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ARTICLE INFO ABSTRACT

Keywords:

Distribution and administration strategy are critical to successful population immunization efforts. Agent-based
modeling (ABM) can reflect the complexity of real-world populations and can experimentally evaluate vaccine
strategy and policy. However, ABMs historically have been limited in their time-to-development, long runtime,
and difficulty calibrating. Our team had several technical advances in the development of our GradABMs: a novel
class of scalable, fast and differentiable simulations. GradABMs can simulate million-size populations in a few
seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous sources. This
allows for rapid and real-world sensitivity analyses. Our first epidemiological GradABM (EpiABMv1) enabled
simulation interventions over real million-scale populations and was used in vaccine strategy and policy during
the COVID-19 pandemic. Literature suggests decisions aided by evidence from these models saved thousands of
lives. Our most recent model (EpiABMv2) extends EpiABMv1 to allow improved regional calibration using deep
neural networks to incorporate local population data, and in some cases different policy recommendations versus
our prior models. This is an important advance for our model to be more effective at vaccine strategy and policy
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decisions at the local public health level.

1. Introduction

Decision making in complex environments, such as amid a public
health crisis, is challenging. During the COVID-19 pandemic, public
health leaders were frequently required to make population decisions
such as lockdowns, mask wearing, testing, and vaccine deployment and
administration strategies. Since human clinical trials and epidemiolog-
ical studies are often not feasible, decisions had to be made with a
paucity of existing evidence to guide them. During the pandemic public
health leaders increasingly turned to data-driven modeling and simu-
lation which provided evidence to support decision making.

Agent-based models (ABM) are often the best choice for in-silico
epidemiologic studies by bridging understanding of populations, in-
fections and intervention. This is because ABMs allow connecting mul-
tiple, seemingly disconnected, aspects of individual demographic, socio-
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economic, and behavior preferences along with scientific evidence on
infection dynamics and intervention to better capture complexities of
the real world.

However, ABMs are conventionally slow to execute [1], difficult to
scale to large populations, and tough to calibrate with real-world data
[2]. This limits their application, especially during a pandemic where
the duration of time-to-decision is short.

To address this, during the COVID-19 pandemic our research team
set out to innovate ABM technology. The result was our ability to pro-
vide experimental evidence to aid in vaccine policy and strategy. Our
goal was to design ABMs that can recreate million-size populations with
detail and integrate real-world data streams to effectively analyze
sensitivity of interventions. We leveraged modern advances in machine
learning to first proposed EpiABMv1: a scalable and fast ABM to enable
testing vaccination interventions over real-world populations and
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Fig. 1. Cumulative deaths due to COVID-19 infection at the time of US Food and Drug Administration’s Emergency Use Authorization. Updated from CDC COVID

Tracker [2].

provided evidence for COVID-19 mRNA vaccine strategy. Second, we
proposed EpiABMv2 which enables improved calibration of ABMs, like
EpiABMv1, to the infection dynamics in a local population using a
gradient-based optimization method. In this paper, we merge our ad-
vances in EpiABMv1 and EpiABMv2 to enable design and analysis of
granular vaccination policies by accounting for regional population
variations.

1.1. The importance of vaccine strategy and policy in emerging disease
and the need for in-silico epidemiological modeling

The development of an effective vaccine, as we observed during
COVID-19, is only part of the challenge. There were more COVID-19
deaths after the FDA’s emergency authorization of the Moderna and
Pfizer vaccines in the same duration than before (See Fig. 1) [3]. After
one year of vaccine availability, less than half of the global population
was vaccinated to COVID-19 [4]. The logistics of rapidly producing and
equitably delivering a vaccine on a global scale of nearly 8 billion
humans is a significant challenge. This can be partly attributed to
challenges with global vaccine production capacity, its transportation
and storage, administration strategy, and addition of more virulent
COVID variants. Additionally, in countries like the United States lack of
evidence for public health or vaccine policy made it easier for specula-
tion on social media and this has been partly attributed to the spread of
misinformation leading to vaccine hesitancy [1].

