
ON THE GENERALIZED HAMMING WEIGHTS OF HYPERBOLIC CODES

EDUARDO CAMPS-MORENO, IGNACIO GARCÍA-MARCO, HIRAM H. LÓPEZ,
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Abstract. A hyperbolic code is an evaluation code that improves a Reed-Muller code because
the dimension increases while the minimum distance is not penalized. We give necessary and
su�cient conditions, based on the basic parameters of the Reed-Muller code, to determine
whether a Reed-Muller code coincides with a hyperbolic code. Given a hyperbolic code C, we
find the largest Reed-Muller code contained in C and the smallest Reed-Muller code containing
C. We then prove that similar to Reed-Muller and a�ne Cartesian codes, the r-th generalized
Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for Reed-Muller
and a�ne Cartesian codes, determining the r-th footprint of a hyperbolic code is still an open
problem. We give upper and lower bounds for the r-th footprint of a hyperbolic code that,
sometimes, are sharp.

1. Introduction

Let Fq be a finite field with q elements, where q is a power of a prime. An [n, k, �] linear code

C over Fq is a subspace C ✓ Fn
q with Fq-dimension k and minimum distance � := min{dH(c, c0) :

c, c0 2 C, c 6= c0}, where dH(·, ·) denotes the Hamming distance.

The Generalized Hamming weights (GHWs) for linear codes, a natural generalization of the
minimum distance, were introduced by Wei in 1992 [18]. Wei showed in the same work [18]
that the GHWs completely characterize the performance of a linear code when used on the
wire-tap channel of type II. The GHWs are also related to resilient functions and trellis, or
branch complexity of linear codes [17]. The precise definition is the following. For a nonnegative
integer s, we set [s] := {1, 2, ..., s}. The support of a subspace D ✓ Fn

q is defined by �(D) :=
{i 2 [n] : there is (x1, . . . , xn) in D with xi 6= 0} . For an integer 1  r  k, the r-th generalized

Hamming weight of C is given by

�r(C) := min{ |�(D)| : D ✓ C, dim(D) = r}.
Note that �1(C) is the minimum distance of C.

This work will focus on evaluation codes whose evaluation points are the points in P := Fm
q .

Throughout this paper, N will represent the set of non-negative integers. For A ✓ Nm, let Fq[A]
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be the subspace of polynomials in Fq[X] := Fq[X1, . . . , Xm] with Fq-basisn
Xi := X

i1
1 · · ·Xim

m : i = (i1, . . . , im) 2 A

o
. Write P = {P1, . . . , Pn}, where n := |P| = q

m
.

Define the following evaluation map

evP : Fq[X1, . . . , Xm] �! Fn
q

f 7�! (f(P1), . . . , f(Pn)).

The evaluation or monomial code associated with A is denoted and defined by

CA := evP(Fq[A]) = {evP(f) : f 2 Fq[A]} .

For a, b 2 R and a  b, we denote by [[a, b]] the integer interval [a, b] \ Z. Recall A ✓ Nm
. As

↵
q = ↵ for every ↵ 2 Fq, one can find a unique set B ✓ [[0, q � 1]]m such that CA = CB. In what

follows, if a set A ✓ Nm defines the code CA, we are assuming that A ✓ [[0, q � 1]]m.

Observe that the length and dimension of the evaluation code CA are qm and |A|, respectively.
The minimum distance of CA has been studied in terms of the footprint that we now define. The
footprint of the evaluation code CA is the integer

FB(CA) := min

8
<

:

mY

j=1

(q � ij) : (i1, . . . , im) 2 A

9
=

; .

The footprint matters because the minimum distance �1(CA) of CA is lower bounded by the
footprint bound [10]: FB(CA)  �1(CA). The footprint bound has been extensively studied in
the literature. See, for example, [1, 4, 8, 15] and the references therein.

The families of Reed-Muller and hyperbolic codes that we describe below are particular cases
of evaluation codes. Let s � 0,m � 1 be integers and take

R :=

8
<

:i = (i1, . . . , im) 2 [[0, q � 1]]m :
mX

j=1

ij  s

9
=

; .

The evaluation code CR, denoted by RMq(s,m), is called Reed-Muller code over Fq of order s

with m variables.

The hyperbolic code is defined as follows. Let d,m � 1 be integers and take

H :=

8
<

:i = (i1, . . . , im) 2 [[0, q � 1]]m :
mY

j=1

(q � ij) � d

9
=

; .

The evaluation code CH , denoted by Hypq(d,m), is called the hyperbolic code over Fq of order
d with m variables.

