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Reduced Order Modeling Inversion of Monostatic Data in a Multi-scattering
Environment\ast 
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Abstract. Data-driven reduced order models (ROMs) have recently emerged as an efficient tool for the solution
of inverse scattering problems with applications to seismic and sonar imaging. One requirement
of this approach is that it uses the full square multiple-input/multiple-output (MIMO) matrix-
valued transfer function as the data for multidimensional problems. The synthetic aperture radar
(SAR), however, is limited to the single-input/single-output (SISO) measurements corresponding to
the diagonal of the matrix transfer function. Here we present a ROM-based Lippmann--Schwinger
approach overcoming this drawback. The ROMs are constructed to match the data for each source-
receiver pair separately, and these are used to construct internal solutions for the corresponding
source using only the data-driven Gramian. Efficiency of the proposed approach is demonstrated on
2D and 2.5D (3D propagation and 2D reflectors) numerical examples. The new algorithm not only
suppresses multiple echoes seen in the Born imaging but also takes advantage of their illumination
of some back sides of the reflectors, improving the quality of their mapping.

Key words. inverse scattering, reduced order models, Lippmann--Schwinger, synthetic aperture radar,
monostatic
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1. Introduction. The reduced order model (ROM) approach has been shown previously to
be a powerful tool for inverse impedance, scattering, and diffusion [3, 7, 17, 16, 8, 9, 6, 5, 18,
14, 19, 11]. In this work, we apply it via the Lippmann--Schwinger--Lanczos algorithm [18] to
models of synthetic aperture radar (SAR). In the process, we present a simplification of the
ROM approach that applies for general time domain problems. This simplification both makes
the algorithm and its exposition more direct and yields potential for computational speedup.

In the ROM framework for solving multidimensional inverse problems, given a full sym-
metric matrix transfer function, the ROM is chosen precisely to match the given data set; see
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REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 335

[17, 16, 8, 9, 6, 14, 10]. Then, the ROM is transformed to a sparse form (tridiagonal for
single-input/single-output (SISO) problems; block tridiagonal for multiple-input/multiple-
output (MIMO) problems) by Lanczos orthogonalization. This data-driven ROM, in this or-
thogonalized form, has entries for which their dependence on the unknown PDE coefficients is
approximately linear [3, 17, 7, 5, 14]. This process is related to works of Marchenko, Gelfand,
Levitan, and Krein on inverse spectral problems and to the idea of spectrally matched second
order staggered finite-difference grids first introduced in [15] and first used for direct inversion
in [2].

The data-driven ROM can be viewed as a Galerkin matrix [1]. The crucial step, first
noticed in [17], is that the orthogonalized Galerkin basis depends very weakly on the unknown
medium. In [6], it was shown that this basis allows one to generate internal solutions from
boundary data only, and in [18], the data-generated internal solutions \bfu p (corresponding to
unknown coefficient p) were used in the Lippmann--Schwinger integral equation, yielding the
so-called Lippmann--Schwinger--Lanczos (LSL) method. In [13, 12], this method was first used
in the time domain.

The LSL method for the frequency-domain problems works as follows. Given data Fp cor-
responding to unknown p and background data F0, the Lippmann--Schwinger integral equation
says that

Fp  - F0 = - \langle u0, pup\rangle ,(1.1)

where \langle , \rangle is an appropriate inner product on the domain, and where up and u0 are the
unknown and background internal solutions, respectively. We then use the data generated
internal solution \bfu p in place of up:

Fp  - F0 \approx  - \langle u0, p\bfu p\rangle .(1.2)

Recall that \bfu p is precomputed directly from the data without knowing p.
Although a ROM must be constructed from a full symmetric transfer function, the LSL

approach allows for its application to more general data sets. In [19], we showed several
examples with nonsymmetric data arrays. Here we consider the monostatic formulation, that
is, the case where one has only the diagonal of the matrix transfer function. We are again
capitalizing on the fact that the LSL algorithm does not necessarily require the full matrix
transfer function [19]. The structure of our monostatic measurement array can be summarized
with the help of Figure 1.1. The column and row numbers correspond, respectively, to the
indices of the receivers (outputs) and transmitters (inputs). The conventional data-driven
ROM requires data from all receivers for all transmitters (the full data set), that is, that
the measurements are given by the full square matrix (Figure 1.1). We assume here that we
have only the diagonal part. We construct a separate ROM for each transmitter to obtain
its corresponding internal field. Subsequently, all data will be coupled via the Lippmann--
Schwinger equation. We show that even with this sparse data array, we retain some of the
good performance of the ROM approach for strong nonlinear scattering, where the Born
approximation fails.