Tools to evaluate vaccine strategy and policy can provide a needed
source of evidence to support public health action. During the COVID-19
pandemic many public health leaders turned to in-silico modeling
methods given the infeasibility of human trials [5]. However, most
mechanistic and statistical simulation models cannot reflect the
complexity required for this type of experiment. To do so accurately
requires reflecting a real-world population of thousands to millions of
individuals with different characteristics and risk factors. It requires
understanding their interaction networks, the particulars of their indi-
vidual and group behaviors, and various attributes from the individual,
to neighborhood, to community that impact these interactions. It re-
quires accurately simulating the dynamics of these interactions in rela-
tion to disease spread and the intervention being studied. And this list of
considerations is still far from exhaustive.
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1.2. Breakthrough in ABM technology and application in vaccine strategy
and policy during COVID-19

ABMs are discrete simulators which comprise a collection of agents
that can act and interact within a computational world. In fields such as
epidemiology, these simulations are at the scale of millions of agents
with large networks of interactions [2,6,10] and performing a single
simulation may conventionally take several days run on a supercom-
puter [8]. Further, this makes calibration subpar since tuning parame-
ters requires iteratively running the model numerous times; and
sensitivity analyses unreliable due to sub-optimal calibrated parameters
and high cost of re-running simulations under different scenarios [7].

Our design, GradABM, has been shown to alleviate several of these
concerns regarding scalability and data-driven calibration [1]. Gra-
dABM introduces a novel tensorized and differentiable design for ABMs,
which allows simulating million-size populations in a few seconds on
commodity hardware [2] and integrating with deep neural networks for
faster and efficient collaboration [1]. Specifically, on the JUNE [6]
epidemiology model used by the NHS and UN Global Pulse during
COVID, GradABM helped reduce simulation time from 50 h to 5 min,
calibration time from 10,000 CPU hours to 20 min (whilst also achieving
better generalization) and sensitivity analysis time from 5,000 CPU
hours to 10 s [1,10]. This computational advance directly translates to
practical utility for decision making.

These novel ABM simulations by our team provide experimental
evidence for optimal COVID-19 mRNA dosing and administration
strategy. During the early phase of the mRNA vaccine roll, public health
experts debated whether the three-week vaccine dosing strategy was the
best strategy for preventing deaths. Some hypothesized delaying the
second dose to administer more individuals with the first dose would
save lives. Others argued strongly against this strategy, often stating lack
of evidence. The clinical trials only used a three-week dosing strategy.
Our GradABM work translated to an EpiABMv1 [2] model that showed
delaying a second dose to 12 weeks had significant reduction in deaths if
the daily vaccination rate was low [8]. These results impacted several
countries’ vaccine policy. For example, the UK moved to a 12-week
dosing strategy and a recent publication in Lancet Public Health esti-
mates that switching to this strategy saved 10,000 lives in the UK alone
[9]. Thus, providing real-world evidence to support our model’s
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effectiveness.

While delaying the second COVID-19 prompted support for its po-
tential to expedite initial protection and created tangible public health
impact, it also received some skepticism given geographical disparities
in disease burden, vaccine hesitancy, individual risk and resource
availability. Further, quantitative variations in these dynamics can in-
fluence the qualitative design and subsequent impact of interventions.
Targeted interventions are the logical progression to address specific
challenges posed by demographic and geographic variations and control
localized outbreaks with better management of resource constraints.
Our current work facilitates this by enabling localized calibration of
ABM to infection dynamics in the specific geography.

1.3. Most recent advances in GradABM model

Our most recent GradABM model, EpiABMv2 [1], allows the model
to make more specific recommendations on a county level. Previously,
we had shown that GradABM’s EpiABMv2 outperformed other ABM
models in terms of aggregate spread forecasting based on CDC guide-
lines, including our team’s previous versions (EpiABMv1) [1,2]. In this
paper we experimentally compare its performance difference compared
to other models when our calibration methods are used for qualitative
decisions with local geographic variables. This update allows for more
regional precision in public health decision support.

2. Methods
2.1. Developing tensorization and differentiability into ABM

Our method GradABMs is a novel class of agent-based models
(ABMs) that are designed to be compatible with gradient-based learning
using automatic differentiation. This is the central technique which
enables deep learning algorithms to optimize model parameters by
learning from diverse data sources. GradABMs have two key features:
tensorization and differentiability. First, GradABMs follow a tensorized
design where agents are represented as vectors and interactions as
(sparse) adjacency matrices. This allows scalable and fast simulations
that can run rapidly, in a highly parallelized manner and using GPU
hardware - simulating million-size agent populations in a few seconds
[1,2]. Second, GradABM reparametrizes the gradients of discrete dis-
tributions used in the simulation with continuous approximations,
allowing for end-to-end differentiability [1]. This differentiability al-
lows GradABM to merge with deep neural networks for robust optimi-
zation and seamlessly incorporate novel data streams. Together, these
allow us to build realistic simulators and efficiently calibrate them using
gradient-based learning over multiple runs of the simulator.

