

Relative hulls and quantum codes

Sarah E. Anderson, Eduardo Camps-Moreno, Hiram H. López, *Senior Member, IEEE*,
 Gretchen L. Matthews, *Senior Member, IEEE*, Diego Ruano, and Ivan Soprunov,

Abstract—Given two q -ary codes C_1 and C_2 , the relative hull of C_1 with respect to C_2 is the intersection $C_1 \cap C_2^\perp$. We prove that when $q > 2$, the relative hull dimension can be repeatedly reduced by one, down to a certain bound, by replacing either of the two codes with an equivalent one. The reduction of the relative hull dimension applies to hulls taken with respect to the e -Galois inner product, which has as special cases both the Euclidean and Hermitian inner products. We give conditions under which the relative hull dimension can be increased by one via equivalent codes when $q > 2$. We study some consequences of the relative hull properties on entanglement-assisted quantum error-correcting codes and prove the existence of new entanglement-assisted quantum error-correcting maximum distance separable codes, meaning those whose parameters satisfy the quantum Singleton bound.

Index Terms—Hull, Entanglement-assisted quantum error-correcting codes, CSS construction, quantum codes.

MSC2010: 94B05; 81P70; 11T71; 14G50.

1. INTRODUCTION

LET C be a linear code over a finite field \mathbb{F}_q . The hull of C is defined by $\text{Hull}(C) = C \cap C^\perp$, where C^\perp is the dual of C taken with respect to the Euclidean inner product. Carlet, Mesnager, Tang, Qi, and Pellikaan proved in the seminal paper [8] the existence of LCD codes (codes where the hull is 0) for the case of the Euclidean and the Hermitian inner

Sarah E. Anderson is with the Department of Mathematics, University of St. Thomas, St. Paul, MN USA, e-mail: ande1298@stthomas.edu. Eduardo Camps-Moreno, Hiram H. López, and Gretchen L. Matthews are with the Department of Mathematics, Virginia Tech, Blacksburg, VA USA, e-mails: eduardoc@vt.edu, hhlopez@vt.edu, and gmatthews@vt.edu. Diego Ruano is with IMUVA-Mathematics Research Institute, Universidad de Valladolid, Valladolid, Spain, e-mail: diego.ruano@uva.es. Ivan Soprunov is with the Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH USA, email: i.soprunov@csuohio.edu.

Hiram H. López was partially supported by the NSF grants DMS-2201094 and DMS-2401558. Gretchen L. Matthews was partially supported by NSF DMS-2201075 and the Commonwealth Cyber Initiative. Diego Ruano was partially supported by Grant RYC-2016-20208 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future,” by Grant TED2021-130358B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR,” and by QCAYLE project funded by MCIN, the European Union NextGenerationEU (PRTR C17.II) and Junta de Castilla y León.

Corresponding author: Hiram H. López.

product when $q > 3$. Luo, Ezerman, Grassl, and Ling proved in [27] that when $q > 2$, the dimension of the Hermitian hull $\text{Hull}_h(C) = C \cap C^{\perp_h}$, where C^{\perp_h} is the Hermitian dual of C , can be reduced to zero one by one in the sense that if $\dim \text{Hull}_h(C) > 0$, then there exists a code C' monomially equivalent to C such that $\dim \text{Hull}_h(C') = \dim \text{Hull}_h(C) - 1$. A slight modification reveals the same result for the hull of C (taken with respect to the Euclidean inner product) when $q > 3$. Therefore, there exists a sequence of monomially equivalent codes $C_0, C_1, \dots, C_t = C$ such that $\dim \text{Hull}(C_i) = i$, where $t = \dim \text{Hull}(C)$. How equivalent codes can change the hull is also studied in [9].

It is well known that self-orthogonal codes with respect to the Hermitian inner product may be used to construct quantum error-correcting codes [11], [5], [22]. Entanglement allows one to remove restrictions on the relationship between a code and its dual. Hence, any linear code (not necessarily self-orthogonal) may be used to define a quantum code [4]. One may also use two codes $C_1, C_2 \subseteq \mathbb{F}_q^n$ satisfying $C_2^\perp \subseteq C_1$ via the now famous CSS construction [6], [37]. In the case of the construction of entanglement-assisted quantum error-correcting codes using linear codes $C_1, C_2 \subseteq \mathbb{F}_q^n$, the required number of pairs of maximally entangled qudits is given by the parameter $c = \dim(C_1) - \dim(C_1 \cap C_2^\perp)$ [39]. Therefore, a key ingredient for computing c is $C_1 \cap C_2^\perp$, which we call the relative hull. More explicitly, the relative hull of C_1 with respect to C_2 is

$$\text{Hull}_{C_2}(C_1) = C_1 \cap C_2^\perp.$$

Note that the hull of C is $\text{Hull}(C) = \text{Hull}_C(C)$.

In this paper, we study how equivalent codes change the relative hull. Specifically, we look for codes C'_1 and C'_2 equivalent to C_1 and C_2 , respectively, such that the dimension of $\text{Hull}_{C'_2}(C'_1)$ is larger or smaller than that of $\text{Hull}_{C_2}(C_1)$. We first show that to increase or decrease the relative hull dimension, we only need to find an equivalent code for one of the codes. Then, we show that the relative hull with respect to Galois inner products [12], [23] (which include the Euclidean and Hermitian inner products as particular cases) can

be computed in terms of the Euclidean inner product, justifying the focus on the classical Euclidean inner product in this work. One of the main results of this paper is Theorem 3.3, where we show that we can successively decrease the dimension of the relative hull by one via equivalent codes when $q > 2$. We provide a similar result for e -Galois hulls. As a corollary, we can recover the analogous result in [8] for the Euclidean inner product and in [27] for the Hermitian inner product as special cases.

This paper also concerns increasing the relative hull dimension. Proposition 4.5 gives an upper bound for the dimension of $\text{Hull}_{C_2}(C_1)$, which sometimes also is an upper bound for $\dim \text{Hull}_{C'_2}(C'_1)$ for any codes C'_1 and C'_2 equivalent to C_1 and C_2 . Theorem 4.6 shows we can successively increase the dimension of $\text{Hull}_{C_2}(C_1)$ by one via equivalent codes up to the upper bound given in Proposition 4.5 when $q > 2$.

Another primary goal is to apply our results to quantum error-correcting codes. We use the standard notation $[[n, \kappa, \delta; c]]_q$ to mean that a quantum code Q is a q -ary entanglement-assisted quantum error-correcting code (EAQECC) that encodes κ logical qudits into n physical qudits with the help of $n - \kappa - c$ ancillas and c pairs of maximally entangled qudits. The *rate* ρ and *net rate* $\bar{\rho}$ of Q are respectively defined by

$$\rho := \frac{\kappa}{n}, \quad \bar{\rho} := \frac{\kappa - c}{n}.$$

As stated, the relative hull dimension is linked to the required number of pairs of maximally entangled quantum states for an EAQECC. Our results concerning the relative hull demonstrate how monomially equivalent codes may be used to tailor the parameter c within the specified bounds. Thus, we can reduce the required number of pairs of maximally entangled quantum states while maintaining the net rate. Hence, one has a simpler implementation with the same net rate. We show that if a quantum code obtained via the CSS construction using C_1 and C_2 is pure, then the minimum distance of the quantum code obtained via the CSS construction of some linear codes monomially equivalent to C_1 and C_2 does not decrease. Furthermore, we give conditions to obtain a pure quantum code using monomially equivalent codes. We obtain EAQECCs codes with excellent parameters by applying Theorem 3.3 to multivariate Goppa codes, filling in some gaps or improving the parameters of some of the best-known EAQECCs recently published by L. Sok [36]. We obtain new EAQMDS (EAQECCs whose parameters achieve the Singleton bound, so-called entanglement-assisted quantum maximum dis-

tance separable codes), by applying Theorem 3.3 to (possibly extended or double extended) generalized Reed-Solomon codes when $q > 2$, $1 < n < q + 1$, and $k \leq n + 2$.

This paper is organized as follows. Preliminaries are given in Section 2. Section 3 provides results on reducing the relative hull while Section 4 discusses increasing the relative hull. Applications to the design of entanglement-assisted quantum error-correcting codes are in Section 5. The paper ends with a conclusion in Section 6.

2. PRELIMINARIES

This section provides a foundation for the rest of the paper in terms of preliminary results and notation. Subsection 2-A explores the relative hull with respect to the usual (Euclidean) inner product. Subsection 2-B introduces the e -Galois relative hull, the relative hull with respect to the more recently introduced Galois inner products, among which we find the Hermitian inner product. Subsection 2-B also proves that the e -Galois relative hulls are particular cases of the relative hulls with respect to the usual inner product. Subsection 2-C reviews the primary constructions of quantum error-correcting codes used in this paper and links them to relative hulls.

A. Relative hulls and code equivalence

Let \mathbb{F}_q be the finite field with q elements. The multiplicative group $\mathbb{F}_q \setminus \{0\}$ is denoted by \mathbb{F}_q^* . For $c \in \mathbb{F}_q^n$, we denote by $\text{wt}(c)$ the (Hamming) weight of c , which is the number of nonzero entries of c . For $S \subseteq \mathbb{F}_q^n$, we denote by $\text{wt}(S)$ the *minimum* of the weights of the elements of $S \setminus \{0\}$. A *linear code* C over \mathbb{F}_q of length n is a vector subspace of \mathbb{F}_q^n ; we may say *code* for short because we only deal with linear codes. An $[n, k, d]_q$ -code is a linear code over \mathbb{F}_q of length n , dimension k as an \mathbb{F}_q -subspace, and *minimum distance* $d(C) = \text{wt}(C)$; we sometimes refer to such a code as an $[n, k]_q$ -code if the minimum distance is irrelevant to the discussion. The *Euclidean dual* of C is denoted and defined by

$$C^\perp = \{x \in \mathbb{F}_q^n \mid x \cdot c = 0 \text{ for all } c \in C\},$$

where $x \cdot c = \sum_{i=1}^n x_i c_i$ is the *Euclidean inner product*. Recall that $\text{Hull}(C) = C \cap C^\perp$. We say that C is *self-orthogonal* if $\text{Hull}(C) = C$ and that C is *linear complementary dual (LCD)* if $\text{Hull}(C) = \{0\}$. The set of $m \times n$ matrices with entries in \mathbb{F}_q is denoted by $\mathbb{F}_q^{m \times n}$, and $\text{rk}(M)$ denotes the rank of

a matrix $M \in \mathbb{F}_q^{m \times n}$. The *kernel* of $G \in \mathbb{F}_q^{k \times n}$ is $\ker(G) = \{x \in \mathbb{F}_q^n \mid Gx^T = 0\}$. The j -th standard basis vector of \mathbb{F}_q^n is $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ where the only nonzero entry is in the j -th coordinate.