A hyperbolic code is an evaluation code designed to improve the dimension of a Reed-Muller
code while the minimum distance is not penalized. The hyperbolic codes were first introduced
in [16] as hyperbolic cascade Reed-Solomon codes, and they were later generalized by Feng
and Rao as improved Goppa codes in [6]. Høholdt and Pellikaan in [14] mentioned another
generalization from order functions and estimated the minimum distance using the order bound
(also known as the Feng-Rao bound). In [13], Geil and Høholdt used footprints to estimate
the minimum distance of several evaluation codes, and later in [11], the same authors used the
results of footprints to prove that the designed distance of hyperbolic codes (coming from the
order bound) it is, in fact, the actual minimum distance. The strategies in this paper are similar
to those from [11], and so it is our primary reference.
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Remark 1.1. We denote the hyperbolic code over Fq of order d with m variables by Hypq(d,m).
In [11], the authors use the notation Hypq(s,m), where s = q

m�d. Since we are interested in the
minimum distance and the generalized Hamming weights, we prefer to emphasize the dependence
with respect to the minimum distance rather than the cardinality of the corresponding footprint
s = q

m � d. In [11], the authors also defined Hypq(d,m) as the dual of the evaluation code

coming from H
? = {i = (i1, . . . , im) 2 [[0, q� 1]]m :

Q
m

j=1(ij +1) < d}. From [11], we have that
both definitions coincide.

Note that the hyperbolic code Hypq(d,m) has been designed to be the code with the largest
possible dimension among those monomial codes CA such that FB(CA) � d by [11]. There
are instances where the hyperbolic codes improve the Reed-Muller codes, meaning that the
dimension has increased [14]. But sometimes, the hyperbolic and Reed-Muller codes coincide.
In this paper, we give necessary and su�cient conditions to determine whether a Reed-Muller
code is hyperbolic; those conditions are provided in terms of the basic parameters of the Reed-
Muller code. Given a hyperbolic code, we find the largest (respectively smallest) Reed-Muller
code contained in (respectively that contains) the hyperbolic.

The GHWs have been studied for many well-known families of codes. Heijnen and Pellikaan
introduced in [12], in a general setting, the order bound on GHWs of codes on varieties to
compute the GHWs of Reed-Muller codes. Beelen and Datta used a similar approach of the
order bound in [2] to calculate the GHWs of a�ne Cartesian codes. Jaramillo et al. introduced
in [15] the r-th footprint to bound the GHWs for any evaluation code. This paper proves that
the r-th generalized Hamming weight and the r-th footprint of a hyperbolic code coincide.

The outline of this paper is as follows. In Section 2, we determine when a Reed-Muller
code is hyperbolic. Thus, we indicate when the hyperbolic code of order d has a greater di-
mension concerning a Reed-Muller code with the same minimum distance. Given a hyperbolic
code Hypq(d,m), we find in Section 3 the smallest Reed-Muller code RMq(s0,m) that con-
tains Hypq(d,m). In Section 4, we find the largest Reed-Muller code RMq(s,m) contained in
Hypq(d,m). In other words, in Section 3 and 4 we find the largest s and the smallest s

0 such
that

RMq(s,m) ✓ Hypq(d,m) ✓ RMq(s
0
,m).

In Section 5, we prove that similar to Reed-Muller and a�ne Cartesian codes, the r-th gen-
eralized Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for
Reed-Muller and a�ne Cartesian codes, determining the r-th footprint of a hyperbolic code is
still an open problem. We use the results from Sections 2, 3, and 4 to provide upper and lower
bounds for the r-th footprint of a hyperbolic code that, sometimes, are sharp.

2. When hyperbolic and Reed-Muller codes coincide

We determine in this section when a Reed-Muller code is a hyperbolic code. In other words,
for a Reed-Muller code RMq(s,m), we give necessary and su�cient conditions over q, s, m and
its minimum distance to determine if RMq(s,m) is a hyperbolic code.

Remark 2.1. From now on, we assume that s < m(q � 1). Note that when s = m(q � 1), the
corresponding hyperbolic code is a Reed-Muller code because

Hypq(1,m) = Fn

q = RMq(m(q � 1),m).
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Proposition 2.2. Assume s = mt+ r, where t, r 2 N and 0  r  m� 1. Then

max

8
<

:

mY

j=1

(q � ij) :
mX

j=1

ij = s, 0  ij  q � 1

9
=

; = (q � t� 1)r(q � t)m�r
.

Proof. Consider i = (i1, . . . , im) such that
Q

m

j=1(q � ij) reaches the maximum value. If all the
ij ’s are equal, then ij =

s

m
and we have the result (r = 0). If they are not equal, we can assume

by symmetry that i1 > i2, and then we would have that

(q � i1 + 1)(q � i2 � 1)
mY

j=3

(q � ij)�
mY

j=1

(q � ij) > 0

if and only if i1 � i2 � 1 > 0. Since we have chosen i to be maximum, then i1 � i2 � 1 = 0 and
therefore i1 = i2 + 1. This means that i1 = . . . = ir = t+ 1 and ir+1 = . . . = im = t for some r

and t (and then s = mt+ r) and thus the conclusion follows. ⇤

We come to one of the main results of this section.

Theorem 2.3. Let m � 1 and 0  s < m(q � 1). The Reed-Muller code RMq(s,m) with

minimum distance � is a hyperbolic code if and only if

(q � t� 1)r(q � t)m�r
< �,

where s+1 = mt+ r and 0  r < m. Even more, in this case we have RMq(s,m) = Hypq(�,m).

