JSAG 14 (2024), 5-11 The Journal of Software for
https://doi.org/10.2140/jsag.2024.14.5 Algebra and Geometry

The InvariantRing package for Macaulay2

LUIGI FERRARO, FEDERICO GALETTO, FRANCESCA GANDINI,
HANG HUANG, MATTHEW MASTROENI AND XIANGLONG NI

ABSTRACT: We describe a significant update to the existing InvariantRing package for Macaulay?.
In addition to expanding and improving the methods of the existing package for actions of finite groups,
the updated package adds functionality for computing invariants of diagonal actions of tori and finite
abelian groups, as well as invariants of arbitrary linearly reductive group actions. The implementation of
the package has been completely overhauled with the aim of serving as a unified resource for invariant
theory computations in Macaulay?.

1. INTRODUCTION. Let G be a group acting linearly on an n-dimensional vector space V over a field K
viavi> g-vfor g € G and v € V. The action of G on V induces an action of G on the polynomial ring
KIV]=K[xy, ..., x,]1by (g- f)(x)= f(g*1 -x). By aclassical result of Hilbert (see [3, Theorem 2.2.10]),
the subring of invariant polynomials

KIVI® ={(feK[V]|g-f=f YgeG}

is always a finitely generated [K-algebra provided that G is linearly reductive and V is a rational represen-
tation of G.! A linearly reductive group is a group that can be identified with a Zariski-closed subgroup
of some general linear group GL, = GL,, () and has good representation-theoretic properties while still
being general enough to encompass all finite groups, all tori (K*)", and all semisimple Lie groups (at
least if char(l<) = 0). Since Hilbert’s proof of the finite generation of such invariant rings is famously
nonconstructive, determining a minimal set of generating invariants for a specific linearly reductive group
action remains a central question in invariant theory. This article describes a significant update to the
package InvariantRing for Macaulay?2 [7], originally created by Hawes [5], implementing several
algorithms to compute generators for K[V ¢ for various types of group actions.

2. TYPES OF GROUP ACTIONS. The updated version of the InvariantRing package introduces
the GroupAction type and the specialized subtypes FiniteGroupAction, DiagonalAction, and
LinearlyReductiveAction as a unified approach to creating group actions in Macaulay2. Each
type has its own constructor and methods for computing invariants.

MSC2020: 13-04, 13A50, 13P25.
Keywords: Macaulay2, invariants, group actions.
InvariantRing version 2.0
IHowever, this is not the case in general by Nagata’s celebrated solution to Hilbert’s fourteenth problem [8].

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers).

https://doi.org/10.2140/jsag.2024.14-1
http://msp.org/jsag
http://msp.org/jsag

6 Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2

2.1. Finite group actions. Creating a group action of type FiniteGroupAction requires a polynomial
ring R = K[xy, ..., x,] over a field and a list of n x n matrices generating a finite subgroup of GL,.
The example below illustrates the construction of the natural action of the alternating group A4 on a
polynomial ring in four variables.

i2 : R = QQ[x_1..x_4];

i3 : L = {permutationMatrix [2,3,1,4], permutationMatrix [2,1,4,3]};

i4 : A4 = finiteAction(L, R)

o4 =R<-{l 00101, 10100 |}
1000 | 1000 |
o100 0001 |
looo1] 0010

o4 : FiniteGroupAction

A minimal set of generators for the ring of invariants (as an algebra) can be computed using the method
invariants.

i5 : invariants A4

o5 : List

By default, the invariants of a finite group action are now computed using an implementation of King’s
algorithm [3, Algorithm 3.8.2] based on the Reynolds operator. An alternative algorithm based on linear
algebra [3, §3.1.1], which can be faster for large groups, is also available through the optional argument
Strategy=>"LinearAlgebra".

The methods molienSeries, primaryInvariants, and secondaryInvariants from version 1.1.0
of the package are still available. The method previously known as invariants, which computes primary
and secondary invariants at once, has been renamed hironakaDecomposition. We note that a generating
set for the ring of invariants can be obtained from a list of primary and secondary invariants, although
this is typically more time consuming. For example, on the same machine, the previous computation of
invariants for A4 took 0.49 seconds using King’s algorithm, 0.05 seconds using linear algebra, and 16.49
seconds by computing a Hironaka decomposition.

