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ABSTRACT. A hyperbolic code is an evaluation code that improves a Reed-Muller code because
the dimension increases while the minimum distance is not penalized. We give necessary and
sufficient conditions, based on the basic parameters of the Reed-Muller code, to determine
whether a Reed-Muller code coincides with a hyperbolic code. Given a hyperbolic code C, we
find the largest Reed-Muller code contained in C and the smallest Reed-Muller code containing
C. We then prove that similar to Reed-Muller and affine Cartesian codes, the r-th generalized
Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for Reed-Muller
and affine Cartesian codes, determining the r-th footprint of a hyperbolic code is still an open
problem. We give upper and lower bounds for the r-th footprint of a hyperbolic code that,
sometimes, are sharp.

1. INTRODUCTION

Let F, be a finite field with ¢ elements, where ¢ is a power of a prime. An [n, k, 6] linear code
C over [, is a subspace C C F} with F,-dimension & and minimum distance ¢ := min{dx(c,c’) :
c,c’ € C,c # c'}, where dy(-,-) denotes the Hamming distance.

The Generalized Hamming weights (GHWSs) for linear codes, a natural generalization of the
minimum distance, were introduced by Wei in 1992 [18]. Wei showed in the same work [1§]
that the GHWs completely characterize the performance of a linear code when used on the
wire-tap channel of type II. The GHWSs are also related to resilient functions and trellis, or
branch complexity of linear codes [17]. The precise definition is the following. For a nonnegative
integer s, we set [s] := {1,2,...,s}. The support of a subspace D C Fy is defined by x(D) :=
{i € [n] : thereis (x1,...,2zy) in D with x; # 0} . For an integer 1 < r < k, the r-th generalized
Hamming weight of C is given by

07(C) :==min{ |x(D)| : D CC,dim(D) =r}.
Note that 61(C) is the minimum distance of C.

This work will focus on evaluation codes whose evaluation points are the points in P := F".
Throughout this paper, N will represent the set of non-negative integers. For A C N™, let [F,[A]
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be the subspace of polynomials in Fy[X] :=F,[X},..., X,,] with F,-basis

X=X X i = (i, 0) € A}. Write P = {P1,...,P,}, where n := |P| = ¢".
Define the following evaluation map

evp : Fq[Xl,...,Xm] — Fg

The evaluation or monomial code associated with A is denoted and defined by

Ca :=evp(Fy[A]) = {evp(f) : feF,A]}.

For a,b € R and a < b, we denote by [a,b] the integer interval [a,b] N Z. Recall A C N™. As
a? = o for every a € Fy, one can find a unique set B C [0, g — 1]™ such that C4 = Cp. In what
follows, if a set A C N defines the code C4, we are assuming that A C [0,q — 1]™.

Observe that the length and dimension of the evaluation code C4 are ¢™ and |A|, respectively.
The minimum distance of C4 has been studied in terms of the footprint that we now define. The
footprint of the evaluation code C4 is the integer

m

FB(C4) := min H(q—ij) s (i1, yim) €A
j=1

The footprint matters because the minimum distance 6;(C4) of C4 is lower bounded by the
footprint bound [L0]: FB(C4) < 01(C4). The footprint bound has been extensively studied in
the literature. See, for example, [1} |4, 18] [L5] and the references therein.

The families of Reed-Muller and hyperbolic codes that we describe below are particular cases
of evaluation codes. Let s > 0,m > 1 be integers and take

m
R = i:(il,...,im)E[[O,q—l]]m : ZijSS
j=1

The evaluation code Cgr, denoted by RM,(s, m), is called Reed-Muller code over I, of order s
with m variables.

The hyperbolic code is defined as follows. Let d,m > 1 be integers and take

m

j=1

The evaluation code Cgr, denoted by Hypq(d7 m), is called the hyperbolic code over F, of order
d with m variables.

