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Abstract
We present a reduced-order model (ROM) methodology for inverse scattering
problems in which the ROMs are data-driven, i.e. they are constructed directly
from data gathered by sensors. Moreover, the entries of the ROM contain loc-
alised information about the coefficients of the wave equation. We solve the
inverse problem by embedding the ROM in physical space. Such an approach is
also followed in the theory of ‘optimal grids,’ where the ROMs are interpreted
as two-point finite-difference discretisations of an underlying set of equations
of a first-order continuous system on this special grid. Here, we extend this
line of work to wave equations and introduce a new embedding technique,
which we call Krein embedding, since it is inspired by Krein’s seminal work
on vibrations of a string. In this embedding approach, an adaptive grid and a set
of medium parameters can be directly extracted from a ROM and we show that
several limitations of optimal grid embeddings can be avoided. Furthermore,
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we show how Krein embedding is connected to classical optimal grid embed-
ding and that convergence results for optimal grids can be extended to this
novel embedding approach. Finally, we also briefly discuss Krein embedding
for open domains, that is, semi-infinite domains that extend to infinity in one
direction.

Keywords: inverse scattering, reduced-order models, embedding,
optimal grids

1. Introduction

In this paper we discuss so-called reduced-order model (ROM) embedding procedures to solve
inverse scattering problems. In such a procedure, data-driven ROMs are constructed from spec-
tral impedance data collected at one end of a bounded interval of interest. Subsequently, a ROM
is interpreted as a two-point finite-difference discretisation of an underlying set of first-order
continuous wave equations. We refer to this step as embedding of the ROM in physical space
and it is this embedding procedure that allows us to determine the medium parameters on the
spatial interval of interest. Applications of the inverse problems considered in this paper can
be found in radar, geophysical exploration in crystalline bedrock, ground penetrating radar,
and any other field where one-dimensional imaging is relevant [4]. The characterisation of
transmission lines (wave speed reconstruction along coax cables, printed circuit boards, etc)
also belongs to this problem class [5, 11].

Different solution procedures have been developed for the scattering problems considered
in this paper (see the different Newton/optimisation methods in the overview paper [18], for
example). The proposed embedding techniques presented here, however, have several advant-
ages over methods based on optimisation. First, the embedding procedures are direct (noniter-
ative) methods, which is generally computationally advantageous compared to optimisation.
Second, for the case of a bounded interval with Dirichlet boundaries, convergence of the recon-
structed medium to the true medium is guaranteed, whereas optimisation may converge to a
local minimum. Third, the methods are computationally optimal in extracting the same num-
ber of parameters as there are data points and, finally, the considered embedding approaches
need no regularisation. Embedding as discussed in this paper also has connections with dis-
crete Gelfand–Levitan theory via the Lanczos algorithm. These connections are addressed in
[3, 15].

Two embedding procedures are discussed in this paper. The first, called optimal grid embed-
ding, is based on the theory of (optimal) truncated spectral measure grids [3]. We consider the
recovery of a velocity profile from the first poles and residues of the impedance function, the
so-called truncated spectral measure. An implementation of this procedure in terms of travel
time coordinates is presented in [4]. Here, we take this optimal grid procedure as a starting
point and present optimal grid embedding in terms of spatial coordinates instead of travel time
coordinates.

However, a drawback of optimal grid embedding is that it requires training for a known
medium, data, and boundary conditions. More specifically, to retrieve the spatially varying
medium parameters on a certain bounded interval of interest, we first have to determine an
optimal grid for a homogeneous reference medium. Having this trained reference grid avail-
able, the position dependent medium parameters can be determined on the interval of interest.
Moreover, the length of this interval must be included in training as well, but this information
is not always available. In radar imaging, for example, the distance to the surface may not be
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known exactly and for problems on semi-infinite domains, the step sizes quickly become very
large [10].

The use of a reference grid is avoided in the second embedding procedure presented in
this paper, which is a new procedure that we call Krein embedding, since it is inspired by
Krein’s seminal work on vibrations of a string [12, 13]. Furthermore, the length of the interval
of interest is not required either. We also show how Krein embedding is related to optimal
grid embedding and that convergence results presented in [3] for optimal truncated spectral
measure grids essentially carry over to the Krein embedding approach.

Since a trained reference grid and the length of a reconstruction interval are not required
for Krein embedding, such an embedding approach may be applied to scattering problems
on semi-infinite domains as well, that is, domains that extend to infinity in one direction.
Furthermore, scattering problems on semi-infinite domains characterised by continuous spec-
tral measures can equivalently be described by scattering poles that correspond to passive
dissipative systems [17]. Our approach is then to construct ROMs that can be interpreted as a
finite-difference discretisation of a dissipative first-order system.We call thisKrein–Nudelman
embedding, since the case of a dissipative boundary condition was discussed by Krein and
Nudelman in [13].

However, for problems on semi-infinite domains a uniqueness problem arises, since the
method embeds an impedance function provided in pole-residue form, which cannot distin-
guish between a lossy bounded domain and a lossless open domain. In the latter case, the
spectrum is not a point spectrum but is represented as such. Nevertheless, if we apply a Krein–
Nudelman embedding approach to such a problem, we find that the medium profile is actually
recovered up until the last reflector, where Krein–Nudelman embedding places an absorbing
effective medium to match the (complex) point spectrum of the impedance function. A numer-
ical example will be presented that illustrates this phenomenon and the uniqueness problem is
discussed further in appendix A.

The remainder of this paper is organised as follows. In section 2 we discuss the construction
of the ROMs from spectral data and the optimal grid and Krein embedding procedures that
may be used to retrieve the medium parameters on a bounded interval. Subsequently, these two
procedures are discussed in detail in sections 3 and 4, while in section 5 a number of numerical
examples are presented that illustrate the performance of both embedding procedures. Finally,
Krein-Nudelman embedding on a semi-infinite domain is briefly discussed in section 6 and
the conclusions can be found in section 7.