2.2. Diagonal actions. A diagonal action over an algebraically closed field KK is an action by a group
G =T x A, that is, the product of a torus T and a finite abelian group A. If T = (K*)" and A =
Z]d\Z x --- x Z]dsZ, the action of G on the polynomial ring R = K[xy, ..., x,] is diagonal if there is
an n x (r +s) matrix of integers W = (w; ;), called the weight matrix, such that

WL W
t-xj=t 7ot x;

Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2 7

forall jandallt = (¢, ...,t) €T, and there is a primitive d;-th root of unity ¢; such that the generator u;
of the cyclic abelian factor Z/d;Z acts by

Wi
up-xj=1¢ "X

for all 7, j. Because a diagonal action preserves the natural Z"-grading of R, a polynomial is easily seen
to be invariant under a diagonal action if and only if each of its terms is invariants. Thus, we can choose
a set of invariant monomials as a minimal set of generating invariants.

Creating a group action of type DiagonalAction requires a polynomial ring R, a weight matrix W,
and list of positive integers defining the orders of the cyclic factors of the group G. We illustrate this
below for a torus action over [Fg.

i2 : R = (GF 9)[x_1..x_4];

i3 : W = matrix {{5, -3, -1, 4}, {-3, 1, 1, 5}, {0, -4, 2, 6}};

3 4
03 : Matrix ZZ <--- ZZ
i4 : T = diagonalAction(W, {}, R)

* 3
o4 =R <- ((GF 9)) via

| 5 -3 -14 |
| -31 1 5|
| 0 -42 6|

o4 : DiagonalAction

i5 : invariants T
2
o5 ={xxx}
123
o5 : List

Because a diagonal action involving finite cyclic factors requires the existence of roots of unity for the
action to be defined, the invariants computed for a diagonal action should always be understood to be the
minimal generating invariant monomials over an appropriate infinite extension of the coefficient field.
Over such an extension field, the monomial

an

a_ . a
x=x"x,

is invariant if and only if the i-th coordinate of the vector Wa is zero for 1 <i <r and the (r 4 i)-th
coordinate is zero modulo d; for 1 <i <s. As a result, finding a minimal set of invariant monomials for
a diagonal action reduces to a suitable problem in polyhedral geometry. Using the fact that R¢ = (R)7,
we have implemented a recent algorithm of Gandini [4] for first computing invariants of the finite abelian
part of a diagonal action; we then use a modified version of [3, Algorithm 4.3.1] to find the torus-invariant
monomials in R,

As noted above, some form of polyhedral geometry computation is unavoidable when computing diago-
nal action invariants. The current implementation relies on one of the Macaulay?2 packages Polyhedra [1]
or Normaliz [6] to handle this part of the computation. The latter package is simply an interface to the
stand-alone Normaliz program [2] written in C++. As a program specializing in polyhedral geometry,

8 Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2

Normaliz already has the ability to compute the invariants of a diagonal action. Although Normaliz can
have a significant speed advantage on larger examples since it is written in C++ (for example, the above
computation on the same machine takes about 25.60 seconds using the Derksen—Gandini algorithm versus
0.01 seconds by calling Normaliz directly), we believe there is value in having an algorithm for computing
diagonal invariants implemented in Macaulay? that is independent of any particular external software.

In addition, since Macaulay? has the ability to perform computations over any finite field, it is possible
to define diagonal actions (as in the above example) where the action makes sense over the coefficient
field specified by the user rather than a suitable infinite extension. In this case, our algorithm includes
the ability to compute a minimal set of generating monomials /iterally over the given coefficient field
through the option UseCoefficientRing, a feature that Normaliz currently lacks. Computing invariants
literally over [Fyg in the above example, we find the additional invariants:

i6 : invariants(T, UseCoefficientRing => true)

2 8 8 44 8 26 44 44 62
XXX ,X,X,XX,X,XX,XX, XX, XX, X1}
123 4 3 23 2 12 13 12 12 1
o6 : List

06 = {

We note that the above computation took only 0.53 seconds on the same machine as the previous
calculation.

2.3. Linearly reductive actions. In the case of a group action by an arbitrary linearly reductive group G,
an action of type LinearlyReductiveAction is constructed from the data of an ideal / in an ambient
polynomial ring S defining the linearly reductive group G as a Zariski-closed subset of some K™, a
polynomial ring R = K[xy, ..., x,] on which the group acts, and an n x n matrix of polynomials in S
defining the action of G on R.

The example below illustrates how to set up the classic action of SL, on the coefficients of binary
quadrics ax? 4+ bxy + cy? in the ring K[x, y] where char(I<) = 0. We begin by constructing the defining
data for the group SL,.

i2 ¢ S = QQlz_(1,1)..z_(2,2)];
i3 : I = ideal(z_(1,1)*z_(2,2) - z_(1,2)*z_(2,1) - 1)
03 = ideal(- z - 1)

z + z z
1,2 2,1 1,1 2,2
03 : Ideal of S

There is a natural action of SL; on [K[x, y] by linear changes of coordinates. We construct the matrix
representing the restriction of this action to the space of quadrics K[x, y], with respect to the monomial
basis x2, Xy, yz.

