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ABSTRACT

This paper introduces a model for simulating the unsteady dynamics of sewer systems filling and emptying, offering

greater accuracy and stability. This article presents two novel contributions: First, the HLLS scheme (Harten-Lax-

van Leer + Source term) is adapted to ensure the preservation of stationary conditions not only in free surface

flows, as originally conceived, but also in pressurized flows and mixed flow scenarios. Second, a new method is

proposed for the treatment of open channel flow cells near pressurization or adjacent to pressurized cells to minimize

spurious oscillations when utilizing the two-component pressure approach (TPA) model. To verify the new model’s

effectiveness, it was tested for various conditions against the outcomes of the Open Source Field Operation and

Manipulation (OpenFOAM) Computational Fluid Dynamics (CFD) model. Furthermore, to demonstrate the model’s

potential for simulating real systems, the model was applied to three sewer systems that closely resemble real-world

conditions, each of which had been intentionally modified for confidentiality purposes. The results show that the

improved model successfully maintains stationary conditions within a sloped pipe across various flow conditions,

while also preventing spurious oscillations at mixed flow interfaces even when using a pressure wave speed of 1000

m s−1.

Keywords: Computational Fluid Dynamics; Sewer System Simulation; Stationary condition; Transient Flow;

Urban water flows
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1 Introduction

The design and operation of sewer systems (e.g., stormwater and combined) often requires simu-

lating the filling and emptying of these systems, which involves complex flow dynamics including

wetting/drying, open channel flows, pressurized flows, positive and negative mixed flow interfaces

and stationary conditions. Free surface and pressurized flows are governed by different hyperbolic

systems of equations making the simulation of mixed flows challenging compared to using a single

governing equation (e.g., Leon et al. 2009; Leon et al. 2010; Aureli et al. 2015). Two main ap-

proaches unify the two governing equations in a single one to make the simulation more tractable.

The first approach is the Preissmann slot model (PSM) that consists in adding an infinite slot to

the cross-section (Cunge and Wegner 1964). Kerger et al. (2011) proposed a negative slot to handle

the problem of sub-atmospheric pressurized flows when using the Preismann method. The second

method is the two-component pressure approach (TPA) model (Vasconcelos et al. 2006), which

separates the total pressure into a hydrostatic pressure (open channel) and a surcharging pressure,

the latter of which is calculated only in pressurized flow conditions (positive or negative pressure).

Several FV methods have been applied to transient open-channel, pressurized and mixed flows

(e.g., Capart et al. 1997; Bourdarias and Gerbi 2007; Leon et al. 2009; Leon et al. 2010; Sanders

and Bradford 2011). However, most of these approaches do not address “lake at rest” or station-

ary conditions. These conditions become increasingly significant as pipe slope increases and may

result in “numerical storms” when flow velocity approaches zero. Numerical storms can manifest

as non-physical oscillations in the water surface and relatively high flow velocities. In storm sewer

systems, where consecutive rain events may occur within a short timeframe, parts of the system

may experience near or at “lake at rest” conditions. This includes sections of the pipe system fully

submerged (pressurized flow), partially submerged (open channel flow), and areas where one side

of the pipe is partially submerged while the other side is fully submerged (mixed flow). Therefore,

preserving “lake at rest” conditions is crucial in the context of open channel, pressurized, and

mixed flow scenarios.

Various numerical schemes were proposed for simulating mixed flows (e.g., Vasconcelos et al.

2006; Leon et al. 2009; Leon et al. 2010; Kerger et al. 2011; Sanders and Bradford 2011; Hodges

2020) when using two different hyperbolic systems of equations or a single set of equations (PSM or

TPA). Finite Volume (FV) Godunov-type methods, in particular, were found to be well suited for

solving hyperbolic systems of equations (e.g., shallow water equations) that involve discontinuities
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such as shocks (e.g., Guinot 2000; Toro 2001; Leon et al. 2009; Leon et al. 2010; Sanders and

Bradford 2011; Mao et al. 2020; Khani et al. 2021).

Spurious oscillations occur when using numerical schemes to simulate mixed flows within the

Preissmann slot and TPA frameworks, even with relatively low pressure wave speeds (Vasconcelos

et al. 2009; Aureli et al. 2015; Malekpour and Karney 2016; Mao et al. 2020; Khani et al. 2021).