2.2. Specification of agent states and disease spread dynamics

The state of each agent (represented as a vector of categorical vari-
ables) contains age, disease stage (S, E, I, R, D) and time since last
exposure. Over timesteps, the state evolves as the agent interacts with
other agents based on the clinical model in which is governed by time-
dependent parameters that control the transmission of disease to create
new infections (RO, initial infection rate) and the progression of disease
stages of already infected agents (generation time, mortality rate). The
transmission of disease is based on interactions within a day and uses a
transmission function that computes the probability of infection trans-
mission between susceptible and infected (or exposed) agents. The dis-
ease stage may update due to a new infectious interaction with an
exposed or infected agent (captured by the transmission function) or the
natural progression of a previously incubated infection (captured by the
progression function). Specifically, the transmission function is param-
eterized with Reg. The initial infection rate and progression function is
parameterized with the variant generation time and mortality rate. The
calibration of these parameters is done by matching estimates of the
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Table 1
Forecasting results for COVID-19 over 5 runs comparing GradABM with baseline
region-agnostic and region-dependent calibration techniques.

Calibration Method Validation Error (lower is better)

ND RMSE MAE
Region-agnostic 8.75 689.92 270.13
Region-specific (surrogate- 2.21 + 121.87 + 68.20 +
based) 1.36 63.97 41.84
Region-specific 0.97 + 50.99 + 12.12 30.02 + 5.60
(proposed GradABM) 0.18

simulator with real-world observed cumulative death statistics.

2.3. Regional variables for model calibration using deep neural networks

First, the calibration neural network (CalibNN) takes input from
varied data sources and predicts simulation parameters for disease
transmission and progression. The parameters are passed to the Gra-
dABM and used to run a simulation. The aggregate output generated by
the simulator is compared with real-world mortality numbers for each
day. We utilize the mean-squared error function to quantify the good-
ness of the solution. After that, we learn the parameters of the neural
network using the backpropagation algorithm. We note that the Cal-
ibNN based approach presented in this paper is fundamentally distinct
from emulation or surrogate models. Emulation models take the same
input as the ABM’s input and predict the output of the ABM, without
simulating any agent behavior. In contrast, the output of CalibNN serves
as the input to GradABM, which then simulates the behavior of the
agents. Thus, CalibNN extends the simulation pipeline, by enabling us to
learn the correct inputs for GradABM.

2.4. Validation to real-world scenarios by transmission forecasting

Since there is no ground truth on simulation parameters, we evaluate
calibration based on the quality of infection forecasts produced by the
simulator. Following CDC forecasting guidelines [1], we make weekly
forecasts of cases and deaths for 1-4 weeks ahead in the future. In our
evaluation, we work with the following counties in Massachusetts:
25001, 25003, 25005, 25009, 25011, 25013, 25015, 25021, 25023,
25027. The specific evaluation period is determined with epidemic
weeks which is the standard in CDC’s epidemic prediction initiatives.
For COVID-19 these are 202014, 202016, 202018, 202020, 202022,
202024, 202026, 202028, 202030. To evaluate performance, we use
several standard metrics for evaluating epidemic predictions. Specif-
ically, normal deviation (ND), root mean squared error (RMSE) and
mean absolute error (MAE). A better calibration technique will produce
parameters with lower measurement errors in the simulated forecasts.