2. Embedding of ROMs

We are interested in reconstructing the wave speed c in the wave equation from boundarymeas-
urements. We formulate the problem in the temporal Laplace domain with complex Laplace
frequency s ∈ C and reflecting boundary conditions. Specifically, on the bounded interval [0,L]
of interest, the governing Laplace-domain equation is given by

d2u(x,s)
dx2

− s2
1

c2 (x)
u(x,s) = 0,

du
dx

∣∣∣
x=0

=−s, and u|x=L = 0. (1)

This problem is equivalent to the equation for a vibrating string studied by Kac and Krein [12]
if c−2(x) is replaced by the mass density of a string. The above equation also follows from the
telegrapher equations for a transmission line that is short-circuited at the far-end of the line
and a unit current is fed into the near-end of the line. In this case, c(x) represents the wave
speed along the transmission line.
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For a givenwave speed profile, equation (1) essentially represents a regular Sturm–Liouville
problem.We are also interested in the corresponding singular case in which equation (1) is con-
sidered on the semi-infinite interval [0,∞)with the boundary condition for u at x= L replaced
by the condition that |u(x)| → 0 as x→∞ for Re(s)> 0.

In both the regular and singular case, the associated inverse problem is to recover c(x) from
measurements of the impedance function f(s) = u(0,s) for s on some curve in the complex
plane. The spectral inverse problem that we consider in this paper consists of the reconstruction
of c(x) from poles and residues of the impedance function f (s). In particular, we assume to have
access to the first n complex-conjugate pairs of poles λj and residues yj of the function f (s).
In an application, this spectral information is not readily available from measurements of f (s).
However, it can be retrieved from the measured impedance function f (s) using the vectorfit
algorithm [8]. In the numerical experiment section, we illustrate this procedure.

Assuming that we have n complex-conjugate pole-residue pairs available, we can construct
the ROM

fROM (s) =
n∑

j=1

yj
s+λj

+
ȳj

s+ λ̄j
, (2)

where the overbar denotes complex conjugation.We look for ROMs of this form, since we con-
sider spectral problems in which spectral impedance data is provided in pole-residue form (not
pole-zero form). Furthermore, to satisfy the Schwarz reflection principle (since the coefficients
in the differential equations are real and time-domain measurements are real-valued as well),
the spectrum comes in conjugate pairs of poles and residues. For a regular Sturm–Liouville
problem the residues yj are real and positive and the λj are purely imaginary. However, for
the singular Sturm–Liouville case discussed later this may not be the case and we therefore
include conjugation in the above spectral expansion of fROM(s). Finally, we mention that if we
introduce the diagonal matrix

Λ= diag
(
λ1,λ2, . . .,λn, λ̄1, λ̄2, . . ., λ̄n

)
(3)

and the residue vector

y=
[√

y1,
√
y2, . . .,

√
yn,

√
ȳ1,

√
ȳ2, . . .,

√
ȳn
]T

(4)

the ROM can also be written as

fROM (s) = yT (Λ+ sI)−1 y, (5)

where I is the 2n× 2n identity matrix.

2.1. Building a ROM from spectral data

The key idea behind optimal grid and Krein embedding is to interpret the ROM fROM(s) as
the impedance function of a two-point finite-difference discretisation of an underlying set of
first-order differential equations. Specifically, introducing a dual variable û and the staggered
grid shown in figure 1, the first-order finite-difference system that corresponds to equation (1)
is given by

ûj+1 − ûj
γ̂j+1

+ suj = 0, ∀j = 0, . . . ,n− 1,

uj− uj−1

γj
+ sûj = 0, ∀j = 1, . . . ,n (6)
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Figure 1. Grid used to interpret the ROM as a finite-difference discretisation of the
underlying differential operator. The crosses represent primary grid nodes and the circles
dual grid nodes. On the grey nodes the boundary conditions are applied.

with uj = u(xj) and ûj = û(x̂j) and where γj and γ̂j are the edge weights, i.e. products of the
step sizes xj− xj−1 and the medium parameters on the grid. The boundary conditions of the
system are given by û(0) = û0 = 1 and u(L) = un = 0.

Introducing the 2n-by-1 vector of unknowns

u= [u0, û1,u1, . . ., ûn−1,un−1, ûn]
T (7)

the finite-difference system of equation (6) can be written compactly as

(T+ sI)u=
1
γ̂1

e1, (8)

where e1 is the first canonical basis vector of length 2n and matrix T is a tridiagonal matrix of
order 2n given by

T=


0 γ̂−1

1 0 0
−γ−1

1 0 γ−1
1 0

... −γ̂−1
2

. . .
. . .

...
. . . 0 γ̂−1

n
0 · · · 0 −γ−1

n 0

 . (9)

To accommodate a standard complex-symmetric Lanczos implementation further on, we prefer
to work with the transpose-symmetric matrix

TTS =−i



0 (γ1γ̂1)
− 1

2 0 0

(γ1γ̂1)
− 1

2 0 −(γ1γ̂2)
− 1

2 0
... −(γ1γ̂2)

− 1
2

. . .
. . .

...
. . . 0 (γnγ̂n)

− 1
2

0 · · · 0 (γnγ̂n)
− 1

2 0


, (10)

instead of the tridiagonal matrixT. MatrixTTS is related tomatrixT by the similarity transform
TTS = STS−1, where the similarity matrix S is given by

S= diag
(√

γ̂1, i
√
γ1,

√
γ̂2, i

√
γ2, . . . ,

√
γn, i

√
γn

)
. (11)
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With fROM(s) = u0(s) = eT1u we now find that by solving the system of equation (8) for u
that

fROM (s) =
1
γ̂1

eT1 (T+ sI)−1 e1

=
1
γ̂1

eT1
(
S−1TTSS+ sI

)−1
e1

=
1
γ̂1

eT1
[
S−1

(
TTS + sI

)
S
]−1

e1

=
1
γ̂1

eT1S
−1

(
TTS + sI

)−1
Se1

=
1
γ̂1

eT1
(
TTS + sI

)−1
e1. (12)