Proof. Define the sets

R =

8
<

:i 2 [[0, q � 1]]m :
mX

j=1

ij  s

9
=

; and H =

8
<

:i 2 [[0, q � 1]]m :
mY

j=1

(q � ij) � �

9
=

; .

By [3, Theorem 3.9 (iii)], we know that the minimum distance of the Reed-Muller code
RMq(s,m) is �. Therefore, for every vector i = (i1, . . . , im) such that

P
m

j=1 ij  s, we have
that

Q
m

j=1(q � ij) � �. This implies that R ✓ H. Thus, by definition of hyperbolic code, the
Reed-Muller code RMq(s,m) is a hyperbolic code if and only H ✓ R. Define i = (i1, . . . , im)
such that

P
m

j=1 ij � s+ 1 = mt+ r. By Proposition 2.2,
Q

m

j=1(q � ij)  (q � t� 1)r(q � t)m�r
.

We conclude R = H if and only if (q � t� 1)r(q � t)m�r
< �. In this case, we see that CH is the

hyperbolic code Hypq(�,m). ⇤

Theorem 2.3 was previously proved in [7, Proposition 2] for the case when m = 2. Even
when m = 2, we can observe that, in most nontrivial cases, the hyperbolic code outperforms the
corresponding Reed-Muller code with the same minimum distance.

Example 2.4. Take q = 9. By Theorem 2.3, we have the following inequality for the dimensions
of the Reed-Muller and the hyperbolic codes

dim(RM9(s, 2)) < dim(Hyp9(�, 2))

for all s 2 [[5, 13]]. The dimensions are equal for s 2 [[0, 4]] [ [[14, 16]].

Corollary 2.5. In the binary case, the Reed-Muller code RM2(s,m) of order s < m coincides

with the hyperbolic code Hyp2(2
m�s

,m) of order equal to the minimum distance of RM2(s,m).
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Proof. If s < m� 1, take r = s+ 1. By Theorem 2.3, since

2m�r
< 2m�s = �(RM2(s,m)),

we have that RM2(s,m) = Hyp2(2
m�s

,m).

If s = m� 1, then �(RM2(s,m)) = 2. Note that the element (1, . . . , 1) is not in the set

H =
n
(i1, . . . , im) 2 [[0, 2� 1]]m :

Q
m

j=1(2� ij) � 2
o
. because

Q
m

j=1(2 � 1) = 1. So, the

evaluation of the monomial X1 · · ·Xm is not in the hyperbolic code Hyp2(2
m�s

,m), mean-
ing dimHyp2(2

m�s
,m)  2m � 1 = dimRM2(s,m). By the fact that any Reed-Muller code

of minimum distance d is contained in the Hyperbolic code of designed distance d, the result
follows. ⇤

3. The smallest Reed-Muller code

Given the hyperbolic code of order d with m variables Hypq(d,m), we will now find the
smallest degree s such that Hypq(d,m) ✓ RMq(s,m). We will use the following notation. The
symbol bac denotes the integer part of the real number a, which is the nearest and smaller
integer of a, and {a} is the fractional part of a, defined by the formula {a} = a� bac .

Remark 3.1. By Remark 2.1, in the following results we just consider d > 1.

We start with m = 2, the case of two variables.

Proposition 3.2. Given d 2 N, with d > 1, define a := q�
p
d and s := b2ac . Then Hypq(d, 2) ✓

RMq(s, 2). Moreover, s is the smallest integer with this property, that is

Hypq(d, 2) 6✓ RMq(s� 1, 2).

Proof. Let H,R1, R2 ✓ [[0, q � 1]]m be the sets defining the codes Hypq(d, 2), RMq(s, 2) and
RMq(s�1, 2), respectively. We show first that Hypq(d, 2) ✓ RMq(s, 2). We will use the following
fact:

(3.1) min{a1 + a2 : a1, a2 2 R�0, a1a2 = d} = 2
p
d.

For every i = (i1, i2) 2 N2 such that i 2 H, we have that (q � i1)(q � i2) � d. By Eq. (3.1),
(q � i1) + (q � i2) � 2

p
d, i.e. i1 + i2  2a. Moreover, since i1, i2 2 N, then i1 + i2  b2ac = s.

Thus i 2 R1, which proves the first statement.

We show now that Hypq(d, 2) 6✓ RM(s� 1, 2). We separate it into two cases.

• Case 1. 0  {a} <
1
2 . Take a = (bac , bac) 2 N2. As (q� bac)2 � (q� a)2 = d, a belongs

to H. Observe that bac+ bac = 2 bac = b2ac = s > s� 1, thus a /2 R2.