Definition 2.1. Let C_1 and C_2 be two codes of the same length over \mathbb{F}_q . We define the *relative hull* of C_1 with respect to C_2 as

$$\text{Hull}_{C_2}(C_1) = C_1 \cap C_2^\perp.$$

The *hull* of C_1 is $\text{Hull}(C_1) = \text{Hull}_{C_1}(C_1)$.

Let x be an element of $\text{Hull}_{C_1}(C_2) = C_1^\perp \cap C_2$ and c an element of $\text{Hull}_{C_2}(C_1) = C_1 \cap C_2^\perp$. As $x \cdot c = 0$, we conclude that $\text{Hull}_{C_1}(C_2) \subseteq (\text{Hull}_{C_2}(C_1))^\perp$ (note that $(A \cap B)^\perp = A^\perp + B^\perp$). In particular, $\text{Hull}(C)$ is a self-orthogonal code for any linear code C . Note that $\text{Hull}(C_1) \subseteq \text{Hull}_{C_2}(C_1)$ if $C_2 \subseteq C_1$ and $\text{Hull}_{C_2}(C_1) \subseteq \text{Hull}(C_1)$ if $C_1 \subseteq C_2$.

The following result presents some basic properties of the relative hull.

Proposition 2.2. Let C_i be an $[n, k_i]_q$ -code with generator matrix G_i for $i = 1, 2$. The following hold:

- (i) $\text{Hull}_{C_2}(C_1) = \{xG_1 \mid x \in \ker(G_2G_1^T)\}$,
- (ii) $\dim \text{Hull}_{C_2}(C_1) = k_1 - \text{rk}(G_2G_1^T)$, and
- (iii) $k_1 - \dim \text{Hull}_{C_2}(C_1) = k_2 - \dim \text{Hull}_{C_1}(C_2)$.

Proof. (i) (\subseteq) If $c \in \text{Hull}_{C_2}(C_1) = C_1 \cap C_2^\perp$, then $c = xG_1$ for some $x \in \mathbb{F}_q^{k_1}$ and $G_2c^T = 0$. Hence, $G_2G_1^Tx^T = 0$, which means that $x \in \ker(G_2G_1^T)$. We conclude that $c \in \{xG_1 \mid x \in \ker(G_2G_1^T)\}$.

(\supseteq) If $c \in \{xG_1 \mid x \in \ker(G_2G_1^T)\}$ then there is $x \in \ker(G_2G_1^T)$ such that $c = xG_1$ indicating that $c \in C_1$. Furthermore, $G_2c^T = G_2G_1^Tx^T = 0$, demonstrating that $c \in C_2^\perp$. Thus, $c \in C_1 \cap C_2^\perp = \text{Hull}_{C_2}(C_1)$.

(ii) The matrix $G_1 \in \mathbb{F}_q^{k_1 \times n}$ has rank k_1 , so it defines the injective transformation $T_{G_1} : \mathbb{F}_q^{k_1} \rightarrow \mathbb{F}_q^n$ given by $x \mapsto xG_1$. Combining this fact with (i) shows

$$\begin{aligned} \dim \text{Hull}_{C_2}(C_1) &= \dim \{xG_1 \mid x \in \ker(G_2G_1^T)\} \\ &= \dim \{x \mid x \in \ker(G_2G_1^T)\} \\ &= \dim \ker(G_2G_1^T) \\ &= k_1 - \text{rk}(G_2G_1^T). \end{aligned}$$

(iii) This is a consequence of $\text{rk}(G_2G_1^T) = \text{rk}(G_1G_2^T)$ and (ii). \square

A *monomial matrix* is an invertible matrix with rows of weight one. If all nonzero entries of a monomial matrix are ones, it is called a *permutation matrix*.

Definition 2.3. Two codes C and C' over \mathbb{F}_q of the same length are *monomially equivalent*, or *equivalent* for short, if there exists a monomial matrix M such that

$$C' = CM = \{cM \mid c \in C\}.$$

In fact, according to MacWilliams' theorem, every isometry on \mathbb{F}_q^n with respect to the Hamming metric is given by a monomial matrix [29, Theorem 4]. As monomial equivalence preserves the weight distributions, equivalent codes have the same basic parameters: length, dimension, and minimum distance. It is easy to see that the duals of equivalent codes are equivalent. More precisely, C and C' are equivalent with $C' = CM$ if and only if C'^\perp and C^\perp are equivalent with $C'^\perp = C^\perp PD^{-1}$, where $M = PD$, P is a permutation matrix, and D is a nonsingular diagonal matrix.

Given two codes $C_1, C_2 \subseteq \mathbb{F}_q^n$, we aim to find equivalent codes that define a relative hull of dimension that is increased or decreased by one from that of the hull of the original codes and then proceed iteratively. More precisely, we are looking for codes C'_1 and C'_2 equivalent to C_1 and C_2 , respectively, such that $\dim \text{Hull}_{C'_2}(C'_1) = \dim \text{Hull}_{C_2}(C_1) + 1$ or $\dim \text{Hull}_{C'_2}(C'_1) = \dim \text{Hull}_{C_2}(C_1) - 1$. The following observation shows that modifying only one of the codes is enough to increase or decrease the relative hull dimension. In other words, when we look for codes C'_1 and C'_2 equivalent to C_1 and C_2 such that $\dim \text{Hull}_{C'_2}(C'_1) = \dim \text{Hull}_{C_2}(C_1) + 1$ or $\dim \text{Hull}_{C'_2}(C'_1) = \dim \text{Hull}_{C_2}(C_1) - 1$, we can always take $C'_2 = C_2$.

Proposition 2.4. If $C_i \subseteq \mathbb{F}_q^n$ is a code and $M_i \in \mathbb{F}_q^{n \times n}$ is a monomial matrix for $i = 1, 2$, then

$$\begin{aligned} \dim \text{Hull}_{C_2M_2}(C_1M_1) &= \dim \text{Hull}_{C_2M}(C_1) \\ &= \dim \text{Hull}_{C_2}(C_1M^T), \end{aligned}$$

where $M = M_2M_1^T$.

Proof. Let G_1 and G_2 be generator matrices for C_1 and C_2 , respectively. By Proposition 2.2 (ii),

$$\begin{aligned} \dim \text{Hull}_{C_2M_2}(C_1M_1) &= k_1 - \text{rk}(G_2M_2(G_1M_1)^T) \\ &= k_1 - \text{rk}(G_2MG_1^T) \\ &= \dim \text{Hull}_{C_2M}(C_1). \end{aligned}$$

Noting that $G_2MG_1^T = G_2(G_1M)^T$, we also see that

$$\dim \text{Hull}_{C_2M}(C_1) = \dim \text{Hull}_{C_2}(C_1M^T),$$

which proves the assertion. \square

B. Hermitian and Galois relative hulls

In [12], Fan and Zhang introduced the Galois inner products, a generalization of the Euclidean and Hermitian inner products, and found self-orthogonal codes with respect to the new inner product. The Galois inner products were further studied to build LCD codes [23] and to get new families of quantum codes with a broader range of parameters (see, for example, [7], [24]). This section reviews the Galois inner products and the relative hulls with respect to them. It also demonstrates why, for our purposes, it is sufficient to focus on the classical Euclidean relative hull (rather than these more general Galois relative hulls).

Consider the finite field \mathbb{F}_q , where $q = p^m$ for a prime p and a positive integer m . For any integer e such that $0 \leq e < m$, the e -Galois inner product for $x, y \in \mathbb{F}_q^n$ is given by

$$x \cdot_e y = \sum_{i=1}^n x_i y_i^{p^e} \in \mathbb{F}_q.$$

Taking $e = 0$ recovers the Euclidean inner product in \mathbb{F}_q^n . Taking $e = \frac{m}{2}$ when m is even produces the usual Hermitian inner product in \mathbb{F}_q^n that is denoted by $x \cdot_h y$. The e -Galois dual of a code $C \subseteq \mathbb{F}_q^n$ is defined by

$$C^{\perp_e} = \{x \in \mathbb{F}_q^n \mid x \cdot_e c = 0, \text{ for all } c \in C\}.$$

The Hermitian dual is denoted by C^{\perp_h} . Given two codes C_1 and C_2 over \mathbb{F}_q , we define the e -Galois relative hull of C_1 with respect to C_2 as

$$\text{Hull}_{C_2}^e(C_1) = C_1 \cap C_2^{\perp_e}.$$

We denote the Hermitian relative hull by $\text{Hull}_{C_2}^h(C_1)$. The e -Galois relative hulls $\text{Hull}_{C_1}^e(C_1)$ and $\text{Hull}_{C_1}^h(C_1)$ are denoted respectively by $\text{Hull}_e(C_1)$ and $\text{Hull}_h(C_1)$.

Given a code $C \subseteq \mathbb{F}_q^n$, consider the code

$$C^{p^e} = \{(c_1^{p^e}, \dots, c_n^{p^e}) \mid (c_1, \dots, c_n) \in C\}.$$

Since the map $\mathbb{F}_q \rightarrow \mathbb{F}_q : x \mapsto x^{p^e}$ is bijective, we have that if $G = [a_{ij}] \in \mathbb{F}_q^{k \times n}$ is a generator matrix of C , then $G^{p^e} = [a_{ij}^{p^e}] \in \mathbb{F}_q^{k \times n}$ is a generator matrix of C^{p^e} . Moreover,

$$C^{\perp_e} = (C^{p^e})^\perp.$$

Thus,

$$\begin{aligned} \text{Hull}_{C_2}^e(C_1) &= \text{Hull}_{C_2^{p^e}}(C_1) \\ \text{and} \quad \text{Hull}_e(C) &= \text{Hull}_{C^{p^e}}(C). \end{aligned} \quad (2.1)$$

Consequently, to consider the relative hull of a code C_1

with respect to C_2 and any e -Galois inner product, it suffices to consider the relative hull of C_1 with respect to $C_2' := C_2^{p^e}$ and the Euclidean inner product.

C. Quantum codes

A series of works in the 1990s showed how a self-orthogonal code or two linear codes subject to a dual-containment constraint give rise to quantum error-correcting codes. Since then, many quantum codes in the literature have relied on the dual of a code. In 2006, Brun, Devetak, and Hsieh [4] demonstrated that the duality requirement could be removed by using the entanglement, paving the way for any linear code or pair of linear codes to design Entanglement-Assisted Quantum Error-Correcting Codes (EAQECCs). The cost of the pre-shared entanglement can affect the analysis of the performance of a code. Thus, looking for constructions with different required numbers of pairs of maximally entangled qudits is valuable. Moreover, EAQECCs have been used recently for secret sharing [34]. Building on the work of Wilde and Brun [39], Guenda, Jitman, and Gulliver [21] showed that the dimension of the hull of the linear code could capture the necessary entanglement. In this subsection, we review the concepts from the recent work [15], [16] that motivate the remainder of this paper.

