
The Journal of Supercomputing manuscript No.

(will be inserted by the editor)

Experience in Teaching Quantum Computing with

Hands-on Programming Labs

Federico Galetto · Hiram H. López ·
Mehdi Rahmati · Janche Sang · Chansu Yu

Received: Dec. 18, 2023 / Accepted: date

Abstract As the field of quantum computing rapidly advances, there is a growing de-
mand for skilled professionals adept in quantum computing and programming. Rec-
ognizing this need, in this paper, we share our experiences teaching an introductory-
level quantum computing course to students at Cleveland State University (CSU). The
course integrates dedicated hands-on programming labs, allowing students to ver-
ify their experimental results with corresponding examples from the textbook. These
labs cover a diverse range of topics, including fundamental elements such as quantum
gates and circuits, quantum key distribution protocols, and quantum algorithms. As
educators, our goal is to share teaching insights and resources with fellow instructors
in the field. This article elucidates the rationale behind the design of each experiment,
providing a deeper understanding of quantum computing.

Keywords Quantum Parallelism · Quantum Computing Education · Hands-On
Laboratory · Quantum Programming · Qiskit

1 Introduction

Quantum Computing is a rapidly growing field with many potential applications, in-
cluding cryptography, optimization, pharmaceuticals, materials science, etc. As more

F. Galetto
Dept. of Mathematics and Statistics, Cleveland State University, Cleveland, OH, USA

H. H. López
Dept. of Mathematics, Virgina Tech, Blacksburg, VA, USA

M. Rahmati
Dept. of Electrical and Computing Engineering, Cleveland State University, Cleveland, OH, USA

J. Sang (Corresponding author)
Dept. of Computer Science, Cleveland State University, Cleveland, OH, USA

C. Yu
Dept. of Electrical and Computing Engineering, Cleveland State University, Cleveland, OH, USA

2 Federico Galetto et al.

and more companies and organizations invest in quantum research and development,
the demand for skilled professionals with expertise in quantum computing is likely
to increase. That is, having an understanding of quantum computing and practical
experiences in quantum programming can be a valuable asset for Computer Science
or Computer Engineering students looking to pursue careers in industry or academia.
Therefore, we offered an introductory-level Quantum Computing course to our senior
students at CSU, for the first time in Fall 2022.

Recommended by Prof. Kiper at Miami University [16], we chose Bernhardt’s
book ”Quantum Computing for Everyone” [1] as the textbook. This book provides
simple explanations of the challenging mathematics of quantum computing and gives
elementary examples to illustrate what it means and how it is applied in problem solv-
ing. However, like many other quantum computing books, this textbook also lacks
practical quantum programming content, which would be helpful for EECS students
because quantum programming expertise will likely be in high demand as quantum
computing continues to advance.

Hands-on programming provides a means to bridge the gap between theoreti-
cal knowledge and practical implementation in quantum computing. By engaging in
hands-on programming, students can gain a deeper understanding of quantum con-
cepts such as superposition, entanglement, quantum gates and quantum algorithms.
For example, it might be easier for students to understand how the Deutsch [7] and
the Deutsch-Jozsa [8] algorithms work via the quantum phase kickback circuit imple-
mentation rather than the rigorous proof in math. Furthermore, by writing code and
running it on quantum computers or simulators, students can explore the real-world
implications of quantum algorithms and discover novel ways to leverage quantum
computing power. As suggested in [19], a course with dedicated programming labs
would greatly improve students’ learning experience in quantum programming.

Several open-source quantum software development kits, such as Amazon’s Braket,
Google’s Cirq, IBM’s Qiskit, Microsoft’s Q# and QDK, etc. are available on-line. A
good survey and comparison of these frameworks can be found in [9]. For the dedi-
cated hands-on labs, we focused on teaching students a single quantum programming
environment throughout the course. We chose IBM’s Qiskit because IBM is the only
provider which allows unlimited free accesses to actual quantum computers. Further-
more, the Cleveland Clinic [4] installed the IBM Quantum System One [12], which
supports a 127-qubit Eagle processor, to accelerate biomedical discoveries. Through
the collaboration between CSU and the Cleveland Clinic [29], our students will have
opportunities to conduct experiments on the cutting-edge quantum computer.

The objective of this paper is to narrate our teaching experiences in the field of
quantum computing. Additionally, we aim to elucidate the design of hands-on ex-
periments that empower students to execute Python-based quantum programs across
seven dedicated lab sessions. Many of the experiments are tied to the textbook, and
the students are asked to modify a program template and verify their experimen-
tal results with the corresponding example described in the textbook. To give stu-
dents more practice, we selected and revised some experiments from the Qiskit Text-
book [21], Qiskit Computing Labs [22], as well as from the book by Professors
Yanofsky and Mannucci [30]. Through this article, we want to share our teaching
experience and materials with other instructors who are teaching quantum comput-

Experience in Teaching Quantum Computing with Hands-on Programming Labs 3

ing. Interested readers can find the full handouts and a detailed explanation of each
experiment in [14].

The organization of this paper is as follows. Section 2 describes the related work
in quantum computing education. Section 3 presents the course content and our teach-
ing experiences. In Section 4, the rationales behind the design of each experiment and
some details of the experiments are presented. Section 5 presents the survey results.
Finally, we give a short conclusion in Section 6.

2 Background and Related Work

The phenomenon of quantum parallelism stems from the ability of quantum qubits
to exist simultaneously in multiple states through superposition. This capability em-
powers quantum computers to explore numerous possibilities in parallel, potentially
solving complex problems exponentially faster than their classical counterparts. Fig-
ure 1 shows a general quantum programming model that encompasses both quantum
and classical components. The quantum component comprises the quantum circuits
constructed using qubits and quantum gates. Quantum gates, such as Hadamard gates
and others, are employed to manipulate the quantum states of qubits, with Hadamard
gates being particularly valuable for creating superposition states. As depicted in Fig-
ure 1, the Hadamard gates can concurrently generate all 2n input cases for the quan-
tum circuits. These circuits encode the quantum algorithm and can be repeated de-
pending on the specified problem, as exemplified by Grover’s Search algorithm [11].

The classical component serves as the controller of the quantum computation. Af-
ter each quantum computation round, the classical component gathers the measure-
ment results from the qubits. If deemed necessary, the classical component directs the
quantum component to perform more rounds of quantum computation. This process
can be repeated within a predefined time frame or until specific convergence crite-
ria are met. Subsequently, the classical component aggregates all the measurement

H

H

Hqn−1

q
0

q
1

Quantum Circuits

all 2
n

cases

repeat (optional)

classical computer
 code

repeat (optional)

output result

measurement

Fig. 1: A General Quantum Programming Model

4 Federico Galetto et al.

results and processes them to obtain the final computation results, as illustrated by
algorithms like Simon’s algorithm [27] and Shor’s algorithm [26].

Traditional quantum computing courses usually focus on physical and mathemat-
ical concepts and most of them target graduate students. Over the past three years, an
increasing number of universities have been offering introductory quantum comput-
ing courses for undergraduate students, emphasizing the practical aspects of quantum
computing. As described in the paper [5], the instructors gave online lectures world-
wide and demonstrated running a set of Qiskit quantum programs with Jupyter note-
books. In [3], the authors compared various quantum programming environments
and chose Qiskit as the framework for teaching. They instructed students in var-
ious examples, including quantum teleportation, the Deutsch–Jozsa algorithm, the
Bernstein–Vazirani algorithm, Simon’s algorithm, the Quantum Fourier transform,
and others, all of which were supported by Qiskit Quantum Computing Labs web
pages. A practical software-driven approach for teaching quantum computing was
proposed in [19]. Their students needed to use Microsoft Quantum Katas to complete
six programming assignments and submit a final programming project. Similarly,
the teachers presented their Computer Science-oriented approach in [25] by using
approximately 30 Jupyter notebooks, focusing on practical concepts and teaching
Qiskit-based quantum programming in a three-day-long workshop.