• Case 2. 1
2  {a} < 1. Take a = (bac , bac + 1) 2 N2

. Since {a} � 1
2 , then q � a =

q�bac�{a}  q�bac� 1
2 . Thus, the equation

�
q � bac � 1

2

�2
= (q�bac)(q�bac�1)+ 1

4 ,

implies that (q � bac)(q � bac � 1) =
j�
q � bac � 1

2

�2k �
⌅
(q � a)2

⇧
= bdc = d. This

means that a belongs to H. As bac + bac + 1 = 2 bac + 1 = b2ac = s > s � 1, we have
that a /2 R2.

Hence, the proof is complete. ⇤

The trivial generalization to m variables of Proposition 3.2 is not valid. As the following
example shows, it is not true that in general the code RMq(s,m) is the smallest Reed-Muller
code that contains the hyperbolic code Hypq(d,m), where a = q � m

p
d and s = bmac.
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Example 3.3. Take q = 27, m = 3 and d = 37. Then a = q � 3
p
d = 27 � 3

p
37 ⇡ 23.667, and

s = b3ac = 71. It is computationally easy to check that if i1, i2 and i3 are integers such that
(q � i1)(q � i2)(q � i3) � 37, then i1 + i2 + i3  70. Thus Hypq(d,m) ✓ RMq(s� 1,m).

We have the following result as the first generalization of Proposition 3.2.

Proposition 3.4. Given d 2 N, with d > 1, define a := q � m
p
d and s := bmac . Then

Hypq(d,m) ✓ RMq(s,m). Moreover, s is the smallest integer with this property if {a} <
1
m
.

Proof. Let H ✓ [[0, q � 1]]m be the set defining the hyperbolic code Hypq(d,m). We will use the
following fact:

(3.2) min

8
<

:

mX

j=1

aj : aj 2 R�0 and
mY

j=1

aj = d

9
=

; = m
m
p
d.

For every i = (i1, . . . , im) 2 Nm such that i 2 H, we have that
Q

m

j=1(q � ij) � d. By Equation

(3.2), we obtain
P

m

j=1(q � ij) � m
m
p
d, i.e.

P
m

j=1 ij  ma. Since ij 2 N for j 2 {1, . . . ,m},P
m

j=1 ij  bmac = s, which proves that Hypq(d,m) ✓ RMq(s,m).

Let R ✓ [[0, q�1]]m be the set defining the code RMq(s�1,m). If {a} <
1
m
, then bmac = m bac.

Consider a = (bac , . . . , bac) 2 Nm. It is easy to check that a 2 H, but a /2 R. ⇤
Remark 3.5. Given d 2 N, with d > 1, take a := q � m

p
d. Observe that Hypq(d,m) 6✓

RMq(mbac� 1,m). Indeed, let H,R ✓ [[0, q� 1]]m be the sets defining the codes Hypq(d,m) and
RMq(mbac � 1,m), respectively. Consider a := (bac , . . . , bac) 2 Nm. It is easy to check that
a 2 H, but a /2 R.

We now come to one of the main results of this section.

Theorem 3.6. Given d 2 N with d > 1, define a := q � m
p
d. Then Hypq(d,m) ✓ RMq(s,m),

where

s = m bac+ r and r =

$
m log

⇣
q�a

q�bac

⌘

log
⇣

q�bac�1
q�bac

⌘

%
.

Even more, s is the smallest integer with this property, that is

Hypq(d,m) 6✓ RMq(s� 1,m).

Proof. Let H,R1, R2 ⇢ [[0, q � 1]]m be the sets defining the codes Hypq(d,m), RMq(s,m), and
RMq(s�1,m), respectively. First note that, by the definition of r, we know that r 2 {0, . . . ,m�
1} is the largest integer such that

(q � bac)m�r(q � bac � 1)r � (q � a)m = d.

Indeed, the last inequality is satisfied if and only if
⇣
q�bac�1
q�bac

⌘
r

�
⇣

q�a

q�bac

⌘
m

, or equivalently, if

r  m
log

⇣
q�a

q�bac

⌘

log
⇣

q�bac�1
q�bac

⌘ as log
⇣
q�bac�1
q�bac

⌘
< 0. Observe that r = 0 if a is an integer.

Thus, if we consider

a = (bac+ 1, . . . , bac+ 1| {z }
r

, bac , . . . , bac| {z }
m�r

) 2 Nm
,

then it is easy to check that a 2 H but a /2 R2. Thus, Hypq(d,m) 6✓ RMq(s� 1,m).



ON THE GENERALIZED HAMMING WEIGHTS OF HYPERBOLIC CODES 7

Let R1 be the complement of R1 in [[0, q � 1]]m, i.e.

R1 =

8
<

:i 2 [[0, q � 1]]m :
mX

j=1

ij � s+ 1

9
=

; .

We will show that H \R1 = ;. First note that the point

b = (bac+ 1, . . . , bac+ 1| {z }
r+1

, bac , . . . , bac| {z }
m�r�1

) 2 Nm
,

satisfies that b 2 R1 but b /2 H. A similar situation happens with any point obtained by a
permutation of the entries of b. Now let i = (i1, . . . , im) 2 R1 such that

P
m

j=1 ij = s + 1. If
there exists an index l such that il > bac + 1, there must be an index ` such that i`  bac (by
Dirichlet’s principle). Take a1 = i � el + e`, where ei denotes the i-th standard vector in Nm

.

