DECREASING NORM-TRACE CODES

CICERO CARVALHO, HIRAM H. LOPEZ, AND GRETCHEN L. MATTHEWS

ABSTRACT. The decreasing norm-trace codes are evaluation codes defined by a set of
monomials closed under divisibility and the rational points of the extended norm-trace
curve. In particular, the decreasing norm-trace codes contain the one-point algebraic
geometry (AG) codes over the extended norm-trace curve. We use Grébner basis theory
and find the indicator functions on the rational points of the curve to determine the
basic parameters of the decreasing norm-trace codes: length, dimension, and minimum
distance. We also obtain their dual codes. We give conditions for a decreasing norm-
trace code to be a self-orthogonal or a self-dual code. We provide a linear exact repair
scheme to correct single erasures for decreasing norm-trace codes, which applies to higher
rate codes than the scheme developed by Jin, Luo, and Xing (IEEE Transactions on
Information Theory 64 (2), 900-908, 2018) when applied to the one-point AG codes over

the extended norm-trace curve.

1. INTRODUCTION

Decreasing monomial codes, which are evaluation codes in which the set of monomials
is closed under divisibility, were introduced by Bardet, Dragoi, Otmani, and Tillich in
[4] to algebraically analyze the polar codes defined by Arikan [1]. The families of mono-
mials satisfying a closure property also appeared in an earlier construction for optimized
evaluation codes [§].

The classical families of Reed-Solomon and Reed-Muller codes are decreasing monomial
codes and have amply motivated the study of wider classes of decreasing monomial codes.
Decreasing monomial-Cartesian codes, also known as variants of Reed-Muller codes over
finite grids, are more general families than Reed-Muller codes that have been studied due
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2 DECREASING NORM-TRACE CODES

to their applications to certain symmetric channels [10], distributed storage systems [28§],
and efficient decoding algorithms [34].

In [11], Camps, Martinez-Moro, and Rosales introduced Vardghus codes, which are
polar codes defined by kernels from castle curves. They proved that Vardghus codes are
polar codes for a discrete memoryless channel that is symmetric with respect to the field
operations.

In this paper, we study decreasing norm-trace codes, which are decreasing monomial
codes where the evaluation points are the rational points of the extended norm-trace
curve. As a consequence of [11] and the fact that the extended norm-trace curve is castle,
the decreasing norm-trace codes can be considered as polar codes for discrete memoryless
channels symmetric with respect to the field operations.

Let Fg be the finite field with ¢" elements. Norm-trace codes are defined using the

norm-trace curve which is an affine curve over [Fy» defined by
N(z) =Tr(y)

where N(z) is the norm and Tr(y) is the trace, both taken with respect to the extension
F,/F,. Let u be a positive integer such that wu | q;%ll. The extended norm-trace curve,

denoted by &, is the affine curve over F;» defined by the equation

¢ — yqril + y‘l"‘72 + 4y

We focus in this work on decreasing norm-trace codes, which are codes defined by eval-
uating monomials on the rational points of the curve &,. We now give more details.
Enumerate the rational points on X, so that X, = {P;,..., P,} C Fgr. The evaluation

map, denoted ev, is the F,-linear map given by

ev: Fplzr,y] — [y

f = (f(Pl)vvf(Pn))

Let M C Fyr[z,y] be a set of monomials closed under divisibility, meaning that if
M € M and M’ divides M, then M’ € M. Let £ be the F, -subspace of F,|x,y]
generated by the set M. We call the image of £ under the evaluation map, denoted by
ev(M), a decreasing norm-trace code. We can see that the extended norm-trace codes
introduced and recently studied in [7] and [23] are particular instances of decreasing
norm-trace codes; norm-trace codes and generalizations also appear in [8]. Moreover, we
check later that the family of decreasing norm-trace codes contains, as a specific case,
the family of one-point geometric Goppa codes over the Hermitian curve and the more
general norm-trace curve.

We organize this paper as follows. In Section [2, we describe the vanishing ideal Iy,
of the extended norm-trace curve X, (Lemma , which is the ideal of all polynomials
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that vanish on X, . We recall essential concepts from the Grobner basis theory, such as
the footprint of an ideal, and determine a Grobner basis for Iy, (Proposition with
respect to a certain graded lexicographic order.

The main result of Section |3| shows the standard indicator function of every rational
point of the extended norm-trace curve X, (Theorem . Given a rational point P on
X, , a standard indicator function fp is a linear combination of monomials that belong
to the footprint of Iy, such that fp(P) = 1 and fp(P’) = 0 for every other rational
point P # P of X,.

In Section {4} we formally introduce decreasing norm-trace codes (Definition . We
determine their basic parameters, such as the length, dimension, and minimum distance
(Theorem . We show that these decreasing monomial codes generalize the one-point

AG codes over the norm-trace curve.
In Section |5, we give an explicit expression for the dual of a decreasing norm-trace code

(Theorem in terms of the complement of the set of monomials. The hull of a linear
code is the intersection of the code with its dual. The hull has several applications, e.g.,
it has been used to classify finite projective planes [2] and to construct entanglement-
assisted quantum error-correcting codes [25]. We show instances where the hull of a
decreasing norm-trace code is computed explicitly (Theorem. We also give conditions
on the set of monomials, so that the decreasing norm-trace code is a self-orthogonal or a

self-dual code.
In Section [0, we apply our results to study linear repair schemes for decreasing norm-

trace codes. A repair scheme is an algorithm that recovers the value at any entry of a
codeword using limited information from the values at the other entries. After presenting
the basic definitions of this theory, we prove results that show the existence of a repair
scheme for decreasing norm-trace codes (Theorem [6.2]). We close with some conclusions

at the end of Section [G
References for vanishing ideals and related algebraic concepts used in this work are

[13, 4] 21, 35).

