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ABSTRACT: Self-assembled materials capable of modulating their assembly properties: jiice 2
response to specific enzymes play a pivotal role in advancing 'intelligent' encapsulation
platforms for biotechnological applications. Here, we introduce a previously unreported class
of synthetic nanomaterials that programmatically interact with histone deacetylase (HDAC) as
the triggering stimulus for disassembly. These nanomaterials consist of co-polypeptides
comprising poly (acetyl L-lysine) and poly (ethylene glycol) blocks. Under neutral pH
conditions, they self-assemble into particles. The hydrodynamic diameters of particles were
typically withing the range of 108-190 nm, depending on degree of acetylation of the
hydrophobic block. However, their stability is compromised upon exposure to HDACs,
depending on enzyme concentration and exposure time. Our investigation, utilizing HDACS as
the model enzyme, revealed that the primary mechanism behind disassembly involves a
decrease in amphiphilicity within the block copolymer due to the deacetylation of lysine
residues within the particles' hydrophobic domains. To elucidate the response mechanism, we
encapsulated a fluorescent dye within these nanoparticles. Upon incubation with HDAC, the
nanoparticle structure collapsed, leading to controlled release of the dye over time. Notably,
this release was not triggered by denatured HDACS, other proteolytic enzymes like trypsin, or
the co-presence of HDACS and its inhibitor. We also demonstrated the biocompatibility and
cellular effects of these materials in the context of drug delivery in different types of anticancer
cell lines, such as MIA PaCa-2, PANC-1, cancer like stem cells (CSCs), and non-cancerous
HPNE cells. We observed that the release of a model drug (such as a STAT3 pathway inhibitor,
Napabucasin) can be loaded into these nanoparticles, with >90% of the dosage can be released
over 3 h under the influence of HDACS enzyme in a controlled fashion. Further, we conducted
a comprehensive computational study to unveil the possible interaction mechanism between
enzymes and particles. By drawing parallels to the mechanism of naturally occurring histone
proteins, this research represents a pioneering step toward developing functional materials

capable of harnessing the activity of epigenetic enzymes such as HDACs.

KEYWORDS: Nanoparticles, stimuli-responsive nanoparticles, Histone deacetylase, enzyme-
responsive nanoparticles, poly (acetyl L-lysine), computer-guided design, protein-ligand

docking.
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1 . INTRODUCTION View Article Online

DOI: 10.1039/D4TB00514G
Programmable nanomaterials capable of sensing and interacting with enzymes are generally
composed of block copolymer assemblies, which recognize specific enzymes as destabilization
triggers of their self-organized structures.!: 2 Such enzyme activities usually take place under
mild aqueous or physiologically conducive conditions (aqueous, pH 5-8, 37 °C).? Usually, the
enzyme-nanomaterials interactions result in phase transition across different domains of the
polymers forming the nanomaterials, leading to the gradual or catastrophic collapse of the
assembled structure.* 3 Enzyme-responsive nanomaterials has found useful applications in
responsive soft materials design. 6% Specific application areas include biotechnology,
agriculture, enzyme-catalysis, and medicine, where the materials can be used to form self-
assembled platforms to encapsulate contents, such as small and macromolecular drugs,® 10
diagnostic agents,’ and genetic materials'!- 12, Mediated via programmed interaction with the
destabilizing enzymes, these nanomaterials can control the exposure of the encapsulated content
with their relevant targets, which can be of either biologic or non-biologic in origin. '3 14 One
of the biochemically important classes of epigenetic enzymes, which has not been harnessed
earlier to produce enzyme-responsive nanomaterials is histone deacetylase (HDAC). These
enzymes are found in nuclear and cytosolic fractions of cells, and are highly conserved across
eukaryotic cells to carry out epigenetic processes, i.e., events that are manifested via the
interactions between DNA and histone proteins.!>!® Mechanistically, HDACs remove an acetyl

group from an e-N-acetyl lysine amino acid on a histone protein, allowing the histones to wrap

Published on 02 July 2024. Downloaded on 7/16/2024 1:27:00 AM.

the DNA tightly.!- 20 We sought out to harness this properties of HDAC enzymes to design an
enzyme-responsive nanomaterials, composed of block polypeptides, in the form of
nanoparticles. We anticipate that, the use of HDAC as an activation trigger of a soft
nanoparticles will open avenues to utilize and manipulate the expression of the HDACs - a
critically important enzymes controlling cellular fate and disposition, in both plant and animal
cells.?!"23 This relevance stems from the fact that HDACs controls numerous epigenetic events
associated with the evolution and progression of living cells.?* From therapeutic perspectives,
the use of HDAC: as a trigger for nanoparticles to release a therapeutic agent for rescuing or
sensing genetically aberrant, diseased cells will, therefore, represent a paradigm shift in the
scope of designing enzyme-sensitive therapeutic nanoparticles.?! To date, there is no report on
HDAC enzymes being used as a destabilizing signal of nanoparticles. This is likely due to the
difficulty in utilizing the unique function of HDAC to trigger nanoparticle disassembly (upon
a deacetylation reaction). Therefore, in this work, we aim to set the design rules for

nanoparticles that show conformational and morphological changes in the presence of HDACs
3
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by using HDACS as a representative member of this enzyme family.?® Furthermogg, ye show:e 2\
the potential of these nanoparticles in biomedical applications in terms of their safety,
compatibility and efficacy. 2°> Collectively, our study demonstrates for the first time the use of
nanoparticles that relates structurally to naturally occurring histone proteins, which can interact

with HDAC in a spatial and temporally-controlled pattern.
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Figure 1. Schematic representation of HDAC-responsive nanoparticles and chemical
architecture of nanoparticle-forming block copolypeptides. Mechanism of action of HDAC-
responsive nanoparticles for content release under the influence of HDAC enzyme. (Left
Panel): HDAC-sensitive nanoparticles are composed of block copolymer, PEG-block-poly
(acetylated L-lysine), where the PEG constitutes the hydrophilic and poly (acetylated L-lysine)
constitute the hydrophobic block; (Right Panel): The molecular mechanism of action of
deacetylation of L-lysine by the HDAC enzyme of the hydrophobic block. Enzyme-mediated
deacetylation is the primary driver of the amphiphilicity switch of the poly (acetylated L-lysine)
block of the copolymer.
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In addition to developing HDAC8-responsive block polypeptides, we also investigated: thies O