Somewhat independently of the extension of LSL to monostatic problems, we present a
simplification of the generation of the internal solutions in the time domain. In the spectral
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Figure 1.1. Data arrays structures: Full MIMO square transfer function (data from all sources at all re-
ceivers) (left) versus monostatic data (data received only back at each source, typical of SARs) (right).

domain version [5, 18, 19], one would compute the mass matrix and stiffness matrix from the
data, execute the Lanczos algorithm to orthogonalize, and then use the ROM as a forward
operator to generate internal solutions. In the time domain, it turns out that we can obtain
the same internal solutions directly from the mass matrix, with no need to introduce finite
difference time stepping or the stiffness matrix. The formula we obtain offers the potential to
speed up the computation and allows us to present the process more compactly.

This paper is organized as follows. In section 2 we describe the entire time domain process
in detail for a one-dimensional single-input/single-output (SISO) problem including numerical
experiments. A brief discussion of this simplified process for MIMO arrays in higher dimen-
sions is described in section 3. Section 4 contains a detailed exposition of the monostatic
formulation, and section 5 contains numerical experiments.

2. One-dimensional problem.

2.1. Statement of inverse problem. Consider the following one-dimensional model
problem:

utt +Au= 0 in \Omega \times [0,\infty ),(2.1)

u(t= 0) = g in \Omega ,(2.2)

ut(t= 0) = 0 in \Omega ,(2.3)

where \Omega = (0,1), operator

A=A0 + q,(2.4)

where A0 \geq 0 is known, (for example, A0 =  - \Delta ), q(x) \geq 0 is our unknown potential, and
initial data is given by

g(x) =

\sqrt{} 
\^f(
\surd 
A)\delta 0(x)(2.5)

for \^f(\omega ), the Fourier transform of the initial pulse, which in our case we choose to be modulated
Gaussian

f(t) = e - \sigma 2t2/2 cos(\omega 0t).(2.6)

We also assume homogeneous Neumann boundary conditions on the spatial boundary \partial \Omega .
The exact forward solution to (2.1) is

u(x, t) = cos (
\surd 
At)g(x).(2.7)
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REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 337

Of course this is unknown for our inverse problem, except near the receiver. We measure data
at x= 0 at the 2n - 1 evenly spaced time steps t= k\tau for k= 0, . . . ,2n - 2 integrated against g:

F (k\tau ) =

\int 
\Omega 
g(x) cos (

\surd 
Ak\tau )g(x)dx.(2.8)

Recall that g is concentrated near x = 0, representing both source and receiver. The inverse
problem is as follows: Given

\{ F (k\tau )\} for k= 0, . . . ,2n - 2,

reconstruct q.

Remark 2.1. The initial data g is chosen in the form (2.5) for convenience; without the
outer square root in the definition of g, the problem (2.1) is equivalent to having zero initial
data and source term \delta 0(x)f(t). Furthermore, for our choice of pulse f , we have

\^f(\omega ) =

\surd 
\pi \surd 
2\sigma 

\biggl( 
e - 

(\omega  - \omega 0)2

2\sigma 2 + e - 
(\omega +\omega 0)2

2\sigma 2

\biggr) 
,(2.9)

so that for \omega 0 = 0

g=

\biggl( \surd 
2\pi 

\sigma 

\biggr) 1/2

e - 
A

2\sigma 2 \delta 0(x)(2.10)

is the solution of a time domain diffusion equation with operator A at time 1
2\sigma 2 , which is

assumed to be early enough that our operator A is still equal to our known A0. The square
root in the definition of g is chosen for symmetry reasons, which we will see below.