2. PRELIMINARIES
Let FF, be the finite field with ¢ elements and r > 2 an integer. Define the polynomials

N(x) = &7 and Tr(y) ==y? +y? "+ 4yi+y in Fyr[z,y]. The trace with respect

to the extension F,/F, is the map

Tr . qu — Fq
a = Tr(a).
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The norm with respect to the extension F,/F, is the map

N: F, — F,
a +— N(a).

The norm-trace curve, denoted by X, is the affine plane curve over [, given by the

equation
x% _ yqr—l + yqr—Q + . +y

The curve X has been extensively studied in the literature to construct linear codes [7,

16l 26] 31] B3]. We are interested in a slightly more general curve. Let u be a positive
integer such that w | %. The extended norm-trace curve, denoted by X, is the affine

curve over [F,r defined by the equation

¥ = yqr_l _i_qu_z + ..o+ Y.

We use the rational points of the curve X, to construct a family of decreasing evaluation
codes, which contains, as a particular case, the extended norm-trace codes [7, 23].

Results from Grobner bases theory have been used in coding theory for some time to
determine parameters of codes (see, e.g., [16] 17 [12]). We now recall important concepts
and results from this theory.

Let M be the set of monomials of Fr[z1,...,2,]. A monomial order < on M is a
total order where 1 is the least monomial and if M; < M,, then MM, < MDM,, for
all M, My, My € M. Fix a monomial order in M and let f be a nonzero polynomial in
Frlz1, ..., 2m]. The greatest monomial which appears in f is called the leading monomial
of f, denoted by lm(f). Given an ideal I C Fyr[z1,..., 2], a Gréobner basis for I is a
set {f1,...,fs} C I such that for every polynomial f € I\ {0}, we have that lm(f) is
a multiple of lm(f;) for some ¢ € {1,...,s}. The Grobner basis concept was introduced
in the Ph.D. thesis of Bruno Buchberger (see [9]), in which the author proves that every
ideal admits a Grébner basis (w.r.t. a fixed monomial order) and that if {fi,..., fs} is
a Grobner basis for I, then I = (f1,..., fs).

Let {fi,...,fs} be a Grobner basis for I. The footprint of I is the set AL(I) of

monomials which are not multiples of Im(f;) for all ¢ = 1,...,n. One of the main
results in Buchberger’s thesis states that the set of classes {M + 1 | M € AL(I)} C
For|®1,...,2m]/1 is a basis for For [z, ..., 2,]/] as a Fy-vector space.

We now define an ideal associated with the extended norm-trace curve X,:
Iy, == (Tr(y) — 2", 27 — 2,97 —y) C Forlz, yl.

Next, we consider some relevant properties of this ideal.
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Lemma 2.1. The ideal Iy, s radical and is the ideal of all polynomials which vanish on
X,

Proof. Since 29" — x,y? —y € Iy, , for any monomial order, the footprint is finite and
consists of monomials of the form 2%y’ where a and b are less than ¢". Hence, Iy, is
a zero-dimensional ideal. Thus, Iy, is a radical ideal by [5, Prop. 8.14]. From [I8, Thm.
2.3], it follows that Iy, is the ideal of all polynomials which vanish on X,,. The fact that

Iy, is radical also follows immediately from [18 Thm. 2.3] being a vanishing ideal. [

From now on we work with the following graded lexicographic order <: we say that
2% < 2y if either ag"' +bu < cg" ' + du, or aqg" "' 4+ bu = c¢""' + du and b < d.
The following result is a particular case of [23 Theorem 19]. We add a detailed proof

here for completeness.

Proposition 2.2. The set {Tr(y) — z*, 2V — o} 4s a Grébner basis for Iy, with
respect to the order < defined above. Moreover, | X, |= ¢"((¢ —1)u+1). In particular,
if u= q{;_—f, then Iy is the vanishing ideal of X, the set {Tr(y) — N(x),2% —z} is a

Grobner basis for Iy with respect to the order <, and | X |= ¢*" .

Proof. Let (a, ) be a point on &,. As o* = Tr(f), a* € F,. Thus, the polynomial

2@=DuH g — g ((2*)9' 1) vanishes at all points of X, and from Lemma/2.1] z(a=Du+1 —

x € Iy,. To prove that Iy, = (Tr(y) — z*, 2@ Y+ — 1) we show that 27 —z,y? —y €
r—1

u o(g—1)ut1 PR _
(Tr(y) — 2%, 2~V — 2} Indeed, let v be the positive integer such that uv = i=.

Then one easily checks that

( (@=Du(v=1) 4 p(g=Du(v=2) 4 4 pl¢=Du 4 1) (x(q—l)wrl —z)=a" —z

and  ((Tr 1) (Tr(y) — 2*) + 2" (g )
= (Tr(y) —z ) — (Tr(y) — x¥) 4+ 2% — g
= ey - 2 Trly) b2t o

-2 r—1 r—2
A A R ) O T )

" and lm(zl@ Vet — g) = gla-Dutl

are coprime, {Tr(y) —x%, 2@~V — 21 is a Grobner basis for Iy, according to [13, Prop.
4, p. 104]. Since Iy, is a radical ideal and F, is a perfect field, | X, |=| A<(Lx,) | [5)
Thm. 8.32]. O

Since the leading monomials Im(7r(y) — a*) = y*
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3. STANDARD INDICATOR FUNCTIONS
Some of the properties of the decreasing evaluation codes depend on the indicator
functions of the curve X,,. For a standard reference on indicator functions in the context
of evaluation codes, please see [29, Sections 4 and 5]. Take n :=| &, |. One may show
(see [15] or [12, Prop. 3.7]) that the following linear transformation is an isomorphism

v Folr,yl/lx, — o

So, for each P € X,, there exists an unique class gp + Iy, such that gp(P) = 1 and
gp(Q) = 0, for every Q € X, \ {P}. Since {M + Iy, | M € A (Ix,)} is a basis for

Frlz,y]/1x, as an F -vector space (see e.g. [5l, Prop. 6.52]), there is a unique F,--linear

combination of monomials in A_(Iy,), which we denote by fp, such that fp(P) =1
and fp(Q) = 0, for every Q € X,. We call this polynomial fp the standard indicator
function of P. The existence and uniqueness of the standard indicator function fp may
also be seen as a consequence of 29, Lemma 4.2(c)].