Define the function

f(X1, . . . , Xm) =
mY

j=1

(q �Xj).

It is easy to check that f(i) < f(a1). Indeed,

f(i) < f(a1) () (q � il)(q � i`) < (q � a1,l)(q � a1,`)

() i` < il � 1.

Now, if there exists again an index l2 such that a1,l2 > bac+ 1, then there must exists an index
`2 such that a1,`2  bac. Then we can repeat the process until we reach a permutation of the
entries of the point b. Thus, we get a set of points {ai}i=1,...,t such that f(i) < f(a1) < . . . <

f(at) < f(b) < d. That is i 2 R1, but i /2 H. ⇤
Example 3.7. The Reed-Muller code RM9(s, 2) is a hyperbolic code for s  4 and s � 14 by
Theorem 2.3.

We close this section with an example that shows the smallest Reed-Muller code that contains
a hyperbolic code.

Example 3.8. The lattice points under the red curve of Figure 1(A) define the hyperbolic code
Hyp9(27, 2). By Theorem 3.6, we have that Hyp9(27, 2) ✓ RM9(s, 2) when s � 7. The lattice
points under the blue curve of Figure 1(A) define the Reed-Muller hyperbolic code RM9(7, 2),
which is the smallest Reed-Muller code that contains Hyp9(27, 2).

Example 3.9. The lattice points under the red curve of Figure 1(B) define the hyperbolic code
Hyp9(9, 2). By Theorem 3.6, we have that Hyp9(9, 2) ✓ RM9(s, 2) when s � 12. The lattice
points under the blue curve of Figure 1(B) define the Reed-Muller hyperbolic code RM9(12, 2),
which is the smallest Reed-Muller code that contains Hyp9(9, 2).

4. The largest Reed-Muller code

Given the hyperbolic code over Fq of order d with m variables Hypq(d,m), we now find the
largest degree s such that RMq(s,m) ✓ Hypq(d,m). We first recall the minimum distance of a
Reed-Muller code.

Proposition 4.1. ([9]) Take s  (q � 1)m. Write s = t(q � 1) + r, where t, r 2 N and

0  r < q� 1. The minimum distance of the Reed-Muller code RMq(s,m) is � = (q � r)qm�1�t
.
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5

5

(A)

5

5

(B)

Figure 1. (A) The lattice points under the red curve define Hyp9(27, 2). The
lattice points under the blue curve define RM9(7, 2), the smallest Reed-Muller
code that contains Hyp9(27, 2). (B) The lattice points under the red curve de-
fine Hyp9(9, 2). The lattice points under the blue curve define RM9(12, 2), the
smallest Reed-Muller code that contains Hyp9(9, 2).

Proposition 4.2. Let d 2 N, with d > 1. The minimum distance � (RMq(s,m)) � d if and only

if

s  (m� c)(q � 1) + q �
⇠

d

qc�1

⇡
, where c :=

⌃
logq(d)

⌥
.

Proof. Write s = t(q � 1) + r, where t, r 2 N and 0  r < q � 1. By Proposition 4.1,

� (RMq(s,m)) = (q � r)qm�1�t
.

()) Assume that �(RMq(s,m)) � d. Then we have that qm�t � (q � r)qm�1�t � d. Because
of the properties of the logarithm, m� t �

⌃
logq(d)

⌥
and t  m�

⌃
logq(d)

⌥
= m�c. If t < m�c

we have that s < (t+1)(q� 1)  (m� c)(q� 1) and the result follows. Moreover, for t = m� c,

then q � r �
⌃
d/q

m�1�t
⌥
=
⌃
d/q

c�1
⌥
, and hence, r  q �

l
d

qc�1

m
. Putting all together, we have

that s  (m� c)(q � 1) + q �
l

d

qc�1

m
.

(() Conversely let u = (m� c)(q � 1) + q �
l

d

qc�1

m
and let s  u. Then,

RMq(s,m) ✓ RMq(u,m).

As c =
⌃
logq(d)

⌥
, observe that q �

l
d

qc�1

m
< q � 1, hence,

� (RMq(s,m)) � � (RMq(u,m)) =

✓
q �

✓
q �

⇠
d

qc�1

⇡◆◆
q
m�1�(m�c) =

⇠
d

qc�1

⇡
q
c�1 � d.

This completes the proof. ⇤

We come to one of the main results of this section, which helps to find the largest Reed-Muller
code inside of a hyperbolic code.
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Theorem 4.3. Let d 2 N, with d > 1. Then RMq(s,m) ✓ Hypq(d,m) if and only if

s  (m� c)(q � 1) + q �
⇠

d

qc�1

⇡
, where c :=

⌃
logq(d)

⌥
.