interactions of these polypeptides with HDAC8 enzymes computationally. Recently,
computational, and molecular docking approaches have been routinely used in modern
materials design workflow to help understand drug—receptor interactions. It has been shown in
the literature that these computational techniques can strongly support and help the design of
enzyme-sensitive materials by revealing the mechanism of molecular interactions between the
substrate and the enzyme.?*3? Here, for proof-of-principle, we have used docking studies to
study the binding orientations of poly(acetyl L-lysine), the nanoparticle-forming materials in
our case, within the binding sites of HDACS. The overarching scheme of this study is presented
in Figure 1, illustrating a combined approach of experiment and computation via which we
demonstrate that poly (ethylene glycol)-block-poly (acetyl L-lysine) block co-polypeptides can
be used as building blocks to form the self-assembled soft materials with programmed sensitive
to HDACS8 enzyme. Amphiphilic diblock structures are one of the most prominent cornerstones
for fabricating stimuli-responsive drug delivery nanoscale systems®. Stimuli-induced
destabilization of polymeric structures is used as the driving force of drug release from these
nanoparticles33-3%. Polypeptide-based block copolymers are one of the established motifs to
design biochemical stimuli-sensitive nanoparticles due to their compatibility with living cells?’.
In our case, the sensitivity of the polypeptide nanoparticles towards the enzyme was evidenced
via the encapsulation and release of a reporter dye. We also demonstrated that the self-assembly
of the polypeptides in the form of nanoparticles is mediated via the hydrophobic interactions
taking place within the acetyl lysine-rich hydrophobic blocks, and HDACS8-mediated
deacetylation of acetyl-L-lysine from the poly (acetyl L-lysine) block leads to the gradual loss
of hydrophobicity of the block copolymer, destabilization of the nanoparticles, and release of
the reporter content (Figure 1A). We used poly (ethylene glycol) or the PEG component as the
hydrophilic block to promote such self-assembly, augment hydrophilicity and stability of the
nanoparticles. Further, PEG is one of the benchmarks of biocompatible polymer, that is known
to produce conducive systemic residence, reduce hepatic accumulation, and promote immune
clearance for nanoparticles designed for therapeutic or diagnostic purposes®® 3°. The purported
chemical mechanism that drives the destabilization of HDAC8-sensitive nanoparticles is shown
in Figure 1B. The usefulness and therapeutic compatibility of the HDAC-sensitive
nanomaterials as a molecular transport platform was demonstrated using cancer-stem cells
(CSCs) as representative and early in vitro models, where the growth and proliferation of these

cells relies on HDAC enzymes and can be inhibited by Napabucasin, a STAT3 inhibitor4°.
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2. EXPERIMENTAL SECTION View Article Online

DOI: 10.1039/D4TB00514G

2.1. Materials

Poly (ethylene glycol)-block-poly (L-lysine), henceforth abbreviated as PEG,-p (LysAc),, was
purchased from Alamanda polymers (PEG = 5 kDa, m = 113 ethylene glycol units; poly (L-
lysine, 33 kDa, n = 200 lysine residues, Structure, Figure 1A, structure 1). All other chemicals
were purchased from Sigma-Aldrich, and anhydrous solvents were purchased from VWR EMD
Millipore and were used without further purification. Fluor-de-Lys® fluorometric activity assay
kit for detecting HDACS activity was obtained from Enzo Life Sciences. "H NMR spectra were
recorded using a Bruker 400 MHz spectrometer using TMS as the internal standard. Infrared
spectra of synthesized compounds were recorded using an ATR diamond tip on a Thermo
Scientific Nicolet 8700 FTIR instrument. Dynamic Light Scattering (DLS) measurements for
determining the hydrodynamic diameter of nanoparticles were carried out using a Malvern
instrument (Malvern ZS 90). UV-visible and fluorescence spectra were recorded using a Varian
UV-vis spectrophotometer and a Horiba Fluoro-Log3 fluorescence spectrophotometer,
respectively. TEM studies were carried out using a JEOL JEM2100 LaB6 transmission electron
microscope (JEOL USA) with an accelerating voltage of 200 keV.

2.2. Synthesis and characterization of the HDACS8-responsive block polypeptides.

HDACS8-responsive block polypeptide was synthesized via acetylation of 1, ie., PEG,-p
(LysAc), following the established protocol with minor variation.*! The molecular weight of
the PEG block of the copolymer was 5 kDa (n = 113 ethylene glycol units), and the poly (L-
lysine) block was 33 kDa (200 L-lysine residues). Briefly, 100 mg (0.0026 mmol) of the PEG-
block-poly (L-lysine) was dissolved in a co-solvent (10 mL) composed of 4:1 DMF: 2,6-
Lutidine (2,6-dimethylpyridine) solution (v/v). The solution was cooled in an ice bath, and
0.526 mmol acetic anhydride dissolved in DMF (1 mL) was added slowly in a drop-by-drop
pattern. The reaction mixture was stirred at 0°C for 18 hours and precipitated into cold diethyl
ether (45 mL), followed by centrifugation at 8,000 rpm for 30 minutes. The precipitation was
done two times. After drying of the product under room temperature, the gravimetric yield was
found to be 82%. 'H-NMR, UV-Vis Spectroscopy-based Ninhydrin assay, and FTIR analysis
were used to characterize the block co-polypeptide (Supporting information, Figure S1-S3).
Gel permeation chromatography was challenging due to the limited solubility of the product in
DMF. We prepared three acetylated block copolymers from 1 at three targeted degrees of

acetylation, 1.e., 25, 50, and 100% of all available lysine residues, by changing the molar

6
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equivalent of acetic anhydride. The actual degree of acetylation was determined vig Ninhydrji e 2

assay (see below).
2.2.1. Determination of the degree of acetylation.

A ninhydrin test was performed on the starting material and the products to determine the
number of lysine residues that have been acetylated*?. Typically, 2.5 mg of the polymers were
dissolved in 2.5 mL of DMSO to which a few drops of freshly prepared ninhydrin solution (200
mg of ninhydrin in 10 mL ethanol) was added and heated in a water bath at 85°C till color
development was observed. The absorbance (Abs) of each sample was measured at 570 nm,

and the percentage functionalization was calculated using the following equation:

Abstest_AbSblank (1)
Absstandard_AbSblank

mg of @ — amino acid =

2.2.2. Determination of the Critical Aggregation Concentration (CAC) of HDACS8-responsive
block co-polypeptides.

To evaluate the aggregate forming capacity of the amphiphilic polypeptides and to estimate the
stability of these aggregates in an aqueous environment, we determined the critical aggregation
concentration (CAC) of PEG-block-poly (L-acetylated Lysine) co-polypeptides. A stock
solution of 0.1 mM pyrene in dichloromethane was prepared, and an aliquot of 10 uL of this
solution was taken in a set of vials from which dichloromethane was allowed to evaporate by
air-drying overnight. Various measured amounts of acetylated co-polypeptides were added to

each of these vials (from a stock solution of 10 uM). The block co-polypeptide concentrations

Published on 02 July 2024. Downloaded on 7/16/2024 1:27:00 AM.

varied from 0.15 to 5.5 uM, with the final concentration of pyrene in each vial maintained at 1
uM. The vials were sonicated for 90 min and then allowed to stand for 3 h at room temperature
(r.t.) before recording the fluorescence emission spectra at an excitation wavelength of 337 nm
with slit widths of 2.5 nm (for both excitation and emission). The ratio of the intensities at 373
and 384 nm was plotted against the co-polypeptide concentration, and the curve's inflection

point was used to determine the CAC as per published procedures*3 44,

2.2.3. Preparation and characterization of HDACS-responsive nanoparticles from PEG-block-
poly (acetylated L-lysine co-polypeptides).