The major difference between our approach and the aforementioned previous
work is that we offered dedicated hands-on labs, providing students with in-person
access to the instructor or lab TA for assistance when needed. Furthermore, many of
the experiments are closely linked to the content of the textbook, and these experi-
ments are designed to be progressive, with each new experiment building upon the
concepts and skills learned from the previous ones. This approach allows students to
gradually apply their knowledge, ensuring a deeper understanding as they progress
through the course.

3 Course Content and Teaching Insights

We outline the course content and schedule in Table 1. The class, scheduled weekly
for 3 consecutive hours, includes a 75-minute hands-on lab section immediately af-
ter discussing the topic. Performing a lab after the topic ensures that the information
remains fresh in students’ minds. During a hands-on lab, students can observe the re-
sults of their actions in real time. This instant feedback allows students to identify and
correct misconceptions or errors, further reinforcing their learning and understanding
of the material.

Over the past two years, five professors actively contributed to the preparation and
teaching of this course. Dr. Yu took the lead as the course initiator and coordinator.
He was also responsible for inviting the guest speaker and delivering the general
introduction during the first-week lecture. Dr. López and Dr. Galetto, affiliated with
the Department of Mathematics and Statistics, instructed on linear algebra, quantum
spin, and qubits in Fall 2022 and Fall 2023, respectively. Dr. Rahmati dedicated his
efforts to teaching quantum gates, entanglement, Bell’s inequality, superdense code,

Experience in Teaching Quantum Computing with Hands-on Programming Labs 5

Table 1: Topics and Schedule

Topic 1 Topic 2
Week 1 Introduction (Ch. 1) Overview: Qubit, Superposition,

Interference & Entanglement
Week 2 Linear Algebra (Ch. 2) Linear Algebra (Ch. 2)
Week 3 Spin & Qubits (Ch. 3) Lab 1 (Python & Jupyter)
Week 4 Spin & Qubits (Ch. 3) Quantum Gates (Ch. 7)
Week 5 Test 1 Entanglement (Ch. 4)
Week 6 Entanglement (Ch. 4) Lab 2 (Qiskit and Entanglement)
Week 7 Bell’s inequality (Ch. 5) Lab 3 (Quantum Gates and Circuits)
Week 8 Ekert, QKD (Ch. 5), Lab 4 (QKD) Guest Speaker (Cleveland Clinic)
Week 9 Test 2 Superdense code, Teleportation

& Error Correction (Ch. 7)
Week 10 Deutsch & Deutsch-Jozsa algorithms (Ch. 8) Lab 5 (Deutsch algorithm)
Week 12 Simon’s algorithm (Ch. 8) Lab 6 (Simon’s algorithm)
Week 14 Shor’s algorithm & Grover’s algorithm (Ch. 9) Lab 7 (Grover’s algorithm and 3-SAT)
Week 15 Complexity (Ch. 8) Test 3

teleportation and error correction. Meanwhile, Dr. Sang led the hands-on lab sessions
and instructed on quantum algorithms.

Dr. López wrote the first version of the skeleton notes in LaTeX for Fall 2022,
and Dr. Galetto made minor revisions for Fall 2023. Before starting the class, we
gave every student a set of print skeleton notes. Figure 2 shows an example of one
page from these partial notes. During class, we filled out the gaps in the notes on
a tablet device connected to a projector while students did the same on their print
set. We uploaded the filled notes to our LMS for students to peruse right after class.
The pedagogical value of the skeleton notes (also known as partial notes) has been
documented in the literature [2].

We begin by reviewing the necessary mathematical tools to represent qubits and
use them in quantum computing. Following [1], we represent qubits with unit vectors
in the real plane. Thus, we must review some facts about vectors (addition, scalar
multiplication, dot product, length, and orthogonal bases) and matrices (multiplica-
tion, transpose, and orthogonal matrices). All the necessary notions are covered in
the prerequisite linear algebra course (MTH 288 at CSU). As the students may take
the quantum computing class anywhere from one to two years (three for graduate
students) after completing linear algebra, we prefer to review the mathematical back-
ground as part of the course.

A common question is the difference between bras and kets, represented respec-
tively by row and column vectors. From a mathematical perspective, bras are ele-
ments of the vector space dual to the one containing the kets; however, this point of
view is too sophisticated. Fortunately, physics comes to the rescue to offer a more
tangible description. To each position of the Stern-Gerlach apparatus, we associate
an orthonormal basis of the plane, say {|b0i , |b1i}, whose elements correspond to
the two possible states of an electron that passed through the apparatus. Let |bi be a

6 Federico Galetto et al.

Quantum Computing for Everyone, a summary of Chapters 1-3

These notes are based on the book Quantum Computing for Everyone by Chris Bernhardt,
MIT Press Cambridge, Massachusetts. It is the responsibility of the student to read the
chapters from the book.

Linear algebra

A row vector is called a bra: ha| =
⇥
a1 . . . an

⇤
.

A column vector is called a ket: |bi =

2

4
b1
...
bn

3

5 .

Example 1.

We can represent two-dimensional bras or kets in the plane using arrows.

Example 2. Represent the kets |b1i =

1
2

�
and |b2i =


4
�3

�
in the plane.

x

y

x

y

The length of a bra or ket, denoted by | ha| | or | |bi | , respectively, is the square root of
the addition of the squares of its entries.

Example 3. Find the length of the kets given in Example 2.

1

Fig. 2: Partial class notes about Linear Algebra

unit vector representing a qubit. Then, we have

|bi= hb0|bi |b0i+ hb1|bi |b1i ,

where the square of the braket (dot product) hbi|bi is the probability that the qubit
will be found in the state |bii after passing through the apparatus. Thus, unit kets rep-
resent qubits in a certain state, while unit bras are operators that measure properties
of qubits.

We developed homework assignments and assessments with examples similar
to the ones covered in the class. The main goal is that students excel in the math
concepts for the rest of the course. For instance, a vector representation in terms of
an orthonormal basis should be for students as familiar as multiplying two matrices.
For the future, we plan to create a similar version of the homework problems in the
online platform MyOpenMath, to provide students with more practice opportunities
and instant feedback.

It is worth mentioning that we provided each student with three 2”⇥2” polar-
ized sheets to conduct the interesting experiment described in the textbook. Note
that qubits are typically represented by the spin of electrons or the polarization of

Experience in Teaching Quantum Computing with Hands-on Programming Labs 7

photons. An essential feature of qubits can be directly observed through experimen-
tation using polaroids to filter photons based on polarization. Firstly, incoming light
is randomly polarized. Using a polaroid (aligned horizontally), approximately half
of the photons pass through, resulting in an output intensity of half. Subsequently,
the outgoing photons are all horizontally polarized. Secondly, introducing a second
polaroid (rotated 90 degrees, polarized vertically) prevents any photons from pass-
ing through since they are horizontally polarized. Consequently, the output intensity
becomes zero (complete darkness). Thirdly, inserting a third polaroid between the
two existing ones (rotated 45 degrees) leads to a counterintuitive observation: the ad-
ditional filter increases the output intensity. Some photons manage to pass through
all three polaroids, as shown in Figure 3. This experiment illustrates a key aspect of
quantum mechanics, emphasizing that the outcome of a measurement can vary based
on the chosen basis (in this case, polarization). Different bases may provide distinct
information about the quantum state, highlighting the inherently probabilistic nature
of quantum systems.

Fig. 3: Overlapping Three Linear Polarized Sheets

Dr. Rahmati kicked off his section by talking about quantum gates and circuits.
At first, students had some questions to understand the functionality of these quantum
gates, especially those students who are used to working with classical logic gates.
However, with examples and discussions, we made it easier to see how quantum
and classical computing are different. We spent quite a bit of time in class talking
about the no-cloning theorem, proving it, and showing why it does not match our
traditional way of thinking about regular computers. One particularly challenging
concept, i.e., entanglement, was explained using the tensor product and by providing
a clear comparison of entangled and unentangled qubits. The CNOT gate, as a visual
tool, aided students’ grasp of entanglement.