A hyperbolic code is an evaluation code designed to improve the dimension of a Reed-Muller
code while the minimum distance is not penalized. The hyperbolic codes were first introduced
in [16] as hyperbolic cascade Reed-Solomon codes, and they were later generalized by Feng
and Rao as improved Goppa codes in [6]. Hgholdt and Pellikaan in [14] mentioned another
generalization from order functions and estimated the minimum distance using the order bound
(also known as the Feng-Rao bound). In [13], Geil and Hgholdt used footprints to estimate
the minimum distance of several evaluation codes, and later in [11], the same authors used the
results of footprints to prove that the designed distance of hyperbolic codes (coming from the
order bound) it is, in fact, the actual minimum distance. The strategies in this paper are similar
to those from [11], and so it is our primary reference.
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Remark 1.1. We denote the hyperbolic code over F, of order d with m variables by Hyp,(d, m).
In [11], the authors use the notation Hyp,(s,m), where s = ¢™ —d. Since we are interested in the
minimum distance and the generalized Hamming weights, we prefer to emphasize the dependence
with respect to the minimum distance rather than the cardinality of the corresponding footprint
s = ¢™ —d. In [11], the authors also defined Hyp,(d,m) as the dual of the evaluation code
coming from H+ = {i = (i1,...,4,) € [0,¢—1]™ : [T5Z,(i; +1) < d}. From [11], we have that
both definitions coincide.

Note that the hyperbolic code Hyp,(d, m) has been designed to be the code with the largest
possible dimension among those monomial codes C4 such that FB(C4) > d by [11]. There
are instances where the hyperbolic codes improve the Reed-Muller codes, meaning that the
dimension has increased [14]. But sometimes, the hyperbolic and Reed-Muller codes coincide.
In this paper, we give necessary and sufficient conditions to determine whether a Reed-Muller
code is hyperbolic; those conditions are provided in terms of the basic parameters of the Reed-
Muller code. Given a hyperbolic code, we find the largest (respectively smallest) Reed-Muller
code contained in (respectively that contains) the hyperbolic.

The GHWs have been studied for many well-known families of codes. Heijnen and Pellikaan
introduced in [12], in a general setting, the order bound on GHWs of codes on varieties to
compute the GHWs of Reed-Muller codes. Beelen and Datta used a similar approach of the
order bound in [2] to calculate the GHWs of affine Cartesian codes. Jaramillo et al. introduced
in [15] the r-th footprint to bound the GHWs for any evaluation code. This paper proves that
the r-th generalized Hamming weight and the r-th footprint of a hyperbolic code coincide.

The outline of this paper is as follows. In Section we determine when a Reed-Muller
code is hyperbolic. Thus, we indicate when the hyperbolic code of order d has a greater di-
mension concerning a Reed-Muller code with the same minimum distance. Given a hyperbolic
code Hyp,(d,m), we find in Section [3| the smallest Reed-Muller code RM,(s’,m) that con-
tains Hyp,(d,m). In Section {4, we find the largest Reed-Muller code RM,(s,m) contained in
Hyp,(d,m). In other words, in Section [3| and {4 we find the largest s and the smallest s such
that

RM,(s,m) C Hyp,(d,m) € RM(s',m).

In Section [5| we prove that similar to Reed-Muller and affine Cartesian codes, the r-th gen-
eralized Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for
Reed-Muller and affine Cartesian codes, determining the r-th footprint of a hyperbolic code is
still an open problem. We use the results from Sections and 4| to provide upper and lower
bounds for the r-th footprint of a hyperbolic code that, sometimes, are sharp.

2. WHEN HYPERBOLIC AND REED-MULLER CODES COINCIDE

We determine in this section when a Reed-Muller code is a hyperbolic code. In other words,
for a Reed-Muller code RM,(s, m), we give necessary and sufficient conditions over ¢, s, m and
its minimum distance to determine if RM(s,m) is a hyperbolic code.

Remark 2.1. From now on, we assume that s < m(q — 1). Note that when s = m(q — 1), the
corresponding hyperbolic code is a Reed-Muller code because

Hyp,(1,m) = F; = RMy(m(q — 1), m).
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Proposition 2.2. Assume s = mt+r, wheret,r € N and 0 <r <m — 1. Then

m

max Hq—z] sz—s 0<ij<qg—1p=(q—-t—1)"(¢g—t)""
j=1

Proof. Consider i = (i1, ..., i) such that [[}",(¢ — i;) reaches the maximum value. If all the
i;’s are equal, then i; = * and we have the result (r = 0). If they are not equal, we can assume
by symmetry that ¢; > i2, and then we would have that

m

(¢ — i1+ 1)( —wz—lqu—% Iﬂq—%)>0

Jj=1

if and only if ;1 —io — 1 > 0. Since we have chosen i to be maximum, then i1 —is — 1 =0 and
therefore i1 = i + 1. This means that i1 = ... =4, =t+ 1 and 4,41 = ... = i, =t for some r
and t (and then s = mt + r) and thus the conclusion follows. O

We come to one of the main results of this section.