To prepare self-assembled structures from the co-polypeptides, we employed a non-solvent

induced phase separation (otherwise known as nanoprecipitation or solvent shifting) method

from a selective solvent (DMSO, for both blocks) to a non-selective solvent (buffer, to a single

block).3% 45 46 The acetylated co-polypeptides were dissolved in 250 puL. of DMSO, and the
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solution was added dropwise to 750 puL of PBS buffer (pH 7.4). The resultant solutionowas:oos:4G

transferred to a Float-a-Lyzer (MWCO 3.5—5 kDa) and dialyzed against 800 mL PBS buffer

(pH 7.4) overnight with constant agitation at moderate speed. Dialysis over a stipulated period
resulted in the formation of nanoparticles. Hydrodynamic diameters of resulting particles
prepared from the acetylated block copolymers were determined using Dynamic Light
Scattering (DLS) at a scattering angle of 90°. Surface charge or Zeta ({-) potential of block co-
polypeptides was measured by evaluating the electrophoretic mobility of samples with a
nanoparticle concentration of 10 mg/mL. An average of 5 readings were acquired to identify
the zeta potential, and for all measurements, sample solutions were filtered through 0.45 pm

PES filters.
2.2.4. Transmission electron microscopy (TEM) imaging of co-polypeptide nanoparticles.

A drop of nanoparticle sample obtained from the self-assembly of PEG-block-poly (acetylated
L-lysine) co-polypeptide was placed on a 300-mesh Formvar carbon-coated copper TEM grid

(Electron Microscopy Sciences) for 1 min and wicked off. Phosphotungstic acid 0.1%, pH

adjusted between 7.0—8.0, was dropped onto the grid, allowed to stand for 2 min, and then

wicked off. Nanoparticles (untreated or treated with h HDACS8 enzymes) were imaged for their
microstructure via TEM at 200 keV.
2.2.5. Encapsulation of 5(6)-Carboxyfluorescein (CF) in HDACS8-responsive Nanoparticles.

5(6)-Carboxyfluorescein was encapsulated by the following procedure: 10 mg of the co-
polypeptide and 1 mg of 5(6)-Carboxyfluorescein was dissolved in 250 pL DMSO, and the
solution was then added dropwise to a 750 pL PBS buffer solution under magnetic stirring.
This was left stirring for an hour at room temperature, followed by dialysis (MWCO 1-1.5 kDa)
against 800 mL PBS buffer with regular media change till no further discoloration of the media
was observed. 20 pL (1%) of Triton was added to disintegrate the nanoparticles, and the
fluorescence emission intensity was measured for total release after disintegration, considered

as the initial intensity at # = 0.
2.3. Biochemical activity evaluations.

2.3.1. Preparation of HDACS enzymes and the assay buffer

HDAC8 was obtained from Professor D. K. Srivastava's laboratory (Chemistry and

Biochemistry, NDSU). The enzyme was prepared and purified according to the protocol
8
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described by Srivastava laboratory in earlier publications. Briefly, the ¢cDNA contaifiirg:« >
plasmid (mammalian expression vector pPCMV-SPORT) was purchased from Open Biosystems
Huntsville (clone ID 5761745). The HDAC-8 gene was amplified by PCR reaction using
forward and reverse primers. Following ligation of the PCR product with pLIC-His expression
vector (obtained as a gift from Prof. Stephen P. Bottomley, Monash University, Australia), the
recombinant plasmid (pLIC-His6-HDACS) was transformed into E. coli BL21 codon plus DE3
(RIL) chemically competent cells (purchased from Stratagene™ California) for expressing the
HDACS enzyme. The transformed cells were cultured in LB medium at 37°C to reach OD600.
At this point, the culture was supplemented by 100 pM ZnCl,, and the culturing was continued
at 16 °C for 16 additional hours. Cells were harvested by centrifugation at 5,000 rpm. The cell
pellet was sonicated using lysis buffer, and the resulting lysate was centrifuged at 15,000 g for
30 min at 4°C. The suspension was filtered to remove cell derbies, and pure HDACS8 enzyme
was obtained using the HisTrap column on AKTA purifier UPC 10 (GE Healthcare Life
Sciences). SDS-PAGE agarose gel and catalytic activity analysis confirmed the presence of the
HDACS enzyme. The HDACS assay buffer used for our studies had the following composition:
50 mM Tris-HCI buffer containing 137 mM NaCl, 2.7 mM KCI, 1 mM MgCl,, 1 mg/ml BSA,
pH 7.5 while the HDACS lysis buffer comprised of 50 mM Tris-HCI, 150 mM KCl, 3 mM
MgCl2, 1mM 2-mercaptoethanol, | mM PMSF (phenylmethylsulphonyl fluoride) and 0.25 %
Triton X-100, pH 8. Formally, the HDACS8 enzyme activity was monitored in the assay buffer
by Fluor-de-Lys (R-H-K(Ac)- K(Ac)- AMC) fluorogenic substrate (KI-104) via trypsin

coupled assay established by Schultz and coworkers!¢ (Shown later in Figure 4).
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2.3.2. Fluor-de-Lys® HDAC fluorometric assay.

The assay was performed on a microplate reader. A range of nanoparticle concentrations was
used, and the HDACS concentration was optimized to 850 nM. The Fluor-de-Lys® substrate
concentration was maintained at 200 pM. The excitation wavelength was 360 nm, and the

emission was 460 nm. The emission spectra were recorded for 4 hours.

2.3.3. Release of 5(6)-Carboxyfluorescein in HDACS-responsive Nanoparticles under the

influence of the enzyme.