Proof. This is a direct consequence of Proposition 4.2. ⇤
Example 4.4. The lattice points under the red curve of Figure 2(A) define the hyperbolic code
Hyp9(27, 2). By Theorem 4.3, we have that RM9(s, 2) ✓ Hyp9(27, 2) when s  6. The lattice
points under the black curve of Figure 2(A) define the Reed-Muller hyperbolic code RM9(6, 2),
which is the largest Reed-Muller code in Hyp9(27, 2).

Example 4.5. The lattice points under the red curve of Figure 2(B) define the hyperbolic code
Hyp9(9, 2). By Theorem 4.3, we have that RM9(s, 2) ✓ Hyp9(9, 2) when s  8. The lattice
points under the black curve of Figure 2(B) define the Reed-Muller hyperbolic code RM9(8, 2),
which is the largest Reed-Muller code in Hyp9(9, 2).

5

5

(A)

5

5

(B)

Figure 2. (A) The lattice points under the red curve define Hyp9(27, 2). The
lattice points under the black curve define RM9(6, 2), the largest Reed-Muller
code in Hyp9(27, 2). (B) The lattice points under the red curve define Hyp9(9, 2).
The lattice points under the black curve define RM9(8, 2), the largest Reed-Muller
code in Hyp9(9, 2).

5. Generalized Hamming weights

This section proves that, similar to Reed-Muller and a�ne Cartesian codes, the r-th gen-
eralized Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for
Reed-Muller [12] and a�ne Cartesian [2] codes, determining the r-th footprint of a hyperbolic
code is still an open problem. We give upper and lower bounds for the r-th footprint of a
hyperbolic code Hypq(d,m) in terms of the largest Reed-Muller code RMq(s,m) contained in
Hypq(d,m) and the smallest Reed-Muller code RMq(s0,m) that contains Hypq(d,m). These
bounds sometimes are sharp.

Recall that the monomial code associated with A ✓ [[0, q � 1]]m is given by

CA = evP(Fq[A]) = {evP(f) : f 2 Fq[A]} .
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For an integer 1  r  |A|, the r-th generalized Hamming weight of CA is given by

�r(CA) = min{ |�(D)| : D ✓ CA, dim(D) = r},
where �(D) := {i 2 [n] : there is x 2 D with xi 6= 0} . We now explain how to bound the r-th
generalized Hamming weight in terms of the footprint. For i = (i1, . . . , im) 2 [[0, q � 1]]m, we
define the set

r(i) := [[i1, q � 1]]⇥ · · ·⇥ [[im, q � 1]].

Note that |r(i)| =
Q

m

j=1(q � ij). We can rewrite the footprint bound of the code CA as

FB(CA) = min {|r(i)| : i 2 A} .
The minimum distance �(CA) of CA is lower bounded by the footprint bound [10]: FB(CA) 
�(CA). Jaramillo et al. generalized in [15] the footprint bound to the r-th footprint:

FBr(CA) := min

8
<

:

������

r[

j=1

r(ij)

������
: ij 2 A, i` 6= ij for `, j 2 [[1, r]]

9
=

; .

Similar to the minimum distance, the r-th generalized Hamming weight is lower bounded by the
r-th footprint [15, Theorem 3.9]:

(5.1) FBr(CA)  �r(CA).

The r-th footprint is sharp for Reed-Muller and a�ne Cartesian codes by [12] and [2], re-
spectively. We now extend the result by proving that the r-th footprint is sharp for hyperbolic
codes. Recall that the hyperbolic code Hypq(d,m) depends on the set

H = {i 2 [[0, q � 1]]m : |r(i)| � d} .
We come to one of the main results of this section.

Theorem 5.1. Let 1  r  dim(Hypq(d,m)). Then, the r-th generalized Hamming weight of a

hyperbolic code Hypq(d,m) is given by the r-th footprint:

�r(Hypq(d,m)) = FBr(Hypq(d,m)) := min

8
<

:

������

r[

j=1

r(ij)

������
: ij 2 H, i` 6= ij for `, j 2 [[1, r]]

9
=

; .

Proof. By Equation (5.1), FBr(Hypq(d,m))  �r(Hypq(d,m)).

To prove the inequality �r(Hypq(d,m))  FBr(Hypq(d,m)), we construct r elements in
Hypq(d,m) that generate a subspace in Hypq(d,m) of dimension r and support length pre-
cisely FBr(Hypq(d,m)). Let � be a primitive element of Fq. For a nonnegative integer `, we
define the polynomial f(`, x) in Fq[x] of degree ` as

f(`, x) :=

8
><

>:

1 if ` = 0

x if ` = 1

(x)(x� �) · · · (x� �
`�1) if ` > 1.

Let i1, . . . , ir be elements in H such that FBr(Hypq(d,m)) =
���
S

r

j=1r(ij)
���. For every 1  j  r,

assume ij = (ij1, . . . , ijm), and define the polynomial

fj := f(ij1, x1) · · · f(ijm, xm).