Our learning journey delved into the history of quantum mechanics, connecting
iconic figures like Einstein and Bohr and explaining what happened during that time.
The students liked it very much. We continued the discussion by clearly explaining
Bell’s inequality and then showed how it can be used in quantum key distribution.
This is followed by explaining superdense coding, teleportation, and an introductory
lecture on quantum error correction and the need for new algorithms to apply to
existing quantum computers. Some questions arose about the potential adaptation of

8 Federico Galetto et al.

certain classical error correction algorithms for use in quantum error mitigation and
correction, which was really inspiring to see students engaged with the topics.

Lastly, Dr. Sang covered fundamental quantum algorithms such as the Deutsch
and Deutsch-Jozsa algorithms, Simon’s periodicity algorithm, and Grover’s search
algorithm. Our approach followed the structure laid out in the textbook, ensuring
a comprehensive understanding of these quantum computing concepts. Specifically,
for the Deutsch and Deutsch-Jozsa algorithms, we enhanced the learning experience
by incorporating circuit visualization alongside mathematical derivations. This dual
approach aids students in grasping both the theoretical foundation and practical as-
pects of these algorithms. In the homework assignment, we introduced variations by
altering the initial value of the x qubit from 0 to 1, prompting students to derive the
mathematical solutions and further reinforcing their comprehension through circuit
visualization.

Shifting our focus to quantum complexity classes, our curriculum explores Quan-
tum Polynomial Time (QP) and Bounded-error Quantum Polynomial Time (BQP).
We delved into the theoretical aspects of quantum computing, discussing its poten-
tial impact on classical cryptography and computational complexity. Notably, we ad-
dressed the vulnerability of RSA encryption through Shor’s algorithm and the poten-
tial speedup for NP-Complete problem solving via Grover’s search algorithm. The
exploration of algorithms and complexity classes provides students with a compre-
hensive understanding of quantum computing’s theoretical underpinnings and practi-
cal implications.

4 Hands-on Quantum Programming Labs

The seven dedicated hands-on labs were conducted in our Linux cluster lab. Each
workstation has installed the software packages and libraries, such as Python3, qiskit,
jupyter, etc. Note that the Jupyter Notebook [28] is an interactive computing environ-
ment and its cell-based approach makes it easy to organize code and text, run code
interactively, and create documents that combine executable code, visualizations, and
explanations.

In the lab, students need to follow the procedure stated in the handout step by
step to implement the programs, record, and explain the results in their lab reports.
This section gives a brief description of each lab and its objectives. Some interesting
experiments which are important for students to practice are also presented below.
Interested readers can find the full handouts and the detailed explanation of each
experiment in [14].

4.1 Hands-on Lab 1: Python and Jupyter

In the first warm-up lab, each student will set up their working environment (e.g.
installing Qiskit tools, creating a dedicated sub-directory for this course, etc.), and
get familiar with some Linux commands. Students will also learn how to implement
and run Python 3 programs in Jupyter Notebook’s code cells, as well as how to load

Experience in Teaching Quantum Computing with Hands-on Programming Labs 9

and execute program templates in cells. Furthermore, they will review some features
in the Python language, such as using indentation instead of a pair of curly braces
in C/C++/Java to indicate a block of code, the dictionary data structure which uses
string as the array index, etc. Note that, in this lab, students are asked to copy and
run the quantum ”Hello World” program which uses a Hadamard gate to set a qubit
into a superposition state and then measures it. However, we will not explain how the
code works in detail until the next lab. This fosters a sense of curiosity that may lead
to more profound and lasting learning outcomes.

4.2 Hands-on Lab 2: Qiskit and Entanglement

In this lab, students will learn how to write simple quantum programs in Qiskit. A
Qiskit program typically follows a structured pattern to firstly construct the quantum
circuits using the Qiskit Terra module and then execute the circuits either on a sim-
ulator (i.e. the Qiskit Aer module) or on a real IBM quantum computer. Instructors
should remind students that the Qiskit’s qubits order is simply reversed as compared
to the order used in the textbook [1] (also in the reference [30]). That is, Qiskit puts
q0 rightmost (e.g. q2q1q0) while the textbook puts q0 leftmost (e.g. q0q1q2). Students
have to be careful while reading Qiskit documents, Qiskit gate operation matrix, his-
togram output result, etc.

Students will study in detail the quantum ”Hello World” program template given
in the previous lab. Next, they will learn that quantum randomness via the H gate is
not simply like a classical random coin toss. That is, as shown in Figure 4, students
will modify the template by applying two H gates in succession and observe that the
result is not exactly the same as tossing the coin twice. They also need to verify the
result through the state vector calculation.

q : H H
c : /1 0

↵◆

Fig. 4: Applying two H gates in succession

The major theme of Lab 2 is entanglement. Students will construct the two-qubit
entanglement circuit shown in Figure 5 and observe the entangled results (i.e. either
”00” or ”11”). In the next experiment, they need to modify the circuit by initializing
the qubit q1 to be 1 like in the Figure 6. Students are asked to explain whether the
result is entangled or not in their reports. They can refer to page 59 in the textbook
about the simple rule to check the entanglement of two qubits. That is, assume that
r, s, t, and u represent the probability amplitudes of two qubits q0q1 states: 00, 01,
10, and 11, respectively. These two qubits are entangled if ru 6= st. Otherwise, they
are not entangled and can be decomposed into the tensor product of two individual
qubits.

10 Federico Galetto et al.

q0 : H •
q1 :

c : /2 0
↵◆

1
↵◆

Fig. 5: Two-qubit Entanglement: 00 or 11

q0 : H •
q1 : X
c : /2 0

↵◆
1
↵◆

Fig. 6: Two-qubit Entanglement: 01 or 10

After finishing Lab 2, students will be given a homework assignment. They are
asked to run a two-qubit entanglement program on an actual quantum computer. Each
student needs to follow the steps to create a free account on the IBM website, which
allows the user to submit and execute quantum programs on IBM quantum computers
worldwide [23]. They need to explain in their report why the histogram result is a little
different from the result obtained in the Lab2 Experiment using the simulator.

4.3 Hands-on Lab 3: Quantum Gates and Circuits

This lab starts with doing two experiments: one is to entangle three qubits from the
same control qubit and the other is to entangle four qubits in a chain manner. Next,
students are asked to use quantum gates such as X, H, CNOT, and Toffoli, to con-
struct circuits for emulating the classical AND, NAND, and OR gates. Some students
may have learned NP-completeness already. Instructors could tell them that, for NP-
complete problems, such as SAT, quantum computers can give quadratic speedup
over the classical computers. Learning how to emulate the classical gates will help
them build the oracle circuits used in the Grover’s search algorithm [11] for solving
the SAT problem. These SAT-related experiments will be conducted in Lab 7 in the
future.

To emulate the classical AND gate function, we can simply use a Toffoli gate
ccx(c0,c1,t), where c0 and c1 are the control qubits and t is the target qubit.
When both c0 and c1 are set to 1, the target qubit t will be flipped to 1. To implement
the NAND gate function, we just need to add a NOT gate (i.e. the quantum X gate)
to flip the target qubit t of the Toffoli gate at the end.