Theorem 2.3. Let m > 1 and 0 < s < m(q — 1). The Reed-Muller code RM,(s,m) with
minimum distance 0 is a hyperbolic code if and only if

(g—t-1"(¢—1)"" <9,

where s+1 =mt+7r and 0 < r < m. Even more, in this case we have RM,(s,m) = Hyp,(d, m).

Proof. Define the sets

R= € [0,q —1]™ sz<s and H=(¢ie[0,q—1]™ q—zj ) >4

||E3

By [3, Theorem 3.9 (iii)], we know that the minimum distance of the Reed-Muller code
RMgq(s,m) is §. Therefore, for every vector i = (iy,...,4y) such that Z;n:l i; < s, we have
that H;.”:l(q — ij) > §. This implies that R C H. Thus, by definition of hyperbolic code, the
Reed-Muller code RM,(s,m) is a hyperbolic code if and only H C R. Define i = (i1,...,im)

such that 377" 4; > s + 1 = mt + r. By Proposition [2.2, [[72,(¢ —4;) < (¢ —t = 1)"(¢ - )m_r
We conclude R = H if and only if (¢ —t —1)"(¢ — )m "< 5 In this case, we see that Cp is the
hyperbolic code Hyp,(d,m). O

Theorem was previously proved in [7, Proposition 2] for the case when m = 2. Even
when m = 2, we can observe that, in most nontrivial cases, the hyperbolic code outperforms the
corresponding Reed-Muller code with the same minimum distance.

Example 2.4. Take ¢ = 9. By Theorem [2.3] we have the following inequality for the dimensions
of the Reed-Muller and the hyperbolic codes

dim(RMy(s, 2)) < dim(Hypy(5,2))
for all s € [5,13]. The dimensions are equal for s € [0,4] U [14, 16].

Corollary 2.5. In the binary case, the Reed-Muller code RMa(s,m) of order s < m coincides
with the hyperbolic code Hypy(2"™~% m) of order equal to the minimum distance of RMa(s, m).
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Proof. If s <m — 1, take r = s + 1. By Theorem since
2M7T < 2M7% = §(RMa(s,m)),
we have that RMa(s, m) = Hyp, (2™, m).
If s =m — 1, then §(RMa(s,m)) = 2. Note that the element (1,...,1) is not in the set
H = {(il,...,im) ef0,2-1]" : TI7,(2—1i)) > 2} . because J[™ (2 — 1) = 1. So, the

j=1
evaluation of the monomial Xj---X,, is not in the hyperbolic code Hyp, (2%, m), mean-
ing dim Hypy(2™7%,m) < 2™ — 1 = dimRMa(s,m). By the fact that any Reed-Muller code
of minimum distance d is contained in the Hyperbolic code of designed distance d, the result

follows. O

3. THE SMALLEST REED-MULLER CODE

Given the hyperbolic code of order d with m variables Hyp,(d,m), we will now find the
smallest degree s such that Hyp,(d,m) € RM,(s,m). We will use the following notation. The
symbol |a] denotes the integer part of the real number a, which is the nearest and smaller
integer of a, and {a} is the fractional part of a, defined by the formula {a} = a — |a].

Remark 3.1. By Remark in the following results we just consider d > 1.

We start with m = 2, the case of two variables.

Proposition 3.2. Givend € N, withd > 1, define a := q—+/d and 5 := |2a] . Then Hyp,(d,2) C
RM,(s,2). Moreover, s is the smallest integer with this property, that is

Hyp,(d,2) £ RM,(s — 1,2).