The rate and extent of release of carboxyfluorescein from HDACS-responsive nanoparticles
were evaluated by tracking the fluorescence emission intensity of the dye at 518 nm with an
excitation wavelength of 480 nm. In a representative experiment, HDACS8 enzyme was added

to a nanoparticle suspension in HDACS8-assay buffer (please see earlier section) to achieve the
9
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final concentrations of HDAC8 as 50 nM, 100 nM, and 1uM. The fluorescence iptensity was 2
measured every 7 minutes for over an hour and later time points (8h) at 25°C. The experiment
was conducted in triplicate, and the data were collected with a fluorescence spectrophotometer.
The fractional release of carboxyfluorescein was calculated by comparing the fluorescence
intensity of the nanoparticle solution to the intensity of a solution containing an equal
concentration of nanoparticles in the presence of 1% Triton X (without HDAC enzyme). The
concentration of Triton X required for the complete release of encapsulated CF from the
nanoparticles was adjusted beforehand by confirming that increasing the reagent concentration
did not cause a further increase in the fluorescence intensity of the CF. The fractional release
of CF from the HDACS-responsive nanoparticles was calculated as the ratio of the difference
between the fluorescence intensity of carboxyfluorescein at time t (It) and its initial intensity at

t=0 (10) and the difference between the intensity upon treatment with 1% Triton X-100 (Triton)

and the intensity at t=0 according to an earlier published report*’.

2.3.4. Atomic force microscopy and nanoparticle tracking analysis of HDACS8-responsive

nanoparticles.

HDACS-responsive nanoparticles (prepared from 10 mg/mL of block co-polypeptides) were
first analyzed for the particle diameter in the absence and presence of HDACS. The size
distribution and concentration of nanoparticles were determined by nanoparticle tracking
analysis (NTA) using the NanoSight NS300 system (Malvern Pan Analytical Ltd, UK). The
exosome samples were diluted to 1000-fold in PBS for NTA measurements. The samples were
infused with the syringe pump at a constant speed of 20 into the microfluidic flow cell equipped
with a 532 nm laser and a high-sensitivity scientific CMOS camera. At least three videos per
sample were recorded with a camera level of 11 - 13 for 30 s at 25°C. All data were analyzed
using NTA software (version 3.4) with a detection threshold of 5. Atomic force microscopy
(AFM) imaging of nanoparticles was performed using a commercial atomic force microscope
(NT-MDT NTEGRA AFM). The samples were prepared by incubating 10 pl of nanoparticle
solution on silicon substrates for 30 min in a sealed compartment to protect against evaporation
at room temperature. The samples were then rinsed with de-ionized water (Millipore) and dried
under N, flow. The samples were imaged under ambient conditions in semi-contact mode with

a resonant frequency of 190 kHz AFM probes (Budget sensors).

2.3.5. Encapsulation of a therapeutically-relevant molecule in HDACS-responsive

nanoparticles as proof of concept.

10
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We used Napabucasin (NAPA) as the model drug to demonstrate the proof-of-caongept of thece e
utility of the co-polypeptide nanoparticles as a drug delivery platform. This is because NAPA
affects the growth and proliferation of CSCs via inhibition of STAT3%, and HDACs are
implicated in the maintenance of CSC stemness and the regulation of NOTCH, STATS3, and
AKT signaling®. To prepare the NAPA-encapsulated system, 10 mg of the block co-
polypeptide and 5 mg of NAPA were dissolved in 250 pL of DMSO. The solution was added
dropwise to 750 puL of PBS (pH 7.4) with constant stirring. The solution was stirred overnight,
followed by filtration using an ultracentrifuge filter (MWCO 3.5-5 kDa) at 5000 rpm for 3 h to
prepare the purified nanoparticles. The resulting nanoparticle suspension was dispersed in
chilled (4 °C) buffer to a concentration of 10 mg/mL, and the filtrate was used to quantify the
amount of the drug. The encapsulation efficiency (EE %) was calculated using the following
equation:

(Amount of drug added)— (Amount in filtrate)
(Amount of drug added)

EEY% = X 100% (2)

2.3.6. In Vitro enzyme-mediated Drug Release

In vitro drug release was studied simultaneously in the absence and presence of 1uM HDACS
and using the assay buffer. Napabucasin, a STAT3 inhibitor, was used as the model drug. An
aliquot of 1 mL of the drug-encapsulated nanoparticles was taken in one Float-a-Lyzer (MWCO
3.5-5 kDa) chamber and was dialyzed against 5 mL of HDAC assay media. After a specified

time interval, 1 mL of sample was withdrawn and replaced with the same volume of the fresh

Published on 02 July 2024. Downloaded on 7/16/2024 1:27:00 AM.

assay media. The samples were then analyzed for NAPA concentration using UV—vis
spectroscopy.

2.3.9. Cell-culture and cytotoxicity assay.

In-vitro studies were carried out using four cell variants. HPNE, PANC-1, and MIA PaCa-2
cell lines were obtained from American Type Tissue Culture (ATCC) and maintained and
passed according to ATCC recommendations. The fourth cell variant is patient-derived
xenograft pancreatic cancer stem cells (CSCs) obtained from Celprogen. The stem cells were
maintained and passaged using Celprogen-recommended media, flasks, and plates. All studies
used a passage number of less than 10 except for the stem cells, where only passages below 5
were used. Cells were seeded in a 96-well plate at a density of 10,000 cells/well and allowed
24 hours of incubation before adding treatments. Nanoparticles containing napabucasin were
suspended in serum-free cell culture media and added to their respective wells. Twenty-four
hours post-treatment, the cells were washed 3x with phosphate-buffered saline, and a 10%

Alamar Blue (Bio-Rad) concentration was used to determine cell viability/cytotoxicity.

11
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2.3.10. Molecular docking computational studies of HDAC8 enzyme with the block polypeptide:s

00514G
To identify the putative interactions of HDACS responsive block copolymers and their
nanoparticle ensemble with the target enzyme, HDACS, we conducted computational
molecular docking studies using ICM-pro 3.8.3 (Molsoft, L.L.C.).>° The coordinates for
HDACS receptors were retrieved from Protein Data Bank (PDB ID: 2V5W and 1T64) 3!-32 and
then pretreated following the standard procedures, including the exclusion of water molecules
and heteroatoms, addition of hydrogen and charges using ECEPP/3 templates, correction of
side chain and missing loop.’* As several water molecules could be part of the binding
interaction network, 16 water molecules inside the pocket were kept for docking assays.
Additionally, the configuration of the critical residues forming the HDACS active site tunnel,
such as His142, His143, Gly151, Phel52, His180, Phe208, Pro273, and Tyr306, were checked
and corrected.’* As 2V5W was reported with a mutation at position 306,3! we tried to induce a
Phe306Tyr mutation and reoptimize the protein, 2V5W, taking 1T64 for structural alignment.
This mutated target was then used for docking assays. For ligand preparation, a monomer
structure of PEG,,-p (LysAc), was generated and optimized by using the Molecular Editor
wizard in ICM. The docking study was then performed, generating 1000 conformations. The
top-scoring poses were ranked and selected based on the ICM scoring function, whose variables
consist of the conventional interactions and internal force field energy, i.e., hydrophobic van
der Waals, electrostatic interaction, solvation/desolvation, conformational loss energy, and