2.5. Comparison with baseline techniques

We compare our proposed pipeline with several methods for region-
agnostic and region-specific calibration. Results are summarized in
Table 1. Conventionally, region-agnostic calibration (row 1) techniques
have been used which estimate the infection dynamics parameters using
in-situ control trials and reuse the same parameters across different
geographical and demographic regions. The parameters are a good
representation of the population but may not generalize to other geog-
raphies. More recently, advances in data availability and modeling
techniques have enabled region-specific calibration which utilize aggre-
gate infection data (cases, deaths, hospitalizations) to generate localized
estimates for the dynamics parameters. Prior region-specific methods
estimate (row-2) parameters by building simplified surrogate models
which do not capture the heterogeneity and complexity of real-world
interactions (usually assume perfect mixing of people) but are easy to
model. Our proposed method (row-3) alleviates computational
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Proposed GradABM outperforms baselines even with noisy observations (A>0)
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Fig. 2. Our proposed calibration method is more robust to observation error.
GradABM achieves lower forecasting error than all baselines even when it is
trained with noisy data (A > 0) while the baselines receive original data. This is
achieved due to the joint scalable (EpiABMv1) and differentiable (EpiABMv2)
design which allow modeling real-world populations and incorporating local-
ized data-sources for calibration.

challenges by allowing region-specific calibration using an agent-based
model which can capture heterogeneous interactions in the population
through calibration of parameters using both local data and neural
networks. This improved calibration is shown by better validation per-
formance in the Table 1 below.

Beyond capturing population heterogeneity, real-world utility also
requires robustness to measurement error in region data used for cali-
bration. Centers for Disease Control and Prevention (CDC) estimates on
deaths, cases, hospitalizations are likely to be noisy due to data reporting
and collection issues [11]. To investigate the robustness of our proposed
calibration procedure, we run experiments using ground truth data
distorted by gaussian noise. More specifically, we add gaussian noise to
each ground truth target with mean p = 0 and varying scales of standard
deviation s. To set the standard deviation of noise for each county, we
first compute the standard deviation of the ground truth data and
multiply it by a A factor. Even for a large degree of noise (A = 4), we
observe that our method outperforms both region-specific with surro-
gate and region-agnostic calibration techniques. Results are summarized
in Fig. 2 below.
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2.6. Experimentally evaluating sensitivity to clinical & geographical
variations with GradABM versus prior ABM models

The experimental pipeline is summarized in Fig. 3. In this experiment
we incorporate regional variables (census information, mobility pat-
terns, facebook symptom surveys, CDC case statistics) into an ABM we
term EpiABMv1 and our latest GradABM model, EpiABMv2. The Epi-
ABMv2 uses the CalibNN on these regional variables while EpiABMv1
does not. We randomly selected Franklin County in Massachusetts to
parameterize regional variables into both models. We then compare
vaccine strategy recommendations between the two models across
variable 1st dose vaccine efficacies.

The delay vs not delay strategy can be evaluated from the model
output by computing the ratio of cumulative deaths of P2 by P1, which
we denote as relative mortality. Basically, if the relative mortality is less
than 1, then policy P2 is better (can delay the second COVID-19 dose);
while relative mortality greater than 1 implies that policy P1 is better
(do not delay the second COVID-19 dose). The goal of our experiment is
to evaluate whether calibrating on regional variables impacts strategy at
a local level. Although delaying the second dose of mRNA vaccine is not
a current consideration, we use this example in our experiment because
our prior work impacting this decision and having been validated in
real-world outcomes.

3. Results

Fig. 2 reports the sensitivity of the relative mortality for Franklin
County in MA to the protection offered by the first vaccine dose. We do
this using our prior and most recent ABM (different calibration ABMs):
EpiABMv1 and EpiABMv2. For vaccine efficacy of 80 %, both models
recommend delaying the 2nd dose of the COVID-19 vaccine, which is
consistent with real policy recommendations deployed in the UK and as
validated by prior clinical work. However, at vaccine protection of 60 %,
EpiABMv1 and EpiABMv2 provide qualitatively different recommen-
dations for Franklin County. EpiABMv2, the model, which was cali-
brated using CalibNN and granular county data to achieve a superior
calibration fit, recommends not delaying the 2nd dose while EpiABMv1
recommends delaying the second dose. This difference reflects cali-
brating regional variables using our CalibNN method that can change
outcomes.

Evaluate sensitivity of public health policy to regional dynamics - regional infection dynamics from data and intervention parameters from expert
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Fig. 3. Overview of simulation model parameterization and calibration pipeline with neural networks.
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4. Discussion and future Work

GradABM allows learning regional calibration parameters for
different counties. Because of inter-county variation, the same policy
may not be optimal in both locations. With this advance in our ABM, we
can provide more effective evidence for vaccine strategy and policy
decisions at the local public health level.
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