Note that there are two different methods to implement the classical OR gate. One
is to use two CNOT gates and one Toffoli gate, as shown in Figure 7. If either one of
the two inputs is 1, it uses the CNOT to toggle the output result to be 1. If both inputs
are 1’s, output result will be toggled twice back to 0 and hence we need the Toffoli
gate to toggle the output qubit again. The other method is to adopt X and AND gates

Experience in Teaching Quantum Computing with Hands-on Programming Labs 11

based on the following equation:
q0 _ q1 = ¬(¬q0 ^¬q1)

That is, as shown in Figure 8, we invert both inputs and apply the NAND function.
Finally, we have to invert the inputs back to their original values. It seems that there is
no significant difference between these two methods since both of their circuit depths,
which calculates the longest path between the data input and the output, look like 3.
However, it has been shown that it needs at least five two-qubit gates to implement
the Tofolli gate [31]. Therefore, the first approach has a larger circuit depth because
it uses two more Tofolli gates than the second approach.

q0 : • •
q1 : • •
q2 :

Fig. 7: Implementing the two-qubit OR function with CNOT and Toffoli gates

q0 : X • X
q1 : X • X
q2 : X

Fig. 8: An alternative implementation of the two-qubit OR function

There are two slightly more complicated quantum circuits that are useful for stu-
dents to study. The first circuit is shown in Figure 9. After implementing and execut-
ing the program, students will find out, for the four possible inputs q0q1: 00, 01, 10,
and 11, the corresponding outputs will be: 00, 10, 01, and 11, respectively. They need
to deduce that the circuit swaps the states between q0 and q1.

The second circuit, known as Phase Kickback and depicted on the upper left of
Figure 10, will generate the outputs q0q1 as 00, 11, 10, and 01, corresponding to
the inputs: 00, 01, 10, and 11, respectively. Namely, the circuit acts like the q1 is
the control while the q0 becomes the target of a CNOT gate, as shown in the upper
right of Figure 10. Note that the two H gates in q0’s wire are not successive due to
the presence of a CNOT connection in between. Students are recommended to use
matrix operations, as shown in the bottom part of Figure 10, to verify the circuit

q0 : • •
q1 : •

Fig. 9: Swap the states in q0 and q1

12 Federico Galetto et al.

q0 : H • H ⌘ q0 :
q1 : H H q1 : •

1
2

2

664

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

775⇥

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775⇥
1
2

2

664

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

3

775 ⌘

2

664

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

775

Fig. 10: Phase Kickback and Corresponding Matrix Operations

q0 : ⇥ ⌘ • • ⌘ • H • H •

q1 : ⇥ • H H

Fig. 11: Swap the states in q0 and q1 if q1 cannot be the control qubit

equivalence. The Phase Kickback circuit has been used in many quantum algorithms.
In our experience, comprehending the Phase Kickback circuit would be helpful for
beginners in elucidating the workings of the Deutsch and Deutsch-Jozsa algorithms.

It is also worth mentioning that, though not included in the Lab3, the circuits in
Figure 9 and Figure 10 can be used together. The current IBM quantum computer
adopts the heavy-hexagon lattice topology to connect qubits [20]. Hence, the swap
gate is needed to facilitate interactions between non-adjacent (i.e. not directly con-
nected) qubits. Moreover, the control qubits are not adjacent in the heavy-hexagon
lattice and this limitation makes the circuit in Figure 9 impossible if q0 and q1 are
directly connected together. If the qubit q1 in Figure 9 cannot be the control qubit,
we can simply use the Phase Kickback to solve the problem [32]. The solution is
depicted in the rightmost part in Figure 11. This can be left as a homework exercise
for students.

In addition to the swap gate, there is another interesting quantum circuit, called
the bridge gate [13], which lets the CNOT gate operate on non-adjacent qubits. For
example, if the control qubit q0 and the target qubit q2 are not adjacent, they can use
their common neighbor q1 as the bridge. This involves four direct-connect CNOT
gates, as shown in Figure 12. The circuit can be comprehended using the following
instructions in sequence:

q2 = q1.org�q2.org

q1 = q0.org�q1.org

q2 = q1�q2 = (q0.org�q1.org)� (q1.org�q2.org) = q0.org�q2.org

q1 = q0�q1 = q0.org� (q0.org�q1.org) = q1.org

Experience in Teaching Quantum Computing with Hands-on Programming Labs 13

q0 : • ⌘ • •
q1 : • •
q2 :

Fig. 12: The Bridge gate: The CNOT gate (control: q0, target: q2) by way of q1

Alice Bob
q :

c : /1 0
↵◆

Fig. 13: BB84 emulation: Both Alice and Bob choose the Vertical direction

Note that the notation qorg denotes the original value of the qubit q. It can be seen
that the value in q2, the target qubit of the CNOT gate, achieves its desired result,
while the intermediate qubit q1 remains unchanged at the end. We plan to include
this example as a new experiment in the future.

4.4 Hands-on Lab 4: Quantum Key Distribution

Quantum Key Distribution (QKD) is a cryptographic technique that utilizes quantum
mechanics to enable two communication parties to produce a shared random secret
key known only to them. The secret key can be used for encrypting and decrypting
messages. There are two QKD protocols discussed in the textbook: BB84 and Ek-
ert91. In this lab, students are asked to implement Qiskit programs to emulate the
behaviors of these two protocols and verify the output results of the probabilities
from their programs with the corresponding descriptions in the textbook.

The BB84 protocol exploits the principles of quantum mechanics, utilizing the
properties of quantum states to ensure the security of the key exchange process. As
described in the textbook, Alice prepares a sequence of 4n qubits, encodes each qubit
randomly in one of two bases (i.e. either vertical or horizontal) and then sends them
to Bob. Bob measures each of these qubits using randomly chosen bases. Then, they
publicly communicate which bases they used for each qubit and only keep the qubits
corresponding to the times when they both use the same basis. The length of these
kept qubits is roughly about 2n. These qubits will be identical if Eve is not inter-
cepting them. Therefore, Alice and Bob can compare half of these qubits to detect
the presence of any Eve’s eavesdropping attempts. If they agree on all of them, they
know Eve is not listening in and they can use the other n qubits as the shared key to
encrypt/decrypt messages in the future communications.

The first simple experiment is to let students observe that Alice and Bob will
obtain the same qubit value if they choose the same basis – either the vertical or
horizontal direction, as shown in Figure 13 and Figure 14, respectively. In the next

14 Federico Galetto et al.

Alice Bob
q : H H
c : /1 0

↵◆

Fig. 14: BB84 emulation: Both Alice and Bob choose the Horizontal direction

Alice Eve Bob
q : H H H H
c : /1 0

↵◆
0
↵◆

Fig. 15: BB84 emulation with Eve’s eavesdropping and guessing right

Alice Eve Bob
q : H H
c : /1 0

↵◆
0
↵◆

Fig. 16: BB84 emulation with Eve’s eavesdropping and guessing wrong

experiment, students are asked to run a template program which emulates the BB84
protocol except detecting any interception. The template initially sets the n to be 4, a
small value so students can trace the executions easily. Based on the program output,
they need to mark, in their report, the bit positions where Alice and Bob use the same
bases and then extract the corresponding bits from ”Alice bits” and ”Bob results” into
two bit sequences. Finally, they need to add the code to select half of the same-basis
bits and compare them to determine whether they are the same or not. If the bits
comparison is True, students can increase the variable n to a larger value, say 1000,
and run the program again to make sure that their program works for a larger size of
bit sequence.

In the third experiment, students are asked to add lines of code to their program
implemented in the first experiment to emulate Eve’s interception. It can be observed
that if Alice, Eve, and Bob choose the same basis, they will all get the same bit and
hence Eve’s eavesdropping cannot be detected. Figure 15 is an example in which Al-
ice, Eve, and Bob all choose the horizontal basis. Note that after Eve guesses the mea-
surement basis, she will send the qubit to Bob using the same basis. If Eve chooses
the wrong basis, as shown in Figure 16, the emulated program will output that Bob
gets the right bit with only a 50% chance.

In Experiment 4, students need to modify the code implemented in Experiment
2 to emulate Eve’s actions. That is, Eve firstly generates a random choice of basis
for each bit. Next, she measures each qubit based on the generated random choice of
basis. Finally, she encodes the message again based on the generated random choice

Experience in Teaching Quantum Computing with Hands-on Programming Labs 15

q0 : H • U(0,0,0)

q1 : U(2p
3 ,0,0)

c : /2 0
↵◆

1
↵◆

Alice Bob

Fig. 17: Ekerti91 emulation: Measuring two entangled qubits with different bases

of basis and then sends the message to Bob. Students are also asked to add some code
to find out the percentage of the n sample bits in which Alice and Bob disagree. As
described in the textbook, if Alice and Bob disagree about a quarter of the sample
bits (i.e. n/4), they know that Eve’s intercepting. Students can check their program’s
output whether it is 1/4 or not.

