for (a) vertical mixing and (b) 

horizontal mixing; (Ah = 2 mm, Av = 2 mm, fh = 10 Hz, fv = 10 Hz, U/Umf = 1.04, H = 30 mm, , Γ𝑣
∗ 

= 0.80, 𝑓𝑣
∗ = 5.4). 

 

Figure 15 provides a comprehensive quantification of the cases depicted in Figures 12 and 

13, allowing a detailed examination of the effects of horizontal and vertical vibrations on the 

mixing. In Figure 15 (a), with a constant vertical frequency of 20 Hz, increasing the horizontal 

frequency from 0 to 15 does not yield noticeable changes in the rate of mixing in the vertical 

direction. However, in the horizontal direction (Figure 15 (b)), increasing horizontal vibration 

frequency significantly increases horizontal mixing rate. 

Furthermore, the analysis reveals that increasing vertical vibration frequency with a 

constant horizontal frequency decreases the rate and extent of mixing in both the horizontal and 

vertical directions (Figure 15 (c) & (d)). These findings emphasize the crucial role of combined 

horizontal and vertical vibrations in enhancing mixing efficiency in the fluidized bed system, 

particularly in the horizontal direction. Additionally, they highlight the sensitivity of the mixing 

process to variations in vertical vibration, underscoring the need for careful consideration of both 

horizontal and vertical frequency settings to optimize mixing performance in practical 

applications. 
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Figure 15. Segregation intensity vs. time for (a,b) varying horizontal vibration frequency and 

constant vertical vibration frequency fv = 20 Hz and (c,d) varying vertical vibration frequency and 

constant horizontal vibration frequency fh = 5 Hz for (a,c) vertical mixing and (b,d) horizontal 

mixing (Ah = 2 mm, Av = 2 mm, U/Umf = 1.04, H = 30 mm). 

 

3.3.2 Effect of Gas Velocity on Mixing  

To examine the effects of gas flow velocity on the mixing rate and extent, four U/Umf 

velocity ratios of 0.5, 1.0, 1.5, and 2.0 were selected for analysis. Figure 16 displays the time series 

mixing images for these cases, considering both only vertical vibration and the combination of 

horizontal and vertical vibrations. The quantification of these cases is further depicted as 

segregation intensity plots in Figure 17. 

In Figure 16 (a) and Figure 17 (a), it is evident that for mixing in the vertical direction with 

only vertical vibration, increasing the velocity ratio up to 1.5 results in incremental increases in 

mixing, but beyond that point, further increasing the gas velocity has a negative effect on mixing. 

However, the final mixing condition at the gas velocity ratio of 2.0 still outperforms the ratio of 

1.0. When horizontal vibration is applied in this scenario (Figures 16 (c) and 17 (c)), it becomes 

apparent that the best velocity ratio for mixing is 0.5, which closely approximates the mixing 

results of the ratios 1.0 and 1.5. This observation confirms that incorporating horizontal vibration 

compensates for the gas velocity's impact on mixing in the fluidized bed. Consequently, adding 

horizontal vibration can enhance the mixing efficiency in the system, offering a promising strategy 

to mitigate the adverse effects of gas flow velocity and optimize mixing performance. 

In the cases of mixing in the horizontal direction, increasing the gas velocity negatively 

impacted mixing for both scenarios of only vertical and combined vibrations (Figures 16 (b) & (d) 

and 17 (b) & (d)). Additionally, with the inclusion of horizontal vibration, a case with a velocity 

ratio of 1.0 achieved a better mixing rate as compared to the case with a ratio of 1.5 in the only 

vertically vibrated scenario. This finding further supports the notion that by adding horizontal 
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vibration, we can attain a specific mixing degree in the fluidized bed with lower gas velocities. In 

essence, horizontal vibration acts as a compensating factor, enabling the system to achieve desired 

mixing efficiency with reduced gas flow velocities. 

 

 
Figure 16. Time series of images of mixing dynamics formed with varying U/Umf for (a,c) vertical 

mixing and (b,d) horizontal mixing for (a,b) only vertical vibration and (c,d) combined vertical 

and horizontal vibration; (Ah = 2 mm, Av = 2 mm, fh = 5 Hz, fv = 16 Hz, H = 30 mm, Γ𝑣
∗ = 2.1, 𝑓𝑣

∗ 

= 8.7). 
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Figure 17. Segregation intensity vs. time formed with varying U/Umf for (a,c) vertical mixing and 

(b,d) horizontal mixing for (a,b) only vertical vibration and (c,d) combined vertical and horizontal 

vibration; (Ah = 2 mm, Av = 2 mm, fh = 5 Hz, fv = 16 Hz, H = 30 mm, Γ𝑣
∗ = 2.1, 𝑓𝑣

∗ = 8.7). 