Proof. Let H, Ry, Ry C [0,q — 1]™ be the sets defining the codes Hyp,(d,2), RM,(s,2) and
RM,(s—1,2), respectively. We show first that Hyp,(d,2) € RM,(s,2). We will use the following
fact:
(3.1) min{a1 +a2 : ai,a2 € Rzo,alag = d} = 2\/&
For every i = (i1,i2) € N2 such that i € H, we have that (¢ —i1)(q —i2) > d. By Eq. (3.1,
(g —11) + (g —i2) > 2V/d, i.e. i1 + 49 < 2a. Moreover, since i1,is € N, then i1 + iy < |2a] = s.
Thus i € Ry, which proves the first statement.
We show now that Hyp,(d,2) € RM(s — 1,2). We separate it into two cases.
e Case 1. 0 < {a} < }. Takea = (|a],|a]) € N%. As (¢— |a])? > (¢— a)? = d, a belongs
to H. Observe that |a] + |a] =2 |a] = |2a] = s> s—1, thus a ¢ Rs.
e Case 2. 1 < {a} < 1. Take a = (la],|a] +1) € N% Sir;ce {a} > 3, then ¢ —a =
4~ la)—{a} < g~ |a] — . Thus, the equation (¢ — |a) — 1)* = (¢— La))(g— la] ~1)+ 1,
o 2 )
implies that (¢ — |a])(¢ — |a] — 1) = {(q— la] — %) J > |(¢—a)?| = |d] = d. This
means that a belongs to H. As |a| + |a] +1=2a] +1 = [2a] = s > s — 1, we have
that a ¢ R2.

Hence, the proof is complete. ]

The trivial generalization to m variables of Proposition [3.2] is not valid. As the following
example shows, it is not true that in general the code RM,(s,m) is the smallest Reed-Muller

code that contains the hyperbolic code Hyp,(d, m), where a = q — ¥/d and s = |ma].
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Example 3.3. Take ¢ = 27, m = 3 and d = 37. Then a = ¢ — V/d = 27 — /37 ~ 23.667, and
s = [3a] = 71. It is computationally easy to check that if i1,i2 and i3 are integers such that
(g —11)(q — i2)(q —i3) > 37, then 41 + iz + i3 < 70. Thus Hyp,(d,m) € RMy(s — 1,m).

We have the following result as the first generalization of Proposition

Proposition 3.4. Given d € N, with d > 1, define a := q — ¥d and s := |ma]. Then
Hyp,(d,m) € RMy(s,m). Moreover, s is the smallest integer with this property if {a} < L

Proof. Let H C [0,q — 1]™ be the set defining the hyperbolic code Hyp,(d, m). We will use the
following fact:

m m
(3.2) min Zaj : a; € R>p and Haj =dy=mWd.

j=1 j=1
For every i = (i1,...,in) € N™ such that i € H, we have that [[_,(¢ — i;) > d. By Equation
(3-2), we obtain 0L, (¢ —i;) > m Nd, i.e. > jeii; < ma. Since i; € N for j € {1,...,m},
> jt14j < |ma] = s, which proves that Hyp,(d,m) C RM,(s,m).

Let R C [0,g—1]™ be the set defining the code RMy(s—1,m). If {a} < L, then |[ma| = m |a].

Consider a = (|a],...,|a]) € N™. It is easy to check that a € H, but a ¢ R. O

Remark 3.5. Given d € N, with d > 1, take a := ¢ — ¥/d. Observe that Hyp,(d,m) &
RM,(m|a] —1,m). Indeed, let H, R C [0,q—1]™ be the sets defining the codes Hyp,(d,m) and
RM,(m|a] — 1,m), respectively. Consider a := (|a],...,|a]) € N™. It is easy to check that
ac€ H,but a¢ R.

We now come to one of the main results of this section.

Theorem 3.6. Given d € N with d > 1, define a := q — ¥/d. Then Hyp,(d,m) € RM,(s,m),

where
log( 75 7a1
s=mlal+r and r= T Te]) qg‘fa}f) .
log( q—la] )
Even more, s is the smallest integer with this property, that is

Hyp,(d,m) € RMy(s — 1,m).

Proof. Let H,R1, Ry C [0,q — 1]™ be the sets defining the codes Hyp,(d, m), RMy(s,m), and
RM,(s—1,m), respectively. First note that, by the definition of r, we know that r € {0,...,m—
1} is the largest integer such that

(a=la)™ (g = la] 1) > (g—a)" =d.