Recall that the standard notation $[[n, \kappa, \delta; c]]_q$ describes a quantum code Q that is a q -ary EAQECC that encodes κ logical qudits into n physical qudits with the help of $n - \kappa - c$ ancillas and c pairs of maximally entangled qudits; the code is able to detect any error affecting at most $d - 1$ of the physical qudits. If for any error E affecting less than d qudits, we have $v^T E u = 0$ for any $v, u \in Q$, we say that Q is pure.

There are several constructions of EAQECCs using linear codes. For example, we have the following two classical constructions using the Euclidean and the Hermitian inner products.

Theorem 2.5 (CSS construction, [15, Theorem 4]). *If C_i is an $[n, k_i]_q$ -code for $i = 1, 2$, then there exists an $[[n, \kappa, \delta; c]]_q$ -quantum code Q with*

$$\begin{aligned} c &= k_1 - \dim \text{Hull}_{C_2}(C_1), \quad \kappa = n - k_1 - k_2 + c, \\ \text{and} \quad \delta &= \begin{cases} \min \{d(C_1^\perp), d(C_2^\perp)\} & \text{if } C_1^\perp \subseteq C_2 \\ \min \{\text{wt}_1, \text{wt}_2\} & \text{otherwise,} \end{cases} \end{aligned}$$

where $\text{wt}_1 = \text{wt}(C_1^\perp \setminus \text{Hull}_{C_1}(C_2))$ and $\text{wt}_2 = \text{wt}(C_2^\perp \setminus \text{Hull}_{C_2}(C_1))$. Moreover, if $\delta = \min\{d(C_1^\perp), d(C_2^\perp)\}$, then Q is pure.

Theorem 2.6 (Hermitian construction, [15, Theorem 3]). *If C is an $[n, k]_{q^2}$ -code, then there exists an $[[n, \kappa, \delta; c]]_q$ -quantum code Q with*

$$c = k - \dim \text{Hull}_h(C), \quad \kappa = n - 2k + c, \quad \text{and}$$

$$\delta = \begin{cases} d(C^{\perp_h}) & \text{if } C^{\perp_h} \subseteq C \\ \min \{ \text{wt}(C^{\perp_h} \setminus \text{Hull}_h(C)) \} & \text{otherwise.} \end{cases}$$

Moreover, if $\delta = d(C^{\perp_h})$, then Q is pure.

The following Singleton-type bound holds for the CSS and Hermitian constructions.

Theorem 2.7 (Singleton-type bound [27]). *If Q is an $[[n, \kappa, \delta; c]]_q$ -quantum code obtained via the CSS or the Hermitian construction, then*

$$2\delta + \kappa \leq n + c + 2.$$

Remark 2.8. Let C_i be an $[n, k_i]_q$ -code with generator matrix G_i for $i = 1, 2$. Note that Proposition 2.2 (ii) implies that if Q is a quantum code constructed via the CSS construction using the codes C_1 and C_2 , then the parameter c , the required number of pairs of maximally entangled quantum states, can be seen in terms of the generator matrices:

$$c = \text{rk}(G_2 G_1^T) = \text{rk}(G_1 G_2^T).$$

This implies that swapping the role of C_1 and C_2 does not affect the parameters of the resulting quantum code.

3. REDUCING THE RELATIVE HULL

Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$. This section aims to repeatedly reduce the relative hull dimension $\text{Hull}_{C_2}(C_1)$ by one using equivalent codes. We use the phrase reduce the (dimension of the) relative hull to mean to determine equivalent codes that define a relative hull of dimension less than that of the original codes. According to Proposition 2.4, we only need to find an equivalent code for one of the linear codes. Thus, we seek a code C'_2 equivalent to C_2 such that $\dim \text{Hull}_{C'_2}(C_1) = \dim \text{Hull}_{C_2}(C_1) - 1$.

For any $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{F}_q^*)^n$, we define the diagonal matrix $D_\lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$. Let $C \subseteq \mathbb{F}_q^n$ be a code and S_n the symmetric group on n symbols. If $\sigma \in S_n$, the image of C obtained by permuting the entries of every codeword according to σ is denoted by C^σ . The permutation matrix associated with σ is denoted by P_σ .

Remark 3.1. Note that $C^\sigma = \{cP_\sigma \mid c \in C\}$. Any monomial matrix M is of the form $M = D_\lambda P_\sigma$, for

some $\lambda \in (\mathbb{F}_q^*)^n$ and some permutation $\sigma \in S_n$. Thus, any code C' monomially equivalent to C is of the form $C' = CD_\lambda P_\sigma$.

When equivalent codes reduce the dimension of the relative hull, the following lemma specifies how much the dimension can be reduced.

Lemma 3.2. *Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$. If C'_2 is equivalent to C_2 , then*

$$\dim \text{Hull}_{C'_2}(C_1) \geq \max\{0, k_1 - k_2\}.$$

Proof. By Remark 3.1, there exists a monomial matrix M such that $C'_2 = C_2 M$. Let G_1 and G_2 be generator matrices of C_1 and C_2 , respectively. By Proposition 2.2 (ii), $\dim \text{Hull}_{C'_2}(C_1) = k_1 - \text{rk}(G_2 M G_1^T)$. The result follows as $G_2 M G_1^T$ is a $k_2 \times k_1$ matrix. \square

Lemma 3.2 indicates that the dimension of the relative hull of a code C_1 with respect to C_2 can be reduced (at most) to the difference in dimensions of the two codes, in the case that the difference is nonnegative, by replacing C_1 with an equivalent code.

One of the main results of this section proves that one can repeatedly decrease the dimension of the relative hull by one until it equals the lower bound given by Lemma 3.2.

Recall that the tensor product of matrices $A = [a_{ij}] \in \mathbb{F}_q^{r \times n}$ and $B \in \mathbb{F}_q^{m_1 \times m_2}$ is the matrix that is expressed in block form as

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ a_{21}B & \cdots & a_{2n}B \\ \vdots & & \vdots \\ a_{r1}B & \cdots & a_{rn}B \end{pmatrix} \in \mathbb{F}_q^{rm_1 \times nm_2}.$$

For any two matrices $A \in \mathbb{F}_q^{r \times n}$ and $B \in \mathbb{F}_q^{n \times s}$, their (usual) product can be seen as $AB = \sum_{i=1}^n \text{Col}_i(A) \otimes \text{Row}_i(B)$, where we use $\text{Col}_i(A)$ (resp. $\text{Row}_i(A)$) to denote the i -th column (resp. row) of A . Thus, for $\lambda \in (\mathbb{F}_q^*)^n$, we have

$$\begin{aligned} AD_\lambda B &= \sum_{i=1}^n \lambda_i \text{Col}_i(A) \otimes \text{Row}_i(B) \\ &= AB + \sum_{i=1}^n (\lambda_i - 1) \text{Col}_i(A) \otimes \text{Row}_i(B). \end{aligned} \tag{3.1}$$

If $P = P_{(ij)}$ is the permutation matrix that interchanges rows i and j , then

$$\begin{aligned} APB &= AB + \\ &(\text{Col}_j(A) - \text{Col}_i(A)) \otimes (\text{Row}_i(B) - \text{Row}_j(B)). \end{aligned} \tag{3.2}$$

Now, we will successively decrease the dimension of a relative hull, say $\text{Hull}_{C_2}(C_1)$, by one via equivalent codes.

Theorem 3.3. *Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$ with $q > 2$. For any ℓ with $\max\{0, k_1 - k_2\} \leq \ell \leq \dim \text{Hull}_{C_2}(C_1)$, there exists a code $C_{2,\ell}$ equivalent to C_2 such that*

$$\dim \text{Hull}_{C_{2,\ell}}(C_1) = \ell.$$

Therefore, the dimension of the relative hull of C_1 with respect to C_2 can be repeatedly decreased by one until it is equal to $\max\{0, k_1 - k_2\}$ by replacing C_2 with an equivalent code.

Proof. Define $\ell_1 = \dim \text{Hull}_{C_2}(C_1)$ and $\ell_2 = \dim \text{Hull}_{C_1}(C_2)$. We may assume that $\text{Hull}_{C_1}(C_2)$ is given by a generator matrix $[I_{\ell_2} \ A_2]$ where I_{ℓ_2} is an identity matrix of size ℓ_2 , since we seek a code equivalent to C_2 . Extend $[I_{\ell_2} \ A_2]$ to a generator matrix

$$G_2 = \begin{pmatrix} I_{\ell_2} & A_2 \\ 0 & B_2 \end{pmatrix}$$

of C_2 . Similarly, let $[A_1 \ B_1]$ be a generator matrix of $\text{Hull}_{C_2}(C_1)$, where A_1 is of size $\ell_1 \times \ell_2$, and

$$G_1 = \begin{pmatrix} A_1 & B_1 \\ D_1 & E_1 \end{pmatrix}$$

is a generator matrix of C_1 . Observe that $[I_{\ell_2} \ A_2]G_1^T = 0$ and $[A_1 \ B_1]G_2^T = 0$, since the first matrix in each product has rows in the dual of the code generated by the second term of each product, then

$$\begin{aligned} G_2G_1^T &= \begin{pmatrix} A_1^T + A_2B_1^T & D_1^T + A_2E_1^T \\ B_2B_1^T & B_2E_1^T \end{pmatrix} \\ &= \begin{pmatrix} 0 & 0 \\ 0 & B_2E_1^T \end{pmatrix}, \end{aligned}$$

where $B_2E_1^T$ is a $(k_2 - \ell_2) \times (k_1 - \ell_1)$ matrix. By Proposition 2.2(iii), $k_2 - \ell_2 = k_1 - \ell_1$, so $B_2E_1^T$ is a square matrix. This, together with Proposition 2.2(ii), implies that $B_2E_1^T$ has full rank. The goal is to increase the rank of $G_2G_1^T$, meaning to determine a code equivalent to C_2 with generator matrix G'_2 so that $\text{rk}(G'_2G_1^T) > \text{rk}(G_2G_1^T)$.

Case 1: Assume $A_1 \neq 0$. Then there is $1 \leq j \leq \ell_2$ such that $\text{Row}_j(G_1^T) \neq 0$. Set $\lambda = (1, \dots, 1, \lambda_j, 1, \dots, 1) \in (\mathbb{F}_q^*)^n$ to be the vector with all entries equal to 1 except in position j where the

entry is $\lambda_j \neq 1$. By Eq. (3.1), we have

$$\begin{aligned} G_2D_\lambda G_1^T &= \\ G_2G_1^T + (\lambda_j - 1)\text{Col}_j(G_2) \otimes \text{Row}_j(G_1^T) &= \\ \begin{pmatrix} (\lambda_j - 1)\mathbf{e}_j^T \otimes \text{Row}_j(A_1^T) & (\lambda_j - 1)\mathbf{e}_j^T \otimes \text{Row}_j(C_1^T) \\ 0 & B_2E_1^T \end{pmatrix}. \end{aligned}$$

Observe that $\text{rk}(G_2D_\lambda G_1^T) = k_2 - \ell_2 + 1$, because $\lambda_j \neq 0, 1$.