We first describe the set of points of X, in a way that will be useful in the next section.
Lemma 3.1. For every v € F,, define A, = {(o, ) € A*(F,)|Tr(8) = o* = ~}.

Then, we have X, =, 5. Ay . Moreover, | Ay |=¢" 7" and | Ay |=uq"™" for all vy € F}.

v€Fq
Proof. If (a, f) € X,, then «a is a root of z(¢~V*+!1 — g by Proposition [2.2] Furthermore,
pla el g | 29" — g so 20V —g has (¢—1)u+1 distinct roots. For each nonzero root
a, we have (0*)4™t = 1,50 a* € F; and 2~ —z must be a factor of z I er; (" =7).
Since the last two polynomials have the same degree and are monic, we actually have
ple-Dutl _ o o HWEF; (24 — 7).

There are ¢" ' elements § such that Tr(8) = o* for every v € F,. This shows that
A, C X, for all v € Fy, and that | Ay |=¢"~" and | A, |= ug"™" when v € F;. On the
other hand, if (o, f) € &, and o* =7, then (¢, ) € A,. d

Theorem 3.2. Let P = (a, 3) € X,,. The polynomial
st (1T

Tr—« y—p3

fr(z,y) =c (

18 the standard indicator function for P where

-1 ifa=0
ci=
(—u)~! € F, otherwise.

In particular, qu_l_lx(q_l)“ is the leading monomial of the standard indicator function
for P.
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Proof. Observe that fp(a, ) # 0. Let P’ = (¢/, ') be a point in &, different from P. If

= 0 by Proposition ; thus fp(P') =0.1If a = o/, then
p#p and Tr(f') = (/)" = " = Tr(f). This means that 3’ is a root of Tr(y) —Tr(5)
and (M) = 0; thus fp(P’) = 0. We conclude that fp(c/, ") =0 for every
y=p
(o, 3) € X\ {(a, B)}.
Let 8 = fpy,...,B,;-1 € Fyr be the distinct roots of Tr(y) — Tr(8), so that Tr(y) —
Tr(p) = 3:11 (y—p;). Taking the formal derivative, we have that 1 = ;1.:11 f:lll 2i(y—
B;). Thus,

/ x(q—l)“"rlfz
0 ol then (o)

r—«

(Tr(y;:g'f’(ﬁ)) 1—! B—B) =

Likewise, let o = oy, ..., Qy(g—1)+1 be such that x(@~Dutl — g = ngzl)"ﬂ(m—ai). Taking

y:
the formal derivative, we get ((q — L)u + 1)z(e-D% — 1 = Y2\ 11)““ qu 111;] (x — ay), so

j
pla—Dutl _ o
T —«

If o # 0, then we have " € [, from the proof of Lemma . Thus,

(@—Du

= H (0 —a;) = ((g — Du+ 1)tV -1,

<<q — Du+1)al " — 1= ((g— Du+ 1)@ — 1= (g - u = —u.

As u | , the integer u is not a multiple of char(F,). Hence u # 0 in F,. O

4. CODE CONSTRUCTION

In this section, we define and compute the basic parameters of a new family of evalu-
ation codes called decreasing norm-trace codes. We then consider their relationship with

algebraic geometry codes defined on (extended) norm-trace curves

4.1. Code parameters. The evaluation map, denoted ev, is the F - -linear map given
by
ev: Fplz,y] — 7,
[ (fR), - f(R))
where Xy, = {Py,...,P,} CF,. and n:= ¢ '((¢ — u+1).
Definition 4.1. A decreasing norm-trace code is an evaluation code ev(M) such that

M C Fyrlz,y] is closed under divisibility, meaning if M € M and M’ divides M, then
M e M.
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Example 4.2. Take ¢ = 3 and r = 2. Figure [l] (a) shows the points of the norm-
trace curve X. Let M be the set of monomials in F,[z,y] whose exponents are the
points in Figure|l| (b). Note that M is closed under divisibility. Using the coding theory
package [3] for Macaulay2 [20] and Magma [6], we obtain that ev(M) is a [27,10,15]

decreasing norm-trace code over [Fy.

.
.
.
be

.
.
-0~
.l
.
L g

l“.:“

€ € £ € & E & &
N W
44,4
®

- Z>g

€ [

(a) Evaluation points valuation monomials

FIGURE 1. Take ¢ =3 and r = 2. (a) Shows the points of the norm-trace
curve X : ' = 3> +y. Let M be the set of monomials whose exponents are
the points in (b). The evaluation code ev(M) is an [27, 10, 15] decreasing
norm-trace code over Fy.

Denote by A (x(q_l)““, qu71> the set of monomials that are not multiples of either

of these two monomials. From now on, we assume that M C A (x(q—l)qul’ yq7"1) '

We come to one of the main results of this work, which computes the basic parameters
of a decreasing norm-trace code.

Theorem 4.3. The decreasing norm-trace code ev(M) has the following basic parame-
ters.

(1) Length n =| X, |= (¢ — Du+1)g" .
(2) Dimension k =| M |.
(3) Minimum distance

d=((¢—Nu+1)g""
— max ({min (ag" " + (u(g — 1) + 1 — a)b, ag" " + bu) | 2y’ € M}).