T m
Indeed, the last inequality is satisfied if and only if (%) > (qq—_LZ ) , or equivalently, if

g—laj—1
q—|a]

log ( -4
r < mM as log (q_E‘ILJ]1> < 0. Observe that 7 = 0 if a is an integer.
log( ) q—La

Thus, if we consider
a=(la]+1,...,lal +1 ]a],..., |a]) eNT,

T m—-r

then it is easy to check that a € H but a ¢ Ry. Thus, Hyp,(d, m) € RM,(s — 1,m).
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Let R; be the complement of Ry in [0,q — 1]™, i.e.

m
Ri=1Kie€[0,q—1]" : Zijzs—}—l
j=1

We will show that H N Ry = ). First note that the point
b= (la]+1,...,|a]+1,]a],...,|a]) e N,

r+1 m—r—1

satisfies that b € Ry but b ¢ H. A similar situation happens with any point obtained by a
permutation of the entries of b. Now let i = (i1,...,4,) € Ry such that Z;n:l ij =s+ 1. If
there exists an index [ such that i; > [a| + 1, there must be an index ¢ such that iy < |a] (by
Dirichlet’s principle). Take a; = i — e; + e/, where e; denotes the i-th standard vector in N™.
Define the function

m

F(X1,. . Xm) = [ - X))

j=1

It is easy to check that f(i) < f(ai). Indeed,

fO) < flar) <= (¢—i)(g—1ir) < (g—a11)(qg—aie)
= <y — 1.
Now, if there exists again an index ly such that a;;, > |a| + 1, then there must exists an index
5 such that aj ¢, < |a]. Then we can repeat the process until we reach a permutation of the
entries of the point b. Thus, we get a set of points {a;};=1, ; such that f(i) < f(a;) < ... <
f(a;) < f(b) < d. That isie€ Ry, buti¢ H. O

Example 3.7. The Reed-Muller code RMy(s,2) is a hyperbolic code for s < 4 and s > 14 by
Theorem [2.3

We close this section with an example that shows the smallest Reed-Muller code that contains
a hyperbolic code.

Example 3.8. The lattice points under the red curve of Figure define the hyperbolic code
Hypg(27,2). By Theorem m we have that Hypg(27,2) € RMy(s,2) when s > 7. The lattice
points under the blue curve of Figure define the Reed-Muller hyperbolic code RMy(7, 2),
which is the smallest Reed-Muller code that contains Hypg (27, 2).

Example 3.9. The lattice points under the red curve of Figure define the hyperbolic code
Hypg(9,2). By Theorem we have that Hypg(9,2) € RMg(s,2) when s > 12. The lattice
points under the blue curve of Figure define the Reed-Muller hyperbolic code RMg(12,2),
which is the smallest Reed-Muller code that contains Hypg(9, 2).

4. THE LARGEST REED-MULLER CODE

Given the hyperbolic code over [, of order d with m variables Hyp,(d, m), we now find the
largest degree s such that RM,(s,m) € Hyp,(d, m). We first recall the minimum distance of a
Reed-Muller code.

Proposition 4.1. (|9]) Take s < (¢ — 1)m. Write s = t(q — 1) + r, where t,7 € N and
0 <r < q—1. The minimum distance of the Reed-Muller code RM,(s,m) is § = (q —r)g™ L.
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(A) (B)

F1GURE 1. (A) The lattice points under the red curve define Hypg(27,2). The
lattice points under the blue curve define RMy(7,2), the smallest Reed-Muller
code that contains Hypg(27,2). (B) The lattice points under the red curve de-
fine Hypg(9,2). The lattice points under the blue curve define RMg(12,2), the
smallest Reed-Muller code that contains Hypg(9, 2).

Proposition 4.2. Let d € N, with d > 1. The minimum distance 6 (RMgy(s,m)) > d if and only
if

s<(m-c)(g—1)+q— {q:dli‘ , where ¢ := [log,(d)] .