To extract the finite difference parameters γj, γ̂j from the spectral parameters (λj,yj)we need
to transform the diagonal transfer function representation of equation (5) to the tridiagonal one
of equation (12). To that end, let Y denote the eigenvector matrix of TTS such that it satisfies
TTSY= YΣ with YTY= I andΣ is a diagonal matrix of order 2n with the eigenvalues of TTS

on the diagonal. The impedance function can now be written as

fROM (s) =
1
γ̂1

yT1 (Σ+ sI)−1 y1, (13)

where y1 = YTe1 is the vector containing the first components of all eigenvectors. Setting
y1 =

√
γ̂1y and with Σ=Λ, we observe that the above ROM coincides with the ROM of

equation (5). Since the residue vector y and the poles Λ are known, the problem turns into
an inverse eigenvalue problem in which we attempt to reconstruct the tridiagonal matrix TTS

from the first components of its eigenvectors and its known eigenvalues. As is well known, this
problem can be solved via the Lanczos algorithm. Specifically, with orthogonalization in the
transpose bilinear form [14, 16], vector y/

√
yTy as a starting vector, and the matrix of eigen-

values Λ as iteration matrix, the Lanczos algorithm produces the desired tridiagonal matrix.
The algorithm is given in algorithm 1 and as soon as the tridiagonal matrix is obtained, the
coefficients γj and γ̂j can be extracted using the recursive scheme shown in algorithm 2. We
note that the weight γ̂1 can be determined directly from the residues, since

yTy= γ̂−1
1 yT1y1 = γ̂−1

1 . (14)

Finally, we also note that the algorithm explicitly computes the diagonal elements αj of matrix
TTS, while we know that these elements vanish for lossless media. However, this very same
algorithm can be used for problems on open domains or for problems involving lossy media
for which the diagonal elements of matrix TTS may no longer vanish. Therefore, we prefer to
work with this Lanczos algorithm since it accommodates all cases of interest.

6
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Algorithm 1. The Lanczos algorithm for complex symmetric matrices to obtain the tridiagonal matrix
TTS from the poles Λ and residues y. In this algorithm, Yj indicates the jth column of the eigenvector
matrix Y, αj is the jth element on the diagonal (TTS)j,j and βj the jth element on the super diagonal
(TTS)j−1,j of matrix TTS.

1: procedure COMPLEX SYMMETRIC LANCZOS
2: Normalize: Y1 = y/

√
yTy

3: v1 =ΛY1

4: α1 = vT1Y1

5: v1 = v1 −α1Y1

6: for j = 2, . . . ,2n do

7: βj =
√

vTj−1vj−1

8: if βj ̸= 0 then
9: Yj = vj−1/βj
10: vj =ΛYj

11: αj = vTj Yj

12: vj = vj−αjYj−βjYj−1

13: else Breakdown
14: end if
15: end for
16: end procedure

Algorithm 2. Extract the ROM parameters γj and γ̂j from βj the super diagonal of the matrix TTS.

1: procedure EXTRACT GAMMA
2: γ̂1 = (yT1y1)

−1

3: for j = 1, . . . ,n− 1 do

4: γj =−(β2
2jγ̂j)

−1

5: γ̂j+1 =−(β2
2j+1γj)

−1

6: end for
7: γn =−(β2

2nγ̂n)
−1

8: end procedure

2.2. Krein and optimal grid embedding

Up to this point we constructed a ROM from the poles and residues of a boundary
impedance function. The ROM can be interpreted as the impedance function of a two-point
finite-difference discretization of a first-order system with primary and dual grid coefficients
γj and γ̂j, respectively. How to interpret these coefficients depends on the dual variable û that
is introduced to obtain a first-order system of ODEs from the original second-order ODE. In
particular, introducing the dual variable û=−s−1∂xu, the second-order system of equation (1)
can be written as(

s c2∂x
∂x s

)(
u(x,s)
û(x,s)

)
= 0, u(L,s) = 0, û(0,s) = 1, (15)

and this form will lead to what we call the Krein embedding interpretation. On the other hand,
introducing the quantities w= c−

1
2 u and ŵ= c

1
2 û as well as the slowness coordinates (some-

times called travel time coordinates)

T(x) =
ˆ x

0

1
c(ξ)

dξ (16)

7
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we obtain the first-order system(
s c

1
2 ∂Tc−

1
2

c−
1
2 ∂Tc

1
2 s

)(
w(T,s)
ŵ(T,s)

)
= 0, (17)

with w(T(L),s) = 0 and ŵ(0,s) = c
1
2 (0), and this system will leads to a standard optimal

grid embedding interpretation. Note that in this latter case the impedance function is f(s) =
u(0,s) = c

1
2 (0)w(0,s) and that standard optimal grid embedding is formulated in terms of

travel time coordinates.
In the next two sections we will give detailed descriptions of optimal grid and Krein embed-

ding procedures for wave propagation problems. Convergence of these procedures is also
briefly discussed.

3. Optimal grid embedding

Optimal grid embedding of ROMs was developed for the diffusion equation in [3]. In this
section, we extend this embedding approach to wave propagation problems and rely on results
obtained for the diffusion equation.

The main difficulty in ROM embedding is that each of the finite difference weights γj
and γ̂j consist of a product of the unknown local medium parameter and an unknown grid
step. Fortunately, for diffusion problems it has been shown that there exists a computable
grid {γ0

j , γ̂
0
j } that is independent of the medium parameters in the limit n→∞ (lemma 3.2

of [3]). The existence of this grid allows us to obtain the local material parameters by taking
ratios of the grid steps γ0

j , γ̂
0
j and ROM parameters γj, γ̂j thereby reconstructing the medium.

Furthermore, it can be shown the medium estimates converge pointwise in L1(0,L) (theorem
6.1 of [3]).

As a first step towards optimal grid embedding for wave propagation, we extend the results
from [3] by considering equation (17) in spatial coordinates instead of travel time coordin-
ates. Subsequently, we take the kinematic effects into account and discuss medium parameter
retrieval based on equation (17).