These oscillations are especially evident when simulating filling bores (Vasconcelos et al. 2009;

Aureli et al. 2015; Malekpour and Karney 2016). Because the flow velocity during the filling of a

pipe is at least two orders of magnitude lower than the velocities of acoustic waves in the pipe, the

filling bore remains within a computational cell for multiple time steps (Vasconcelos et al. 2009;

Malekpour and Karney 2016). This extended duration is a result of the high magnitude of the

acoustic wave velocity, which prompts the CFL stability criterion to impose a small computational

time step (Vasconcelos et al. 2009; Malekpour and Karney 2016). As the liquid depth within the

computational cell being filled gradually increases, it generates a momentum imbalance on both

sides of the filling bore, resulting in the creation of various types of waves in the pressurized flow

region (Vasconcelos et al. 2009; Malekpour and Karney 2016). These numerical oscillations become

more pronounced with higher pressure wave speeds, and may compromise the results (e.g., Khani

et al. 2021). Nonetheless, the resulting numerical oscillation is insignificant, except during the open

channel-pressurized flow transition. (Vasconcelos et al. 2009).

Various approaches were proposed to address the spurious oscillations. Vasconcelos et al. (2009)

proposed numerical filtering and hybrid flux approaches, where numerical viscosity is increased by

progressively raising wave velocities. They showed that these techniques control reasonably well

the numerical oscillations for pressure wave speeds below about 100 m s−1. Malekpour and Kar-

ney (2016) proposed an approach that increases the numerical viscosity when the water level in

a computational cell closely approaches the conduit roof and when the conduit’s pressurization

is imminent. Malekpour and Karney (2016) recommended increasing numerical viscosity in a dis-

tance of at least three times the height of the conduit. However, it was emphasized that under all

circumstances, the number of cells subject to increased numerical viscosity should never be fewer

than three. Mao et al. (2020) examined four oscillation-suppressing methods, including the one

proposed by Vasconcelos et al. (2009), An et al. (2018), and Malekpour and Karney (2016), finding

that only their proposed solver, P HLL, delivered satisfactory results at high acoustic wave speeds.

The P HLL increases the magnitude of the left and right wave speeds in the HLL Riemann solver
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when the flow depth exceeds a value between 70 to 90% of the conduit height (before pressuriza-

tion). The magnitude increase of the wave speeds introduces numerical viscosity which is found to

minimize spurious oscillations.

This paper is part of a long term project which aims to develop a general physics-based machine

learning model to predict sewer overflows and mitigate them through an optimal sequence of

decision variables at control gates (e.g., schedule of partial or complete opening/closing of gates).

The success of this project hinges on the ability of the model to handle the complex flow dynamics

in sewer systems and to provide accurate solutions with least Central Processing Unit (CPU) time.

In particular, the model must accurately simulate stationary conditions, as the simulation period

can extend over multiple storm events with dry intervals in between, during which the flow velocity

in the system is zero, and the water stage in some pipes remains constant.

The present model was obtained after various trials by extracting the best characteristics of

the various models proposed in the literature, in particular those proposed in the last decade. The

resulting model was implemented in the existing open source Illinois Transient Model (ITM), which

is a Finite Volume (FV) one-dimensional shock-capturing model that was originally made available

in 2008 and since then was used for the design and operation of multiple sewer systems in the United

States and worldwide. The major changes of ITM include: (1) replacing the two-governing equation

model (Leon et al. 2010) of the original ITM with the two-component pressure approach model

(Vasconcelos et al. 2006) to improve computational speed; (2) substituting the HLL Riemann solver

with the HLLS scheme to maintain stationary conditions in sloped pipes not solely in free surface

flows, as originally conceptualized (Murillo and Garćıa-Navarro 2012; Franzini and Soares-Frazão

2016), but also in pressurized flows and mixed flow scenarios, and (3) proposing a method to limit

wave speeds in open channel flow cells near pressurization or adjacent to pressurized cells, aiming

to minimize spurious oscillations when applying the TPA model to realistic pressure wave speeds

(e.g., ∼ 1000 m s−1). This paper is divided as follows: First the governing equations are briefly

described. Second, the numerical methods are presented along with the selection of wave speeds to

minimize spurious oscillations in the transition from free surface to pressurized flow and vice versa.

Third, the model is applied to three simple case studies, which are verified using CFD or laboratory

measurements. Fourth, the model is applied to three sewer systems that closely resemble real-world

conditions. The key results are summarized in the conclusions.
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2 Governing Equations and Numerical Model

The Saint-Venant equations for cross-sections of arbitrary shape can be written as (Cunge et al.

1980; Capart et al. 2003; Franzini and Soares-Frazão 2016):

∂U

∂t
+

∂F

∂x
= S (1)

where the vector variable U, the flux vector F and the source term vector S are given by

U =

 A

Q

 , F =

 Q

Q2

A + gI1

 and S =

 0

g [I2 +A(So − Sf )]

 (2)

where A is the cross-sectional area of the flow; Q is flow discharge; g is gravitational acceleration,

x is the longitudinal coordinate, t is time, So is the bed slope, and Sf is slope of the energy line.