Case 2: Assume $A_1 = 0$. In this case, $G_1 = \begin{pmatrix} 0 & B_1 \\ D_1 & E_1 \end{pmatrix}$. Recall that $B_1 \in \mathbb{F}_q^{\ell_1 \times (n - \ell_2)}$ has full rank. After row operations, we may consider that there are ℓ_1 integers $1 \leq i_1 < \dots < i_{\ell_1} \leq n - \ell_2$ such that $\text{Col}_{i_j}(B_1) = \mathbf{e}'_j$ and $\text{Col}_{i_j}(E_1) = 0$ for $1 \leq j \leq \ell_1$.

Subcase (i): Assume that for some $1 \leq j \leq \ell_1$, $\text{Col}_{i_j}(A_2) \neq 0$. Let $\nu = \ell_2 + i_j$. For an element $\lambda_\nu \in \mathbb{F}_q^*$ such that $\lambda_\nu \neq 1$, define $\lambda = (1, \dots, 1, \lambda_\nu, 1, \dots, 1) \in (\mathbb{F}_q^*)^n$ as the vector with all entries equal to 1 except in position ν where the entry is λ_ν . Then the matrix

$$G_2D_\lambda G_1^T = \begin{pmatrix} (\lambda_\nu - 1)\text{Col}_{i_j}(A_2) \otimes \mathbf{e}'_j & 0 \\ (\lambda_\nu - 1)\text{Col}_{i_j}(B_2) \otimes \mathbf{e}'_j & B_2E_1^T \end{pmatrix}$$

has rank $k_2 - \ell_2 + 1$.

Subcase (ii): Assume that $\text{Col}_{i_j}(A_2) = 0$ for all $1 \leq j \leq \ell_1$. Let P be the permutation matrix that interchanges rows 1 and $\ell_2 + i_1$. By Eq. (3.2),

$$\begin{aligned} G_2PG_1^T &= G_2G_1^T + \\ \begin{pmatrix} -\mathbf{e}_1^T \otimes -\mathbf{e}'_1 & -\mathbf{e}_1^T \otimes \text{Row}_1(D_1^T) \\ \text{Col}_{i_1}(B_2) \otimes -\mathbf{e}'_1 & \text{Col}_{i_1}(B_2) \otimes \text{Row}_1(D_1^T) \end{pmatrix}. \end{aligned}$$

Since the row space of the second term is generated by the row $(-\mathbf{e}_1^T, \text{Row}_1(D_1^T))$, then the matrix $G_2PG_1^T$ has rank $k_2 - \ell_2 + 1$.

Take $G'_2 = G_2P$. Then C_2 is equivalent to the code C'_2 with generator matrix G'_2 . Moreover, in any case,

$$\text{rk}(G'_2G_1^T) = \text{rk}(G_2G_1^T) + 1.$$

According to Proposition 2.2(ii),

$$\begin{aligned} \dim \text{Hull}_{C'_2}(C_1) &= k_1 - \text{rk}(G'_2G_1^T) \\ &= k_1 - (\text{rk}(G_2G_1^T) + 1) \\ &= \dim \text{Hull}_{C_2}(C_1) - 1, \end{aligned}$$

meaning we have decreased the dimension $\dim \text{Hull}_{C_2}(C_1)$ of the relative hull by one. We can continue this process until the rank of the matrix $G_2PG_1^T$ is k_2 , which means $\dim \text{Hull}_{C'_2}(C_1) = \max\{0, k_1 - k_2\}$. \square

Algorithm 2 captures the procedure written in the

proof of Theorem 3.3. The input and the output are given in terms of the generator matrices of the pair of codes. To simplify this algorithm, we first use Algorithm I so that the generator matrices are of the appropriate form.

Algorithm 1: Systematic-like form for the generator matrices

Data: $G_1 \in \mathbb{F}_q^{k_1 \times n}$, $G_2 \in \mathbb{F}_q^{k_2 \times n}$ full-rank matrices.

Result: $G'_1 \in \mathbb{F}_q^{k_1 \times n}$, $G'_2 \in \mathbb{F}_q^{k_2 \times n}$

- 1 $(k_1, k_2) \leftarrow (\text{rk } G_1, \text{rk } G_2)$
- 2 $(\ell_1, \ell_2) \leftarrow (k_1 - \text{rk}(G_2 G_1^T), k_2 - \text{rk}(G_2 G_1^T))$
- 3 For $i = 1, 2$, pick $M_i \in \mathbb{F}_q^{k_i \times k_i}$ be a non-singular matrix such that the first ℓ_i rows are in $\ker(G_{1+(i\%2)} G_i^T)$.
- 4 $(G_1, G_2) \leftarrow (M_1 G_1, M_2 G_2)$
- 5 Pick M_3 a non-singular matrix, P a permutation matrix such that $(M_3)_{i,j} = 0$ if $i \leq \ell_2$ and $j \geq \ell_2$, and $M_3 G_2 P = \begin{pmatrix} I_{\ell_2} & A_2 \\ 0 & B_2 \end{pmatrix}$.
- 6 Let M_4 be a non-singular matrix such that $(M_4)_{ij} = 0$ if $i \leq \ell_1$ and $j \geq \ell_1$ and $M_4 G_1$ is in row-reduced-echelon form.
- 7 $G'_1 \leftarrow M_4 G_1$
- 8 $G'_2 \leftarrow M_3 G_2 P$

We now give some examples to illustrate how the proof of Theorem 3.3 constructs equivalent codes that reduce the relative hull, using [2], [3], [20] to make the computations.

Example 3.4. Let a be a primitive element of \mathbb{F}_9 , with $a^2 - a - 1 = 0$, and C_1 and C_2 the codes over \mathbb{F}_9 generated respectively by

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & a \\ 0 & 1 & 0 & 0 & -a-1 & -a-1 & a \\ 0 & 0 & 1 & 0 & a+1 & a+1 & a+1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

and

$$G_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -a-1 & a \\ 0 & 0 & 1 & 0 & a-1 & -a-1 & a \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}.$$

The subspaces $\text{Hull}_{C_2}(C_1)$ and $\text{Hull}_{C_1}(C_2)$ are generated by the first three rows of G_1 and G_2 , respectively. This example corresponds to the proof of Theorem 3.3, Case 1. We only need to choose λ with entries different from 1 since the first three entries of the main diagonal

Algorithm 2: Reducing the hull of two codes

Data: $G_1 \in \mathbb{F}_q^{k_1 \times n}$, $G_2 \in \mathbb{F}_q^{k_2 \times n}$ full-rank matrices.

Result: G'_2 a full-rank matrix with $\text{rk}(G_1 G'_2)^T = \text{rk}(G_1 G_2^T) + 1$.

- 1 Replace (G_1, G_2) with the result of Algorithm I
- 2 **if** $[(G_1)_{ij}]_{i,j=1}^{\ell_1} \neq 0$ **then**
- 3 $j \leftarrow \min\{h \in [\ell_1] : \exists i \in [\ell_1], (G_1)_{ij} \neq 0\}$
- 4 Take $\lambda_j \in \mathbb{F}_q \setminus \{0, 1\}$.
- 5 $\lambda \leftarrow \lambda_j e_j + \sum_{i \in [n] \setminus \{j\}} e_i$
- 6 $G'_2 \leftarrow G_2 D_\lambda$
- 7 **else**
- 8 **if** $\exists j \in [n]$ such that $\text{wt}(\text{Col}_j(G_1)) = 1$ and $\text{Col}_j(G_2) \neq 0$ **then**
- 9 Take $\lambda_j \in \mathbb{F}_q \setminus \{0, 1\}$.
- 10 $\lambda \leftarrow \lambda_j e_j + \sum_{i \in [n] \setminus \{j\}} e_i$
- 11 $G'_2 \leftarrow G_2 D_\lambda$
- 12 **else**
- 13 Take $j \in [n]$ such that $\text{Col}_j(G_1) = e_1$.
- 14 Take P' , the permutation matrix that permutes rows 1 and j .
- 15 $G'_2 \leftarrow G_2 P'$
- 16 **end**
- 17 **end**

are non-zero.

For $0 \leq \ell \leq 3$, let $\lambda^{(\ell)} \in \mathbb{F}_9^7$ be the vector such that $(\lambda^{(\ell)})_i = a$ for $1 \leq i \leq 3 - \ell$ and $(\lambda^{(\ell)})_i = 1$ for $i \geq 3 - \ell$. Let $C_{2,\ell}$ be the code generated by $G_2 D_{\lambda^{(\ell)}}$. We have

$$G_2 D_{\lambda^{(\ell)}} G_1^T = \begin{pmatrix} \lambda_1^{(\ell)} - 1 & 0 & 0 & 0 \\ 0 & \lambda_2^{(\ell)} - 1 & 0 & 0 \\ 0 & 0 & \lambda_3^{(\ell)} - 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Therefore, $\text{rk}(G_2 D_{\lambda^{(\ell)}} G_1^T) = 4 - \ell$ and thus $\dim \text{Hull}_{C_{2,\ell}}(C_1) = \ell$.

Example 3.5. Let a be a primitive element of \mathbb{F}_9 , with $a^2 - a - 1 = 0$, and C_1 and C_2 the codes over \mathbb{F}_9

generated respectively by

$$G_1 = \begin{pmatrix} 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ -a & 0 & 1 & 0 & 0 & 0 \\ 0 & -a-1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

and $G_2 = \begin{pmatrix} 1 & 0 & a & a & 0 & 0 \\ 0 & 1 & 0 & 0 & a+1 & a+1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$.

The relative hulls are generated by the first two columns of each matrix. As G_1 has its principal minor of size 2 equal to zero, this example corresponds to the proof of Theorem 3.3 Case 2. We can use the first two entries of the last four columns of G_2 to modify the hull size (Subcase (i)) because they are non-zero. Let $\lambda^{(1)} \in \mathbb{F}_9^6$ such that $\lambda_i^{(1)} = 1$ for $i \neq 6$ and $\lambda_6^{(1)} = a$. Let $C_{2,1}$ be the code generated by $G_2 D_{\lambda^{(1)}}$. The matrix

$$G_2 D_{\lambda^{(1)}} G_1^T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -a & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -a+1 & 0 & 1 \end{pmatrix}$$

has rank 3 and $\dim \text{Hull}_{C_{2,1}}(C_1) = 1$. We can check that the last three rows of G_2 do not belong to $\text{Hull}_{C_1}(C_{2,1})$, so we are still in Case 2, Subcase (i) of the proof of Theorem 3.3. Let $\lambda^{(2)} \in \mathbb{F}_9^6$ such that $\lambda_i^{(2)} = 1$ for $i \neq 4$ and $\lambda_4^{(2)} = a$. Let $C_{2,2}$ be the code generated by $G_2 D_{\lambda^{(1)}} D_{\lambda^{(2)}}$. The matrix

$$G_2 D_{\lambda^{(1)}} D_{\lambda^{(2)}} G_1^T = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -a & 0 & 0 \\ -a+1 & 0 & 1 & 0 \\ 0 & -a+1 & 0 & 1 \end{pmatrix}$$

has rank 4 and $\dim \text{Hull}_{C_{2,2}}(C_1) = 0$.