2.2. Mass matrix. Define uk to be the true snapshot uk = u(k\tau ,x) for k = 0, . . . ,2n - 2.
Then the n\times n mass matrix is defined by

Mkl =

\int 
\Omega 
ukuldx(2.11)

for k, l= 0, . . . , n - 1. From our expression (2.7) for the exact solution,

Mkl =

\int 
\Omega 
g(x) cos (

\surd 
Ak\tau ) cos (

\surd 
Al\tau )g(x)dx.(2.12)

The cosine angle sum formula

cos (
\surd 
Ak\tau ) cos (

\surd 
Al\tau ) =

1

2

\Bigl( 
cos (

\surd 
A(k - l)\tau ) + cos (

\surd 
A(k+ l)\tau )

\Bigr) 
along with (2.8) gives us directly that

Mkl =
1

2
(F ((k - l)\tau ) + F ((k+ l)\tau )) ,(2.13)

that is, we can obtain this mass matrix directly from the data. Note that we need precisely
the 2n - 1 data points corresponding to k= 0, . . . ,2n - 2 to obtain this n\times n mass matrix.
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338 V. DRUSKIN, S. MOSKOW, AND M. ZASLAVSKY

2.3. Orthogonalization. Note that M is positive definite, so we can compute its Cholesky
decomposition

M =U\top U,

where U is upper triangular. This would give us an orthogonalization of the true snapshots, if
we knew them, as follows. Define \vec{}u to be a row vector of the first n snapshots corresponding
to k= 0, . . . , n - 1, and set

\vec{}v= \vec{}uU - 1,(2.14)

that is, we set

vk =
\sum 
l

ulU
 - 1
lk .(2.15)

Then the set of functions \{ vk\} will be orthonormal in the L2 norm. One can check\int 
\Omega 
vivjdx=

\int 
\Omega 

\Biggl( \sum 
l

U - 1
li ul

\Biggr) \Biggl( \sum 
k

U - 1
kj uk

\Biggr) 
dx

=
\sum 
lk

U - 1
li U - 1

kj

\int 
\Omega 
ulukdx

=
\sum 
lk

U - 1
li U - 1

kj Mlk

=
\sum 
lkr

U - 1
li U - 1

kj U\top 
lrUrk

= \delta ij .

Since U - 1 is upper triangular, this procedure is precisely Gram--Schmidt performed on the true
snapshots, in order of the time steps. That is, although we do not know the true snapshots,
the mass matrix, obtained directly from the data, gives the transformation that orthogonalizes
them.

2.4. Background problem. We now do all of the above for the known background prob-
lem, which has exact solution

u0(x, t) = cos (
\sqrt{} 

A0t)g(x).(2.16)

We have the corresponding background snapshots \{ u0j\} , mass matrix

M0
kl =

\int 
\Omega 
u0ku

0
l dx,(2.17)

corresponding Cholesky decomposition

M0 = (U0)\top U0,

and orthogonalized background snapshots

\vec{}v0 = \vec{}u0(U0) - 1.(2.18)
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REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 339

2.5. Crucial step. It was noticed in [17] that the orthogonalized snapshots depend very
weakly on q. That is,

\vec{}v\approx \vec{}v0.(2.19)

The reason why is that since we are doing Gram--Schmidt (2.15) on the time snapshots in
sequential order, we are orthogonalizing away any reflections, since they are overlapping in
space with previous times. A rigorous analysis for a related problem for a so-called optimal
grid is given in [4]. The Gram--Schmidt procedure (2.15) is closely related to the Marchenko--
Gelfand--Levitan setting, which will be examined more fully later.

2.6. Data-driven internal solutions. From (2.14) and (2.19) we have that the true snap-
shots

\vec{}u= \vec{}vU

\approx \vec{}v0U.

This motivates the definition of our data generated snapshots

\vec{}\bfu = \vec{}v0U

= \vec{}u0(U0) - 1U.(2.20)

Note that in the right-hand side above we needed only the background solutions and the
true U , which we obtained just from data. Equation (2.20) is a simple formula for the data
generated internal solutions. In Figure 2.1 we illustrated how accurately \vec{}\bfu approximates true
snapshots \vec{}u and how different both are compared to the background snapshots \vec{}u0. Here we
probed a medium with one bump (see top left in Figure 2.1 by modulated Gaussian waveform
(2.9) with \omega 0\surd 

\sigma 
= 3 excited and measured at x= 0. As one can expect, all three snapshots are

on top of each other for small times when the waveform hadn't yet reached the reflector (see
top right in Figure 2.1). In turn, for later times the background snapshots become totally
different from the true snapshots; however, the latter are still reproduced by ROM-generated
snapshots \vec{}\bfu quite accurately (see bottom left and bottom right in Figure 2.1).