hydrogen bonding.>3

3. RESULTS AND DISCUSSION

This work's central hypothesis is that nanoparticles composed of hydrophobic domains rich in
acetylated L-lysine will act as a substrate for a deacetylating enzyme, such as histone
deacetylase. The deacetylation reaction will lead to the reversal of solubility of the hydrophobic
block and subsequent destabilization of nanoparticles. To prove this hypothesis, we designed
a poly (ethylene glycol)-block-poly (acetylated L-lysine) block co-polypeptide abbreviated as
PEG,-p (LysAc),, where m and n represent the number of repeating units for the respective
blocks. Within the HDAC family, we selected HDACS as a representative member of the
deacetylating enzyme to prove our hypothesis. This enzyme is a member of the class | HDACs
and is localized both in the nucleus and the cytosol, involved in numerous epigenetic and
transcriptional processes related to health and disease.?> Due to the overexpression of HDACS8

with various pathophysiological conditions, HDAC8-responsive nanoparticles can potentially
12
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be used in drug delivery.”>>7 As such, we also proved that HDACS8-responsive nanqparticles:s o
can be used as a drug delivery vehicle by encapsulating a STAT3 inhibitor, Napabucasin
(NAPA), inside the particles.’® NAPA has been a drug of choice to suppress hard-to-kill cancer
stem cells (CSCs).>*%! We envisioned that the destabilization of HDACS8-responsive
nanoparticles by HDAC8 would induce NAPA (a STAT3 pathway inhibitor) release in a time-

dependent pattern.6>-64

3.1. Synthesis of block co-polypeptides with acetylated L-lysine side chain.

Acetylated L-lysine is the substrate of the HDAC8 enzyme. Therefore, we acetylated the L-
lysine residue of a PEG-block-poly (L-lysine) block copolymer. Acetylation of the poly (L-
lysine) domain resulted in the formation of an amphiphilic block copolymer, which was later
used to create self-assembled nanoparticles. PEG-conjugated and e-amino group protected poly
(L-lysine) are important block copolymer candidates for forming colloidal nanoparticles for
drug and gene delivery applications and as functional materials for tissue engineering.*4 65-67
We prepared HDACS-accessible, PEG-block-poly (acetylated L-lysine) block copolymer by
reacting the pre-formed PEG-block (poly L-lysine) (M, = 21 kDa, PEG = 5 kDa) with acetic
anhydride in the presence of pyridine (Scheme 1).

-
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Scheme 1: Synthesis of the block copolymer, PEG-block-poly (acetylated L-lysine) composed
of 113 units (m) of ethylene glycol and 200 L-lysine residues.

The method, initially described by Thoma et al., provided the advantage of more than 80%
conversion of the available e-amino groups of lysine residues present in the copolymer's 16 kDa
poly(L-lysine) block. Acetylated block copolymers were characterized chemically, and the
degree of acetylation was calculated via Ninhydrin assay (Supporting information, Figure S2).
The assay demonstrated that the degree of acetylation obtained under the reaction conditions
specified in Scheme 1 was 86% for the PEG-block-poly(L-lysine) block copolymer bearing
113 ethylene glycol units (in the PEG block) and 200 acetylated L-lysine residues. This
indicates that, of 200 available lysine residues, 172 residues were acetylated. We observed that
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these particles form nanoparticle structure via nanoprecipitation method (Figure . ZAY< <2
Therefore, we evaluated the critical aggregation concentration (CAC) of the newly synthesized
PEG-block-poly (acetylated L-lysine) block copolymer using fluorescence spectroscopy-based
methods using pyrene as a probe (Figure 2B). The CAC value is a robust indication of the
stability of any nanoscale aggregates that amphiphilic copolymers usually form. The ratio of
the first (A =373 nm) and third (A = 384nm) peaks in the fluorescence emission spectra of pyrene
is recorded in the presence of varying concentrations of the copolymer, and the ratio of 1573/I5g4
is determined and plotted as a function of the copolymer concentration. We observed that,
depending on the degree of acetylation, the intensity ratio decreased up to a particular
concentration of the copolymer, after which it remained unchanged, independent of
concentration. From this experiment, CAC values of PEG-block-poly (acetylated L-lysine)
were found to be within the range of 2.2 x 107 M (for n = 200 L-lysine units bearing polymers,
degree of acetylation = 86%). We also observed that block copolymers with reduced levels of
acetylation showed higher CAC value (5.26 x 107 M for block copolymers with a degree of
acetylation of 25%). This result indicated that acetyl side chains increased the stability of
nanoscale aggregates of PEG-block-poly (acetylated L-lysine) copolymer, most likely due to
the increased capacity of these side chains to form H-bonding and hydrophobic interactions

with each other.

3.2. Nanoscale features of HDACS8-responsive nanoparticles.

The amphiphilicity of PEG-block-poly (acetylated L-lysine) drives the self-assembly of this
copolymer to form nanoparticles under solvent exchange (nanoprecipitation) conditions. Using
dynamic light scattering (DLS), we evaluated the particle size (in terms of hydrodynamic

diameter) and surface charge ({-potential) of these nanoparticles (Figure 2).
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Figure 2. Nanoscale features of HDACS8-responsive particles (A) the hydrodynamic diameter
(Dpy) of nanoparticles prepared from PEG-block-poly (acetylated L-lysine) as measured via
DLS. Particle sizes were found to be governed by the degree of acetylation of the hydrophobic
block. (B) These particles are formed from the block copolymers aggregated in water above
their critical aggregation concentration (CAC), calculated using pyrene-based fluorometric
methods. (C) Numerical values of the hydrodynamic diameters of HDAC8-responsive particles
were calculated from the size distribution plot (A), along with surface charge (C-) potential
values. (D) Transmission electron microscopy (TEM) of HDACS-responsive nanoparticles
composed of PEG-block-poly (acetylated L-lysine) with 86% degree of acetylation of the poly
(L-lysine) block.