Experiments 5, 6, and 7 are about the Ekert91 protocol which utilizes entangled
qubits as in the Bell’s test. There are a few variations of the protocol. Based on the
version presented in the textbook, there are 3n pairs of entangled qubits. For each
pair, Alice receives one and randomly chooses a direction to measure her qubit, while
Bob gets the other and also randomly selects a direction to measure it. There are
three directions Alice and Bob can use: 0�, 120�, or 240�. Therefore, they will agree
around n bits when both choose the same direction. Because the bases they chose will
be revealed over a public insecure line, they can use these same-basis n bits as the
shared secure key if Eve is not intercepting. Note that to detect interception, they use
the sequence of qubits that come from the times when they chose different bases.

The template program provided in Experiment 5 simply tests one pair of entan-
gled qubits when Alice and Bob measure the qubits using different directions via the
Qiskit U-gate (see Figure 17). From the program output, students need to calculate
the probability both Alice and Bob’s qubits agree (i.e. combining the percentages of
’00’ and ’11’) and the probability they disagree (i.e. adding the percentages of ’10’
and ’01’). In addition to 0� and 120� different directions, students also need to test the
other five cases such as 0� and 240�, 120� and 240�, etc. Students will find out that for
any case, the probability Alice and Bob agree is approximate 0.25 and the probability
they disagree is around 0.75. The theoretic proof can be found in the section about
Bell’s inequality in the textbook.

In Experiment 6, students need to study, modify and run another template pro-
gram which emulates Alice’s and Bob’s behaviors based on the Ekert protocol. This
program outputs the probability that Alice and Bob agree when they use different
bases. In the next experiment, they are asked to modify and extend this template
program to detect whether Eve is intercepting or not. If Eve is eavesdropping, the
probability that Alice and Bob agree when they use different bases will raise from
1/4 as in the Experiment 6 to 3/8. Students can check whether their results are consis-
tent with the description in the textbook. Note that the textbook does not derive how
to get the probability 3/8 in detail. This can be left as an homework assignment for
students.

16 Federico Galetto et al.

F F
x : |0i H H x : |0i H H
y : |1i H y : |1i H X

c : /1 0
↵◆ c : /1 0

↵◆

Fig. 18: Deutsch -– the Constant 0 function (left) and the Constant 1 function (right)

4.5 Hands-on Lab 5: Deutsch and Deutsch-Jozsa Algorithms

The Deutsch algorithm is the first algorithm to show that a quantum algorithm could
be faster than a classic one to solve a specific problem. It specifically addresses the
task of determining whether a black-box function f : {0,1}�! {0,1} is constant or
balanced. Note that a function is called balanced if it sends half of its inputs to 0 and
the other half to 1. There are four such functions. Two are constant: the constant 0
function (f (0)= f (1)= 0), or the constant 1 function (f (0)= f (1)= 1), while the
other two are balanced: the identity function (f (0)= 0, f (1)= 1), or the inversion
function (f (0)=1, f (1)=0). In classical computing, it would typically require two
function evaluations to tell whether a black-box function is constant or balanced. By
employing quantum principles such as superposition and interference, the quantum
algorithm requires only a single query to the function, providing a speedup over the
classical method.

In the first four experiments of this lab, students will learn how to construct the
circuits for each of the four black-box functions. For a quantum system, every op-
eration must be unitary and thus reversible. For achieving this, each function, say
F , needs another input y to map the state |x,yi to the state |x,y� f (x)i. Because
|x,(y� f (x))� f (x)i = |x,y�0i = |x,yi, the function F is its own inverse. To con-
struct the circuit for the constant 0 function, where f (x) = 0, the output of the bottom
qubit becomes y� f (x) = y�0 = y. Namely, there are only two straight wires in the
black box F and there is no connection between the qubit x and the qubit y, as shown
in the left part of Figure 18. Hence, the top qubit x goes through two H gates in suc-
cession. Based on the experience we learned from Experiment 2 in Lab 2, the qubit x
will be restored back to its initial value 0 before measurement. Similarly, the circuit
for the constant 1 function, where f (x) = 1, can be constructed as in the right part
of Figure 18. This is because y� f (x) = y�1 = y. Same as the constant 0 function,
there is no connection between the qubit x and the qubit y. The qubit x also goes
through two successive H gates and its value will be restored back to its initial value
0. Therefore, both constant functions yield the value 0 in the qubit x.

The left portion of Figure 19 shows how to build the circuit of the balanced iden-
tity function, where f (x) = x. That is, the function F adopts a CNOT gate to map the
input state |x,yi to the output state |x,y� f (x)i = |x,y� xi. From the Experiment 7
in the Lab 3 (i.e. the phase kickback circuit), we know that bottom qubit y becomes
the control bit of the CNOT gate. Furthermore, another tricky setting is the initial
value of the qubit y. The value 1 in y will let the qubit y toggle the value in the qubit
x from 0 to 1, which is different than the result of the constant functions. Likewise,

Experience in Teaching Quantum Computing with Hands-on Programming Labs 17

F F
x : |0i H • H x : |0i H X • H
y : |1i H y : |1i H

c : /1 0
↵◆ c : /1 0

↵◆

Fig. 19: Deutsch — the balanced functions; either Identity (left) or Inversion (right)

F
x0 : |0i H H
x1 : |0i H H
x2 : |0i H H
y : |1i H

c : /3 0
↵◆

1
↵◆

2
↵◆

Fig. 20: Deutsch-Jozsa – the constant 0 function f (x0,x1,x2) = 0

the circuit of the balanced inversion function, where f (x) = x, can be constructed
as in the right portion of Figure 19. The function F maps the state from |x,yi to
|x,y� f (x)i = |x,y� xi. To implement it, we need to apply an X gate for the qubit
x to invert its value. However, this X gate will not change the superposition state

1p
2
(|0i+ |1i) in x because |0i becomes |1i and |1i becomes |0i. Same as the bal-

anced identity function, the value 1 in y will flip the value in the qubit x from 0 to
1. Hence, if we measure the qubit x and its value is 1, we know that the function is
balanced.

In the class lecture, students learned that the Deutsch algorithm doesn’t truly
demonstrate the power of quantum parallelism because it employs a single query
to distinguish between two cases: constant or balanced. The Deutsch-Jozsa algorithm
generalizes the Deutsch problem with a larger domain. It determines whether a black-
box function f : {0,1}n �! {0,1} is constant (i.e. it always outputs the same value
for all 2n inputs) or balanced (i.e. half of the inputs go to 0 and the other half go to
1). The Deutsch-Jozsa algorithm shows the power of quantum parallelism by using
only one query to the oracle, as compared to the worst case scenario 2n�1 + 1 func-
tion evaluations needed in the classical method. In Experiment 5, students are asked
to load and run a template program involving a constant 0 function with n = 3, as
depicted in Figure 20. Next, they are instructed to add an X gate on the qubit y to
make the black box F a constant 1 function. The instructor would remind students
that there is no connection between the x qubits and the qubit y for both constant
functions. Hence, just like the constant functions in the Deutsch’s algorithm, these
three qubits x0x1x2 go through two successive H gates and the value in x0x1x2 will be
restored back to ”000”.