Proof. Statement (1) is a consequence of Proposition [2.2] Statement (2) follows from
the fact that {M + Ix, | M € AL (Ix,)} is a basis for F,[z,y]/Ix, as an Fy - -vector



DECREASING NORM-TRACE CODES 9

space together with the fact that the linear transformation ¢, defined at the beginning
of Section 3, is an isomorphism. To prove Statement (3), let f be a nonzero polynomial
in the [F,--vector space generated by the monomials in M. The set of points in X,
which are zeros of f is the set of the zeros of the ideal Ix, + (f) C Fyr[z,y], denoted by
V(Ix,+(f)). Theideal Iy, +(f) is a radical ideal; see [5, Prop. 8.14]. Therefore, [5, Thm.
8.32] implies that | V(Ix, + (f)) |= A<(Ix, + (f)). Let 2%y® be the leading monomial

of f and let A < g—Dutl yqrfl,x“yb> be the set of monomials that are not multiples of

either of these three monomials. Then A_(Iy, + (f)) C A(z@= D+l 40" zayb) g0 that

r—1

| VT, + () | <A@y 7 2ty |

=((¢q—Du+1)¢ ' = ((¢—u+1—a)(¢g" " —b)

=aq" '+ ((¢ — Du+1—a)b.

On the other hand, from [17, Proposition 4]), we have that | V(Iy, + (f)) |< aq"' + bu
(to verify a hypothesis in [I7, Proposition 4] one must use that if z°y° and x¢y¢ are
monomials in M then cg"! + eu # ¢ + €'u).

Assume that ag" ' +bu < a¢g" ' + ((¢ — Du+1—a)b and b # 0, so we have a <
(¢ —2)u + 1. According to Lemma (and its proof), for all v € fq¢*, the number of
distinct elements of Fy -, which appear as the first entry of points in A, is u, while 0 is
the first entry in all points of Ay. Fix v € F;. Since a < (¢ — 2)u + 1, we may choose
ai,...,q, € F,osuch that for all i = 1,...,a we have (o, ;) € X, for some f; € F,r
and a¥ # 7. Recall that b < ¢""!, and let B,...,0, € Fyr be distinct elements such

that Tr(f;) =~ forall j =1,...,b. Let g(z,y) = [[}_,(z — ) - H§:1(y—5j)~ For every
i=1,...,a, there exist ¢"~! points in X, of the form (a;, 3), none of them in A,. For
every j = 1,...,b, there exist u points of X, of the form («,;), all of them in A,.
Hence, | V(Ix, + (9)) |= ag"™" + bu.

Now assume that ag"™' + ((¢ — Du +1 —a)b < ag"' +bu and b # 0. Then a >
(¢ — 2)u + 1. Again, we fix v € F; and take f,,...,8, € F; to be distinct elements
such that Tr(B;) = v for all j = 1,...,b. Let aq,...,a, € F,y be distinct elements
such that for all ¢ = 1,...,a we have (a;, 5;) € &, for some f; € F,r and for exactly
a—(q—2)u—1 elements «; we have a¥ =~ (note that since a < (¢ — 1)u+ 1 we get

—(¢—2)u—1 < u). Let h(x,y) = H?Zl(:v—ai)l_[?:l(y—ﬁj), for each a € {ay,..., a,}
we have ¢"~! elements («, ) € X, , which are also zeros of h. For each 8 € {f,..., 05}
we have u—(a— (¢—2)u—1) = (¢ —1)u+ 1 —a elements of the form (a, §) € &, which
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are zeros of h and have not been counted yet. Thus, the total number of zeros of h in
X, is | V(Ix, + (R) |=ag" ' +0((g — Du+1—a).

If b =0, then a¢" ' + ((¢ — D)u+1—a)b = ag" ' + bu. Taking ay,...,q, € F,r
such that for all i = 1,...,a, we have (o, ;) € &, for some f; € Fyr, the polynomial
t(z,y) = [][i_,(x — a;) is such that | V(Ix, + (¢)) |= ag" .

Thus, we have proved that for every monomial x%” € M, there exists a polynomial
f in the [F,--vector space generated by the monomials in M having 2%® as its leading
monomial, and such that | V(Ix, + (f)) | attains its greatest possible value, namely

min {aqg" ' + (u(q — 1) + 1 — a)b, ag"* + bu}. This completes the proof. O

Example 4.4. Take ¢ = 2, r = 4, and u = 3. Figure 2 (a) shows the points of
the extended norm-trace curve X,. Let M be the set of monomials in F,-[z,y] whose
exponents are the points in Figure [2| (b). Note that M is closed under divisibility. By
Theorem [£.3] ev(M) is a [32,12,12] decreasing norm-trace code over Fyg.

Fie
A
wH - @ ) S ®--
e e
w2 - | S L
| | |
N SR
W@
! ! !
9l _ @& ---"-"-"-"@------@- -
wi e 4 *
Bl EEEEEEEEE R r--
| | |
W@ | S L
N N e
w5I
| | |
AL VTS VT
sleee
W@
1 77\ 7777777 e \77
w l 0 i
WO@ e
| | |
1 1 L ,IF
0 0 i 10 16 >0
(a) Evaluation points (b) Evaluation monomials

FIGURE 2. Take ¢ = 2, r = 4, and u = 3. (a) Shows the points of the
norm-trace curve X, : * = y®+y*+y*+y. Let M be the set of monomials
whose exponents are the points in (b). The evaluation code ev(M) is an
(32,12, 12] decreasing norm-trace code over Fyg.



DECREASING NORM-TRACE CODES 11
4.2. Relationship with one-point algebraic geometric codes. The family of de-
creasing norm-trace codes contains, as a particular case, the family of one-point geometric

codes over the norm-trace. Indeed, define £, := {miyj e A(ly,) | ig"? —I—jq;_—_ll < S}. It

is straightforward to check that L is closed under divisibility, and that the one-point
geometric Goppa codes over the norm-trace are obtained, as detailed below, through the
evaluation, at the points of X, of the polynomials in the space generated by L (see,
e.g. [16] 22]). We note that the new constructions of decreasing norm-trace codes is more
general. Example is not a one-point code. The nearest one-point codes are C'(D, G)
with G = {18,19,20} P,,, which are [32,{12,13,14}, > {14,13,12}] codes.