i4 : A = S[x,yl;

i5 : M = (map(S,A)) last coefficients sub(basis(2,4),
{x => z_(1,Dx*x+z_(1,2)*y, y => z_(2,D)*x+z_(2,2)*y});

3 3
o5 : Matrix S <--- S

Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2 9

Viewing R = K[a, b, c] as the dual polynomial ring of coefficients of the quadrics in K[x, y],, the
transpose of this matrix represents the induced SL;-action on R.
i6 : R = QQ[a,b,cl;

i7 : L = linearlyReductiveAction(I, transpose M, R)

o7 = R <- S/ideal(- z z + z z - 1) via
1,2 2,1 1,1 2,2
| z_(1,1)"2 2z_(1,1)z_(1,2) z_(1,2)"2 |
| z_(1,1)z_(2,1) z_(1,2)z_(2,D+z_(1,1)z_(2,2) z_(1,2)z_(2,2) |
| z_(2,1)"2 2z_(2,1)z_(2,2) z_(2,2)"2 |

o7 : LinearlyReductiveAction

The Hilbert ideal of the action is the ideal of the polynomial ring R generated by all nonconstant
homogeneous invariant polynomials. A minimal set of invariant generators for the Hilbert ideal forms a
minimal set of algebra generators for the ring of invariants. The package uses an implementation of [3,
Algorithm 4.2.8] to compute a set of generators of the Hilbert ideal.

i8 : hilbertIdeal L

2
08 = ideal(b - 4ax*c)
o8 : Ideal of R

In this case, the generator is none other than the discriminant, and it is already invariant. Typically, this is
not the case, and so, the final step is to find invariant generators of the Hilbert ideal. As the Reynolds
operator is not yet implemented for a general linearly reductive group (see last section), the package uses
an alternative approach [3, Algorithm 4.5.1] to find a vector space basis of the invariants degree-by-degree.

3. RINGS OF INVARIANTS. Finally, the package also introduces the RingOf Invariants type as a
container for all ring-theoretic information about a given group action. Rings of invariants can be
computed by calling the method invariantRing on any type of group action or by using the natural
superscript notation. We illustrate the latter for the finite group action of A4 on a polynomial ring R
defined in Section 2.1.

i6 : S=R"A4
= 2 2 2 3 3 3 3
QQlx +x +x +x,x +xXx +x +x,x +%x +x +x,
3 4 2 3 4 1 3
4 4 4 32 32 2 3 2
X +Xx +%x +X, XXX +XXX +XXX +Xxx +
1 3 123 123 123 124
32 23 3 2 32 23
X X X XXX +XXX +XXX X X X X X X +
134 23 34 134 124
2 3 23

06 : RingOfInvariants

The Ring0f Invariants type has access to methods such as definingIdeal, which gives a presen-
tation of the ring of invariants as an affine algebra, and hilbertSeries. Unlike the Hilbert series of a
typical quotient ring, the Hilbert series of a ring of invariants of a finite group action is presented in a

10 Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2

way that emphasizes the degrees of the primary invariants, which generate a polynomial subring of the
ring on invariants over which it is finitely generated as a module.

i7 : hilbertSeries(S,Reduce=>true)

07 = ——————— o
4 3 2
@-T7T)XQ1-TH)XQ1-T)HX1X -T)

o7 : Expression of class Divide

4. CLOSING REMARKS.

4.1. Performance considerations. The methods in this package rely on very different algorithms and so
differ in performance. Generally speaking, a diagonal action computation will be much more efficient than
one calling on methods for linearly reductive group actions. For reference, the algorithm for invariants of
diagonal actions could perform computations with the torus in GL3 x GL3 x GL3 acting on C* ® C* ® C?
(27 variables) in less than three hours, but Macaulay2 ran out of memory when looking at C* ® C* ® C*
(64 variables). On the other hand, for the computation of invariants of binary forms of degree n, the
computation was nearly instant for n up to 4. However, for n = 5, Macaulay?2 ran out of memory after a
few hours. This is probably because for n up to 4 the invariants are generated in degree up to 3 or 4, but
there is an invariant of degree 18 for n = 5, so the complexity of the computation increases significantly.

4.2. Future directions. The major drawback of the function hilbertIdeal is that, even though its
output generates all invariants over the polynomial ring, the generators themselves do not need to be
invariant. A set of algebra generators for the ring of invariants can then be obtained by applying the
Reynolds operator of a linearly reductive group to the generators of the Hilbert ideal. Currently, the
method reynoldsOperator implements the Reynolds operator for finite groups and diagonal actions.
However, the Reynolds operator has not yet been implemented for infinite linearly reductive groups
because its definition requires building the Lie algebra structure associated to the group. One special
exception where it is possible to explicitly construct the Reynolds operator is the case of GL,, acting on
a vector space V. In this case, Cayley’s Omega Process [3, §4.5.3] constructs the Reynolds operator
in terms of the multiplication map on coordinate rings u* : K[V] — K[V] ®y K[GL,] and all partial
derivatives on the coordinate ring IK[GL,]. We plan to implement Cayley’s Omega Process in a future
update. More generally, implementing Reynolds operators for all linearly reductive groups is a long-term
goal for the development of the InvariantRing package.