Denote by Z(fj) the set of zeros of fj in Fm
q . Note that

Fm

q \ Z(fj) =
�
(�a1 , . . . , �am) 2 Fm

q : (a1, . . . , am) 2 r(ij)
 
,



ON THE GENERALIZED HAMMING WEIGHTS OF HYPERBOLIC CODES 11

which implies that evFm
q
(fj) 2 Hypq(d,m), since ij 2 H. Let Z(f1, . . . , fr) be the set of

common zeros of f1, . . . , fr in Fm
q . As Z(f1, . . . , fr) =

T
r

j=1 Z(fj), then Fm
q \ Z(f1, . . . , fr) =

S
r

j=1

�
Fm
q \ Z(fj)

�
. Thus, if Dr := SpanFq

n
evFm

q
(f1), . . . , evFm

q
(fr)

o
✓ Hypq(d,m), then

|�(Dr)| = |Fm

q \ Z(f1, . . . , fr)| =

������

r[

j=1

r(ij)

������
= FBr(Hypq(d,m)).

We conclude that �r(Hypq(d,m))  FBr(Hypq(d,m)). ⇤

We now use Theorem 5.1 to bound the GHWs of hyperbolic codes in terms of the r-th
footprint.

Corollary 5.2. Let i1, . . . , ir 2 H be the first r elements of H in descending lexicographical

order. Then

�r(Hypq(d,m)) 

������

r[

j=1

r(ij)

������
.

Proof. This is a direct consequence of Theorem 5.1. ⇤

Heijnen and Pellikaan proved in [12, Theorem 5.10] that the bound of Corollary 5.2 is sharp for
a Reed-Muller code. Even more, Heijnen and Pellikaan explicitly described the r-th generalized
Hamming weight in terms of the r-th element in [[0, q�1]]m in the lexicographic order. Note that
Theorem 5.1 gives an expression to compute the GHWs of a hyperbolic code in terms of finding
the minimum on a set. Naturally, when the hyperbolic code coincides with a Reed-Muller code,
we obtain a closed formula for the GHWs of some hyperbolic codes.

Theorem 5.3. Take m � 1. Let d be such that (q� t�1)r(q� t)m�r
< d, where s+1 = mt+ r,

0  s < m(q � 1), and 0  r < m. The r-th generalized Hamming weight of the hyperbolic code

Hypq(d,m) is given by:

�r(Hypq(d,m)) =
mX

i=1

am�i+1q
i�1 + 1,

where a = (a1, . . . , am) is the r-th element in [[0, q � 1]]m in the lexicographic order with the

property that deg(a) > (q � 1)m� s� 1.

Proof. By Theorem 2.3, the hyperbolic code Hypq(d,m) coincides with the Reed-Muller code
RMq(s,m). By [12, Theorem 5.10], the r-th generalized Hamming weight is given by �r(RMq(s,m)) =P

m

i=1 am�i+1q
i�1 + 1. ⇤

We also have the following bounds for the GHWs of an arbitrary hyperbolic code Hypq(d,m)
in terms of the GHWs of some Reed-Muller codes.

Corollary 5.4. Let Hypq(d,m) be a hyperbolic code. Define s
0 := m bac+ r, where a = q� m

p
d

and r =

$
m log

⇣
q�a

q�bac

⌘

log
⇣

q�bac�1
q�bac

⌘

%
. Let s be the maximum integer such that s  (m�c)(q�1)+q�

l
d

qc�1

m
,

where c :=
⌃
logq(d)

⌥
. Then

�r(RMq(s
0
,m))  �r(Hypq(d,m))  �r(RMq(s,m)),

where the first inequality is valid for any 1  r  dim(RMq(s,m)) and the second inequality is

true for any 1  r  dim(Hypq(d,m)).
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Proof. The result follows from Theorems 3.6 and 4.3, where we prove RMq(s,m) ✓ Hypq(d,m) ✓
RMq(s0,m). ⇤
Example 5.5. From Examples 3.8 and 4.4, we have that RM9(6, 2) ✓ Hyp9(27, 2) ✓ RM9(7, 2).
Thus,

26 = �2(RM9(7, 2))  �2(Hyp9(27, 2))  �2(RM9(6, 2)) = 35.

Using computational software and Theorem 5.1, we can see that the actual value is �2(Hyp9(27, 2)) =
FB2(Hyp9(27, 2)) = 32 (see Figure 3).

5

5

(A)

5

5

(B)

Figure 3. We observe that RM9(6, 2) ✓ Hyp9(27, 2) ✓ RM9(7, 2). The boxes
represent the lattice points that help to compute the second GHWs. The number
of lattice points inside: the red box is equal to �2(Hyp9(27, 2)), the black box is
equal to �2(RM9(6, 2)), and the blue box is equal to �2(RM9(7, 2)).

Example 5.6. From Examples 3.9 and 4.5, we have that RM9(8, 2) ✓ Hyp9(9, 2) ✓ RM9(12, 2).
Thus,

9 = �2(RM9(12, 2))  �2(Hyp9(9, 2))  �2(RM9(8, 2)) = 17.