Proof. Write s = t(q — 1) + r, where ¢t,r € Nand 0 < r < ¢ — 1. By Proposition [4.1]
§ (RM,(s,m)) = (¢ — r)g" 1"

(=) Assume that §(RM,(s,m)) > d. Then we have that ¢™~* > (¢ — 7)™ =t > d. Because
of the properties of the logarithm, m —¢ > ﬂogq(dﬂ and t < m— ﬂogq(dﬂ =m—c. Ift<m-c
we have that s < (t+1)(¢—1) < (m—c¢)(g—1) and the result follows. Moreover, for t = m — ¢,
then ¢ —r > {d/qm_l_t] = {d/qc_l], and hence, r < g — [q%l—‘. Putting all together, we have

that s < (m—¢)(g—1)+q— L%l—‘.

(<) Conversely let u=(m —c¢)(g—1)+q— [%—‘ and let s < u. Then,

RM,(s,m) € RMy(u, m).

Asc= [logq(dﬂ, observe that ¢ — {qﬁlw < q — 1, hence,
d m—1—(m—c) d c—1
6 (RMg(s,m)) = 6 (RMg(u,m)) = (¢ — | ¢— i) =l 2 d.
This completes the proof. O

We come to one of the main results of this section, which helps to find the largest Reed-Muller
code inside of a hyperbolic code.
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Theorem 4.3. Let d € N, with d > 1. Then RM,(s,m) C Hyp,(d, m) if and only if

s<(m—-c)(g—1)+q— {q:dl-‘ , where ¢ := [log,(d)] .

Proof. This is a direct consequence of Proposition ]

Example 4.4. The lattice points under the red curve of Figure ’@ define the hyperbolic code
Hypy(27,2). By Theorem we have that RMg(s,2) C Hypg(27,2) when s < 6. The lattice
points under the black curve of Figure ’@ define the Reed-Muller hyperbolic code RMy(6, 2),
which is the largest Reed-Muller code in Hypg (27, 2).

Example 4.5. The lattice points under the red curve of Figure define the hyperbolic code
Hypg(9,2). By Theorem we have that RMg(s,2) C Hypg(9,2) when s < 8. The lattice
points under the black curve of Figure define the Reed-Muller hyperbolic code RMy(8, 2),
which is the largest Reed-Muller code in Hypg(9, 2).

(A) (B)

FIGURE 2. (A) The lattice points under the red curve define Hypq(27,2). The
lattice points under the black curve define RMy(6,2), the largest Reed-Muller
code in Hypg(27,2). (B) The lattice points under the red curve define Hypg(9, 2).
The lattice points under the black curve define RMg(8, 2), the largest Reed-Muller
code in Hypg(9, 2).

5. GENERALIZED HAMMING WEIGHTS

This section proves that, similar to Reed-Muller and affine Cartesian codes, the r-th gen-
eralized Hamming weight and the r-th footprint of the hyperbolic code coincide. Unlike for
Reed-Muller [12] and affine Cartesian [2] codes, determining the r-th footprint of a hyperbolic
code is still an open problem. We give upper and lower bounds for the r-th footprint of a
hyperbolic code Hyp,(d, m) in terms of the largest Reed-Muller code RM,(s,m) contained in
Hyp,(d,m) and the smallest Reed-Muller code RM,(s’,m) that contains Hyp,(d,m). These
bounds sometimes are sharp.

Recall that the monomial code associated with A C [0,¢q — 1]™ is given by
Ca =evp(Fy[A]) = {evp(f) : feFy[A]}.
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For an integer 1 < r < |A|, the r-th generalized Hamming weight of C4 is given by
0r(C4) = min{ |x(D)| : D CC4, dim(D) =1},
where x(D) := {i € [n] : there is x € D with x; # 0} . We now explain how to bound the r-th

generalized Hamming weight in terms of the footprint. For i = (i1,...,iy) € [0,q — 1], we
define the set

V(i) :=[i1,q— 1] x -+ X [im,q — 1].
Note that |V(i)| = []'~;(¢ — 7;). We can rewrite the footprint bound of the code C4 as
FB(Ca) =min{|V(@{)| : i€ A}.