2.7. Inversion using Lippmann--Schwinger--Lanczos. For each time step k\tau , k = 0, . . . ,
n - 1, consider the time domain Lippmann--Schwinger equation (see, for example, [11])

dF0

dt
(k\tau ) - dF

dt
(k\tau ) =

\int k\tau 

0

\int 
\Omega 
u0(x,k\tau  - t)u(x, t)q(x)dxdt.(2.21)

Here we assume that derivative dF
dt of the transfer function F is accessible at times \{ k\tau \} n - 1

k=0 .
It can be obtained in a stable way if the Fourier image of the transfer function is available.
Recall that for the Born approximation one would replace u(x, t) with the background u0(x, t)
in the integral above. We instead replace u by its (time semidiscretized) data generated
approximation \vec{}\bfu from (2.20). Let \bfu (x, t) be a time interpolant of \vec{}\bfu to produce the LSL
equation

dF0

dt
(k\tau ) - dF

dt
(k\tau ) =

\int k\tau 

0

\int 
\Omega 
u0(x,k\tau  - t)\bfu (x, t)q(x)dxdt,(2.22)
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340 V. DRUSKIN, S. MOSKOW, AND M. ZASLAVSKY

Figure 2.1. Data generated internal snapshots compared to the true snapshots and the background snap-
shots. Before hitting the scatterer, all overlap. After hitting the scatterer, the data generated solutions show
reflections very close to the true (``cheated"") solutions, while the background solutions are quite different.

which can be inverted for q. We note that instead of interpolating the snapshots in time,
equivalently one may use the discrete time steps as nodes in some numerical approximation
of (2.21).

2.8. Remarks on the relation to previous work. In [17], it was shown that snapshot ui
can be obtained by the action of the ith (first kind) Chebyshev polynomial of the propagation
operator P = cos(\tau 

\surd 
A) on the initial condition g. Hence the snapshots ui form nested Krylov

subspaces, that is,

span\{ u0, . . . , ui\} = span\{ g,Pg, . . . , P ig\} ,

for all i= 0, . . . n - 1. Therefore, Gram--Schmidt orthogonalization on the snapshots is equiv-
alent to the Lanczos algorithm---hence the name Lippmann-Schwinger-Lanczos (LSL). The
LSL algorithm was first introduced in [18], which was in the frequency domain, in which case
the Lanczos algorithm is executed explicitly.

If one wants to compute a full ROM, we need a stiffness matrix too. The reconstruction
methods in much of the previous work used the full ROM [17, 16, 9, 10]. We see here, though,
that for time domain LSL, we need only the internal solutions, and hence only the mass matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 341

M is needed, yielding the above algorithm simplification. There is also potential for speedup
due to fast decay of the row elements of the upper triangular matrix (U0) - 1U , potentially
allowing for truncation. This is to be investigated in future work.

3. Full multidimensional problem: MIMO formulation. All of the above simplification
extends to MIMO problems in higher dimensions. Consider

utt +Au= 0 in \Omega \times [0,\infty ),(3.1)

u(t= 0) = g in \Omega ,(3.2)

ut(t= 0) = 0 in \Omega ,(3.3)

where \Omega is a domain in Rd, and again operator A=A0+q. Consider the set of source/receivers
modeled by \{ gj\} , a pulse localized near a receiver point xj , and the response matrix

F ji(k\tau ) =

\int 
\Omega 
gj(x) cos (

\surd 
Ak\tau )gi(x)dx(3.4)

for j, i = 1, . . . ,m, k = 0, . . . ,2n - 1, representing the response at receiver j from source i at
time k\tau . For the full MIMO problem, the mass tensor can again be obtained by the extension
of (2.13) to blocks (as in many earlier works; see, for example, [11]), and the internal solutions
again obtained from the block Cholesky (with m\times m blocks) decomposition,

M =U\top U,

where U is block upper triangular. We note that there is some ambiguity in the choice of the
blocks; we choose them so that all resulting orthogonalized functions

\vec{}v= \vec{}uU - 1

are mutually orthogonal. We do a similar decomposition/orthogonalization for the background
mass matrix

M0 = (U0)\top U0, \vec{}v0 = \vec{}u0(U0) - 1

to obtain the data generated internal solutions directly:

\vec{}\bfu = \vec{}u0(U0) - 1U.