 

4. Conclusion 

In this work, we investigated the effect of combined horizontal and vertical vibration on 

Faraday wave dynamics and particle mixing in vibrated gas-fluidized beds. Prior studies have only 

involved vertical vibration of gas-fluidized beds to produce Faraday waves, and here we 

investigated combined vertical and horizontal vibration using TFM simulations. The key physical 

insight from this study is that adding horizontal vibration to gas flow and vertical vibration in 

fluidized beds can maintain Faraday waves while significantly increasing rates of horizontal 

mixing. 

Further, this study parametrically characterizes the effects of varying gas flow, vertical 

vibration and horizontal vibration conditions. Increasing vertical vibration frequency significantly 

decreases wavelength and wave height, while varying horizontal frequency has less of an impact 

on wave dynamics. Increasing gas flow rate increases wavelength while decreasing wave height. 

Regime maps and dimensionless correlations are formed to guide the effects of vibration and gas 

flow conditions on wave properties. We further demonstrate that horizontal vibration on its own 

cannot create surface waves, and introducing a phase offset between horizontal and vertical 

vibration has minor effects on wave dynamics. Horizontal and vertical mixing were also 

investigated under various gas flow and vibration conditions. Adding horizontal vibration to 

vertical vibration significantly increases mixing, particularly in the horizontal direction. Mixing 

rate is optimized at low vertical frequencies, high horizontal frequencies and low normalized gas 

velocities.  

The insights from this study inspire a number of future studies. The fast rate of mixing of 

particles while maintaining Faraday waves motivates the application of combined vibration to 
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processes which could benefit from this flow behavior, such as highly exothermic reactors and 

pharmaceutical mixers. Further, the insights from TFM simulations can be validated by 

experimental studies, and more detailed simulations studies can investigate the physical 

mechanisms underlying the flow patterns observed here. Finally, experimental and simulation 

studies can be conducted to investigate how the combination of vertical and horizontal vibration 

impacts flow dynamics in fully 3D gas-fluidized beds.  

 

 

Nomenclature 

𝜀 Volume fraction 𝜆𝑣 Wave height, 𝑚 

𝜌 Density, 𝑘𝑔/𝑚3 𝑆𝑡𝑟∗ Strouhal number 

𝑢⃗  Velocity, 𝑚/𝑠 𝑅𝑒∗ Reynolds number 

𝑝 Pressure, 𝑃𝑎 𝐴𝑟∗ Archimedes number 

𝜇 Viscosity, 𝑃𝑎 · 𝑠 𝑔  Gravitational acceleration, 𝑚/𝑠2 

𝝉̿ Stress tensor, 𝑃𝑎 Г Vibration strength 

𝜀𝑠,𝑚𝑎𝑥 Packing limit 𝑡 Time, 𝑠 

𝜀𝑠,𝑚𝑖𝑛𝑓 Critical solids concentration 𝑈𝑚𝑓 Minimum fluidization velocity, 𝑚/𝑠 

𝑑𝑠 Particle size of the solids phase, 𝑚 U Superficial gas velocity, 𝑚/𝑠 

𝑝𝑐 Solids pressure at a critical state, 𝑃𝑎 𝑉𝑐𝑒𝑙𝑙 Volume of a CFD cell, 𝑚3 

𝑥𝑠 
Mass fraction of the tracer in the 

solids phase 
𝑉𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 Volume of a particle, 𝑚3 

m Mass of the solids phase, 𝑘𝑔 𝜎(𝑥𝑆) 

Standard deviation of the mass 

fraction of tracer particles present in 

all CFD cells 

Sa Surface area of the solids phase, 𝑚2 𝑁𝑡𝑟𝑎𝑐𝑒𝑟 
Total number of tracer particles in 

the system 

𝛽 

Momentum exchange coefficient 

between the gas phase and the solids 

phase, 𝑘𝑔/(𝑚3 · 𝑠) 

𝑁𝑡𝑜𝑡𝑎𝑙 
Total number of all particles present 

in the system 

𝐶𝐷 Drag coefficient 𝑆𝐼 Segregation intensity 

𝑅𝑒 Reynolds number Subscript  

𝜙 Angle of internal friction, ° 𝑔 Gas phase 

𝑺̅̅ 
Deviatoric rate-of-strain tensor of the 

solids phase 
𝑠 Solids phase 

𝑰̿ Identity tensor ℎ Horizontal Vibration 

𝐴 Vibration amplitude, m 𝑣 Vertical Vibration 

𝑓 Vibration frequency, 𝐻𝑧 Superscript  

𝑐ℎ Wavelength constant 𝑘 
Kinetic contributions to the solids 

stress 

𝑐𝑣 Wave height constant 𝑓 
Frictional contributions to the solids 

stress 

𝐻 Particle bed height, 𝑚 ∗ Normalized value 

𝜆 Wavelength, 𝑚   
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