The term gI1 represents the hydrostatic pressure thrust and is given by (Capart et al. 2003):

gI1 = g

∫ h

0
(h(x)− η)b(x, η)dη (3)

where h(x) is the flow depth, b(x, η) is the channel width as a function of elevation (η) and along-

stream location (x), and η is a local variable for the integration over the depth. Likewise, the term

gI2 represents the lateral pressure force due to the longitudinal width variation and is given by

(Capart et al. 2003):

gI2 = g

∫ h

0
(h− η)

∂b(x, η)

∂x
dη (4)

In Eq. (4), it is observed that the term gI2 is equal to zero for a prismatic channel. The variables

gI1 and gI2 can be related as follows (e.g., Capart et al. 2003; Franzini and Soares-Frazão 2016):

g
∂I1
∂x

= gA
∂h

∂x
+ gI2 (5)
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As shown in Franzini and Soares-Frazão (2016), g(I2+ASo) = g[∂I1/∂x−A∂(h+zb)/∂x], where

zb is the bed elevation.

Similarly to the approach adopted by Leon et al. (2010), a reference state depth (href) is es-

tablished at the transition from open-channel to pressurized flow for circular conduits. This state

is defined at an user-specified water depth (e.g., 95%-99% of the maximum water depth in the

cross-section). This reference state avoids having a zero top surface width, and hence an infinity

gravity wave celerity.

For simulating pressurized flows, the two-component pressure approach (TPA) model (Vascon-

celos et al. 2006) is adopted herein. In the TPA approach, the term gI1 in the momentum flux of

Eq. (2) is expressed as

gI1 = gA(hc + hs) (6)

where hc is the vertical distance between the free surface/pressurized flow threshold level (located

href above the pipe invert) and the centroid of the flow cross-sectional area, hs is the surcharging

pressure head which is calculated only in pressurized flow conditions (positive or negative pressure).

In free surface flow conditions, hs is set to zero. Because the pipe can expand or contract in the

presence of positive or negative pressure heads, respectively, A is a function of the pressure head

and pressure wave speed and can be calculated as follows:

A = Aref

(
1 +

ghs
a2

)
(7)

where Aref is the cross-sectional area of the flow corresponding to href and a is the pressure wave

speed. It is noted that a pressurized cell can depressurize at a ventilated location (e.g., manhole). In

this case, the depressurized cell is switched back to open-channel flow, and hs is set to 0. However,

in non-ventilated locations, hs could be negative, representing a negative pressure head in the pipe

(Vasconcelos et al. 2006).

The governing equations are discretized using a first-order finite volume scheme and solved using

an improved version of the well-known Harten-Lax-van Leer (HLL) approximate Riemann solver,

which was initially introduced by Harten et al. (1983). In the HLL approach, the inclusion of
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source terms like friction is achieved through splitting methods and are not part of the Riemann

solution (Toro 2001). The improved solver used in this study is denoted as HLLS, following the

nomenclature proposed by Murillo and Garćıa-Navarro (2012), wherein the first three letters (HLL)

correspond to the HLL Riemann solver, and the fourth letter (S) indicates the incorporation of

the source term as part of the Riemann solution. The HLLS Riemann solver was first introduced

by Murillo and Garćıa-Navarro (2012) and later expanded by Franzini and Soares-Frazão (2016).

The HLLS model is adopted for its easy handling of the source terms (e.g., all source terms are

incorporated as part of the Riemann solution) and its ability to preserve stationary conditions.

As shown in Figure 1, the HLLS model adds a stationary wave at x = 0 to represent the source

terms. The stationary wave separates the middle region, also known as the star region (⋆), into two

regions, a left region (L) and a right region (R). According to this approach, the flow variables (A

and Q) in cell i from the n to the n+ 1 time level are updated as follows:

Un+1
i = Un

i +
∆t

∆x
(FR

i−1/2 − FL
i+1/2) (8)

where ∆x is the length of the cell, ∆t is the time step and the ith cell is centered at node i and

extends from cell interface i − 1/2 to i + 1/2. The flow variables U (A and Q) are defined at cell

centers i and represent their average value within each cell. Fluxes, on the other hand, are evaluated

at the interfaces between cells (i − 1/2 and i + 1/2). The fluxes in the HLLS Riemann solver are

calculated as follows (Murillo and Garćıa-Navarro 2012; Franzini and Soares-Frazão 2016):