The extended norm-trace codes introduced and studied in [7] and [23] are also partic-

ular instances of decreasing norm-trace codes.

Remark 4.5. Note that Theorem [4.3] allows us to recover the exact minimum distances

of one-point codes on X, by choosing specific sets M C A (x(q_l)““,yqrfl). For the

norm-trace curve, this approach had already appeared in [16], where such codes are

denoted by E(s). Moreover, the improved codes FE(s), which appear in [16], are also
decreasing norm-trace codes, and our results recover those of [16] with respect to their
parameters.

One may notice that k 4+ d =
n+1—(maz ({min (ag"" + (u(g — 1) + 1 —a)b, ag" " + bu) | 2"y* € M}) — | M | +1),
meaning decreasing norm-trace codes have a gap of
max ({min (ag""" + (u(g — 1) + 1 —a)b, ag" " + bu) | 2%y* € M}) — | M | +1

to the Singleton Bound k£ +d <n + 1.
Let X be the nonsingular curve defined over F,» which has

ZE% — yq7'71 +yqr72 + -ty

as an affine plane model. Then X has only one point at infinity, say P.,, which is a

1

rational point, and X has exactly ¢ ~! other rational points. The pole divisor of z is

q" 1P, and the pole divisor of y is %Poo. Let D be the divisor which is the sum of the
¢*"~! affine rational points of X. All AG-codes of the form C.(D,sP,,) coincide with

codes ev(L,), where L is the F --vector space generated by

T—1
Asz{x“yb|0§agqr—1,0§b§qr_1—1,aqT_1+bq 1§s}
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(see [16, Remark 1] and the references therein). The dimension of Ly is |As|, and if, for

a given s, there exists a monomial x%® € A, such that

T—1
min (aqu +(¢" —a)b, ag" "t + ng — ) = s,

then the minimum distance of L, is equal to ¢*~! — o(s), where

T
o(s) = max {min (aqT_1 +(¢" —a)b, ag"* + bY . ) | 2%y’ € AS}
q —

(see |16, Thm. 1 and Thm. 2]). We present now some numerical examples comparing

codes constructed in this paper with the algebraic geometry codes described above.

Example 4.6. We start by taking ¢ =3 and r = 2.
Choosing s = 23, we get that

Ags = {z%y" | 0<a <8,0<b<2,3a+4b< 23},

Thus z°y* € Ayz and min(5-3+ (9 —5)-2,5-3+2-4) = 23, so the minimum distance
is equal to 27 — 0(23) = 27 — 23 = 4. It is easy to check that

Ags = {2y’ | 0<a <5,0<b<2}U{a% 2,27},

so dim(Lgs) = 21. Now we take Moz := Agz U {z7y}. Then Mos is closed under divisi-
bility, and from the formulas of Theorem [4.3, we get that ev(Ma3) has dimension 22 and
minimum distance equal to 4. Both codes have the same length, so ev(Mas3) is better.

We also obtain a better code choosing s = 21; in this case
Agp = {2y’ | 0<a <4,0<b<2bU{a’ %, 2% 2"},

so dim(Lg;) = 19 and the minimum distance is equal to 27 — 21 = 6 (here we use that
27 € Ay ). Taking My, := Ay U{x0}, we get from Theorem [4.3]that dim(ev(May;)) = 20
and has minimum distance equal to 6.

Both My3 and Mj; have the best minimum distance among known codes defined over
F32 with length 27 and, respectively, dimensions 22 and 20, according to the tables in
[19].

By taking higher values for the field over which the codes are defined we may obtain
more striking differences.

Example 4.7. Take ¢ =3 and r = 4, so that ¢" =81, ¢" ! =27 and (¢"—1)/(¢—1) =
40. Set s = 57 - 27 = 1539. Unlike the above example, which was computed by hand, in
this one we used Magma ([6]) to find out that |Ajs39] = 1033. Thus, dim(Lj539) = 1033
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M dim(ev(M)) | min. dist. of ev(M)
{1,y} 2 13
{1,y,x} 3 12
{1,y,9% x} 4 11
{1y, 9%z, zy} 5 10
{1,y,y% x, vy, 2%} 6 9
{1,y,9% 2, vy, 2y?, 2} 7 8
{1, y,9%, z, vy, vy?, 22, 2%y} 8 7
{1, 9,92, z, 2y, vy?, 22, 2%y, 23} 9 6
{1, 9,92, z, zy, zy?, 22, 22y, 2%9%, 23} 10 5
{1, 9,92, z, vy, zy?, 22, 22y, 2%y, 23, 23y} 11 4
{1, 9,92, z, zy, zy?, 22, 22y, 2292, 23, 23y, 24} 12 3

TABLE 1. Code parameters.

and using the formulas above (and the fact that 2°7 € Ajs39), we get that the minimum
distance of this code is ¢?"~1 — 1539 = 2187 — 1539 = 648. Now we take

o 449 45 9 A6 8 _AT. 7 A8 7 49 6 50 5
Missg = Auszo U {a™y” ™ y”, 2™y", 2™y’ 2™y’ 2™y”, a™y°,
50 6 51.5 .52 4 53 3 54 3 55 2 56
LR TR e TR R TR A Ta s T RS TR R 1 8

One may check that Ms39 is closed under divisibility, and using the formulas of The-
orem we get that ev(Missg) has dimension equal to 1047 and minimum distance
equal to 648.

We also get good codes when w is a proper divisor of (¢" — 1)/(q¢ — 1) as the next

example demonstrates.