4. Monostatic formulation.

4.1. Linear-algebraic setup. For the synthetic aperture radar (SAR), we are given only
the diagonal response

F jj(k\tau ) =

\int 
\Omega 
gj(x) cos (

\surd 
Ak\tau )gj(x)dx(4.1)

for j = 1, . . . ,m, k = 0, . . . ,2n - 1, from which we are not able to obtain the complete mass
matrix. However, we can instead compute a mass matrix and corresponding internal solution
corresponding to each source separately.
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342 V. DRUSKIN, S. MOSKOW, AND M. ZASLAVSKY

Let u(j) be the true solution given data gj . Define its set of snapshots

u
(j)
k = u(j)(k\tau ,x)

for k= 0, . . . ,2n - 1, j = 1, . . . ,m to correspond to source j at time k\tau . For SARs this is read
only at receiver j. Then the n\times n mass matrix corresponding to this source is defined by

M
(j)
kl =

\int 
\Omega 
ujku

j
l dx(4.2)

for k, l= 0, . . . , n - 1. Again we have the expression (2.7) for the exact solution, and

M
(j)
kl =

\int 
\Omega 
gj(x) cos (

\surd 
Ak\tau ) cos (

\surd 
Al\tau )gj(x)dx,(4.3)

so the cosine angle formula and (4.1) give us directly that

M
(j)
kl =

1

2

\bigl( 
F jj((k - l)\tau ) + F jj((k+ l)\tau )

\bigr) 
.(4.4)

Each M (j) is positive definite, so we can compute its Cholesky decomposition

M = (U (j))\top U (j),

where each U (j) is upper triangular, for j = 1, . . . ,m. The orthogonalized true snapshots
corresponding to source j are obtained in the exact same way,

\vec{}v(j) = \vec{}u(j)(U (j)) - 1,(4.5)

where \vec{}u(j) is the column vector of the original (yet unknown) snapshots. So we again have
that

v
(j)
k =

\sum 
l

u
(j)
l (U (j))

 - 1

lk ,(4.6)

and the set of functions \{ v(j)k \} for k= 0,1, . . . , n - 1 will be orthonormal in the L2 norm. We
now do all of the above for the known background problem, which has exact solutions

u(j),0(x, t) = cos (
\sqrt{} 

A0t)g(x).(4.7)

We have the corresponding background snapshots \{ u(j),0\} , mass matrices

M
(j),0
kl =

\int 
\Omega 
u
(j),0
k u

(j),0
l dx,(4.8)

corresponding Cholesky decompositions

M (j),0 = (U (j),0)\top U (j),0,

and orthogonalized background snapshots

\vec{}v(j),0 = \vec{}u(j),0(U (j),0) - 1.(4.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

6/
24

 to
 1

29
.1

19
.6

7.
75

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 343

4.2. Crucial step. To accurately approximate the internal solution, we need an analogue
of (2.19). It was shown in [17, 16] that (2.19) still holds for the MIMO formulation, provided we
have sufficient array density and aperture. In contrast, the monostatic setup does not provide
enough functions in the subspace to cancel all of the reflections from different directions during
orthogonalization. However, it will still cancel the most important reflections, by the following
reasoning.

Consider the 3D problem in the half-space, i.e., with \Omega = (R3)+. Then for regular enough
q and sharp pulse (small \sigma ), we have that for a given source,

u(x, t)\approx 1

2\pi 

\delta (\| x\|  - t)

\| x\| 
+ ð(x, t),(4.10)

where ð(x, t) is a smooth function satisfying the causality principle ð = 0 if \| x\| \geq t and
represents the difference from the background pulse. Thus the snapshots differ from the back-
ground spherically symmetric pulse by something with support in the region of the previous
time snapshots. Thus the Gram--Schmidt orthogonalization against previous time pulses will
approximately cancel spherical averages of ð(x, t), and the spherical averages of the orthogo-
nalized snapshots should be close to the orthogonalized background snapshots. That is, for
each j = 1, . . . ,m, \int 

\| x\| =const

\Bigl[ 
\vec{}v(j)  - \vec{}v(j),0

\Bigr] 
\approx 0,(4.11)

which means that the data generated internal solution is expected to have accurate spherical
averages.