In Experiment 6 and Experiment 7, students are asked to construct the circuits
of the balanced functions f (x0,x1,x2) = x0� x1� x2 and f (x0,x1,x2) = x0x1� x2,
respectively. As shown in Figure 21 and Figure 22, there is at least one CNOT con-
nection between the x qubits and the qubit y. Since the phase kickback causes the

18 Federico Galetto et al.

F
x0 : |0i H • H
x1 : |0i H • H
x2 : |0i H • H
y : |1i H

c : /3 0
↵◆

1
↵◆

2
↵◆

Fig. 21: Deutsch-Jozsa – the balanced function f (x0,x1,x2) = x0� x1� x2

F
x0 : |0i H • H
x1 : |0i H • H
x2 : |0i H • H
y : |1i H

c : /3 0
↵◆

1
↵◆

2
↵◆

Fig. 22: Deutsch-Jozsa – the balanced function f (x0,x1,x2) = x0x1� x2

input x qubits to be flipped through the connection(s), the value in x0x1x2 will not be
”000” anymore. That’s why we can determine the function is constant or balanced by
examining the x qubits.

We believe that these hands-on programming experiments will help students eas-
ily understand the Deutsch and the Deutsch-Jozsa algorithms from a different per-
spective, rather than relying solely on the rigorous mathematical proofs presented in
the textbook. The phase kickback circuit, along with the y qubit’s initial value set to 1,
will flip certain values of the x-qubit for the balanced functions. This flipping will not
occur for the constant functions due to the lack of any connection. However, while
the mathematical derivation might be lengthy, it clearly demonstrates the relationship
between the top x-qubit(s) and the bottom y qubit. As emphasized twice in the text-
book, once for the Deutsch algorithm and once for the Deutsch-Jozsa algorithms, the
x-qubit(s) and the y qubit are not entangled because their joint state can be expressed
as a tensor product decomposition.

4.6 Hands-on Lab 6: Simon’s Algorithm

Simon’s algorithm solves the problem of finding the hidden string in a black-box
function f : {0,1}n �! {0,1}n . The black-box 2-to-1 function has the property that
there is a secret non-zero binary string s of length n, (i.e.s 6= 00 . . .0), s.t. f (x) = f (y)
if and only if y = x or y = x� s. Simon’s algorithm contains quantum procedures
as well as classical post-processing procedures. As described in the textbook, we
can run Simon’s circuit n+N times, where N does not depend on n, to get n+N

Experience in Teaching Quantum Computing with Hands-on Programming Labs 19

x0 : H H
x1 : H • H
y0 :

y1 :

c : /2 0
↵◆

1
↵◆

Fig. 23: A Simple Example of Simon’s Algorithm Circuit with s = 10

equations. These equations contain the n� 1 independent vectors, so we can use a
classical algorithm (e.g. Gaussian elimination) to recover the secret string s.

Students begin this lab by running a 2-qubit template program with the hidden
string s = 10. Figure 23 depicts the circuit of this program. Students should be re-
minded that, similar to the Deutsch-Jozsa algorithm, the top qubits x will be measured
instead of the bottom qubits. This template outputs the top x qubits either 00 or 01.
Note that the template does not call Gaussian elimination to find s and hence students
need to manually solve the n�1 linearly independent equations. This will help them
know how the whole algorithm works. Because the output string ’00’ which wouldn’t
give us any information, students need to use the other output string 01 to calculate
its dot product with the secret string s (i.e. s0s1) and the result should be 0. That is,
they will get

0⇥ s0 +1⇥ s1 = 0.
They have to figure out that s1 = 0 and hence s = 10 because not all of the digits in s
can be 0. In fact, this example is from the textbook and has been discussed in the class
lecture. Students now have the opportunity to practice it once again. In Experiment 2
and Experiment 3, students will modify the oracle circuit in the program based on the
given diagrams in the handout. They may need to run their programs a few times to
get n�1 different non-zero strings and then use these strings to derive the bit pattern
of the secret string s.

In Experiment 4 and Experiment 5, students will learn a simple method, as pre-
sented in [24], for constructing an oracle circuit F using a given string s. Figure 24
shows the steps to construct such a 2-to-1 mapping function. Note that in the first
step, because each qubit in the register y is initialized to be 0, the content of each
qubit in the register x, which is the classical information encoded as either a |0i or a
|1i, will be copied through the CNOT gate to the corresponding qubit in the register
y . In the second step, if xk == 0, the register y remains unchanged. Otherwise, the
register y will be XORed with s, i.e. y � y� s. Figure 25 illustrates an example of
using these two steps to construct the Simon’s Algorithm Oracle Circuit with s= 110.
Note that in this example, k is 0 because s0 = 1. If the secret string s is 011, k is 1
since s1 = 1 and hence the CNOT control bit is x1 in the Step 2.

We need to show that the oracle F constructed using the method in Figure 24
has the property f (x) = f (x� s). Assume that the value in the x register is b when
entering F . If bk is 0, the register y has the value b when leaving F . Otherwise, it
has the value b� s. Consider another input value d, where d = b� s, in the x register

20 Federico Galetto et al.

1. Apply the CNOT gates from qubits of the first register (i.e. x) to qubits of the
second register (i.e. y).

2. Because the bits in the string s cannot be all 0, find the least index k such that
sk = 1. Next, apply the CNOT gates from the qubit xk to any qubit yi if si = 1.

Fig. 24: A Simon’s Oracle Construction Algorithm which implements
f (x) = if xk == 1 return (x� s) else return x

F
x0 : H • • • H
x1 : H • H
x2 : H • H
y0 :

y1 :

y2 :

c : /3 0
↵◆

1
↵◆

2
↵◆

Step1 Step2

Fig. 25: An Example of Constructing Simon’s Algorithm Oracle Circuit with
s = 110

when entering F . Note that sk is 1, so dk = bk� sk = bk. There are two cases we need
to verify. When bk = 0, dk = bk = 1 and hence the register y will have the value d� s
= (b� s)� s = b. If bk = 1, then dk is 0 and the register y will the value d which is
b� s. Therefore, for both cases, f (b) = f (d) = f (b� s).

There is another way to explain why the measured outputs of the top qubits are
limited to certain patterns. Here, we employ the circuit equivalence translation along
with the phase kickback property. We use the circuit in Figure 25 as an example.
Firstly, we can simplify the circuit by removing the two successive CNOT gates from
x0 to y0 because CNOT is its own inverse. Next, we add two successive H gates in
several places to yield the circuit as shown in Figure 26. Adding two successive H
gates does not change the circuit’s property. Now, we can use the the phase kickback
circuit pattern, as shown in in Figure 10, to reverse the control-target positions in each
CNOT gate. Note that there are two successive H gates added in the y1 wire between
the CNOT gate controlled from x1 and the CNOT gate controlled from x0. The first H
gate added will be used as the ending H gate in the phase kickback pattern, reversing
the control position of the CNOT gate from original x1 to y1. The second added H
gate will serve as the initial H gate in the phase kickback pattern to reverse the control
position of the next CNOT gate from x0 to y1. The translated circuit can be found in
Figure 27. It shows that x0 and x1 are entangled via y1. Hence, the measured output
c0c1c2 must satisfy the property c0� c1 = 0, while c2 is independent of c0 and c1.

Experience in Teaching Quantum Computing with Hands-on Programming Labs 21

F
x0 : H • • • H
x1 : H • H
x2 : H • H
y0 : H H H H
y1 : H H H H H H
y2 : H H H H
c : /3 0

↵◆
1
↵◆

2
↵◆

Fig. 26: Adding Successive H gates before Circuit Equivalence Translation

F
x0 :

x1 :

x2 :
y0 :

y1 : H • • H
y2 : H • H
c : /3 0

↵◆
1
↵◆

2
↵◆

Fig. 27: Circuit Equivalence Translation via Phase Kickback in Simon’s Algorithm
Circuit

Note that we also need to add additional H gates in the xk wire if there are 3 or
more 1’s in s. For example, if s = 111, two successive H gates should be inserted in
the x0 wire between the second CNOT gate and the third CNOT gate in Step 2. In
general, if the secret string s has the non-zero bits indexed at locations k, l, m, . . . ,
the measured output should satisfy the property ck� cl� cm� . . .= 0. Namely, even
number of these bits, ck, cl , cm, . . . , will have the value 1 in the measured output.