Example 4.8. Take ¢ = 3 and r = 2, but this time we choose u = 2, a proper divisor
of (¢" —1)/(q — 1) = 4. We construct codes of length ((¢ — 1)u+ 1)¢"~! = 15 using the
monomials from the first column of Table |1} The parameters of these codes are given in
the second and third column of Table [l According to the tables in [19], these are the

best minimum distances for the corresponding dimensions, considering codes of length
15 defined over .

5. DUALS OF DECREASING NORM-TRACE CODES

This section proves that the dual of a decreasing norm-trace code is equivalent to
a decreasing norm-trace code. In addition, we describe the dual code in terms of the
monomial set and the coefficients of the indicator functions. We then give conditions to
find families of self-dual and self-orthogonal codes.
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Recall that the two linear codes Cy and Cy in Fj. are equivalent if there is B =
(B1,...,Bn) € Fy. such that 3; # 0 for all + and Cy = B-Cy == {f-c | c € C1},
where B3 - c:= (fici, ..., Pucn) for ¢ = (c1,...,¢,) € Cy. Some authors call such codes
monomially equivalent, but we will simply say equivalent as no other type of equivalence
is considered in this paper.

We come to one of the main results of this work, which computes the dual of
a decreasing norm-trace code. Recall that the two linear codes C; and C5 in Fyr

are equivalent if there is B = (B1,...,8,) € Fy, such that 3 # 0 for all i and
Co=0B-Cr:={f-c|ceCi}, where B-c:= (fic1,...,Lncn) for c=(c1,...,¢,) € C1.

Theorem 5.1. Assume X, = {Py,...,P,} and let ev(M) be a decreasing norm-trace

code. The dual code ev (/\/l)L 15 equivalent to the code ev (MB) where

(g=1ugq" 11 o .-
M= {—x Y cx'y! € A (x(q_l)"+1,yq 1) \./\/l}

iyl
denotes the complement of M. More precisely,
ev(M) =3 ev (MC> ;

u~! if the z-coordinate of P, is nonzero

1 otherwise.

where (; == {

Proof. From Theorem [3.2] we get that y? ' ~1z(@Dv is the leading monomial of the
standard indicator function for all points in X, . We also note that

M|+ | ME|= ’A (sto-est =) ‘ X

Thus, according to [30, Theorem 5.4] (|30, Theorem 5.4] is an updated version of [29]
Theorem 5.4]), to prove the Theorem it suffices to prove that, given x%® € M and z¢y? €

ME, the coefficient of the monomial 2(~D%y¢" "~ in the unique F,-linear combination
of monomials in A (Iy,) which has the same class, in F-[z,y]/Ix,, as 2%7¢y"*? is equal

to zero.
Before we prove that, we claim that if a+c¢ > (¢ —1)u, then b+d < ¢"~* — 1. Indeed,

assume that b+d > ¢ ' —1. Weset ¢ =(¢q—1)u—cand d =¢"!' —1—d, and from
the definition of M, we get that 2¢y? ¢ M. From d > ¢"' — 1 — b, we get d' < b.
Since M is closed under divisibility, we must have ¢ > a, so (¢ — 1)u — ¢ > a and

a+ ¢ < (¢ — 1)u, which proves the claim.
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This shows that either a+c¢> (¢—1)u and b+d < ¢~ '—1,0r b+d>¢'—1 and
a+c<(¢g—1)u.

Assume that a+c¢ > (¢—1)u. Since a+c¢ < 2(¢—1)u, we write a+c = ((¢—1)u+1)+r
with 0 <7 < (¢g—1)u—1. Then 297+ Iy, = p@~VuHlgr 4 [ = 2™+ 4 [ and we get, in
this case, that 20teyPHd4 L, = ™t lybtdy [ with 27yt e AL (Ly, )\ {a@Duyd ™ =1}
since b+d < gt —1.

Now assume that b+d > ¢"~'—1 (and then a+c < (g—1)u). Note that b+d < 2¢"'—2,
so we write b+d =2¢" "' —2 —e, with 0 < e < ¢! —2. We have

2" 1—2—c :qu—l—Z—e(yq’“‘l + qu_Q +o oyl y —a)
—y Ty T ey oy — aY)
so that
p YT Ty, = =y Ty ey Ty — 2 L,

If ¢" '4¢"~2—2—e < ¢""'—1 then all the monomials in the polynomial z¢+¢y¢" " ~2¢(ya" 4
cod oyl 4y — %) are in AL(Ly,) \ {20 Duy? 1Y except possibly for £t which
may be reduced, as above, to a power of  in A (Iy,).

The last case to consider is when ¢" ™1 4+ ¢"72 — 2 — e > ¢"~!. In this case, we have to
find proper representatives for some monomials in a:“+cyqr_l_2_e(yqr_2 +-ylty—at).
We write ¢" 1 +¢2—2—e=2¢""1—2—¢, where ¢ = ¢" ! — ¢"2 + ¢, and we have
gl —q¢q2<e < ¢! —2. From

yzqrfl—Q—e’ :yq“l—Z—e’(yq“1 + yq“2 +-+yl+y—2av)

r—2

—y" T ey oy — ),

we get that z0tey20 ' =2¢ 4 [ — _goteyd 2= (a4 g 4y gw) 4 [ Since
¢ 4?2 —2—¢ <2¢"2 -2 < ¢! — 1, we get that the monomials in the polynomial
goteyd =2 (" g g g are in AL(Iy, )\ {207V 1Y except possibly

a+b+u

for x which may be represented by a power of x in AL (Iy,). This takes care of

the monomial z@+eyd ™ +a" T =2=e iy gateydm =2mea™* L4 a4y ) In the same
way we prove that if, for some integer s > 3, we get ¢" ! +¢"* —2 —e > ¢"!, then
g e Ly = =yt (g eyt Yy —a) + Ly, , where ¢ =g < € <
¢ =250 ¢t g —2—¢€" < ¢ 24+¢"°—2 < ¢"~! —1. This proves that, also in the

case where ¢"" ' +¢"2 —2—e > ¢"!, the unique F -linear combination of monomials

YT ey Yy —2) in

in AL(Ix,), which has the same class as z%T¢y? Yl
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r—1