4.3. Data generated internal solutions. The formulas (4.5), (4.9), and (4.11) yield our
data generated internal snapshots for each j,

\vec{}\bfu (j) = \vec{}v(j),0U (j)(4.12)

= \vec{}u(j),0(U (j),0) - 1U (j).

These will approximate the true solution in the sense of averages on spheres centered at the
transmitter/receiver location.

4.4. Monostatic Lippmann--Schwinger--Lanczos equation. We now consider the
Lippmann--Schwinger equation. For each time step k\tau , k = 0, . . . , n - 1, and for each source
j = 1, . . . ,m, we have

dF jj
0

dt
(k\tau ) - dF jj

dt
(k\tau ) =

\int k\tau 

0

\int 
\Omega 
u(j),0(x,k\tau  - t)u(j)(x, t)q(x)dxdt.(4.13)

For the LSL method, we replace u(j) by its data generated approximation \vec{}\bfu (j) from (4.12),
which we again need to interpolate. Let \bfu (j)(x, t) be a time interpolant of \vec{}\bfu (j) to produce the
LSL equation

dF jj
0

dt
(k\tau ) - dF jj

dt
(k\tau ) =

\int k\tau 

0

\int 
\Omega 
u(j),0(x,k\tau  - t)\bfu (j)(x, t)q(x)dxdt(4.14)
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for j = 1, . . . ,m, k = 0, . . . , n  - 1, yielding nm equations to be inverted for q. The spheres
discussed in the context of approximation (4.12) coincide with the slowness surfaces from
the transmitter/receiver location. Thus the corresponding spherical waves give the dominant
contribution in (4.13), and so it is reasonable to expect that (4.14) is a good approximation
of (4.13). Below we will verify this reasoning via numerical experiments.

5. Numerical experiments. To simplify the generation of forward data, we present exper-
iments with the near field setups, which can be generated by low flying drones. Here we show
results for impermeable reflectors, for which (3.1) is known as a reasonable approximation.
We start with the 2D inverse scattering problem to image 3 infinitely conductive reflectors
shown on the top right in Figure 5.1. In this multi-scattering environment, it is highly chal-
lenging to reconstruct all of the details using SAR data only. We generate synthetic data by
discretizing (3.1) in \Omega = [0; 300] \times [0; 80] on a 600 \times 160 grid and then solving the obtained
equations for 27 sources emitting a nonmodulated Gaussian pulse. The Lippmann--Schwinger
equation was approximated using quadrature on 300\times 80 grid. The Born solution captures the
top boundaries of all three reflectors nicely; however, the bottom boundaries remain invisible.
Also, the top reflector produced multiple ghost images (see top right plot in Figure 5.1). In
turn, LSL managed not only to avoid that but also to exploit multiple scattering effects to
map most of the bottom boundaries as well as the internal structure of the large reflectors
(see bottom plot in Figure 5.1).

In the second numerical example we consider a so-called 2.5D SAR inverse scattering
problem, that is, a 3D wave scattered by 2D reflectors. Here, we consider 2 thin elongated
reflectors embedded in homogeneous background (see on the top left in Figure 5.2). For the
SAR data collected along a single trajectory, this is a reasonable approximation that assumes
that a medium is uniform in the horizontal direction perpendicular to the trajectory. To obtain
synthetic data, we discretize (3.1) in \Omega = [0; 100]3 using finite differences on a 200\times 200\times 200
3D grid. The obtained discrete problem was solved for 27 positions of radar that were emitting
a nonmodulated Gaussian pulse (radar positions are marked by crosses in Figure 5.2). Then
the Lippmann--Schwinger equation (4.14) is approximated using quadratures on a 100 \times 100
2D grid. On the top right in Figure 5.2 we plot a cheated version of the Lippmann--Schwinger
solution, i.e., when all internal solutions u(j)(x, t) are assumed to be known exactly. This
corresponds to the best one could expect when solving (4.13) iteratively by updating the
background solution computed from the approximate q obtained in the previous step.1 On
the bottom two plots of Figure 5.2 we have shown the Born solution and the solution produced
by our LSL approach, respectively. Due to the lack of aperture in SAR data, both approaches
failed to image a part of the lower reflector. However, the Born solution also suffers from
multiple ghost images of reflectors that are caused by the misinterpretation of multi-scattered
effects. In turn, the LSL solution managed to clean out the multiple echoes and produced
a significantly better image. In fact, this image is just slightly inferior to the one from the
``cheated IE,"" which indicates good approximation of the interior solution.