We found that nanoparticles composed of PEG-block-poly (acetylated L-lysine) have a
unimodal size distribution (Figure 2A). The degree of acetylation of the block copolymer
influenced the mean hydrodynamic diameter of the nanoparticles formed. For example,
nanoparticles composed of PEG-block-poly (acetylated L-lysine) at 25% and 50% degrees of
acetylation resulted in the formation of nanoparticles with a hydrodynamic diameter of 190 and
142 nm, respectively. On the other hand, nanoparticles composed of PEG-block-poly
(acetylated L-lysine) with 113 ethylene glycol units and 172 acetylated lysines (86% degree of
functionalization) showed a hydrodynamic diameter of 108 = 10.7 nm, with a polydispersity

index (PDI) value of 0.248 (Figure 2A). The critical aggregation concentration (CAC) of these
15
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particles were found to be within the micromolar range (2 x 10-° M, Figure 2B). Similarly; the o'
{-potential measurement revealed that the nanoparticles formulated with copolymers with 25,
50 and 86% degree of acetylation showed (-potential of -1.7, -1.5 and -0.5 mV, respectively
(Figure 2C). We observed that the {-potential of these systems is low, which could potentially
impact the kinetic stability of the particles. However, we also noticed that the outer PEG corona
of these particles imparts enough thermodynamic stability to the system, allowing them to
maintain their stable colloidal structure as shown in Figure 2D as oberved in TEM experiments.
This observation revealed that the block copolymers formed and maintained a distinct
population of nanoparticles at pH 7.4 (TEM-based particle size ~100 nm, Figure 2D) during
the time-scale of this study. Extended stability profile of the particles will be presented in our

follow-up publications.

3.3. HDACS mediates Nanoparticle Destabilization.

First, we set out to adjust the nanoparticle formulation for minimum background leakage of
content and optimum sensitivity to HDACS. For this reason, carboxyfluorescein-loaded
nanoparticles composed of PEG-block-poly (acetylated L-lysine) were prepared. In 50 mM
Tris-HCI buffer, containing 137 mM NaCl, 2.7 mM KCI, 1 mM MgCl,, and 1 mg/ml BSA
maintained at pH 7.5 (later termed as HDAC-assay buffer), the nanoparticles released <5% of
their contents (carboxyfluorescein) within 1h at 37°C in the absence of HDACS (Figure 3A).
On the contrary, we observed that both the extent and rate of content release from the
nanoparticles were increased with increasing HDACS8 concentration. We observed that 8, 15,
and 45% of the loaded carboxyfluorescein was released when the nanoparticle formulations
were incubated with 50 nm, 100 nm, and 1uM of HDACS under the same condition. We also
observed that dye release from HDAC8-responsive nanoparticles can be significantly abrogated
by introducing Suberoylanilide hydroxamic acid (SAHA), an HDACS8-specific inhibitor, in the
release media at a concentration of 1uM along with HDACS (Figure 3B). Literature reports
show that SAHA (also known as Vorinostat®) acts as an inhibitor of HDACsSs in both cytoplasm
and nucleus.®® As a reversible and competitive inhibitor, SAHA binds to the zinc ion in the
catalytic domain of HDACs, suppressing its enzymatic activity. Further, kinetic and
thermodynamic studies reported earlier clearly showed that SAHA, compared to its structural
analog Trichostatin A (TSA), binds preferentially to HDACS8.%° Concentration-dependence of
CF release from the nanoparticles with HDACS and subsequent release inhibition upon
incubation of the particles with SAHA provided us with an early indication regarding the

responsivity of these nanoparticles towards the HDACS8 enzyme. This is because, in the
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presence of the inhibitor, there are few enzymes available to cleave off the acetyl groups frofus; 2\

the poly (acetylated L-lysine) domain of nanoparticle-forming block copolymers, thereby

exhibiting almost no increase in emission intensity of the dye over time.
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Figure 3. HDACS-dependent release of encapsulated carboxyfluorescein (CF) from
nanoparticles composed of PEG-block-poly (acetylated L-lysine). The kinetic trace of
carboxyfluorescein fluorescence (Aex = 480 nm, A, = 518 nm) was monitored for 70 min for
nanoparticles in the absence (green trace) and presence of a different concentration of HDACS.
The reactions were conducted at 25 °C in 50 mM Tris-HCI buffer containing 137 mM NaCl,
2.7 mM KCl, 1 mM MgCl,, and 1 mg/ml BSA maintained at pH 7.5. (B) Release of CF was
abrogated when nanoparticles were co-incubated with SAHA (1uM), an HDACS-specific

inhibitor.

We further proved that when the nanoparticles were incubated with thermally deactivated
HDACS, no release of carboxyfluorescein was evident from within the particles. Nanoparticles
loaded with carboxyfluorescein were treated with equimolar concentration of deactivated (heat-
denatured) HDACS8 enzyme (Figure 4A). This evidence collectively indicates that
nanoparticles formed from PEG-block-poly (acetylated L-lysine) favor releasing its
encapsulated content only when incubated with HDACS. Thus, their specific targeted ability to
release encapsulated content in target cells.

We further set out to assess if the observed HDACS-induced destabilization of
nanoparticles is due to enzymatic interactions of the nanoparticles with HDACS. We adopted a
fluorometric assay using Fluor-de-Lys® (Enzo Life Sciences Inc.) as the fluorogenic
substrate.!6: 7 When HDACS binds to the reagent, fluorescence emission at 460 nm will
increase due to the substrate's cleavage from the reporter molecule. We used this assay to

identify the binding of the nanoparticle with HDAC. The central concept of the assay is that,
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increasing the concentration of HDAC8-responsive nanoparticles decreases the flyoresceni¢

intensity to 460 nm, indicating the nanoparticles compete with the fluorogenic substrate for the
enzyme (Figure 4B). In other words, the interaction between the nanoparticles and HDACS
will reduce HDACS availability to the Fluor-de-Lys reagent, thereby reducing the fluorescence
intensity of the reporter molecule. For this experiment, different concentrations of HDACS-
responsive nanoparticles were treated with HDACS in the presence of the Fluor-de-Lys
substrate. We indeed observed that the emission intensity decreased with increasing particle
concentration, indicating a possible competition of the enzyme-responsive nanoparticles with

the reagent towards the enzyme (Figure 4C).
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Figure 4. (A) Comparison of the release profile of carboxyfluorescein dye from nanoparticles
triggered by HDACS8 (1uM) or by heat-denatured (deactivated) HDAC8 of equimolar
concentration. (B) Mechanism of action of Fleur-de-Lys assay in the presence of HDAC
enzymes. (C) Increasing the concentration of HDACS8-responsive nanoparticles decreases the
fluorescence intensity to 460 nm, indicating the nanoparticles compete with the fluorogenic

substrate for the enzyme.