F,[z,y]/Ix,, has zero as the coefficient of the monomial x(@~Huy¢""~1 which completes

the proof of the Theorem. O

Example 5.2. Take ¢ = 3 and r = 2.Figure (1| (a) shows the points of the norm-trace
curve X : 2* = ¢y® +y. Let M be the set of monomials in A (2%, y3) of degree at most
4. The exponents of these monomials are the points in Figure 3| (a). The complement of

M on X is the set of monomials M®, whose exponents are the points in Figure (b).
By Theorem the dual code ev (M) is equivalent to the code ev (MB) :

0
(a) Monomials of degree at most 4. (b) Complement of (a) on X.

FIGURE 3. (a) shows the exponents of the set of monomials M in
A (2°,1%) of degree at most 4. (b) shows the exponents of MC, the comple-
ment of M on X'. By Theorem , the dual code ev (M)" is equivalent
to the code ev (./\/lB)

Recall that the hull of a code C' is Hull(C) := C' N C*. The code C is self-dual if

C = C* and self-orthogonal if C C C*+. Theorem gives a powerful tool for designing
self-dual and self-orthogonal codes.

Theorem 5.3. Assume X, = {Py,...,P,} and let ev(M) be a decreasing norm-trace

code. If the equation x* = u has a solution « in Fyr, then
Hull(A-ev(M)) =X -ev (/\/l N ME> ;

a~ ! if the z-coordinate of P, is nonzero

1 otherwise.

where \; := {

Proof. Denote by A~! the vector whose entries are A;'. By Theorem we have
that AX = 3, so A = A3, where the product between vectors is pointwise. Thus,

A-ev(M)t =A"1ev (M)T =18 ev (ME) = X-ev (MP). O

Corollary 5.4. Assume X, = {Py,..., P,} and the equation 2% = u has a solution o in
For. If M C ME then X -ev(M) is a self-orthogonal code, where ); is as in Theorem
. If M= M, then X -ev(M) is a self-dual code.



DECREASING NORM-TRACE CODES 17
Proof. If M C M, then Hull(\ - ev(M)) = X -ev (M ﬂ/\/lc) = X-ev(M) by Theo-
rem [5.3] Thus, A - ev (M) = Hull(A - ev(M)) C (A-ev(M))*. The case M = ME is

analogous. O

Example 5.5. Take ¢ =2, r =4, and uw = 5. Figure {4| (a) shows the points of the set
X,,. Let M be the set of monomials in Fyr [z, y| with degree in = at most 5 and degree in
y at most 4. The exponents of these monomials are the points in Figure 4| (b). As 5 =1
in Fy, then Hull(ev(M)) = ev (M N MC) = ev(M) by Theorem Thus, ev(M) is a
self-dual code by Corollary

Fis
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(a) Evaluation points (b) Evaluation monomials

FIGURE 4. (a) shows the points of the curve X : 2% = ¢® + ¢y* + y* + y.
Let M be the set of monomials whose exponents are the points in (b).
The evaluation code ev(M) is a self-dual code over Fyg.

6. SINGLE ERASURE REPAIR SCHEME

This section defines a repair scheme that repairs a single erasure for specific decreasing
norm-trace codes. An element of F,» may be thought of as a vector in [y . In this theory,
the elements of Fyr are called symbols and the elements of F, are called subsymbols. Given
a code C' C [y, , a repair scheme is an algorithm that recovers the entry of any vector of
C using the other entries. The bandwidth b is the number of subsymbols required by the
algorithm to repair the entry. A codeword is defined by nr subsymbols, and the fraction

i is called bandwidth rate.
nr

Recall that A (z°,147) denotes the set of monomials which are not multiples of either of
these two monomials. Using that {M + Iy, | M € AL (Ix,)} is a basis for Fyr [z, y]/Ix,
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as an F --vector space, we may assume that an arbitrary element of ev(M) is of the type
ev(f), where every monomial that appears in f is in AL (Iy,) = A <x(q*1)“+1,yq“1>.

Take n := ((¢—1)u+1)g"~". Since ev(f) € Fy,, the element ev(f) depends on n symbols

(over F,r) or, equivalently, on nr subsymbols (over F,).

Remark 6.1. [27, Definition 2.30 and Theorem 2.40] Let B = {z1,...,2,} be a basis of
F, over F,. Then there exists a basis {2,...,2.} of F, over [F,, called the dual basis

of B, such that Tr(z;z;) = d;; is a delta function and for o € Fr,

a = Z Tr(az)z,.
i=1

Thus, determining « is equivalent to finding Tr(az;) for i € {1,...,r}.

Theorem 6.2. Let M C A (x(q_l)“,yqr_j be a monomial set that is closed under

divisibility. There exists a repair scheme of ev(M) for one erasure with bandwidth at

most

| X | =1+ (u—1)(r —1).

Proof. Take X, = {P1,...,P,} and let ev(f) = (f(P1),..., f(P,)) be an element of
ev(M). Assume that the coordinate f(P*) of ev(f) is erased, where P* = (a*, 5*) € X,,.
We define the following polynomials

) — Tr(zi(y — B7))
e )

=z + Zj(y _ B*)qfl + .. 4 Z;IT_l(y _ ﬁ*)tf_lfl

for i € {1,...,r}. We have {1,y,... ,yqr_l_l} CMb as MCA (:B(q_l)“,y‘f—l) The
element 3 - (p;(Py), ..., pi(P,)) is in ev(M)" for i € {1,...,r} and B defined in Theo-
rem Therefore, we obtain the r equations

(1) Bopi(P)F(P) == Y Bep(P)f(P), i€{l,....r}.
}

X \{P*

As p;(P*) = z;, applying the trace function to both sides of previous equations and

employing the linearity of the trace function, we obtain

Tr (zfp f(P) = — S Tr(Bem(P)F(P)), i€{l,....r}.