To avoid confusion, we call the medium parameter ζ when considering (17) in spatial
coordinates. In other words, we start by considering(

s ζ
1
2 ∂xζ

− 1
2

ζ−
1
2 ∂xζ

1
2 s

)(
v(x,s)
v̂(x,s)

)
= 0 (18)

with v(L,s) = 0, v̂(0,s) = ζ
1
2 (0) and transfer function f(s) = ζ

1
2 (0)v(0,s). A staggered finite-

difference grid with primary grid steps δj and dual grid steps δ̂j has the grid points

xj =
j∑

i=1

δi and x̂j =
j∑

i=1

δ̂i (19)

and a two-point finite-difference discretisation of the first-order system (18) gives

ζ̂
− 1

2
j+1 v̂j+1 − ζ̂

− 1
2

j v̂j

ζ
1
2
j δ̂j+1

+ svj = 0 ∀j = 0, . . . ,n− 1

ζ
1
2
j vj− ζ

1
2
j−1vj−1

ζ̂
− 1

2
j δj

+ sv̂j = 0 ∀j = 1, . . . ,n, (20)

8
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where the notation vj = v(xj,s) and v̂j = v̂(x̂j,s) is used. Furthermore, ζ j and ζ̂j denote averaged
medium parameters at the grid locations xi and x̂i, respectively. After symmetrization with
diagonal matrices the finite-difference pencil that corresponds to (18) can be written in terms
of the transpose-symmetric tridiagonal matrix

TTS;og =−i

0
(
ζ1δ1ζ̂

−1
1 δ̂1

)− 1
2 0 0(

ζ1δ1ζ̂
−1
1 δ̂1

)− 1
2 0 −

(
ζ1δ1ζ̂

−1
2 δ̂2

)− 1
2 0

... −
(
ζ1δ1ζ̂

−1
2 δ̂2

)− 1
2

. . .
. . .

...
. . . 0

(
ζnδnζ̂−1

n δ̂n
)− 1

2

0 · · · 0
(
ζnδnζ̂−1

n δ̂n
)− 1

2 0


.

(21)

In ROM embedding we try to interpret the ROM constructed from the measurement data as
a discretisation of the underlying equation. If we compare the above tridiagonal discretisation
stencil to the tridiagonal ROM matrix from equation (10) we find that the discretisation has
twice as many unknowns as the ROM has parameters, i.e. we cannot disentangle the grid steps
from the local medium parameters.

In [3] it was shown that a tridiagonal ROM that matches the lowest 2n poles and residues
of the transfer function corresponds to a discretisation on a special grid, also known as the
optimal grid or spectrally matched grid. This grid is independent of the medium parameter ζ
in the asymptotic limit n→∞ and can be computed from the ROM of a reference simulation
with ζ0(x) = 1 (for details, see [3]). Let this reference grid be characterised by the primary and
dual weights γ0

j and γ̂0
j , respectively, then pointwise estimates of ζ can be directly extracted

from the ROM. To bemore specific, let ζROM(x) and ζ̂ROM(x) be interpolants with interpolation
properties

ζROM
(
x̂optimal
j

)
= γj/γ

0
j where x̂optimal

j =

j∑
i=1

γ̂0
i (22)

and

ζ̂ROM
(
xoptimal
j−1

)
= γ̂0

j /γ̂j where xoptimal
j =

j∑
i=1

γ0
i , (23)

with xoptimal
0 = 0, then it can be shown that ζROM and ζ̂ROM converge pointwise in L1(0,L) to

the true medium profile ζ as n→∞, see [3] for details.
Having discussed equation (18) using the results of [3], let us now include kinematic wave

effects and consider equation (17) to obtain an optimal grid reconstruction scheme for wave
propagation problems. Initially following the same procedure as above, we can show that the
ratios γj/γ0

j and γ̂
0
j /γ̂j converge to the wave speed c[x(T)] parameterised in slowness coordin-

ates and the optimal grids in equations (22) and (23) are primary and dual optimal slowness
grids Toptj and T̂optj , respectively. To obtain the wave speed in physical coordinates, the inverse
slowness transform x(T) : T 7→ x given by

x(T) =
ˆ T

0
c [x(τ)] dτ (24)

9
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needs to be extracted as well. This can be realized in two steps: First the optimal grid is adjusted
to the average slowness of the medium and, second, the grid is locally adjusted to slowness
coordinates.

The background grid should be computed for the domain [0,T(L)], however this requires
knowledge of the average slowness

c−1 =
1
L

ˆ L

0
c−1 (x) dx (25)

as this defines T(L) = Lc−1. There are many ways to extract the average slowness from the
ROM and we choose to extracted it from the first ROM coefficient γ̂1 as

c−1 ≈ γ̂1c(0)

γ̂0
1

, (26)

for which obviously the wave speed c(0) at the sensor location is required. The effectiveness
of the above equation is due to the fact that γ̂0

1 depends linearly on the domain size and in the

limit n→∞ the ratio γ̂0
1c

−1

γ̂1
converges to the wave speed at x= 0. Alternatively, T(L) can be

extracted from the limit lims→0 f(s) (see [2]).
With this in place the wave speed c(x) can be extracted from the ROM parameters as

ĉROM
(
x̂optj

)
=

1

c−1

γj

γ0
j

∀j = 1, . . . ,n (27)

cROM
(
xoptj−1

)
= c−1

γ̂0
j

γ̂j
∀j = 1, . . . ,n, (28)

which are to be interpreted as pointwise estimates of the wave speed at the optimal grid points
that are adjusted to the local slowness coordinates

xoptj = x
(
Toptj

)
= c−1

j∑
k=1

γ0
k ĉ

ROM
[
x
(
T̂optj

)]
(29)

and

x̂optj = x
(
T̂optj

)
= c−1

j∑
k=1

γ̂0
k c

ROM
[
x
(
Toptj

)]
. (30)

These estimates converge pointwise in L1(0,T(L)) to the true wave speed which can be
obtained as a corollary to theorem 6.1 in [3]. Essentially, the optimal grid embedding recov-
ers c[x(T)] at points on the optimal grid in slowness coordinates. This recovered c[x(T)] then
provides the inverse slowness transform T 7→ x, to embed c(x) into physical space.