Example 3.6. Let a be a primitive element of \mathbb{F}_9 , with $a^2 - a - 1 = 0$, and C_1 and C_2 the codes over \mathbb{F}_9 generated respectively by

$$G_1 = \begin{pmatrix} 0 & 0 & -a & -a & 1 & 0 \\ 0 & 0 & -a & -a & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

and $G_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & a & a \\ 0 & 0 & 0 & 1 & a & a \end{pmatrix}$.

The relative hulls are generated by the first two rows of each matrix. The principal minor of size 2 of G_1 is 0, so this example corresponds to the proof of Theorem 3.3 Case 1. Since the $(G_2)_{i,j} = 0$ for

$i = 1, 2$ and $3 \leq j \leq 6$, we are in the Subcase (ii). We need to perform some column permutations to G_2 to get an equivalent code with a smaller relative hull than C_2 .

Let P_1 be the permutation matrix that permutes columns 5 and 1, and let $C_{2,1}$ be the code generated by $G_2 P_1$. The matrix

$$G_2 P_1 G_1^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -a & 0 & 1 & 0 \\ -a & 0 & 0 & 1 \end{pmatrix}$$

has rank 3, therefore $\dim \text{Hull}_{C_{2,1}}(C_1) = 1$.

Let P_2 be the permutation matrix that permutes columns 2 and 6, and let $C_{2,0}$ be the code generated by $G_2 P_1 P_2$. The matrix

$$G_2 P_1 P_2 G_1^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a & -a & 1 & 0 \\ -a & -a & 0 & 1 \end{pmatrix}$$

has rank 4 and thus, $\dim \text{Hull}_{C_{2,0}}(C_1) = 0$.

Let C_1 and C_2 be two codes over \mathbb{F}_q with $q = p^m > 2$, and let e be an integer such that $0 \leq e < m$. Applying Theorem 3.3 to the relative hull of C_1 with respect to C_2^e , we obtain a similar result for the e -Galois hull of C_1 with respect to C_2 . This consequence is captured in the next statement.

Corollary 3.7. Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$ with $q = p^m > 2$. Take e such that $0 \leq e < m$. For any ℓ with $\max\{0, k_1 - k_2\} \leq \ell \leq \dim \text{Hull}_{C_2}^e(C_1)$, there is a code $C_{2,\ell}$ equivalent to C_2 such that

$$\dim \text{Hull}_{C_{2,\ell}}^e(C_1) = \ell.$$

Therefore, the dimension of the e -Galois relative hull of C_1 with respect to C_2 can be repeatedly decreased by one until it is equal to $\max\{0, k_1 - k_2\}$ by replacing C_2 with an equivalent code.

Proof. This statement follows immediately from Theorem 3.3 and Eq. (2.1). \square

Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$. If $c_1 = (c_{11}, c_{12}, \dots, c_{1n}) \in C_1$ and $c_2 = (c_{21}, c_{22}, \dots, c_{2n}) \in C_2$, then their Schur product is defined by

$$c_1 \star c_2 = (c_{11}c_{21}, c_{12}c_{22}, \dots, c_{1n}c_{2n}) \in \mathbb{F}_q^n.$$

The Schur product of the codes C_1 and C_2 , denoted by $C_1 \star C_2$, is defined as the \mathbb{F}_q -vector space spanned by

the set $\{c_1 \star c_2 \mid c_1 \in C_1, c_2 \in C_2\}$. For an element λ in \mathbb{F}_q^n , $\lambda \star C_2$ denotes the \mathbb{F}_q -vector space spanned by the set $\{\lambda \star c_2 \mid c_2 \in C_2\}$.

Proposition 3.8. *Let $C \subseteq \mathbb{F}_q^n$ be a code with $q = p^m > 2$. Take e such that $0 \leq e < m$ and define $\ell = \dim \text{Hull}_e(C)$. If there exists $x \in \mathbb{F}_q^*$ such that $x^{p^e+1} \neq 1$, then $\dim \text{Hull}_e(\lambda \star C) = \ell - 1$ for some $\lambda \in (\mathbb{F}_q^*)^n$.*

Proof. Let G be a generator matrix of C . As $C^{\perp_e} = (C^{p^e})^\perp$,

$$\dim \text{Hull}_e(\lambda \star C) = \dim C - \text{rk}(GD_{\lambda^{p^e+1}}(G^{p^e})^T),$$

where $(G^{p^e})_{ij} = (G_{ij})^{p^e}$. The proof of Theorem 3.3 guarantees that we can reduce the rank of this matrix as long as there exists $x \in \mathbb{F}_q$ with $x^{p^e+1} \neq 1$. \square

As a corollary, we can prove some of the significant results that were initially proved by Carlet, Mesnager, Tang, Qi, and Pellikaan (existence of LCD codes for the case of the Euclidean and the Hermitian inner product [8]) and Luo, Ezerman, Grassl, and Ling (the step-wise reduction of the dimension of the Hermitian hull [27]).

Corollary 3.9. *Let $C \subseteq \mathbb{F}_q^n$ be a linear code. The following hold:*

- 1) *If $q > 3$ and $0 \leq \ell \leq \dim \text{Hull}(C)$, then there is a code C_ℓ equivalent to C such that $\text{Hull}(C_\ell) = \ell$.*
- 2) *If $q > 4$ is a square and $0 \leq \ell \leq \dim \text{Hull}_h(C)$, then there is a code C_ℓ equivalent to C such that $\text{Hull}_h(C_\ell) = \ell$.*

Proof. The Euclidean hull is the e -Galois hull with $e = 0$. Thus, it is enough to guarantee that $x^2 - 1 \neq 0$ for some $x \in \mathbb{F}_q^*$, which happens if $q > 3$.

The Hermitian hull is also an e -Galois hull where e satisfies $p^e = \sqrt{q}$ and p is the characteristic of the field. By Proposition 3.8 we can reduce the hull using an equivalent code as long as there is $x \in \mathbb{F}_q^*$ such that $x^{\sqrt{q}+1} \neq 1$. Note that as $q > 4$, $\sqrt{q} + 1 < q - 1$. Thus, not all the elements of \mathbb{F}_q^* can be roots of the polynomial $f(t) = t^{\sqrt{q}+1} - 1$, meaning that there is $x \in \mathbb{F}_q^*$ such that $x^{\sqrt{q}+1} \neq 1$. Another way to see this is by noticing that $x^{\sqrt{q}+1}$ is the norm of x with respect to the extension $\mathbb{F}_q/\mathbb{F}_{\sqrt{q}}$. As the norm is surjective, there are non-zero elements with a norm different from 1 when $q > 4$. \square

Remark 3.10. If we only consider monomial matrices of the form $M = D_\lambda$ in the definition of equivalent codes, meaning no permutations of coordinates are allowed, then it may be impossible to reduce $\dim \text{Hull}_{C_2}(C_1)$ to $\max\{0, k_1 - k_2\}$. The following example illustrates this fact.

Example 3.11. Let C_1 and C_2 be the codes over \mathbb{F}_q generated respectively by

$$G_1 = (1 \ 1 \ 0 \ 0) \quad \text{and} \quad G_2 = (0 \ 0 \ 1 \ 1).$$

Note that $\max\{0, k_1 - k_2\} = 0$ and that $G_1 D_\lambda G_2^T = 0$ for any $\lambda \in (\mathbb{F}_q^*)^n$. Hence, $\dim \text{Hull}_{C_2 D_\lambda}(C_1) = 1$ for any $\lambda \in (\mathbb{F}_q^*)^n$.

To get the minimum possible hull, we need permutations. If P is the permutation matrix that interchanges the first and the fourth column, then $G_1 P^T G_2^T = I_4$ and thus $\text{Hull}_{C_2 P}(C_1) = 0$.

4. INCREASING THE RELATIVE HULL

Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$. In this section, we give conditions that allow us to find equivalent codes that successively increase the dimension of the relative hull of C_1 with respect to C_2 by one. As in Section 3, according to Proposition 2.4, we only need to show that an equivalent code exists for one of the linear codes. Hence, we aim to determine when it is possible to find a code C'_1 equivalent to C_1 such that $\dim \text{Hull}_{C_2}(C'_1) = \dim \text{Hull}_{C_2}(C_1) + 1$.

The following lemma gives an upper bound on the increased dimension of the relative hull. However, as we will see, it is only possible sometimes to increase the dimension of the relative hull using equivalent codes.

Lemma 4.1. *Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$. If C'_1 is equivalent to C_1 , then*

$$\dim \text{Hull}_{C_2}(C'_1) \leq \min\{k_1, n - k_2\}.$$

Proof. This is clear by the definition of $\text{Hull}_{C_2}(C'_1)$. \square

By Theorem 3.3 we can decrease the relative hull dimension by increasing the rank of the matrix $G_1 G_2^T$. To increase the relative hull dimension instead, we could try to mimic this idea by decreasing the rank of the matrix $G_1 G_2^T$ until it is equal to 0. Unfortunately, the following example shows that reducing the rank of this matrix $G_1 G_2^T$ is not always possible.

Example 4.2. Let C_1 and C_2 be the codes over \mathbb{F}_q generated respectively by

$$G_1 = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

and $G_2 = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$.

For any permutation matrix P and for any $\lambda \in (\mathbb{F}_q^*)^4$, the second column of $G_1 D_\lambda P G_2^T$ is either $\pm(\lambda_2 0)^T$ or $\pm(0 \lambda_2)^T$. Thus, the rank of $G_1 D_\lambda P G_2^T$ is at least 1.

We can relate the maximum dimension of the hull under isometries of the form D_λ with the dual of the Schur product of the codes.