Xu\{P*}
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Define the set I' = {(o,8) € &, : B = *}. We have that p;(P) = z; for P € I". For

P=(a,p) € X, \T, pi(P) = Triz(p — 7))

. We have that for ¢ € {1,...,7},

(B—F)
Z Tr (Bepi(P)f(P)) = Z Tr (Bepi(P)f(P)) + Z Tr (Bppi(P)f(P))
Xu\{P*} F\{P* X\
_ . (. T8 = 57)
= p\{ZP*}T (Bp @f<P>>+XuZ\FT (ﬁp ) f(P>>
_ s ot g (BI(P)
= 3 TGP + ST 5T ().

The element SBp«f(P*), and f(P*) as a consequence, can be recovered from its r inde-
pendent traces Tr(z;5p+ f(P*)) by Remark The traces are obtained by downloading:

e For each P € "'\ {P*}, the r subsymbols T (Bpz1f(P)),...,Tr (Bpzf(P)).

e For cach P € X, \ I', the subsymbol T'r <%) :

Hence, the bandwidth is b = r(| I' | = 1)+ | X\ | <r(u—1)4+ | X, | —u =| &, |
+u—1)(r—1)—1. O
Using a very similar proof one shows the existence of a repair scheme for ev(M),

for one erasure, with the same value for the bandwidth as above, if one assumes that

MCA <xqr, qu71*1> . Consequently, we obtain the following result for the norm-trace

curve.

Corollary 6.3. If M C A (xqr,qul*l) or M C A (xqrfl,y‘ffl) is a monomial set

that is closed under divisibility, then there exists a repair scheme of the decreasing norm-

trace code ev(M) for one erasure with bandwidth at most

P
|Xu|—1+(qq_1 —1) (r—1).

In particular, there exists a repair scheme for the Hermitian decreasing code for one

erasure with bandwidth at most

¢ +q—1.
Proof. This is a consequence of Theorem . 2| for the particular case when u = q . The
Hermitian case is obtained when r = 2. O

Jin et al. introduced in [24] a repair scheme for single erasures of algebraic geometry

codes. In particular, [24, Theorem 3.3] repairs a single erasure on one-point AG codes
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defined over the curve X, , which can also be considered as monomial decreasing norm-
trace codes [11]. Both schemes, [24] Theorem 3.3] and Theorem have restrictions
and can repair codes with up to a maximum dimension. One of the main advantages of
Theorem is the ability to repair single erasures on codes with a higher dimension that
use the rational points of the curve X, as evaluation points. Indeed, consider the case
where we want to repair an erasure on a monomial decreasing norm-trace code ev(M).
By Theorem [4.3 the length of the code ev(M) is n =| &, |= ((¢ — Du + 1)¢"!. By
the hypothesis of Theorem the maximum dimension where the repair scheme can be

applied is when M = A (a:(qfl)“, yqrfl) , where the dimension is

(2) kev = (q - 1)uqr_1 :| X | _qr_l-

Now, consider the case where we want to repair an erasure on a one-point AG code
over the curve &),. The curve &), has genus g := w (see [32, Thm. 13]). In the
context of [24] Theorem 3.3], the maximum dimension of the one-point AG code where

the repair scheme can be applied is when m =| &, | —(¢ — 1)(g + 1), which implies that

the dimension would be
(3) kac:=m—g=|X, | —(¢—1(g+1)—g= X |—qlg—1)+1.

_ (e
2 - 2

Bquation[3] kag =| X | —q(g—1)+1 =| X, | —3¢* ' +lower terms. As ke, =| X, | —¢"

in Equation [2| we can see that there are values of ¢ and r for which k., > kac.

Example 6.4. Taking u = ‘g__—ll, we have that g := (u—1)(g"~1—1)

. From

. Cy(ar—1_ =1 g) (g1
Example 6.5. Taking u = qu_ll, we have that g := & 1)(% = — = z(q :

Equation kac =| Xu | —q(g—1)+1 = X, | —3¢* ' +lower terms. As ke, =| X, | —¢"*

in Equation [2| we can see that there are values of ¢ and r for which k., > kac.

. From

We close this section by finding the maximum rate that a monomial decreasing norm-
trace code ev(M) would have when the repair scheme of Theorem can be applied.

As | X, |= ((g — Du+1)¢g"!, we can see that we can repair an erasure on a monomial
decreasing norm-trace code ev(M) when M C A (x(q_l)“,qul). Thus, we have the

following bound for the rate of the code:

(¢—Dug™" 1
(4) Rate(ev(M)) < (G- DutDgT 1 —(q e i1
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where the inequality is tight when M = A (x(q_l)“, qu71> . In the particular case where

u = 2= the inequality in |4/ becomes:

q—1
1

Rate(ev(M)) <1 — .

CONCLUSION

This work focuses on decreasing norm-trace codes, which are evaluation codes defined

by a set of monomials closed under divisibility and the rational points of the extended

norm-trace curve. We used Grobner basis theory and indicator functions to find the

basic parameters of these codes: length, dimension, minimum distance, and dual code.

By

exploiting the basic parameters, we gave conditions over the set of monomials, so

a decreasing norm-trace code is a self-orthogonal or a self-dual code. We presented a

repair scheme for a single erasure on a decreasing norm-trace code that repairs codes

with higher rates than the AG codes over the norm-trace curve.
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