ACKNOWLEDGEMENTS. Much of the work on the updated version of this package was completed as
part of the virtual Macaulay2 workshop in May 2020, originally to be held at Cleveland State University,
which was partially supported by NSF award DMS-2003883. We thank Harm Derksen and Visu Makam
for their helpful suggestions and feedback on the package.

SUPPLEMENT. The online supplement contains version 2.0 of InvariantRing.

http://msp.org/jsag/2024/14-1/jsag-v14-n1-x02-InvariantRing.m2

Ferraro, Galetto, Gandini, Huang, Mastroeni and Ni ~~~~ The InvariantRing package for Macaulay2 11

REFERENCES.

[1] R. Birkner, “Polyhedra: a package for computations with convex polyhedral objects”, J. Softw. Algebra Geom. 1 (2009),
11-15. MR Zbl

[2] W. Bruns, B. Ichim, T. Romer, R. Sieg, and C. Soger, “Normaliz: algorithms for rational cones and affine monoids”,
available at https://www.normaliz.uni-osnabrueck.de. Zbl

[3] H. Derksen and G. Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences 130, Springer,
Heidelberg, 2015. MR Zbl

[4] F. Gandini, Ideals of subspace arrangements, 2019. Zbl
[5] T. Hawes, “Computing the invariant ring of a finite group”, J. Softw. Algebra Geom. 5 (2013), 15-19. MR Zbl

[6] G.Kaempf and C. Soger, “Normaliz, an interface to Normaliz in Macaulay2”, available at https://github.com/Macaulay?2/
M2/tree/master/M2/Macaulay2/packages. Version 2. Zbl

[7] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system for research in algebraic geometry”, available at https://
faculty.math.illinois.edu/Macaulay2/. Zbl

[8] M. Nagata, “On the fourteenth problem of Hilbert”, pp. 459—462 in Proc. Internat. Congress Math. 1958, edited by J. A.
Todd, Cambridge Univ. Press, New York, 1960. MR Zbl

RECEIVED: 16 Dec 2020 REVISED: 26 Jul 2022 ACCEPTED: 14 Sep 2023

LUIGI FERRARO:

luigi.ferraro @utrgv.edu
School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, United States

FEDERICO GALETTO:

f.galetto@csuohio.edu
Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH, United States

FRANCESCA GANDINI:

fra.gandi.phd @ gmail.com
Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, United States

HANG HUANG:

huanghang1109 @ gmail.com
Department of Mathematics, Texas A&M University, College Station, TX, United States

MATTHEW MASTROENT:

mmastro @iastate.edu
Iowa State University, Ames, [A, United States

XIANGLONG NI:

xIni @berkeley.edu
Department of Mathematics, University of California Berkeley, Berkeley, CA, United States

:.msp

http://dx.doi.org/10.2140/jsag.2009.1.11
http://msp.org/idx/mr/2878670
http://msp.org/idx/zbl/1311.52001
https://www.normaliz.uni-osnabrueck.de
http://msp.org/idx/zbl/1203.13033
http://dx.doi.org/10.1007/978-3-662-48422-7
http://msp.org/idx/mr/3445218
http://msp.org/idx/zbl/1332.13001
https://www.proquest.com/docview/2352654381
http://msp.org/idx/zbl/1499.13049
http://dx.doi.org/10.2140/jsag.2013.5.15
http://msp.org/idx/mr/3073718
http://msp.org/idx/zbl/1311.13003
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
http://msp.org/idx/zbl/1311.13042
https://faculty.math.illinois.edu/Macaulay2/
http://msp.org/idx/zbl/0362.18015
http://msp.org/idx/mr/116056
http://msp.org/idx/zbl/0127.26302
mailto:luigi.ferraro@utrgv.edu
mailto:f.galetto@csuohio.edu
mailto:fra.gandi.phd@gmail.com
mailto:huanghang1109@gmail.com
mailto:mmastro@iastate.edu
mailto:xlni@berkeley.edu
http://msp.org

	1. Introduction
	2. Types of group actions
	2.1. Finite group actions
	2.2. Diagonal actions
	2.3. Linearly reductive actions

	3. Rings of invariants
	4. Closing remarks
	4.1. Performance considerations
	4.2. Future directions