Proposition 4.3. *If C_i is an $[n, k_i]_q$ -code for $i = 1, 2$, then*

$$\begin{aligned} & \max\{\dim \text{Hull}_{C_2}(C_1 D_\lambda) \mid \lambda \in (\mathbb{F}_q^*)^n\} \\ & \geq \max \text{wt}((C_1 \star C_2)^\perp) - n + \min\{k_1, k_2\}. \end{aligned}$$

Proof. Let G_1 and G_2 be generator matrices of C_1 and C_2 , respectively. According to Proposition 2.2 (ii), we need to show that

$$\begin{aligned} & \min \{\text{rk}(G_1 D_\lambda G_2^T) \mid \lambda \in (\mathbb{F}_q^*)^n\} \\ & \leq n - \max \text{wt} \{(C_1 \star C_2)^\perp\}. \end{aligned}$$

Suppose $\max \text{wt}((C_1 \star C_2)^\perp) = n - \ell$, and take $\gamma \in (C_1 \star C_2)^\perp$ with $\text{wt}(\gamma) = n - \ell$. If $\ell \geq \min\{k_1, k_2\}$, the result follows as $\text{rk}(G_1 D_\lambda G_2^T) \leq \min\{k_1, k_2\}$ for any $\lambda \in (\mathbb{F}_q^*)^n$. Assume that $\ell < \min\{k_1, k_2\}$. Without loss of generality, we can assume that the first ℓ entries of γ are equal to zero. Define $\lambda = (1, \dots, 1, \gamma_{\ell+1}, \dots, \gamma_n)$. Then

$$G_1 D_\lambda G_2^T = \left(\sum_{h=1}^{\ell} a_{ih} b_{jh} \right)_{i,j=1}^{k_1, k_2} = G_1 \begin{pmatrix} I_\ell & 0 \\ 0 & 0 \end{pmatrix} G_2^T.$$

Since $\ell < \min\{k_1, k_2\}$, the rank of this product is at most ℓ , and we have the conclusion. \square

In the case where $C_1 = C_2$, the code $(C_1 \star C_2)^\perp$ was used in [31] to find self-orthogonal truncations of C_1 .

It is evident that the bound given by Proposition 4.3 is sharp for codes C_1 and C_2 such that there is an equivalent code C' to C_1 with $C_2^\perp \subseteq C'$. The following example shows that the bound may be sharp even when such an equivalent code does not exist.

Example 4.4. Take $G_1 = G_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \beta \end{pmatrix} \in \mathbb{F}_q^{2 \times 3}$

with $\beta \neq 0$. For any $\lambda = (\lambda_1, \lambda_2, \lambda_3) \in (\mathbb{F}_q^*)^3$, we have

$$G_1 D_\lambda G_2^T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 + \beta^2 \lambda_3 \end{pmatrix}.$$

Then, $\text{rk}(G_1 D_\lambda G_2^T) = 1$ when $\lambda_2 = -\beta^2 \lambda_3$; otherwise, $\text{rk}(G_1 D_\lambda G_2^T) = 2$. Since 1 is the smallest rank achievable for any λ , the maximum rank of the relative hull is $2 - 1 = 1$.

On the other hand, if C is the code generated by G_1 , then a generator matrix for the code $C \star C$ is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \beta^2 \end{pmatrix}.$$

It is clear that $(C \star C)^\perp = \langle (0, -\beta^2, 1) \rangle$. Then

$$\max \text{wt}((C \star C)^\perp) - n + k_1 = 2 - 3 + 2 = 1,$$

demonstrating that equality is achievable in Proposition 4.3.

The bound of Proposition 4.3 is an upper bound for the dimension of the relative hull.

Proposition 4.5. *If C_i is an $[n, k_i]_q$ -code for $i = 1, 2$, and $k_1 \leq k_2$, then*

$$\dim \text{Hull}_{C_2}(C_1) \leq \max \text{wt}((C_1 \star C_2)^\perp) - n + k_1.$$

Proof. Let G_1 and G_2 be generator matrices of C_1 and C_2 , respectively, such that

$$G_1 G_2^T = \begin{pmatrix} 0 & 0 \\ 0 & I_\ell \end{pmatrix},$$

where ℓ is defined as $k_1 - \dim \text{Hull}_{C_2}(C_1)$. Since a basis for $C_1 \star C_2$ is given by the set $\{\text{Row}_i(G_1) \star \text{Row}_j(G_2) : i = 1, \dots, k_1, j = 1, \dots, k_2\}$, then $\lambda = \sum_{i \in [n-\ell]} e_i \in (C_1 \star C_2)^\perp$, and the conclusion follows. \square

The summary of these results is the following theorem.

Theorem 4.6. *Let C_i be an $[n, k_i]_q$ -code with $q > 2$ for $i = 1, 2$. For any ℓ with $\max\{0, k_1 - k_2\} \leq \ell \leq \max \text{wt}((C_1 \star C_2)^\perp) - n + k_1$, there exists a code $C_{1,\ell}$ equivalent to C_1 such that*

$$\dim \text{Hull}_{C_2}(C_{1,\ell}) = \ell.$$

In particular, if $\max \text{wt}((C_1 \star C_2)^\perp) = \min\{n, 2n - k_2 - k_1\}$, ℓ runs over all the possible values of $\dim \text{Hull}_{C_2}(C'_1)$, where C'_1 is a code equivalent to C_1 .

Proof. The result follows from Proposition 4.3, Theorem 3.3, and Lemma 4.1. \square

Remark 4.7. We remark that an algorithm for increasing the relative hull would require finding a codeword in $(C_1 \star C_2)^\perp$ of appropriate weight. Provided such a word can be found, one can implement an algorithm similar to Algorithm 2.

We can find a worse but easier-to-compute lower bound on the maximum rank of the relative hull by using a bound from [32] on optimal anticode.

Lemma 4.8. [32] If $C \subseteq \mathbb{F}_q^n$ is a linear code, then $\dim_{\mathbb{F}_q}(C) \leq \max \text{wt}(C)$.

A code $C \subseteq \mathbb{F}_q^n$ with $\dim_{\mathbb{F}_q}(C) = \max \text{wt}(C)$ is said to be an *optimal linear anticode*.

Corollary 4.9. If C_i is an $[n, k_i]_q$ -code for $i = 1, 2$, and $k_1 \leq k_2$, then

$$\begin{aligned} \max\{\dim \text{Hull}_{C_2}(C_1 D_\lambda) \mid \lambda \in (\mathbb{F}_q^*)^n\} \\ \geq k_1 - \dim(C_1 \star C_2). \end{aligned}$$

Proof. By Lemma 4.8, $\dim(C_1 \star C_2)^\perp \leq \max \text{wt}(C_1 \star C_2)^\perp$. Thus, Proposition 4.3 gives the conclusion. \square

Remark 4.10. Assume that $q \neq 2$. An optimal anticode of dimension k is permutation equivalent to $\mathbb{F}_q^k \oplus \{0\}^{n-k}$; see [32] for details. Moreover, the dual of an optimal anticode is an optimal anticode. Consequently, the bound in Corollary 4.9 can only be met if $(C_1 \star C_2)^\perp$ is an optimal anticode, which implies $C_1 \star C_2$ is an optimal anticode. Thus, the minimum rank of $G_1 D_\lambda G_2^T$ equals the maximum weight of $C_1 \star C_2$.

5. APPLICATIONS TO QUANTUM CODES

Many quantum code constructions focus on creating codes that do not require entanglement assistance or pairs of maximally entangled quantum states. However, more recently, propagation rules to construct quantum codes have been established [27], [28]. Luo, Ezerman, Grassl, and Ling constructed in [27] new quantum codes with reduced length by increasing the parameter c and using the Hermitian construction of Theorem 2.5. Luo, Ezerman, and Ling also gave three new propagation rules related to entanglement using the Hermitian construction in [28]. The first rule increases the parameter c while increasing the dimension, the second rule keeps c unchanged while increasing the length, and the third rule decreases c while increasing the length.

We now state some results that are consequences of the previous sections.

Theorem 5.1. Let C_i be an $[n, k_i]_q$ -code for $i = 1, 2$, with $q > 2$ and $k_1 \leq k_2$. For any integer c with $k_1 -$

$\dim(C_1 \cap C_2^\perp) \leq c \leq k_1$, there is an $[[n, \kappa, \delta; c]]_q$ quantum code Q with

$$\kappa = n - k_1 - k_2 + c \quad \text{and} \quad \delta \geq \min\{d(C_1^\perp), d(C_2^\perp)\}.$$

Moreover, if $\delta = \min\{d(C_1^\perp), d(C_2^\perp)\}$, then Q is pure.

Proof. We obtain the result using Theorem 3.3 and the CSS construction given in Theorem 2.5. \square

Let Q be the quantum code obtained via the CSS construction using C_1 and C_2 and $\delta(Q) = \min\{\text{wt}(C_1^\perp \setminus C_2), \text{wt}(C_2^\perp \setminus C_1)\}$, where we denote $C_1^\perp \setminus (C_2 \cap C_1^\perp)$ by $C_1^\perp \setminus C_2$ for the sake of simplicity. In general, if we take the quantum code Q' constructed via the CSS construction using C_1 and C'_2 , where C'_2 is equivalent to C_2 and $C_1 \cap C'^\perp = \{0\}$, then $\delta(Q') = \min\{\text{wt}(C_1^\perp \setminus C'^\perp), d(C'^\perp)\}$. If Q is not pure, it is possible that $\delta(Q) \geq \delta(Q')$ since the equivalence can worsen the minimum distance. Otherwise, we have the following result.

Proposition 5.2. Let Q be the pure quantum code obtained via the CSS construction using C_1 and C_2 . If Q' is a quantum code obtained via the CSS construction using C_1 and a monomially equivalent code C'_2 to C_2 , then $\delta(Q') \geq \delta(Q)$.

Proof. As Q is pure, we obtain that $\delta(Q) = \min\{d(C_1^\perp), d(C_2^\perp)\}$. Note that $\delta(Q') = \min\{\text{wt}(C_1^\perp \setminus C'_2), \text{wt}(C'^\perp \setminus C_1)\} \geq \min\{d(C_1^\perp), d(C'^\perp)\} = \delta(Q)$. Thus, the result follows. \square

If $d(C_1^\perp) < d(C_2^\perp)$, the equality in the previous corollary depends on how many minimum weight codewords of C_1^\perp are outside C_2 . If any code equivalent to C_2 does not contain all minimum weight codewords of C_1^\perp , then the purity is preserved. The following corollary provides an instance of such constructions.

Proposition 5.3. Let Q be the pure quantum code obtained via the CSS construction using C_1 and C_2 . Assume one of the following conditions holds:

- 1) $d(C_1^\perp) < \min\{d(C_2), d(C_2^\perp)\}$.
- 2) $d(C_1^\perp) = d(C_2^\perp)$ and $d(C_1^\perp) < \min\{d(C_1), d(C_2)\}$.

Then, any quantum code Q' constructed via the CSS construction using C_1 and an equivalent code C'_2 to C_2 is pure and $\delta(Q') = \delta(Q) = d(C_1^\perp)$.