1Such an iterative Lippman--Schwinger (a.k.a. distorted Born method) would require multiple solutions of
the forward problems, which can be prohibitively expensive for radar imaging, even if the iterations converge.
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REDUCED ORDER MODEL INVERSION OF MONOSTATIC DATA 345

Figure 5.1. Numerical experiment 1: 2D inverse scattering problem with 3 massive reflectors. True medium
(top left) and its reconstructions using the Born linearization (top right), and our LSL (bottom). The monostatic
array locations are shown in red. We image the reflectivity distribution to map the boundaries of the reflectors.
The LSL algorithm not only suppresses multiple echoes but also takes advantage of their illumination of some
back sides of the reflectors. The noise seen at the periphery of the LSL image will be addressed in the future by
improved processing.

In our final numerical experiment we consider a 2D inverse problem in the presence of
variable wave speed c, assuming that the contrast targets are permeable by the primary
waves. The forward problem can be formulated as

qutt +A0u= 0 in \Omega \times [0,\infty ),(5.1)

u(t= 0) = g in \Omega ,(5.2)

ut(t= 0) = 0 in \Omega ,(5.3)

where \Omega is a domain in Rd and q = 1
c2 . We note that in the 1D case this equation can

be equivalently mapped to (2.1) via the Liouville transform in the travel-time coordinates.
However, for multidimensional problems this is not possible, in a strict sense, due to distortion
of the travel-time geodesics. One partial solution is to transform to travel-time coordinates in
the dominant direction of propagation. This was done in the differential semblance method
[22], and we plan to pursue this approach in our further work. Another approach is to
iteratively update the internal solution in the seismic full wave inversion-type formulation,
e.g., as was done in [13, 12]. However, this would not be feasible for SAR real time processing
due to the cost of the forward problem solutions. Here we consider a simple approach which
takes advantage of the fact that in radar applications, the waves propagate more slowly in the
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346 V. DRUSKIN, S. MOSKOW, AND M. ZASLAVSKY

Figure 5.2. Numerical experiment 2: 2.5D inverse scattering problem with 2 elongated thin reflectors. True
medium (top left) and its reconstructions using the cheated IE (top right), Born linearization (bottom left), and
our LSL (bottom right). Similar to experiment 1, the monostatic array locations are shown in red.

targets than in the host medium (air). In this case the perturbations in the time snapshots have
support in the region of the previous snapshots and can be canceled with orthogonalization.
If the diameters of the perturbations are significantly smaller than their distance to the other
objects, localized targets, even of high contrast, do not significantly disturb the first arrivals
traveling in the fast background. The paths are mainly defined by inclusion shapes, and (2.1)
qualitatively approximates wave propagation.

For a set of localized sources/receivers \{ gj\} , we define the SAR-type measurements

F jj(k\tau ) =

\int 
\Omega 
gj(x)q(x) cos

\Biggl( 
k\tau 

\sqrt{} 
1

q
A0

\Biggr) 
gj(x)dx.(5.4)

Here we assumed that q(x) is known at locations of sources/receivers. In principle, for imaging
purposes, we could use the Lippmann--Schwinger equation earlier derived here for the for (3.1).
However more accurate results are obtained if we use a formulation equivalent to (5.1). For
each time step k\tau , k= 0, . . . , n - 1, and for each source j = 1, . . . ,m we have the equation
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\^F jj
0 (k\tau ) - \^F jj(k\tau ) =

\int k\tau 

0

\int 
\Omega 
u(j),0(x,k\tau  - t)u(j)(x, t)q(x)dxdt,(5.5)

where \^F (t) =
\int t
0 F (s)ds and where u(j),0 are snapshots of the solution of (5.1) for a known

background coefficient q = q0. Compared to the case (2.22) where dF
dt was involved, here the