4. Krein embedding

From regular Sturm–Liouville theory it is well known that equation (1) is satisfied for infinitely
many eigenpairs (ϕi(x),λi), with real eigenfunctions ϕi(x) and imaginary eigenvalues s= λi.
The true impedance function

f(s) =
∞∑
i=1

yi
s+λi

+
ȳi

s+ λ̄i
(31)

is thus a meromorphic function with an infinite number of poles, corresponding to the eigen-
values λi and λ̄i. Now Krein and optimal grid embedding approaches both utilise truncated

10
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spectral impedance data, and in [12] it was shown by Kac and Krein that there is a one-to-
one correspondence between an n-term truncated spectral impedance function and a medium
with a mass function M(x) with n points of increase. Krein embedding allows us to link this
mass function to a continuous wave speed profile c(x). The following proposition provides an
explicit connection between the continuous wave equation and the discrete finite-difference
problem obtained from truncated spectral impedance data.

Proposition 1 (Kac and Krein). Let wn satisfy the wave equation with the mass function Mn

d2wn (x,s)
dx2

− s2Mn (x)wn (x,s) = 0
dwn
dx

|x=0 =−s, wn|x=xn+1 = 0, (32)

in the weak sense, where

Mn (x) =
n−1∑
i=0

γ̂i+1δ (x− xi) , x0 = 0, and xi =
i∑

k=1

γk for i = 1,2, ..,n. (33)

The continuous function wn then interpolates the finite-difference approximation from
equation (6), that is, we have wn(xi) = ui for i = 0,1, . . .,n.

Proof. The proof is straightforwardly obtained by substituting a (piecewise) linear interpola-
tion of ui between the xi’s into the second-order finite-difference equation. More precisely, let
ũ(x) be the linear interpolation of ui on the grid {xi}. For ũ(x) we have

ũ(xi) = ui, (34)

d
dx
ũ|x=(xi+δ) =

ui+1 − ui
γi+1

, 0< δ < γi+1 (35)

d
dx
ũ|x=(xi−δ) =

ui− ui−1

γi
, 0< δ < γi. (36)

Substituting this into the second-order form of the finite-difference relation from equation (6)
yields

d
dx
ũ|x=(xi+δ) −

d
dx
ũ|x=(xi−δ) − s2u(xi) γ̂i+1 = 0 for 0< δ <min(γi,γi+1) (37)

and after integration, we obtain the weak form of equation (32)

ˆ xi+δ

xi−δ

d2

dx2
ũ(x)dx− s2

ˆ xi+δ

xi−δ

ũ(x)δ (x− xi) γ̂i+1dx= 0. (38)

In Krein embedding we interpret the ROM as the impedance function at x= 0 of a
finite-difference discretization of the first order system (15). In particular, a two-point finite-
difference discretization on a staggered grid with primary stepsizes δj and dual stepsizes δ̂j
reads

ûj+1 − ûj

c−2
j+1δ̂j+1

+ suj = 0 ∀j = 0, . . . ,n− 1

uj− uj−1

δj
+ sûj = 0 ∀j = 1, . . . ,n, (39)

11
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where we used the shorthand notation uj = u(xj,s) again. The primary ROM edge-weights γj
are therefore interpreted as a step size δj and the dual edge-weights γ̂j as c

−2
j δ̂j. To be more

precise, we introduce the nondecreasing mass function

M(x) =
ˆ x

ξ=0
c−2 (ξ) dξ (40)

and the coordinate transform T 7→ x given by

x(T) =
ˆ T

τ=0
c [x(τ)] dτ. (41)

The mass function can now be written as

M [x(T)] =
ˆ T

τ=0

1
c [x(τ)]

dτ (42)

and we observe that

xKrein0 = 0, xKreinj =

j∑
k=1

γk, and Mn
(
xKreinj−1

)
=

j∑
k=1

γ̂k, (43)

for j = 1,2, . . .,n can be interpreted as ROM quadrature rules of (41) and (42), respectively.
Finally, if we let TKreinj denote the slowness coordinate corresponding to xKreinj then, using the
results of the optimal grid case discussed in the previous section, we have

χn
[
TKreinj

]
= xKreinj =

j∑
k=1

γk = c−1

j∑
k=1

cROM
(
x̂optk

)
γ0
k (44)

and

Mn
[
χn

(
TKreinj−1

)]
=

j∑
k=1

γ̂k = c−1

j∑
k=1

cROM
(
xoptk−1

)−1
γ̂0
k . (45)

Convergence of the Krein embedding follows directly from equations (44) and (45). Since the
optimal grid parameters converge, convergence of χn(T) 7→ x(T) and Mn(x) 7→M(x) follows
again as a corollary of theorem 6.1 in [3].

5. Numerical examples

Optimal grid embedding leads to pointwise estimates for the wave speed c(x), whereas Krein
embedding leads to an estimation of the mass function M(x) =

´ x
0 c

−2(ξ)dξ. Therefore, it is
natural to display the inversion result of the optimal grid embedding and Krein embedding in
terms of these two quantities.

In figure 2 the dashed line signifies a smoothly varying velocity profile on the interval [0,2]
that we attempt to reconstruct using knowledge of poles and residues of the impedance function
at x= 0. This spectral data is obtained by applying the vectorfit algorithm [8] to the impedance
function at x= 0 to obtain a rational function representation in pole-residue form as indicated
in equation (2).

We start with n= 12 pole-residue pairs of the impedance function f (s) to construct a ROM
and realise optimal grid and Krein embeddings. In this example, the background grid in case of
optimal grid embedding is extracted from a reference simulation with a constant c0 = 1. With
only n= 12 spectral points, the wave speed c(x) in case of an optimal grid embedding and the
mass function M(x) in case of Krein embedding are accurately reconstructed as illustrated in

12
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Figure 2. Velocity profile c(x) (solid line) and optimal grid reconstruction of this profile
based on n= 12 pole-residue pairs of the impedance function at x= 0. Crosses: recon-
structed velocity values at primary nodes. Circles: reconstructed velocity values at dual
nodes.

Figure 3. Mass function M(x) (solid grey line) and Krein embedding reconstruction
of this function (solid black line) based on n= 12 pole-residue pairs of the impedance
function at x= 0. The Krein grid is visualized with small dots on the x-axis.

figures 2 and 3, respectively. We note that due to the low number of pole-residue pairs that
are used, the estimates are slightly misplaced as the map T 7→ x is estimated with only a few
quadrature points.