The minimum distance 6(C4) of C4 is lower bounded by the footprint bound [10]: FB(C4) <
d(C4). Jaramillo et al. generalized in [15] the footprint bound to the r-th footprint:

FB,(Ca) :==min < || JV(i))|: i € A, ig#1; for £, € [1,7]
j=1

Similar to the minimum distance, the r-th generalized Hamming weight is lower bounded by the
r-th footprint |15, Theorem 3.9]:

(5.1) FB,(Ca) < 6,(Ca).
The r-th footprint is sharp for Reed-Muller and affine Cartesian codes by [12] and [2], re-

spectively. We now extend the result by proving that the r-th footprint is sharp for hyperbolic
codes. Recall that the hyperbolic code Hyp,(d, m) depends on the set

H={ie[0,q—1]" : |[V(@H)| >d}.
We come to one of the main results of this section.
Theorem 5.1. Let 1 <r < dim(Hyp,(d,m)). Then, the r-th generalized Hamming weight of a
hyperbolic code Hyp,(d, m) is given by the r-th footprint:

8r(Hyp,(d, m)) = FB,(Hyp,(d,m)) := min{ || J V(ij)| : ij € H, ig #1i; for £,5 € [1,7]
j=1
Proof. By Equation |D FB,(Hyp,(d,m)) < §,(Hyp,(d,m)).
To prove the inequality &.(Hyp,(d,m)) < FB,(Hyp,(d,m)), we construct r elements in

Hyp,(d,m) that generate a subspace in Hyp,(d,m) of dimension r and support length pre-
cisely FB,(Hyp,(d,m)). Let v be a primitive element of F,. For a nonnegative integer ¢, we
define the polynomial f(¢,x) in F,[z] of degree ¢ as

]
1 if£=0
fl,z):=<x if =1
(z)(x—7) - (x =~ ife>1.
Let iy, ..., i, be elements in H such that FB,(Hyp,(d, m)) = ‘U§:1 V(ij)‘. For every 1 < j <,
assume i; = (4j1,...,%m), and define the polynomial
fi = Flij,20) - f(ijm, Tm).
Denote by Z(f;) the set of zeros of f; in Fy*. Note that
FZI \ Z(fj) = {(’yal, R ,"yam) € F;n : (al, R ,am) S V(i])} s
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which implies that evgr(f;) € Hyp,(d,m), since i € H. Let Z(fi,...,fr) be the set of
common zeros of fi,..., fr in F*. As Z(f1,..., fr) = ;=1 Z(f;), then F* \ Z(f1,.... f;) =

Uj=1 (Fi*\ Z(f;)). Thus, if D, := Spang, {eVFgL (f1)s--- ,eszn(fT)} C Hyp,(d,m), then

X(D)| = [FP\ Z(f1,..., 1) = || V(ij)| = FB,(Hyp,(d, m)).
j=1

We conclude that §,(Hyp,(d,m)) < FB,(Hyp,(d, m)). O

We now use Theorem to bound the GHWSs of hyperbolic codes in terms of the r-th
footprint.

Corollary 5.2. Let iy,...,i, € H be the first r elements of H in descending lexicographical

order. Then
,

6r(Hypg(d,m)) < || V()| -

j=1
Proof. This is a direct consequence of Theorem O

Heijnen and Pellikaan proved in [12, Theorem 5.10] that the bound of Corollaryis sharp for
a Reed-Muller code. Even more, Heijnen and Pellikaan explicitly described the r-th generalized
Hamming weight in terms of the r-th element in [0, ¢— 1]™ in the lexicographic order. Note that
Theorem gives an expression to compute the GHWs of a hyperbolic code in terms of finding
the minimum on a set. Naturally, when the hyperbolic code coincides with a Reed-Muller code,
we obtain a closed formula for the GHWSs of some hyperbolic codes.

Theorem 5.3. Take m > 1. Let d be such that (¢—t—1)"(¢—t)""" < d, where s+1 =mt+r,
0<s<m(qg—1), and 0 <r <m. The r-th generalized Hamming weight of the hyperbolic code
Hyp,(d,m) is given by:

m
5T(Hypq(d? m)) = Z am—i-l—lqz_l + 1,
i=1
where a = (ay,...,an) is the r-th element in [0,q — 1]™ in the lexicographic order with the
property that deg(a) > (¢ — 1)m — s — 1.