Lippmann--Schwinger formulation requires the primitive \^F of the transfer function F . In our
experiments we computed it from F using quadratures. Similar to the case (2.22), in the LSL
formulation we replace true internal solution u(j)(x, t) in the medium by its ROM approximant
given by (4.12) where factors U (j),0 and U (j) are obtained from Cholesky decompositions of

mass matrices M (j) = \{ M (j)
kl \} 

n - 1
k,l=0 and M (j,0) = \{ M (j,0)

kl \} n - 1
k,l=0, and where

M
(j)
kl =

\int 
\Omega 
gj(x)q(x) cos

\Biggl( 
k\tau 

\sqrt{} 
1

q(x)
A0

\Biggr) 
cos

\Biggl( 
l\tau 

\sqrt{} 
1

q(x)
A0

\Biggr) 
gj(x)dx,(5.6)

and

M
(j),0
kl =

\int 
\Omega 
gj(x)q0(x) cos

\Biggl( 
k\tau 

\sqrt{} 
1

q0(x)
A0

\Biggr) 
cos

\Biggl( 
l\tau 

\sqrt{} 
1

q0(x)
A0

\Biggr) 
gj(x)dx,(5.7)

respectively.
In our numerical example we considered the same 2D medium as in the previous exper-

iment (2 elongated reflectors within a homogeneous medium); however, the problem here is
fully 2D, i.e., all of the traveling waves are 2D as well. To obtain synthetic data, we dis-
cretized (5.1) in \Omega = [0; 1]2 using a 200 \times 200 finite difference grid. We solved the discrete
problem for 27 positions of a radar that was emitting a nonmodulated Gaussian pulse (radar
locations are marked by crosses in Figure 5.3). The reflected wavefield was then recorded at
those 27 positions. We discretized the Lippmann--Schwinger equation using a quadrature on
a 100\times 100 grid. On the top right of Figure 5.3 we have shown a cheated solution that, as
one can observe, reproduces the true model (see top left of Figure 5.3) quite accurately. In
fact, for our model with slow inclusions, the true cheated wavefield is moving slowly through
the reflectors. Hence, true snapshots provide a good resolution to image them---even better
than for the case (2.22), which corresponds to a constant wavespeed. The bottom two plots
correspond to Born (left) and LSL (right) solutions. Similar to the previous example, LSL
managed to suppress many ghost images that are visible in the Born solution. However, the
lack of aperture of SAR data didn't allow us to reconstruct the internal solutions accurately
enough to perform on par with the cheated solution, which is in fact quantitatively accurate.
This indicates that more improvement is possible with better approximation of the internal
solution, for example, by using the first order reflectivity formulation [9], or combining the
ROM with inverse Born series updates [21].

6. Conclusion. Conventional imaging of SAR data is based on the linearization of the
underlying inverse scattering problem, i.e., the Born approximation. This approach, however,
becomes unreliable in a multiple-scattering environment. To circumvent this problem, we
considered a novel Lippmann--Schwinger formulation. The main drawback of the conventional
Lippmann--Schwinger integral equation for the inverse scattering problem is that the inte-
rior solution used depends on the unknown PDE coefficient, making the problem nonlinear.
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348 V. DRUSKIN, S. MOSKOW, AND M. ZASLAVSKY

Figure 5.3. Numerical experiment 3: 2D inverse wave-speed problem with 2 elongated thin reflectors. True
medium (top left) and its reconstructions using the cheated IE (top right), Born linearization (bottom left), and
our LSL (bottom right). Monostatic array locations are shown in red.

Here we estimate the interior solution directly from the data with the help of the data-driven
Gramian of the reduced order model (ROM), thus transforming the nonlinear Lippmann--
Schwinger formulation to a linear one. Numerical examples for 2D and 2.5D (3D propagation
and 2D reflectors) problems show a noticeable improvement compared to the linearized Born
formulation.

In addition, our experiments reveal that the inversion results can be improved further
by more accurate estimations of the internal solution. This could potentially be achieved by
better parametrization of the inverse scattering problem (via first order formulations such as
Maxwell's system), combining ROMs with the inverse Born series approach, and, for the case
of a smoothly varying wave-speed, using a partial transformation to a travel time coordinate
similar to the differential semblance method.

In our future work we also plan to investigate the effects of focusing, far field formulation,
and excitation regimes commonly used in the radar community. Our long-term objective is
to make the cost of the ROM approach comparable to the cost of the Born approximation.
A bottleneck in the ROM approach is the efficient factorization of the data-driven Gramians,
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and some promising results in this direction have already been obtained by the EPFL group
following their earlier work on functions of Toeplitz matrices [20].

Acknowledgments. The authors are grateful to Liliana Borcea, Alex Mamonov, and J\"orn
Zimmerling for productive discussions that inspired this research.
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