Therefore, let us increase the number of pole-residue pairs to n= 50. In this case we show
the performance of optimal grid and Krein embedding in terms of velocity profile and mass

13
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Figure 4. Optimal grid embedding reconstruction of the velocity profile (solid line)
based on n= 50 pole-residue pairs of the impedance function at x= 0. Crosses: recon-
structed velocity values at primary nodes, circles: reconstructed velocity values at dual
nodes.

Figure 5. Krein embedding reconstruction (circles) of the velocity profile (solid line)
based on n= 50 pole-residue pairs of the impedance function at x= 0.

function reconstruction. Figure 4 shows the optimal grid embedding reconstruction for n= 50,
and clearly indicates convergence of the optimal grid embedding approach. Figure 5 shows
the velocity profile reconstruction with the Krein embedding approach, which indicates that
Krein embedding converges as well. Finally, mass function reconstructions for optimal grid
and Krein embedding are shown in figures 6 and 7, respectively. These reconstruction results

14
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Figure 6. Optimal grid embedding reconstruction of the mass function (solid line) based
on n= 50 pole-residue pairs of the impedance function at x= 0. Crosses: reconstructed
mass function values at primary nodes, circles: reconstructed mass function values at
dual nodes.

Figure 7. Krein embedding reconstruction (black line) of the mass function (grey line)
based on n= 50 pole-residue pairs of the impedance function at x= 0. The nodes of the
Krein grid are shown as solid dots on the x-axis.

indicate that both embedding approaches converge and benefit if more spectral data (pole-
residue pairs) of the impedance function is available.

Finally, we show how the two embedding approaches reconstruct a smoothed step (piece-
wise constant) velocity profile. The dashed line in figure 8 shows the velocity profile along
with the optimal grid embedding reconstruction for n= 50. Clearly, optimal grid embedding

15
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Figure 8. Optimal grid embedding reconstruction of a step velocity profile (solid line)
based on n= 50 pole-residue pairs of the impedance function at x= 0. Crosses: recon-
structed velocity values at primary nodes, circles: reconstructed velocity values at dual
nodes.

Figure 9. Krein embedding reconstruction (black line) of the mass function (grey line)
based on n= 50 pole-residue pairs of the impedance function at x= 0. The nodes of the
Krein grid are shown as solid dots on the x-axis.

captures the exact wave speed away from the step and shows some Gibbs ringing around the
step. The Krein embedding reconstruction for n= 50 of the corresponding mass function is
shown in figure 9. Here Gibbs ringing is not observed, since M(x) is an increasing quantity.
For this example the effects of noisy data on the reconstruction is shown in appendix C.
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Figure 10. Illustration of primary (crosses) and dual (circles) grid nodes of an optim-
al/Krein grid for a semi-infinite-domain. The grid steps become progressively large as
we move away from the measurement point, which coincides with the left-most primary
grid node.

6. Embedding of ROMs on semi-infinite domains

Up till now, we have considered scattering problems on bounded domains. For semi-infinite
domains, that is, domains that extend to infinity in one direction, the optimal and Krein grids
may be applied, but these approaches produce excessively large step sizes [10] as illustrated
in figure 10.

This problem can be avoided, however, by constructing ROMs that can be interpreted as
two-point finite-difference discretisations of dissipative first-order continuous wave equations.
We refer to this approach as Krein-Nudelman embedding [13].

To be specific, consider the wave equation in the Laplace domain on a semi-infinite domain,
where the wave speed variations are supported on (0,L) and the wave speed is constant c(x) =
c(L) for all x> L

d2u(x,s)
dx2

− s2
1

c2 (x)
u(x,s) = 0,

du
dx

∣∣∣
x=0

=−s, and lim
x→L

du
dx

=
−s
c(L)

u(L,s) . (46)

The boundary condition at x= L is the Sommerfeld radiation condition only satisfied by waves
traveling in the positive x-direction (exp[−sx/c(L)]). We note that the Sommerfeld condition
can be enforced at an arbitrary point x> L since all waves beyond this point travel in the pos-
itive x direction. The inverse problem is the recovery ofM(x) =

´ x
0 c(ξ)

−2dξ from impedance
measurements f(s) = u(0,s).

The impedance function measured at x= 0 for an open domain does not have a point spec-
trum. To implement Krein–Nudelman embedding, we fit the impedance function with rational
functions with n complex-conjugate pole-residue pairs. Since the impedance function is pass-
ive, the poles and residues have a positive real part. In the presented results, we use vector fit
[8] to obtain the poles and residues from the impedance function.

With complex poles and residues the diagonal entries (called α in algorithm 1) of the tridi-
agonal matrix obtained from the Lanczos algorithm are no longer zero. Since similar matrices
have the same trace we can equate the sum of the eigenvalues in Λ to the sum of the diagonal
elements of TTS, called αi’s in the Lanczos algorithm

0< trace(Λ) = trace
(
TTS

)
=

n∑
i=1

λi +λi =
2n∑
i=1

αi (47)

17



Inverse Problems 40 (2024) 025002 J Zimmerling et al

Figure 11. Grid used to interpret the ROM as a finite-difference discretisation of
the underlying differential operator on a semi-infinite domain. The crosses represent
primary grid nodes and the circles dual grid nodes. Note that the open boundary condi-
tion is applied at the last dual node x= L.

and see that the diagonal entries cannot all vanish. These diagonal elements are interpreted as
a loss term in Krein-Nudelman embedding and absorb energy. To facilitate an embedding that
allows for absorption, we introduce the complex symmetry tridiagonal matrix TTS;open

TTS;open =



α1 −i(γ1γ̂1)
− 1

2 0 0

−i(γ1γ̂1)
− 1

2 α2 i(γ1γ̂2)
− 1

2 0
... i(γ1γ̂2)

− 1
2

. . .
. . .

...
. . . α2n−1 −i(γnγ̂n)

− 1
2

0 · · · 0 −i(γnγ̂n)
− 1

2 α2n


, (48)

which we obtain from running the Lanczos algorithm with the complex poles and residues
obtained from fitting the impedance function of a semi-infinite domain.