Proof. As Q is pure, we obtain that $\delta(Q) = \min\{d(C_1^\perp), d(C_2^\perp)\}$. Note that

$$\delta(Q') = \min\{\text{wt}(C_1^\perp \setminus C_2'), \text{wt}(C_2'^\perp \setminus C_1)\} \text{ and } d(C_2) = d(C_2').$$

Assume (1). As $d(C_1^\perp) < d(C_2)$, all codewords of minimum weight in C_2' are outside of C_1' . Thus, $\text{wt}(C_1^\perp \setminus C_2') = d(C_1^\perp)$. As $d(C_1^\perp) < d(C_2^\perp) = d(C_2'^\perp) < d(C_2'^\perp \setminus C_1)$, we obtain $\delta(Q') = \min\{\text{wt}(C_1^\perp \setminus C_2'), \text{wt}(C_2'^\perp \setminus C_1)\} = d(C_1^\perp) = \delta(Q)$.

Assume (2). As $d(C_1^\perp) < d(C_2)$, all codewords of minimum weight in C_2' are outside of C_1' . Thus, $\text{wt}(C_1^\perp \setminus C_2') = d(C_1^\perp)$. As $d(C_2^\perp) < d(C_1)$, then all codewords of minimum weight in C_1' are outside of C_2' . Thus, $\text{wt}(C_2^\perp \setminus C_1') = d(C_2^\perp)$. We obtain $\delta(Q') = \min\{\text{wt}(C_1^\perp \setminus C_2'), \text{wt}(C_2'^\perp \setminus C_1)\} = \min\{d(C_1^\perp), d(C_2^\perp)\} = d(C_1^\perp) = \delta(Q)$. \square

Example 5.4. Let $\mathcal{S} = S_1 \times S_2 \subseteq \mathbb{F}_q^2$ and $g(x, y) = g_1(x)g_2(y) \in \mathbb{F}_q[x, y]$, where $g(s_1, s_2) \neq 0$ for all $(s_1, s_2) \in \mathcal{S}$. Define the tensor product

$$T(\mathcal{S}, g) = \text{RS}(S_1, g_1) \otimes \text{RS}(S_2, g_2),$$

where $\text{RS}(S_i, g_i) = \{(f(s)/g_i(s))_{s \in S_i} \mid f \in \mathbb{F}_q[x], \deg f < \deg g_i\}$ for $i = 1, 2$. Note that $\text{RS}(S_i, g_i)$ is a generalized Reed-Solomon code with evaluation points in S_i , dimension $\deg(g_i)$, and multipliers $1/g_i(s)$, $s \in S_i$. In [25], the authors used the codes $T(\mathcal{S}, g)$ to build entanglement-assisted quantum error-correcting codes with new parameters with respect to the literature. In Table I, we build LCD codes exhibiting the same set of parameters. But then, by computing the dual of the square (using [3]), we prove that there is a $\lambda \in (\mathbb{F}_q^*)^n$ such that $C^\perp \subseteq \lambda \star C$ for any of these LCD codes. Thus, Proposition 4.5 enables us to increase the hull, and Theorem 3.3 allows us to vary the parameter c between 0 and $n - k$, where k is the dimension of the code. Other works related to tensor products and quantum codes are [11], [18], [30].

Table I shows that by puncturing $T(\mathcal{S}, g)$, which is the dual of a multivariate Goppa code [25], and using Theorem 3.3, we can fill in some gaps or improve the minimum distance or the dimension of some of the best-known EAQECCs recently published by L. Sok [36]. Other recent related work appears in [10], [35].

We now show the existence of entanglement-assisted quantum MDS codes for $q > 2$ and $1 < n \leq q + 1$. An $[[n, \kappa, \delta; c]]_q$ -quantum code with $\delta - 1 \leq \frac{n}{2}$ satisfying

$$2(\delta - 1) = n - \kappa + c$$

is called an *EAQMDS code*. EAQMDS codes for $\delta > \frac{n}{2} + 1$ exist, but since we are considering codes derived

from the CSS Construction, we are concerned about codes with the mentioned restriction. For more on the quantum Singleton type bounds and EAQMDS codes, see [17].

Constructions in Theorem 2.5 and 2.6 give rise to EAQECCs codes if C_1 and C_2 are MDS codes of the same rate in the CSS construction, or C is a Hermitian MDS code. Many constructions for EAQMDS codes have relied on the CSS or the Hermitian constructions, so there is a vast literature on how to find MDS codes with specific Euclidean, Hermitian, or Galois hull [7], [13], [14], [26], [38]. Table II exhibits some of the EAQMDS codes previously reported, which were based on the possibility of finding a proper isometry of an MDS code to get $\text{rank}(GI_{\lambda^2}G^T) = k - h$, where G is a generator matrix. These results complement those on unassisted ($c = 0$) quantum MDS codes [19], [33]. As a generalization, we get the following result as a consequence of Theorem 4.6.

Theorem 5.5. *If $q > 2$, $1 < n \leq q + 1$, and $1 \leq k \leq n/2$, then there is an*

$$[[n, n - k - h, k + 1; k - h]]_q$$

EAQMDS code for any $0 \leq h \leq k$.

Proof. Let C be a (possibly extended or double extended) generalized Reed-Solomon code of dimension k . It is known that C^\perp is a generalized Reed-Solomon code of dimension $n - k$. Thus, there is $\lambda \in (\mathbb{F}_q^*)^n$ such that $C \subseteq (\lambda \star C)^\perp$, or equivalently, $\dim \text{Hull}_{\lambda \star C}(C) = k$. Applying Theorem 3.3 to $C_1 = C$ and $C_2 = \lambda \star C$, we get the result. \square

Remark 5.6. For $k > n/2$, we have a similar result to Theorem 5.5. In fact, if $q > 2$, $1 < n \leq q + 1$, and $k > n/2$, then there is an

$$[[n, n - k - h, k + 1; k - h]]_q$$

EAQECC code for any $0 \leq h \leq k$, but this quantum code is not necessarily an EAQMDS code.

Theorem 5.5 can also be extended to other families of QMDS codes ($c = 0$) built with the Hermitian construction. Indeed, by reducing the Hermitian hull, the existence of an EAQMDS of length $n \leq q^2 + 1$ can be derived from the existence of a Hermitian self-orthogonal MDS code (see [27]). Such MDS codes have been reported in [19], [33]. Since QMDS are known to be pure [22], we can apply the propagation rules in [17] to puncture QMDS with no assistance to get EAQMDS codes of shorter lengths.

Field	\mathcal{S}	$g(x, y)$	Puncturing in the following entries	Parameters	Values for h
\mathbb{F}_8	$\mathbb{F}_8 \times \{a^1, a^2\}$	$(x^2 + x + a^5)(y)$	$\{8, \dots, 15\}$	$[[8, 2-h, 6; 6-h]]_8$	$0 \leq h \leq 2$
\mathbb{F}_8	$\mathbb{F}_8 \times \{a^1, a^2\}$	$(x^2 + x + a^5)(y)$	$\{10, \dots, 16\}$	$[[9, 2-h, 7; 7-h]]_8$	$0 \leq h \leq 2$
\mathbb{F}_8	$\mathbb{F}_8 \times \{a^1, a^2\}$	$(x^2 + x + a^5)(y)$	$\{11, \dots, 16\}$	$[[10, 2-h, 8; 8-h]]_8$	$0 \leq h \leq 2$
\mathbb{F}_8	$\mathbb{F}_8 \times \{a^1, a^2\}$	$(x^2 + x + a^5)(y)$	$\{12, \dots, 16\}$	$[[11, 2-h, 9; 9-h]]_8$	$0 \leq h \leq 2$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^2 + x + a^3)(y)$	$\{19, \dots, 32\}$	$[[18, 2-h, 16; 16-h]]_{16}$	$0 \leq h \leq 2$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^2 + x + a^3)(y)$	$\{21, \dots, 32\}$	$[[20, 2-h, 18; 18-h]]_{16}$	$0 \leq h \leq 2$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^2 + x + a^3)(y)$	$\{23, \dots, 32\}$	$[[22, 2-h, 20; 20-h]]_{16}$	$0 \leq h \leq 2$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^3 + a)(y)$	$\{26, \dots, 32\}$	$[[25, 3-h, 21; 20-h]]_{16}$	$0 \leq h \leq 3$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^3 + a)(y)$	$\{28, \dots, 32\}$	$[[27, 3-h, 23; 24-h]]_{16}$	$0 \leq h \leq 3$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^3 + a)(y)$	$\{30, \dots, 32\}$	$[[29, 3-h, 25; 26-h]]_{16}$	$0 \leq h \leq 3$
\mathbb{F}_{16}	$\mathbb{F}_{16} \times \{a^1, a^2\}$	$(x^3 + a)(y)$	$\{32\}$	$[[31, 3-h, 27; 28-h]]_{16}$	$0 \leq h \leq 3$
\mathbb{F}_{25}	$\mathbb{F}_{25} \times \{a^1, a^2, a^3\}$	$(x^3 + a)(y)$	$\{60, \dots, 75\}$	$[[59, 3-h, 53; 56-h]]_{25}$	$0 \leq h \leq 3$
\mathbb{F}_{49}	$\mathbb{F}_{49} \times \{a^1, \dots, a^4\}$	$(x^3 + a)(y)$	$\{168, \dots, 196\}$	$[[167, 3-h, 159; 164-h]]_{49}$	$0 \leq h \leq 3$
\mathbb{F}_{49}	$\mathbb{F}_{49} \times \{a^1, \dots, a^4\}$	$(x^3 + a)(y)$	$\{175, \dots, 196\}$	$[[174, 3-h, 166; 171-h]]_{49}$	$0 \leq h \leq 3$

TABLE I: New EAQECCs. Here, $\mathbb{F}_q^* = \langle a \rangle$ for every row; the elements of \mathbb{F}_q are ordered $0, a^0, \dots, a^{q-2}$; the elements of $\mathcal{S} = \mathbb{F}_q \times \{a^1, a^2, \dots, a^i\}$ are ordered by $(0, a^1), (a^0, a^1), \dots, (a^{q-2}, a^2), \dots, (0, a^i), (a^0, a^i), \dots, (a^{q-2}, a^i)$; and generator matrix columns are ordered using the elements in \mathcal{S} .

Conditions	Reference
$q > 3$, $k \leq m \leq n/2$, and exists a self-orthogonal $[n, m]$ GRS code.	[14]
$q > 3$, $n < q$, and exists a self-orthogonal $[n+1, k]$ extended GRS code.	[14]
$q = p^m$, $e \leq m$, $n (q-1)$ and $k \leq \frac{p^e+n-1}{p^e+1}$ or $n (p^e-1)$	[7]
$q = p^m$ odd, $e \leq m-1$, $n \leq p^e$, and $2e m$.	[7]
$q = p^m > 3$, p odd prime, $n = p^r$, $r m$, and $2n-k-q-2 \geq h \geq 0$.	[38]
$q = p^m > 3$, p odd prime, $p n$, $(n-1) (q-1)$, and $2n-q < k+1$.	[38]
$q > 2$ even and $1 < n \leq q+1$.	[26]
$q > 3$ odd, $n = q+1$, and $k = \frac{q+1}{2}$.	[26]
$q > 3$ odd, $n > 2$, $(n-1) (q-1)$, and $-(n-1)$ is a square in \mathbb{F}_q .	[26]
$q > 2$ and $1 < n \leq q+1$.	Theorem 5.5

TABLE II: Conditions that guarantee the existence of an $[[n, n-k-h, k+1; k-h]]_q$ EAQMDS code for $k \leq n/2$ and for any $0 \leq h \leq k$.