We investigated the destabilization properties of HDACS8-responsive nanoparticles

under the influence of the enzyme using Atomic Force Microscopy (AFM) and nanoparticle
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tracking analysis (NTA). First, the AFM image of the untreated nanoparticles shows the tyfsicals s o0
spherical shape and dimension (Figure 5A). In contrast, the particle size was substantially
decreased after treatment with 800 nM HDACS (Figure 5B), indicating HDACS8-driven
destabilization of the particles. While the AFM images clearly show a change in size upon
HDACS treatment, the NTA on the particle suspension provides the quantitative distribution of
the particle size before and after treatments. From NTA measurements, we observed the particle
concentration for untreated nanoparticles to be 1.7 x 107 £ 2.12 x 10 particles/mL, along with
an average diameter of 160 = 8 nm. After HDACS treatment for 1h, significant changes in the
size and concentration of the particles were observed. The average particle size was measured
to be 76 + 33 nm, resulting in the shift of the particle distribution to the smaller fragment, most
likely due to the dissociation of the deacetylated copolymers from the assembled systems
(Figure 5B). Further, approximately a 9-fold increment in increased identical nanoparticle
concentration (15.6 x 107 + 0.43 x 105 particles/mL) after HDACS treatments additionally
supports HDACB8-driven particle dissociation.

Published on 02 July 2024. Downloaded on 7/16/2024 1:27:00 AM.

- (Concentration average (untreated sample)
(A) Before HDACS treatment  After HDACS treatment (B) :
N N Concentration average (treated sample)
£ 3 3 00E+05

g2_505+05 ]

w

o

.S 2.00E+05 A

£

[

L5

— 1.50E+05 4

2

™

& 1.00E+05 {1,

[1h]

2

S 5.00E+04 A

- » O
6 €3 ‘ - 0.00E+00 L 20} J

1 101 201 301 401 501 601 701 801 901
Particle size (nm)

Figure 5. AFM topography of the nanoparticles and NTA analysis of the nanoparticle size
distribution. (A) Nanoparticles before treating (left panel) and after treating with HDACS (800
nM) for 1h (right panel) showed a significant reduction in particle height and shape. (B) The
average number and size of distribution of particles after HDACS treatments showed a
reduction in particle size but a substantial increase in the concentration of reduced-size particles.
Based on these collective observations, we hypothesize that the nanoparticle surface is not
monolithic (solid). Instead, the block copolymers constituting the particle surface exhibit
dynamic assembly, exchange of macromolecules between particles, and 'flip-flop' -like
behavior within the same particle’!- 72. Consequently, at any given moment, a fraction of these
dynamically assembling block copolymers will present their acetyl side chains to the HDAC

enzyme, resulting in deacetylation and destabilization of the surface.
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3.4. Proof-of-concept of using HDACB8-responsive nanoparticles as drug delivery platforris: jirs e

00514G

cancer.

Many types of cancers are HDAC-positive.?!> 22 Most anticancer drugs present a narrow
therapeutic window, and as such, targeted and triggered release of cytotoxic drugs to cancer
tissue using nanoparticles is one of the successful and emerging therapeutic modalities against
many types of cancer. Thus, using HDAC-responsive nanoparticles as platforms to encapsulate
and release anticancer drugs seems viable to attain targeted therapy against HDAC-positive
cancers.”>7> We set out to identify the potential of HDAC-responsive nanoparticles as PDAC-
specific drug delivery. First, we identified the cytotoxicity of the polymer alone against cancer
cell lines. We used three types of PDAC cells, namely, MIA PaCa-2, PANC-1, and pancreatic
cancer stem cells (CSCs), to validate the proof-of-concept. We used non-neoplastic HPNE cells
as a control. We showed that the acetylated block copolymer is not toxic to any of these cell
lines, even at the micromolar concentration range (Figure 6A). We identified a STAT3
inhibitor, Napabucasin (NAPA), as a model drug (chemical structure presented in Figure 6B).
The drug has been reported earlier to eliminate stemness-like tumor cells in different types of
cancer. In addition, we encapsulated NAPA in HDAC-responsive nanoparticles. For this
encapsulation method, both the copolymer, i.e., PEG-block-poly (acetylated L-lysine) and
NAPA, were co-dissolved in DMSO, and solvent precipitated using buffer solution of pH 7.4
following our earlier published protocol.”®”® The nanoparticles were found to have an
encapsulation efficiency of 59% and a loading content of 14%. These drug-loaded nanoparticles
were then assayed for their drug release efficiency triggered by HDAC8. We observed that
HDACS, the model enzyme, effectively triggered drug release from these NAPA-loaded
nanoparticles within 4 h of incubation. In the absence of HDACS, nanoparticles released < 10%
of encapsulated NAPA, indicating the HDACS8-sensitive release of the encapsulated drug from
these particles (Figure 6C). Our preliminary data showed that the drug-loaded nanoparticles
showed a dose-dependent cytotoxicity against cancer cells and could exert a more potent
cytotoxic effect on CSCs than other tested cell lines. We also noted the cytotoxic effect of
NAPA on non-neoplastic cell lines, which could be attributed to the non-specific uptake of
particles by these cells (Figure 6D). We are currently working on engineering more selectivity

designed into these nanoparticles via adopting an active, ligand-mediated targeting approach.
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Figure 6. Interaction of the block copolymers and HDACS8-responsive nanoparticles with
different types of PDAC cells and non-cancerous HPNE cells in vitro. (A) PEG-block-poly
(acetylated L-lysine) block copolymers studied in this work do not trigger cytotoxicity in
different cell lines. (B) Chemical structure of the STAT3 inhibitor, Napabucasin (NAPA),
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which has been used as the model hydrophobic drug to demonstrate the encapsulation and
HDAC-mediated release activity of the nanoparticles in the context of drug delivery. (C) HDAC
8 (1 uM) triggers the release of NAPA, and over 90% of the encapsulated drug is released from
these nanoparticles after incubation with the enzyme for 3 h. The standard deviation of mean is
taken for N=3 replicates. Without the enzyme, the drug release rate and extent were
significantly decreased. (D) NAPA-loaded nanoparticles showed a concentration-dependent

effect on different types of cancer cells, with a more prominent effect on cancer stem cells

(CSCs).