To interpret this tridiagonal matrix using Krein-Nudelman embedding consider a finite-
difference discretization of equation (46) on the grid displayed in figure 11

ûj+1 − ûj

c−2
j+1δ̂j+1

+ suj = 0 ∀j = 0, . . . ,n− 1

uj− uj−1

δj
+ sûj = 0 ∀j = 1, . . . ,n− 1, (49)

−un+ c(L) ûn+ s
1
2
δnûj = 0

and compare it to finite difference discretization introduced by the tridiagonal matrix in
equation (48)

ûj+1 − ûj
γ̂j+1

+(α2j+1 + s)uj = 0, ∀j = 0, . . . ,n− 1,

uj− uj−1

γj
+(α2j+ s) ûj = 0, ∀j = 1, . . . ,n. (50)

Note that the Sommerfeld condition is applied on the last dual grid point, whereas the Dirichlet
condition in the bounded domain was applied on the last primary grid node.

The diagonal of TTS;open appears as a loss terms in the equation, and can thus be used to
define integrated primary and dual loss coefficients

ri = γ̂iα2i−1 and r̂i = γiα2i. (51)

18



Inverse Problems 40 (2024) 025002 J Zimmerling et al

Figure 12. Wave speed model for the semi-infinite domain example. A reflector is
placed at the end of the medium.

A Sommerfeld radiation condition would be equivalent to all ri and r̂i values vanishing
except for r̂n.

To illustrate this embedding we consider the inverse problem of recovering the velocity
profile in figure 12 from impedance measurements at x= 0. We use n= 121 pole-residue pairs
to fit the impedance function and compute TTS;open using the complex symmetric Lanczos
algorithm. Further numerical details can be found in appendix B.

The Krein–Nudelman embedding of the obtained mass function is shown alongside the
true mass function in figure 13. The smooth velocity variations are recovered well, whereas
the reflector is not recovered.

In figure 14 the loss coefficients are embedded into space for visualisation purposes. The
primary losses are displayed on the Krein grid and the dual losses in between Krein grid nodes.
Almost all losses r/r̂ vanish up until the last reflector in the medium, where the last r̂i con-
tribute to an effective loss term. The recovered r and r̂ terms do not exactly correspond to a
Sommerfeld radiation condition, but rather an effective absorbing medium being placed at the
end of the Krein embedding. Nonetheless, the velocity profile up to the last reflector is well
recovered at which point the loss coefficients increase. Note that the last grid point of the Krein
embedding is outside the interval of wave speed variations, since the Sommerfeld condition is
prescribed on a dual grid node in between the Krein-grid nodes.

Here we reach a fundamental limitation of the Krein embedding. From the fitted pole
residue form, the Krein embedding cannot distinguish between an infinite lossless medium,
which does not have a point spectrum, and a finite-absorbing medium. See the appendix A for
a further discussion.

However, up until the Krein embedding recovers an ‘effective’ absorbing medium the
embedding can be used to solve inverse problems. This is in some sense physical as one typ-
ically does not know from which point the infinite domain has constant medium parameters.
Compared to an optimal grid approach, the Krein-Nudelman approach only produces a grid
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Figure 13. Mass functionM(x) (solid black line) and Krein embedding grid reconstruc-
tion of this function (grey solid line) based on n= 121 pole-residue pairs approximating
the impedance function at x= 0.

Figure 14. Embedding: primary ri (×) losses embedded on the Krein grid χKrein and
dual losses r̂i (◦) embedded centred between Krein grid nodes. An effective absorbing
inclusion is placed at the end of the domain by the Krein embedding.

in the interval where the variations of the wave speed are supported, whereas the optimal
grid approach places grid points beyond the variations of the medium, which is not useful for
inversion.
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7. Conclusions

In this paper, we discussed two so-called ROM embedding procedures to solve inverse scatter-
ing problems based on spectral impedance data collected at one end of an interval of interest.
More precisely, we have shown that starting from impedance data in pole-residue form, the
Lanczos algorithm can be used to construct ROMs that can be interpreted as two-point finite-
difference discretisations of first-order wave equations. We call this ROM embedding and
presented two such embedding procedures, namely, optimal grid and Krein embedding.

The optimal grid embedding procedure is based on the theory of optimal grids and was
implemented in terms of spatial coordinates instead of travel time coordinates. In this approach,
the wave speed profile of an inhomogeneous medium can be reconstructed if we first determ-
ine an optimal reference grid for a (homogeneous) reference medium. The use of a reference
grid is avoided, however, in the Krein embedding approach, and convergence results obtained
for optimal grid embedding can be used to demonstrate the convergence of Krein embedding
as well. Furthermore, since no reference grid is necessary for Krein embedding, it may be pos-
sible to apply this procedure to semi-infinite domains. Here we run into uniqueness problems,
however, since with an impedance function in pole-residue form, it is impossible to distin-
guish between a lossy medium on a bounded interval and a lossless medium on a semi-infinite
interval. Nevertheless, numerical examples indicate that the wave speed profile is reconstruc-
ted on a semi-infinite domain up till the last reflector that is present within this domain. Future
work will focus on the development of a ROM embedding procedure for semi-infinite domain
problems.

Data availability statement

All data that support the findings of this study are included within the article (and any supple-
mentary files).

Acknowledgments

We thank Liliana Borcea, AlexMamonov, andMikhail Zaslavsky for many stimulating discus-
sions. The work of Vladimir Druskin was financially supported by AFOSRGrants FA 955020-
1-0079 and FA9550-23-1-0220, and NSF Grant DMS-2110773. The work of Elena Cherkaev
was financially supported by NSF Grant DMS-2111117. The work of Murthy Guddati was
financially supported by NSF Grant DMS-2111234. The work of Jörn Zimmerling was fin-
ancially supported by NSF Grant DMS-2110265. This support is gratefully acknowledged.

Appendix A. Can one distinguish bounded-lossy inverse problems from
unbounded-open inverse problems based on Stieltjes functions?