It’s worth noting that the topic of constructing Simon’s Algorithm oracle, while
intriguing, falls beyond the scope of the textbook’s contents. Its intricate details are
reserved for advanced students who have already grasped the fundamental principles
discussed in the labs. Whether this topic will be addressed depends on the instructor’s
discretion, allowing flexibility to adapt to the pace and progress of the lab.

4.7 Hands-on Lab 7: Grover’s Search Algorithm

As described in the textbook, Grover’s search algorithm is a quantum computing
technique designed to accelerate the search for the specific item(s) in an unstruc-
tured database. In the algorithm, an initial quantum state is prepared by applying a

22 Federico Galetto et al.

Hadamard transform to all possible input states. Subsequently, a specialized quan-
tum oracle is employed to mark the target state by inverting its phase (i.e. flipping
the sign of its probability amplitude). The next step involves a process of applying a
diffusion operator, which amplifies the probability amplitude of the target state while
reducing the amplitudes of other states. The phase inversion oracle and the ampli-
tude amplification (also called amplitude magnification) procedure may need to be
applied repeatedly approximately

p
m times, where m is the number of items in the

database. For example, in the case of an NP-Complete problem 3-SAT with n bits,
there are m = 2n possible assignments in the database. Grover’s search algorithm
can reduce the run-time complexity from O(2n) to O(

p
m), which is equivalent to

O(2n/2). While quadratic speedup may not be as impressive as exponential speedup,
it remains valuable for handling massive data sets.

The first experiment in this lab asks students to load and run a template program
which finds the desired element location 11 among 2-bit strings: 00, 01, 10, and 11.
In fact, this is a very simple SAT problem that determines the satisfiability of the
expression q0 ^ q1. Figure 28 shows the circuit which includes the initial Hadamard
transforms, the phase inversion oracle, and the amplitude amplification. The phase
inversion oracle can be realized using a Controlled-Z gate cz(c,t), which flips the
phase of the target qubit t if the control qubit c is in the |1i state. That is, the operation
matrix of Controlled-Z is
2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

3

775

It’s symmetric and it doesn’t matter which qubit is the controlled or target. As de-
scribed in [15], the Controlled-Z gate is a phase-logic operation which performs phase
AND (denoted as pAND). In this experiment, students are asked to use the Operator
class defined in the Qiskit quantum info library in their program to display the or-
acle operation matrix and the amplitude amplification matrix. They will find out that
the operation matrix of amplitude amplification is
2

664

�0.5 0 0 0
0 �0.5 0 0
0 0 �0.5 0
0 0 0 �0.5

3

775

and check whether it is the same as in the textbook. Students need to look at the
output state vector (i.e. probability amplitude) to find the location with the highest
probability.

Note that neither the textbook nor the reference book presents how to construct
the amplitude amplification circuit. The geometric visualization of Grover’s algo-
rithm, as shown in Figure 29, can assist students in understanding how the algorithm
works, particularly the construction of amplitude amplification. Below is a brief de-
scription. Remember that the system is initialized to the uniform superposition over
all states

|si= H⌦n |0ni= 1p
m ÂN�1

x=0 |xi, where m = 2n

Experience in Teaching Quantum Computing with Hands-on Programming Labs 23

Oracle A
q0 : H • H Z • H
q1 : H • H Z • H

Fig. 28: Grover’s Algorithm with the Boolean expression q0^q1

Fig. 29: Geometric interpretation of the first iteration of Grover’s algorithm
(Courtesy of [6])

prior to entering the phase inversion oracle. The operator of the oracle Uw , which
flips the sign of the probability amplitude associated with the target location |wi,
will transform the state to Uw |si before amplitude magnification. The amplitude
amplification operator, Us = 2 |sihs|� I, reflects the state about |si from Uw |si to
Us Uw |si, which is closer to the target state |wi. The trick is how to solve the reflec-
tion 2 |sihs| � I. Because |si= H⌦n |0ni, we can firstly apply the Hadamard gates to
transform |si to |0ni, i.e.,

H⌦n |si= H⌦n H⌦n |0ni= |0ni.
Now we can do a reflection about the zero state via 2 |0nih0n| � I, which can be
implemented by using the Z gates and the Controlled-Z gate. Finally, we apply the
Hadamard gates to transform it back. In summary, the amplitude amplification oper-
ation is represented as

Us = 2 |sihs|� I = H⌦n (2 |0nih0n| � I) H⌦n,
which explains the amplitude amplification circuit shown in Figure 28. For advanced
students, the instructor may guide them to consult the Qiskit textbook or Nielson’s
and Chung’s book [17] for more detailed explanations.

In Experiment 2, students will work on another example searching for the loca-
tion indexed at 01. Once more, this can be seen as a SAT problem that determines the
satisfiability of the expression ¬q0 ^ q1. Students can modify the previous template
program by adding two X-gates, one is before the Controlled-Z and the other is after
the Controlled-Z, on the qubit q0 in the oracle. The X-gate before the Controlled-Z

24 Federico Galetto et al.

Oracle A
q0 : H X • X H Z • H
q1 : H • H Z • H

Fig. 30: Grover’s Search Algorithm with the Boolean expression ¬q0^q1

Oracle A
q0 : H • H X • X H
q1 : H • H X • X H
q2 : H H H H X H H X H

Fig. 31: Grover’s Algorithm with the Boolean expression q0^q1^q2

performs the negation of q0, while the second X-gate uncomputes it back. Theoret-
ically, this pair of X-gates, one swapping columns and the other swapping rows in
the Controlled-Z operation matrix, moves the value -1 in the matrix to the desired
element location.

In the next experiment, students will load and run a template program that in-
cludes a 3-bit oracle with the desired element location at 111. Because Qiskit does
not support the ccz gate, the template program uses a ccx gate instead, but it requires
placing a pair of H-gates before and after the X gate in the ccx operation. It’s im-
portant to note that operation of HXH is equivalent to a Z gate. The program outputs
two distinct probability amplitudes. The higher one is located at 111, while the lower
one is situated at other locations. Students are asked to compare these two probability
amplitudes with the two probability amplitudes mentioned in the textbook. As men-
tioned earlier, in order to achieve a higher probability of obtaining the correct answer,
it may be necessary to apply the oracle and amplitude amplification repeatedly. To re-
peat the process, we do not recommend that students manually compose the oracle
and amplitude amplification circuits again or use a loop construct in Python. This
is because it may result in the number of gate operations growing exponentially to
O(2n/2). Therefore, students are instructed to adapt the repeat() method in Qiskit,
which generates some kind of branch instruction like in [10] to jump back to the
oracle for repetition.

In this experiment, it is also interesting for students to observe that if the oracle
and the amplitude amplification tasks are performed three times, the probability am-
plitude of the desired location will decrease. In other words, it becomes overcooked.

We plan to add another experiment with a slightly more complicated Boolean ex-
pression, e.g. (¬q0_q1)^q2, in the future. As shown in Figure 32, after negating q0,
we use the implementation in Figure 8 to perform the OR operation, which places the
result of the clause (¬q0 ^ q1) into the ancilla qubit. Next, we use the Controlled-Z
gate to phase AND the ancilla qubit with q2. Finally, we have to perform uncompu-
tation to clean up temporary effects on the ancilla bit so that it can be re-used. This
experiment justifies why students need to learn how to use quantum gates to emulate

Experience in Teaching Quantum Computing with Hands-on Programming Labs 25

Oracle A(sameas inFig. 31)
q0 : H X X • X X • X X
q1 : H X • X X • X
q2 : H •

ancilla : X • X
(¬q0 _ q1) pAND q2 uncompute

Fig. 32: Grover’s Algorithm with the Boolean expression (¬q0_q1)^q2

classical AND and OR gates in Lab 3. An even more complicated example, which
contains several clauses in a Boolean formula, can be found in [15].