Using computational software and Theorem 5.1, we can see that the actual value is �2(Hyp9(9, 2)) =
FB2(Hyp9(9, 2)) = 12 (see Figure 4).

The following example shows that the bounds of Corollary 5.2 may be sharp for some of the
GHWs of a hyperbolic code.

Example 5.7. Let q = 9 and H = {(i1, i2) 2 [[0, 8]] | (9� i1)(9� i2) � 27}. We found with the
computational software Octave [5] that the element in H that minimizes the set {|r(i)| : i 2 H}
coincides with the first element of H in descending lexicographical order. This first element is
(6, 0); see Figure 5. As |r(6, 0)| = 27, we obtain that the first generalized Hamming weight,
which is the minimum distance, is given by �1(Hyp9(27, 2)) = 27.

The first two elements in descending lexicographical order in H are (6, 0) and (5, 2). See Fig-
ure 6. We obtain |r(6, 0)[r(5, 2)| = 34. However, �2(Hyp9(27, 2)) = 32 by Example 5.5, which
means that the first two elements do not give the second weight in descending lexicographical
order.
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5

5

(A)

5

5

(B)

Figure 4. We observe that RM9(8, 2) ✓ Hyp9(9, 2) ✓ RM9(12, 2). The boxes
represent the lattice points that help to compute the second GHWs. The number
of lattice points inside: the red box is equal to �2(Hyp9(9, 2)), the black box is
equal to �2(RM9(8, 2)), and the blue box is equal to �2(RM9(12, 2)).

5

5

5

5

Figure 5. The number of lattice points inside of the blue box equals
�1(Hyp9(27, 2)).

The first four elements in descending lexicographical order in H are (6, 0), (5, 2), (5, 1), and
(5, 0). See Figure 7. The first three and the first four elements, respectively, give the third and
fourth GHWs:

�3(Hyp9(27, 2)) = |r(6, 0) [r(5, 2) [r(5, 1)| = 35

and,

�4(Hyp9(27, 2)) = |r(6, 0) [r(5, 2) [r(5, 1) [r(5, 0)| = 36.
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5

5

5

5

Figure 6. The number of lattice points inside of the green box equals
�2(Hyp9(27, 2)).

5

5

5

5

Figure 7. The number of lattice points inside of the grey box equals
�4(Hyp9(27, 2)) = |r(6, 0) [r(5, 2) [r(5, 1) [r(5, 0)| = 36.
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[7] I. Garćıa-Marco, I. Márquez-Corbella, and D. Ruano. High dimensional a�ne codes whose square has a

designed minimum distance. Designs, Codes and Cryptography, 88(8):1653–1672, 2020.
[8] O. Geil. Evaluation Codes from an A�ne Variety Code Perspective, pages 153–180. World Scientific, 2008.
[9] O. Geil. On the second weight of generalized reed-muller codes. Designs, Codes and Cryptography, 48(3):323–

330, 2008.
[10] O. Geil and T. Høholdt. Footprints or generalized bezout’s theorem. IEEE Transactions on Information

Theory, 46(2):635–641, 2000.



ON THE GENERALIZED HAMMING WEIGHTS OF HYPERBOLIC CODES 15

[11] O. Geil and T. Høholdt. On hyperbolic codes. In Applied algebra, algebraic algorithms and error-correcting

codes (Melbourne, 2001), volume 2227 of Lecture Notes in Comput. Sci., pages 159–171. Springer, Berlin,
2001.

[12] P. Heijnen and R. Pellikaan. Generalized hamming weights of q-ary reed-muller codes. IEEE Transactions

on Information Theory, 44(1):181–196, 1998.
[13] T. Høholdt and O. Geil. Footprints or generalized bezout” s theorem. IEEE Transactions on information

theory, 46(2), 2000.
[14] T. Høholdt, J. van Lint, and R. Pellikaan. Algebraic Geometry Codes, volume 1, pages 871–961. Elsevier,

Amsterdam, 1998.
[15] D. Jaramillo, M. Vaz Pinto, and R. H. Villarreal. Evaluation codes and their basic parameters. Designs,

Codes and Cryptography, 89(2):269–300, 2021.
[16] K. Saints and C. Heegard. On hyperbolic cascaded Reed-Solomon codes. In Applied algebra, algebraic al-

gorithms and error-correcting codes. 10th international symposium, AAECC-10, San Juan de Puerto Rico,

Puerto Rico, May 10-14, 1993. Proceedings, pages 291–303. Berlin: Springer-Verlag, 1993.
[17] M. Tsfasman and S. Vladut. Geometric approach to higher weights. IEEE Transactions on Information

Theory, 41(6):1564–1588, 1995.
[18] V. K. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Inform. Theory, 37(5):1412–1418,

1991.

(Eduardo Camps-Moreno) Department of Mathematics, Virginia Tech, Blacksburg, VA USA

Email address: camps@esfm.ipn.mx
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