Proof. By Theorem the hyperbolic code Hyp,(d,m) coincides with the Reed-Muller code
RM,(s,m). By [12, Theorem 5.10], the r-th generalized Hamming weight is given by 6,(RM, (s, m)) =
Sy am—iv1q 4 1 U

We also have the following bounds for the GHWSs of an arbitrary hyperbolic code Hyp,(d, m)
in terms of the GHWs of some Reed-Muller codes.

Corollary 5.4. Let Hyp,(d,m) be a hyperbolic code. Define s' :=m |a] +r, where a = q — N/d

_ mlog(lzll—iLZJ) ; ; d
and r = W . Let s be the mazimum integer such that s < (m—c)(¢q—1)+q— {qc—_lw ,
8\ g TaJ
where ¢ := [log,(d)] . Then
or(RMy(s',m)) < 6, (Hypy(d, m)) < 6-(RMy(s,m)),

where the first inequality is valid for any 1 < r < dim(RMy(s,m)) and the second inequality is
true for any 1 < r < dim(Hyp,(d, m)).
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Proof. The result follows from T heoremsand where we prove RM, (s, m) C Hyp,(d,m) C
RM,(s",m). O
Example 5.5. From Examples 3.8 and [4.4] we have that RMy(6,2) C Hypy(27,2) € RMy(7,2).
Thus,

26 = 05(RMy(7,2)) < d2(Hypy(27,2)) < 2(RMy(6,2)) = 35.

Using computational software and Theorem 5.1} we can see that the actual value is d2 (Hypg(27,2)) =
FB2(Hypy(27,2)) = 32 (see Figure 3)).

bt 1t e 1

FIGURE 3. We observe that RMg(6,2) C Hypg(27,2) € RMg(7,2). The boxes
represent the lattice points that help to compute the second GHWs. The number
of lattice points inside: the red box is equal to d2(Hypg(27,2)), the black box is
equal to d2(RMy(6,2)), and the blue box is equal to d2(RMg(7,2)).

Example 5.6. From Examples[3.9 and [4.5] we have that RMy(8,2) C Hypg(9,2) € RMy(12,2).
Thus,

9 = 02(RMy(12,2)) < d2(Hypg(9,2)) < d2(RMy(8,2)) = 17.
Using computational software and Theorem|[5.1] we can see that the actual value is 82 (Hypg (9, 2)) =
FB2(Hypg(9,2)) = 12 (see Figure [4)).

The following example shows that the bounds of Corollary may be sharp for some of the
GHWs of a hyperbolic code.

Example 5.7. Let ¢ =9 and H = {(i1,i2) € [0,8] | (9 —i1)(9 —i2) > 27}. We found with the
computational software Octave [5] that the element in H that minimizes the set {|V(i)| : i€ H}
coincides with the first element of H in descending lexicographical order. This first element is
(6,0); see Figure |5, As |V(6,0)| = 27, we obtain that the first generalized Hamming weight,
which is the minimum distance, is given by ¢;(Hypg(27,2)) = 27.

The first two elements in descending lexicographical order in H are (6,0) and (5,2). See Fig-
ure[6l We obtain [V(6,0)UV(5,2)| = 34. However, 65(Hypy(27,2)) = 32 by Example 5.5 which
means that the first two elements do not give the second weight in descending lexicographical
order.
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(A) (B)

FIGURE 4. We observe that RMg(8,2) C Hypg(9,2) € RMg(12,2). The boxes
represent the lattice points that help to compute the second GHWs. The number
of lattice points inside: the red box is equal to d2(Hypg(9,2)), the black box is
equal to d2(RMy(8,2)), and the blue box is equal to d2(RMg(12,2)).

FiGurRE 5. The number of lattice points inside of the blue box equals
o1 (Hypy(27,2)).

The first four elements in descending lexicographical order in H are (6,0), (5,2), (5,1), and
(5,0). See Figure [7} The first three and the first four elements, respectively, give the third and
fourth GHWs:

d3(Hypo(27,2)) = |V(6,0) UV (5,2) UV(5,1)] =35
and,
d4(Hypo(27,2)) = |V(6,0) UV(5,2) UV (5,1) UV(5,0)] = 36.
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