6. FINAL REMARKS

Given two codes C_1 and C_2 , we studied the relative hull of C_1 with respect to C_2 , which is the intersection $C_1 \cap C_2^\perp$. We showed that the e -Galois relative hull is a particular case of the Euclidean relative hull. We proved that the dimension of the relative hull can always be repeatedly reduced by one by replacing any of the two codes with a monomially equivalent one. The proof illustrates and explains how to construct such an equivalent code. Similarly, we gave conditions under which the dimension of the relative hull can

be increased by one via equivalent codes. We showed some consequences of the relative hull on quantum codes and proved the existence of some quantum MDS codes via the CSS construction.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, or participated

remotely during the Collaborate@ICERM Quantum Error Correction program. We also thank Rodrigo San-José for their comments and suggestions on this article.

REFERENCES

- [1] A. Ashikhmin and E. Knill. Nonbinary quantum stabilizer codes. *IEEE Transactions on Information Theory*, 47(7):3065–3072, 2001.
- [2] T. Ball, E. Camps, H. Chimal-Dzul, D. Jaramillo-Velez, H. López, N. Nichols, M. Perkins, I. Soprunov, G. Vera-Martínez, and G. Whieldon. Coding theory package for Macaulay2. *Journal of Software for Algebra and Geometry*, 11(1):113–122, 2022.
- [3] W. Bosma, J. Cannon, and C. Playoust. The Magma Algebra System I: The user language. *Journal of Symbolic Computation*, 24(3):235–265, 1997.
- [4] T. Brun, I. Devetak, and M.-H. Hsieh. Correcting quantum errors with entanglement. *Science*, 314(5798):436–439, 2006.
- [5] A. Calderbank, E. Rains, P. Shor, and N. Sloane. Quantum error correction via codes over $GF(4)$. *IEEE Transactions on Information Theory*, 44(4):1369–1387, 1998.
- [6] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. *Physical Review A*, 54:1098–1105, Aug 1996.
- [7] M. Cao. MDS codes with Galois hulls of arbitrary dimensions and the related entanglement-assisted quantum error correction. *IEEE Transactions on Information Theory*, 67(12):7964–7984, 2021.
- [8] C. Carlet, S. Mesnager, C. Tang, Y. Qi, and R. Pellikaan. Linear codes over \mathbb{F}_q are equivalent to LCD codes for $q > 3$. *IEEE Transactions on Information Theory*, 64(4):3010–3017, 2018.
- [9] H. Chen. On the hull-variation problem of equivalent linear codes. *IEEE Transactions on Information Theory*, 69(5):2911–2922, 2023.
- [10] J. Fan, J. Li, Y. Zhou, M.-H. Hsieh, and H. V. Poor. Entanglement-assisted concatenated quantum codes. *Proceedings of the National Academy of Sciences*, 119(24):e2202235119, 2022.
- [11] J. Fan, Y. Li, M.-H. Hsieh, and H. Chen. On quantum tensor product codes. *Quantum Information & Computation*, 17(13–14):1105–1122, 2017.
- [12] Y. Fan and L. Zhang. Galois self-dual constacyclic codes. *Designs, Codes and Cryptography*, 84(3):473–492, 2017.
- [13] W. Fang, F.-W. Fu, L. Li, and S. Zhu. Euclidean and Hermitian hulls of MDS codes and their applications to EAQECCs. *IEEE Transactions on Information Theory*, 66(6):3527–3537, 2019.
- [14] X. Fang, M. Liu, and J. Luo. On Euclidean hulls of MDS codes. *Cryptography and Communications*, 13:1–14, 2021.
- [15] C. Galindo, F. Hernando, R. Matsumoto, and D. Ruano. Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. *Quantum Information Processing*, 18(4):116, 2019.
- [16] C. Galindo, F. Hernando, R. Matsumoto, and D. Ruano. Correction to: Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. *Quantum Information Processing*, 20(6):216, 2021.
- [17] M. Grassl, F. Huber, and A. Winter. Entropic proofs of Singleton bounds for quantum error-correcting codes. *IEEE Transactions on Information Theory*, 68(6):3942–3950, 2022.
- [18] M. Grassl and M. Rötteler. Quantum block and convolutional codes from self-orthogonal product codes. In *Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.*, pages 1018–1022, 2005.
- [19] M. Grassl and M. Rötteler. Quantum mds codes over small fields. In *2015 IEEE International Symposium on Information Theory (ISIT)*, pages 1104–1108. IEEE, 2015.
- [20] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry.
- [21] K. Guenda, S. Jitman, and T. A. Gulliver. Constructions of good entanglement-assisted quantum error correcting codes. *Designs, Codes and Cryptography*, 86(1):121–136, Jan. 2018.
- [22] A. Ketkar, A. Klappenecker, S. Kumar, and P. Sarvepalli. Nonbinary stabilizer codes over finite fields. *IEEE Transactions on Information Theory*, 52(11):4892–4914, 2006.
- [23] H. Liu and X. Pan. Galois hulls of linear codes over finite fields. *Designs, Codes and Cryptography*, 88(2):241–255, feb 2020.
- [24] X. Liu, H. Liu, and L. Yu. New EAQEC codes constructed from Galois LCD codes. *Quantum Information Processing*, 1, 2020.
- [25] H. H. López and G. L. Matthews. Multivariate Goppa codes. *IEEE Transactions on Information Theory*, 69(1):126–137, 2022.
- [26] G. Luo, X. Cao, and X. Chen. MDS codes with hulls of arbitrary dimensions and their quantum error correction. *IEEE Transactions on Information Theory*, 65(5):2944–2952, 2018.
- [27] G. Luo, M. F. Ezerman, M. Grassl, and S. Ling. Constructing quantum error-correcting codes that require a variable amount of entanglement. *Quantum Inf. Process.*, 23(1):Paper no. 4, 2024.
- [28] G. Luo, M. F. Ezerman, and S. Ling. Entanglement-assisted and subsystem quantum codes: New propagation rules and constructions, 2022.
- [29] J. MacWilliams. Error-correcting codes for multiple-level transmission. *Bell System Technical Journal*, 40(1):281–308, 1961.
- [30] P. J. Nadkarni and S. S. Garani. Entanglement assisted binary quantum tensor product codes. In *2017 IEEE Information Theory Workshop (ITW)*, pages 219–223, 2017.
- [31] E. Rains. Nonbinary quantum codes. *IEEE Transactions on Information Theory*, 45(6):1827–1832, 1999.
- [32] A. Ravagnani. Generalized weights: An anticode approach. *Journal of Pure and Applied Algebra*, 220(5):1946–1962, 2016.
- [33] P. K. Sarvepalli and A. Klappenecker. Nonbinary quantum reed-muller codes. In *Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.*, pages 1023–1027. IEEE, 2005.
- [34] M. Shibata and R. Matsumoto. Advance sharing of quantum shares for quantum secrets. *arXiv.2302.14448*, 2023.
- [35] L. Sok. A new construction of linear codes with one-dimensional hull. *Designs, Codes and Cryptography*, 2022.
- [36] L. Sok. On linear codes with one-dimensional Euclidean hull and their applications to EAQECCs. *IEEE Transactions on Information Theory*, 68(7):4329–4343, 2022.
- [37] A. Steane. Multiple-particle interference and quantum error correction. *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences*, 452(1954):2551–2577, 1996.
- [38] G. Wang and C. Tang. Application of GRS codes to some entanglement-assisted quantum MDS codes. *Quantum Information Processing*, 21(3):98, 2022.
- [39] M. M. Wilde and T. A. Brun. Optimal entanglement formulas for entanglement-assisted quantum coding. *Physical Review A*, 77:064302, Jun 2008.

Sarah E. Anderson is an Associate Professor in the Department of Mathematics at the University of St. Thomas. She earned a B.S. in mathematics from Presbyterian College and a Ph.D. in mathematical sciences from Clemson University. Her research interests include coding theory and graph theory.

Eduardo Camps-Moreno is a Presidential Postdoctoral Fellow at Virginia Tech. Camps-Moreno earned a B.S. and a Ph.D. from Instituto Politécnico Nacional (Mexico City), both in Mathematics and Physics. His research interests include algebra and coding theory.

Hiram H. López is an Assistant Professor in the Department of Mathematics at Virginia Tech. He held positions as an Assistant Professor at Cleveland State University and as a Postdoctoral Fellow at Clemson University. He received a Ph.D. in mathematics from CINVESTAV-IPN and a B.S. in applied mathematics from the Autonomous University of Aguascalientes. His research interests include coding theory, commutative algebra, and image processing.

Gretchen L. Matthews is a Professor of Mathematics at Virginia Tech and Director of a regional component of the Commonwealth Cyber Initiative (CCI). Matthews earned a B.S. from Oklahoma State University, a Ph.D. from Louisiana State University (both in mathematics), and an M.B.A. from Virginia Tech. She held a postdoctoral appointment at the University of Tennessee and was on the faculty at Clemson University. Her research interests include algebraic geometry and combinatorics and their applications to coding theory and cryptography.

Diego Ruano is an Associate Professor of Mathematics at IMUVA-Mathematics Research Institute, University of Valladolid, Spain. He earned M.S. degrees in mathematics from the University of Valladolid, Spain, in 2002, and the University of Kaiserslautern, Germany, in 2003, and a Ph.D. degree in mathematics from the University of Valladolid, in 2007. Ruano was a Postdoctoral researcher at the University of Kaiserslautern, in 2007, and a H.C. Ørsted Postdoctoral Fellow at the Technical University of Denmark, in 2008. He served as an Assistant Professor from 2009 to 2012 and as an Associate Professor from 2013 to 2018 at Aalborg University, Denmark. He was a Ramón-y-Cajal Fellow at the University of Valladolid, Spain. His research interests include algebraic geometry and computer algebra, and their applications to classical and quantum coding theory and cryptography.

Ivan Soprunov is a Professor in the Department of Mathematics and Statistics at Cleveland State University. He received his M.S. in Mathematics and Applied Mathematics from Moscow State University and Ph.D. from the University of Toronto. He was a Visiting Assistant Professor at the University of Massachusetts, Amherst. His research interests include computational algebraic geometry and its applications to combinatorics and coding theory.