3.5. HDACS interactions in molecular docking studies

Based on the current structural design of block copolymers, exploring the structure-activity
relationships of synthesized nanoparticles against human HDACS enzymes is of significant
interest. We hypothesized that the nanoparticles interacted with the HDACS8 enzyme via the

constituting block copolymers or unimers, i.e., PEG-block-poly (acetylated L-lysine). These
21
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unimers were docked into the active site of HDACS8 and compared with a native ligand, whi¢hce e
corresponds to a sequence Arg379-His380-Lys381(e-acetyl)-Lys382(g-acetyl) of the p53 tumor
suppressor protein.’! An X-ray crystal structure of HDACS in a complex with this chain (PDB
ID: 2V5W) was selected for docking simulations. However, the target was reported with a
Tyr306Phe mutation, which may affect the binding mode of the ligand. According to the
previous investigations, the sidechain Tyr306 is crucial for the H-bonding interaction with
acetyl moiety by adopting an 'out-to-in' transition in connection to a glycine-rich loop (Gly302-
305), and any mutation in this HDACS loop is responsible to a genetic disorder, namely
Cornelia de Lange Syndrome (CdLS).>* 7 Therefore, we rebuilt the HDAC8 model with
Tyr306 by inducing a Phe306Tyr mutation in 2V5W, called Tyr306-2V5W. As a result, the
protein structure after the mutation still highly overlapped with non-mutated HDACS8 (1T64)
despite some conformational change (Supporting information, Figure S4-S5). While Phel52,
Pro273, and Tyr306 residues remained in similar orientations, Aspl01 displayed a large
conformational change around the hinge region. The results suggested that Tyr306-2V5W was
applicable for docking studies of PEG-b-p(LysAc) and the sidechain Asp101, as mentioned
previously,’! could affect the binding mode of HDACS inhibitor.

To validate our docking approach, the co-crystal substrate was redocked into the active site of
HDACS (Figure 7A). Please note that the co-crystal peptide was considered the native ligand
of HDACS Tyr306-2V5W as there are similar structures before and after inducing Phe306Tyr
substitution. After redocking the native ligand, the redocked and co-crystal conformers were
highly superposed with a deviation value RMSD of 1.994A. The fundamental interactions were
conserved, including chelation with Zn?*, multiple H-bonds with Asp101 and Tyr306, and
stacking interactions with Phel52, His180, and Phe208 (Figure 7A). The obtained results
demonstrated the validity of the docking protocol established.
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Figure 7. (A) superposition between redocked (yellow carbon) and co-crystal ligands (green
carbon). (B) comparison between the binding modes of PEG-b-p(LysAc) (purple carbon) and
co-crystal (green carbon) in the active site of HDACS.

The next step involved docking PEG-b-p(LysAc) into the binding site of HDACS following the
same protocol mentioned above (Figure 7B). To analyze the results, we divide the monomer
into three parts according to the general HDAC inhibitor®® as illustrated in Figure 7 (i) Zn?*
binding group (ZBG) composed of N-acetyl group, (ii) the linker of 4C chain, and (iii) the
capping group consists of PEG blocks in connection with two LysAc chains. At first sight, the

docked monomer interacted with HDACS in a similar way as co-crystal peptides interacted.
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The N-acetyl lysine chain next to PEG accommodated well into the narrow cavity of the pocket
and allowed the acyl group to chelate with Zn?>*. The H-bond formed between the carbonyl
oxygen of the acetyl group toward Tyr306 made the acyl group more susceptible to interacting
with an activated water molecule that is Zn>*-coordinated and bound to His142 and His143 at
the rim of the pocket. These interactions are crucial for the deacetylation reaction of HDAC8.%*
According to the linker, stacking interactions with Phe152, His180, and Phe208 could keep the
alkyl chain more stable in the tunnel.®! Several studies demonstrate the importance of
hydrophobic interactions along the narrow tunnel of HDACS (Figure 8). The capping group,
in turn, displayed diverse interactions. It would be remarked on the importance of Aspl01 to
form two H-bonds with two adjacent nitrogen atoms of the backbone Lysine. These interactions
are crucial to keeping the ligand in the proper position in the pocket during the deacetylation
reaction.’!- 3 Of the capping group, two LysAc chains and PEG bound to different cavities

(Figure 8). LysAc mainly showed interactions with Lys33, Tyr100, Pro273, etc. Meanwhile,
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the extended chain folding of PEG made the monomer able to interact with both hydrophi
and hydrophilic residues far from the pocket, including those of the other domains. The results

suggest that, depending on the length of the PEG block (x) and the number of LysAc chains (y),
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the polymer could bind to a certain number of HDAC domains in a row, and the binding and

releasing energies should be optimized based on (x, y) values. In addition, the affinities

estimated by ICM scoring function for PEG-b-p(LysAc) and native ligand were quite similar,

being -13.460 and -14.499 kcal/mol, respectively.
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Figure 8. The critical interactions of PEG-b-p(LysAc) and residues in the binding site of

HDACS. Residues in black are crucial for binding. In green: H-bonds, orange: hydrophobic,

black: electrostatic interactions. The mechanism of deacetylation is proposed according to

Vannini et al.!

4. CONCLUSIONS

In summary, we demonstrated, for the first time, the design and development of HDAC-

responsive nanoparticles, the contents of which can be released under the influence of a human

HDAC enzyme. The nanoparticles were composed of PEG-block-poly(acetylated L-lysine)

block copolymers. Due to a repeating sequence of acetylated L-lysine, the hydrophobic domain
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served as the HDAC-responsive site. As illustrated in this work using HDACSE agethiecs orine
representative member of this enzyme family, the sensitivity of the nanoparticles towards
HDACS was concentration-dependent and can be registered via the release of nanoparticle-
encapsulated dye, carboxyfluorescein. We observed that ~6 h was required to completely
release the encapsulated content from the nanoparticle under the influence of HDACS. In
contrast, trypsin or serum albumin failed to initiate content release from the nanoparticles. This
1s most likely due to the deacetylation of the lysine residues from the hydrophobic domains of
the nanoparticle-forming block copolymers. Such deacetylation can potentially lead to loss of
amphiphilicity of the nanoparticle-forming block copolymer, creating irreparable defects within
the particle structure that trigger the content release. As such, we envision that the HDAC-
responsive nanoparticles could transport and release a drug payload to cellular targets, which
overexpresses the HDAC family of enzymes. As a very early proof-of-concept, we showed that
PDAC cancer-like stem cells, which overexpress HDACs, were more susceptible to anticancer
drug therapy when delivered via HDAC-responsive nanoparticles. In addition, a computational
molecular docking simulation confirmed the mechanism of interaction with the enzyme and
strong binding affinity towards HDACS. Overall, our methodology provides an early indication
of finding a significant niche to target epigenetic enzymes, such as HDACs. Reminiscent of the
naturally occurring histone protein, the nanoparticles synthesized in this work will pave the way
for developing new functional materials that can be used to design artificial 'histone-type'

organelles and epigenetics-based cellular networks. Currently, we are investigating the in vivo

Published on 02 July 2024. Downloaded on 7/16/2024 1:27:00 AM.

effect of HDACS-responsive nanoparticles, which will bolster our findings to use HDAC-
sensing particles in drug delivery, artificial organelle preparation, and diagnostic detection of

genetically aberrant cell populations.
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