Consider the system Au= λu+ g, where A is a Hermitian nonnegative operator, and u and g
are elements belonging to a Hilbert space. We introduce the transfer function of this system as
f(λ) = g∗u, where the asterisk denotes the Hermitian inner product on the Hilbert space. This
transfer function is a Stieltjes function. Recall that a function f(λ) is a Stieltjes function if

f(λ) =
ˆ 0

z=−∞

ρ(z)
λ− z

dz, λ ∈ C \R−, (A1)
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for some positive distribution ρ(z) defined as the generalised derivative of a probability
measure.

Subsequently, we consider the first-order system

(
−σ L
L∗ 0

)(
ũ
v

)
= s

(
ũ
v

)
+

(
g
0

)
,

on a Hilbert space, where L∗ is the adjoint of operator L and σ ⩾ 0. The transfer function of
this system is introduced as h(s) = g∗ũ. A lossless first-order system is characterised by σ= 0
everywhere, while if σ> 0 in some domain in space, we refer to the above system as a lossy
first-order system.

Eliminating v in the lossless case, we obtain the Hermitian system Aũ= λũ+ sg with A=
LL∗ and λ= s2. Here, the transfer functions of the Hermitian and first-order system are related
by f(λ) = λ−1/2h(λ1/2) and h satisfies the three criteria for a passive SISO system, that is, we
have

(i) h(s) has no poles in C+,
(ii) h(s̄) = h̄(s) for every s ∈ C+, where the overbar denotes complex conjugation, and
(iii) Re[h(iω+ 0)]⩾ 0 for ω ∈ R.

For a lossy first-order system, the transfer function h(s) still satisfies the above three criteria,
but we no longer arrive at a Hermitian form when v is eliminated from the first-order system.
However, we can establish an isomorphism between passive transfer functions and Stieltjes
functions. More precisely, we have

Proposition 2. Using f(λ) = λ−1/2h(λ1/2), every Stieltjes function f(λ) can be transformed
to a passive transfer function h(λ1/2) and vice versa.

Proof. Consider the transformation f → h. First note that from the definition (A1) of a Stieltjes
function it follows that f(λ) is an analytic function of λ on C \R−. Setting s= λ1/2, it follows
from h(s) = sf(s2) and the analyticity of f that h(s) is analytic in C+ and therefore h(s) has no
poles in C+. Furthermore, since ρ is real (positive), we have f̄(s2) = f(s̄2) and it follows that
h̄(s) = h(s̄) with s ∈ C+. Finally, we have

lim
ϵ↓0

Re [h(ϵ+ iω)] = lim
ϵ↓0

1
2
[h(ϵ+ iω)+ h(ϵ− iω)] = π |ω|ρ

(
−ω2

)
> 0, (A2)

where we have used h(s) = sf(s2) and

ρ(λ) =
f(λ+ i0)− f(λ− i0)

2πi
, with λ ∈ R−.

Reasoning in reverse order gives the ‘vice versa’ result.

Now to each Stieltjes function there corresponds a unique Stieltjes–Krein string [12] and a
consequence of the above proposition is that we cannot distinguish between lossy media and
lossless media on a semi-infinite domain, since in both cases the transfer function is passive.

22



Inverse Problems 40 (2024) 025002 J Zimmerling et al

Appendix B. Details on the numerical implementation of the open domain
problem

For the Krein–Nudelman embedding on an open domain, we need to extract a rational function
from the measured impedance data. There are many rational fitting methods available, and in
this work we used the vectorfit algorithm [8].

In the open domain problem considered in the main text, we evaluate the impedance on the
interval s ∈ i[−ωmax,ωmax], discretized at 3000 equidistant points, and then use the vectorfit
algorithm to extract the poles and residues. The number of poles and residues n depends on
ωmax and in the presented experiment we increase n iteratively until the relative error of the
fit reaches 10−11. The initial poles of the vectorfit algorithm were chosen equidistantly in the
frequency interval of interest i[−ωmax,ωmax] with a small real shift chosen as 0.01ωmax.
After three iterations of the vectorfit algorithm, we obtained the desired misfit. In our example,
we choose ωmax such that it corresponds to a wavelength of 1/50 in a constant background
medium of c(x) = 2 on the interval x ∈ [0,1].

Using standard vectorfit, we have obtained passive pole residue forms in all experiments
and the recovery of the spectral data is stable with respect to changes in the initial poles.
Alternatively, fittingmethods that enforce passivity could be used (see [1, 6, 7, 9], for example).

The degree n of the rational function that can be fitted to the impedance data determines the
number of points of increase of the Krein embeddingM(x). In one spatial dimension this num-
ber is roughly proportional to the length of the frequency interval. Further, each residue/pole
pair needs to significantly contribute to the data and should be deflated otherwise. In practice,
the Hankel-singular values of the resulting ROM should be above noise level/machine preci-
sion. Overfitting will lead to a breakdown of the method as the passivity of the step sizes in
Krein embedding cannot be guaranteed in that case.

Appendix C. Robustness of Krein embedding

To show the robustness of the Krein embedding approach with respect to noise, we perturb
the residues and eigenvalues and compute the Krein embedding and optimal grid embedding.
Specifically, we add 5% i.i.d. Gaussian noise to the gaps of the eigenvalues λj and 5% i.i.d.
Gaussian noise to the square root of the residues

√
yj and compute the optimal grid and Krein

embedding for the step velocity profile considered in the main text. In figure C1 the optimal
grid embedding is shown for 50 pole residue pairs and in figure C2 the Krein embedding is
shown.

We observe that both embedding methods capture the jump in the velocity profile and the
reconstruction is less accurate than in the noiseless case. We stress that no regularization is
used in both embedding approaches.
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Figure C1. Velocity profile c(x) (solid line) and optimal grid reconstruction of this step
profile based on n= 50 noisy pole-residue pairs of the impedance function at x= 0.
Crosses: reconstructed velocity values at primary nodes. Circles: reconstructed velocity
values at dual nodes.

Figure C2. Mass functionM(x) (solid grey line) and Krein embedding reconstruction of
this function (solid black line) based on n= 50 noisy pole-residue pairs of the impedance
function at x= 0. The Krein grid is visualized with small dots on the x-axis.
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