5 Survey Results

We conducted an anonymous survey at the end of each lab excluding Lab 1, which
focused on a review of Python rather than quantum computing. Each student received
a survey form in which they were asked, for each experiment, to express agreement
with the statement ’The experiment is helpful for understanding the subject’. For
the Likert-like scale responses, the highest “score” was associated with the Strongly
Agree response (5), and the lowest “score” was associated with the Strongly Disagree
response(1). This allows participants to indicate their level of agreement. Survey re-
sponses from all experiments in each lab were combined.

Figure 33 presents the aggregated survey results via the Likert-Scale chart for
each lab given to about 33 students. The responses which agree with the statement
are shown to the right of the zero line, whereas those which disagree are shown to the
left of the zero line. The responses which neither agree nor disagree are split down
the middle. Lab 2 and Lab 3 received the lowest rating. We believe this is because
students are not yet familiar with the quantum circuits. In general, the majority of
responses, classified as either Strongly Agree or Agree, expressed agreement with
the survey question. This indicated our hands-on labs were well-perceived by our
students.

6 Conclusion and Future Work

This paper has endeavored to share our valuable teaching experiences in the realm
of quantum computing. A collection of engaging laboratory experiments has been
developed to serve as supplementary resources for the textbook. Many of the experi-
ments are closely linked with the content of the textbook. These experiments capture
students’ interest while also offering a concrete platform for validating their compre-
hension through the comparison of experimental outcomes with textbook examples.
The feedback collected from the students has, overall, been very positive. The stu-
dents indicated that these practical labs help them not only improve their hands-on

26 Federico Galetto et al.

Fig. 33: Survey Results

skills in quantum programming, but also understand the rationale behind them. We
believe that this report is valuable for utilization as an instructor’s manual for Quan-
tum programming education.

In the future, we plan to incorporate additional quantum programming experi-
ments, such as the bridge gate [13], satisfiability problem with a slightly more com-
plex Boolean formula, Shor’s algorithm [26], and others, into the hands-on labs. We
are also currently working on a sequel to our quantum computing class, expanding the
curriculum to encompass areas such as quantum communications, quantum system
software like transpilers, and advanced quantum algorithms.

Acknowledgment

Our work was supported in part by Dr. Galetto’s NSF grant DMS-2200844, Dr.
López’s NSF grants DMS-2201094 and DMS-2401558, and the Cleveland Innova-
tion District grant funded by JobsOhio, a private non-profit corporation.

References

1. C. Bernhardt. Quantum Computing for Everyone. The MIT Press, Cambridge, Massachusetts, USA,
2020.

2. F. Cardetti, N. Khamsemanan, and M. C. Orgnero. Insights Regarding the Usefulness of Partial Notes
in Mathematics Courses. Journal of the Scholarship of Teaching and Learning, 10(1):80–92, Feb.
2012.

3. G. Carrascal, A. del Barrio, and G. Botella. First experiences of teaching quantum computing. The
Journal of Supercomputing, Vol. 77:2770–2799, 2021.

4. Cleveland Clinic. Quantum Computing. https://my.clevelandclinic.org/research/
computational-life-sciences/discovery-accelerator/quantum-computing (last ac-
cessed 2023-06-10).

Experience in Teaching Quantum Computing with Hands-on Programming Labs 27

5. E.F. Combarro, S. Vallecorsa, L. J. Rodrı́guez-Muñiz, A. Aguilar-González, J. Ranilla, and A. Di
Meglio. A report on teaching a series of online lectures on quantum computing from CERN. The
Journal of Supercomputing, Vol. 77:14405–14435, 2021.

6. Danski14. Own work, CC BY-SA 3.0. https://commons.wikimedia.org/w/index.php?
curid=18415805 (last accessed 2023-08-10).

7. D. Deutsch. Quantum theory, the Church-Turing Principle and the universal quantum computer. In
Proceedings of the Royal Society of London, Series A, 1985.

8. D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. In Proceedings of
the Royal Society of London, Series A, 1992.

9. A. Ernst. An overview of Quantum Comp. Frameworks. https://www.ginkgo-analytics.com/
an-overview-of-quantum-computing-frameworks/ (last accessed 2023-07-21).

10. X. Fu, L. Riesebos, M. A. Rol, Jeroen van Straten, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Al-
mudever, L. DiCarlo, and K. Bertels. eQASM: An Executable Quantum Instruction Set Architecture.
In IEEE Int’l Symposium on High Performance Computer Architectur (HPCA), pages 224–237, 2019.

11. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing, 1996.

12. IBM. Quantum System One. https://www.ibm.com/quantum/systems (last accessed 2023-04-
10).

13. T. Itoko, R. Raymond, T. Imamichi, and A. Matsuo. Optimization of Quantum Circuit Mapping using
Gate Transformation and Commutation. Integration, the VLSI journal, Vol. 70:43–50, 2020.

14. J. Sang and C. Yu. Hands-on Quantum Programming Labs for EECS Students. https://arxiv.
org/pdf/2308.14002.pdf (last accessed 2023-09-29).

15. E. Johnston, N. Harrigan, and M. Gimeno-Segovia. Programming Quantum Computers. O’Reilly
Media, Inc., Sebastopol, CA, USA, 2019.

16. J. Kiper. CSE 470N Course Syllabus. Miami University, Spring 2022.
17. M. Nielson and I. Chuang. Quantum Computation and Quantum Information. Cambridge University

Press, Cambridge, England, 2010.
18. A. Matsuo. Grover’s algorithm examples: Finding solutions to 3-SAT problems. https:

//github.com/Qiskit/qiskit-tutorials/blob/master/tutorials/algorithms/07_
grover_examples.ipynb (last accessed 2022-12-22).

19. M. Mykhailova and K. M. Svore. Teaching Quantum Computing through a Practical Software-driven
Approach: Experience Report. In SIGCSE ’20: The 51st ACM Technical Symposium on Computer
Science Education, 2020.

20. P. Nation, H. Paik, A. Cross, and Zaira Nazario. The IBM Quantum heavy hex lattice. https:
//research.ibm.com/blog/heavy-hex-lattice (last accessed 2022-12-10).

21. Qiskit. Qiskit Textbook. https://qiskit.org/learn (last accessed 2023-06-10).
22. Qiskit. Quantum Computing Labs. https://qiskit.org/learn/course/

quantum-computing-labs (last accessed 2023-06-10).
23. IBM Quantum. Develop quantum experiments in IBM quantum lab. https://

quantum-computing.ibm.com/ (last accessed 2023-06-10).
24. R. Raymond. The Simon Algorithm. https://notebook.community/antoniomezzacapo/

qiskit-tutorial/community/algorithms/simon_algorithm (last accessed 2022-07-22).
25. Ö. Salehi, Z. Seskir, and İ. Tepe. A Computer Science-Oriented Approach to Introduce Quantum

Computing to a New Audience. IEEE Transactions on Education, Vol. 65:1–8, 2022.
26. P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings

of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 1994.
27. D.R. Simon. On the Power of Quantum Computation. SIAM Journal on Computing, Vol. 26, 1997.
28. The Jupyter Notebook. User Documentation. https://jupyter-notebook.readthedocs.io/

en/stable/notebook.html (last accessed 2023-06-10).
29. Cleveland State University. News & Announcements: CSU will undertake joint interdisci-

plinary research and education with the Cleveland Clinic. https://www.csuohio.edu/news/
ibm-quantum-system-one-debuts-clinic-joint-research-horizon (last accessed 2023-
04-10).

30. N. S. Yanofsky and M. A. Mannucci. Quantum Computing for Computer Scientists. Cambridge
University Press, Cambridge, England, 2008.

31. N. Yu, R. Duan, and M. Ying. Five two-qubit gates are necessary for implementing the Toffoli gate.
Physical Review A,, Vol. 88, 2013.

28 Federico Galetto et al.

32. A. Zulehner, A. Paler, and R. Wille. An Efficient Methodology for Mapping Quantum Circuits to the
IBM QX Architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, pages 1226 – 1236, 2019.