FL
i+1/2 =


FL if 0 < SL

SRFi−SLFi+1−SRSL(Ui−Ui+1)+SL(S∆x−SRH)
SR−SL

if SL ≤ 0 ≤ SR

FR − S∆x if 0 > SR

(9)

FR
i+1/2 =


FL + S∆x if 0 < SL

SRFi−SLFi+1−SRSL(Ui−Ui+1)+SR(S∆x−SLH)
SR−SL

if SL ≤ 0 ≤ SR

FR if 0 > SR

(10)
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where S∆x is given by:

S∆x =

 0

−gAδ(h+ zb) + gδI1 − gASf∆x

 (11)

where the overbar indicates averaged variables, as shown below. The symbol δ represents the spatial

difference between the cell i+ 1 and i. For instance, the term gδI1 is given as follows:

gδI1 = gAi+1(hc i+1 + hs i+1)− gAi(hc i + hs i) (12)

SL and SR in Equations (9) and (10) are the wave speed estimates for the left and right waves in

Figure 1 and will be discussed below. In Equations (9) and (10), it is observed that the first and

third fluxes represent supercritical flows, with the first moving to the right and the third moving

to the left. On the other hand, the second flux in these equations corresponds to a subcritical flow,

which can move either to the right or left. H in Equations (9) and (10) is a measure of the impact

of the stationary wave associated to the source terms in the mass flux and is given by (Murillo and

Garćıa-Navarro 2012; Franzini and Soares-Frazão 2016):

H =
−1

SRSL

 −gAδ(h+ zb) + c̃2δA− gASf∆x

0

 (13)

with

A =
Ai +Ai+1

2

Sf = ũ|ũ|(nM )i(nM )i+1

(
Pi + Pi+1

Ai +Ai+1

)4/3
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where nM is the Manning’s roughness coefficient, P is the wetted perimeter, ũ is Roe’s flow velocity

and c̃ is Roe’s wave celerity. The expressions for ũ and c̃ are as follows:

ũ =
ui
√
Ai + ui+1

√
Ai+1√

Ai +
√
Ai+1

(14)

c̃ =

√
g

2

(
Ai+1

Ti+1
+

Ai

Ti

)
(15)

where T is the free surface width

2.1 Maintaining stationary conditions in open channel, pressurized and mixed flow conditions

This section investigates the HLLS scheme to maintain stationary conditions not only in free surface

flows, as originally conceptualized (Murillo and Garćıa-Navarro 2012; Franzini and Soares-Frazão

2016), but also in mixed and pressurized flows when using the TPA model.

In a mixed flow interface, the flow is open channel on one side of the interface and pressurized

in the other side. The wave speed in the open channel region is in the order of 10 m s−1 while in

the pressurized one is in the order of 1000 m s−1. As is shown below, stationary conditions can be

maintained by the HLLS scheme regardless of the flow regime as long as a single representative

wave speed (c for open channel flows and a for pressurized flows) is used for each cell (e.g., cell i)

and an averaged wave speed (e.g., c̃) is used at cell interfaces (e.g., i− 1/2).

Franzini and Soares-Frazão (2016) utilized Roe’s wave speed estimates (SL = ũL − c̃L and

SR = ũR + c̃R) within the HLLS scheme, where the celerities c̃L and c̃R are defined for open

channel flows only. Consistent with Franzini and Soares-Frazão (2016), we adopt Roe’s estimates

but modify the celerities to accommodate both open channel and pressurized flows as follows:

c̃ =

√
1

2
(c2i + c2i+1) (16)
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where

c =


√

gA
T for open channel flows

a for pressurized flows
(17)

where
√

gA/T is the gravity wave speed and a is the pressure wave celerity. It is noted in Equa-

tion (16) that if the flow at both sides of the interface (i+1/2) are open channel, the Roe’s estimate

for c̃ is recovered (see Franzini and Soares-Frazão 2016). Following, it will be shown that the HLLS

approach is able to maintain stationary conditions regardless of the flow regime as long as an

average celerity (c̃) is used at each cell interface. Following Equation (8), to update the variables

An
i and Qn

i at the next time step (n + 1), we need to determine the fluxes at the cell interfaces

(FL
i+1/2 and FR

i−1/2). For water at rest conditions, zi−1 = zi = zi+1, ui−1 = ui = ui+1 = 0 and

Qi−1 = Qi = Qi+1 = 0. Substituting the respective values in Equations (9) and (10), the fluxes

leaving and entering cell i (FL
i+1/2 and FR

i−1/2, respectively) are given by:

FL
i+1/2 =

c̃

2c̃

 0

gI1,i

− −c̃

2c̃

 0

gI1,i+1

− −c̃2

2c̃

Ai −Ai+1

0

+
−c̃

2c̃

 0

gδI1

−
(
−c̃2

2c̃

)(
−1

−c̃2

)c̃2δA
0


= 0.5

 0

gI1,i

+ 0.5

 0

gI1,i+1

+
c̃

2

Ai −Ai+1

0

− 0.5

 0

gδI1

+
1

2c̃

c̃2δA
0


= 0.5

 c̃(Ai −Ai+1) + c̃(Ai+1 −Ai)

gI1,i + gI1,i+1 − (gI1,i+1 − gI1,i)


=

 0

gI1,i

 (18)
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FR
i−1/2 =

c̃

2c̃

 0

gI1,i−1

− −c̃

2c̃

 0

gI1,i

− −c̃2

2c̃

Ai−1 −Ai

0

+
c̃

2c̃

 0

gδI1

−
(
−c̃2

2c̃

)(
−1

−c̃2

)c̃2δA
0


= 0.5

 0

gI1,i−1

+ 0.5

 0

gI1,i

+
c̃

2

Ai−1 −Ai

0

+ 0.5

 0

gδI1

+
1

2c̃

c̃2δA
0


= 0.5

 c̃(Ai−1 −Ai) + c̃(Ai −Ai−1)

gI1,i−1 + gI1,i + (gI1,i − gI1,i−1)


=

 0

gI1,i

 (19)

It is noted from Equations (18) and (19) that for water at rest conditions, the fluxes leaving

and entering cell i are the same regardless of the flow regime as long as an averaged celerity (c̃) is

used at cell interfaces. For example, at cell interface i+1/2, the averaged celerity will consider the

celerities of cells i and i+ 1 (see Eq. 16).

2.2 Treatment of open channel flow cells near pressurization or adjacent to pressurized flows

In this study, we propose a simple approach to mitigate spurious oscillations that may occur when

simulating mixed flows within the TPA framework. This approach is based on the observation

that numerical viscosity can be controlled by changing the magnitude of the wave speed (e.g.,

LeVeque 2002, Malekpour and Karney 2016). For illustration purposes, similar to the approach in

Malekpour and Karney (2016), we assume that the absolute magnitude of the left and right wave

velocities (SW ) is the same [SL = −SW and SR = SW ], and that the source terms are zero. With

these assumptions, the fluxes in the intermediate region (SL ≤ 0 ≤ SR) in Equations (9) and (10)

are reduced to:

F ⋆ =
Fi + Fi+1

2
− SW

(Ui+1 −Ui)

2
(20)

Equation (20) is identical to the one obtained by LeVeque (2002), among other authors. As

demonstrated by LeVeque (2002), the first term on the right-hand side of Equation (20) results

11
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in an unconditionally unstable flux, necessitating stabilization through the influence of the second

term, which introduces numerical viscosity into the scheme. As shown in Equation (20), the flux is

minimized when the magnitude of the wave speed (SW ) is maximum. At the verge of pressurization,

the gravity wave celerity c can be replaced with the pressure wave celerity to maximize numerical

viscosity. The proposed approach exploits this characteristic.

The proposed approach consists of two steps. In the first step, for open channel flow cells that are

on the verge of pressurization and exceed a certain water depth threshold (such as h > href, where

href is a reference state depth slightly smaller than the pipe diameter that could range between 95 to

99% of pipe diameter), the gravity wave speed is set equal to the pressure wave celerity (c = a). As

an open channel cell approaches pressurization and its wave speed is adjusted to a, the magnitudes

of the left and right wave speeds (SL and SR) undergo a large increase. Consequently, SL and

SR attain large negative and positive values, respectively. This adjustment introduces numerical

viscosity into the scheme.

In the second step, we check for cell interfaces with at least one surrounding cell (left or right)

in free surface flow conditions. If, for such a cell, the intermediate region (star region) as a solution

of the Riemann problem gives a water depth larger than href, the star region is assumed to be in

pressurized flow conditions, and the fluxes calculated accordingly. The flow velocity and waterdepth

in the star region are calculated using the rarefaction wave approximation (Leon et al. 2006):

u⋆ =
1

2
(uL + uR) +

1

2
(ϕL − ϕR)

ϕ⋆ =
1

2
(ϕL + ϕR) +

1

2
(uL − uR) (21)

where ϕ is calculated using the equation provided by Sanders and Bradford (2011) instead of the

one given in Leon et al. (2006), owing to its explicit method of estimating the water depth from ϕ.

The equation for ϕ from Sanders and Bradford (2011) is as follows:

ϕ = 6.41 sin(θ/4)
√

gd/8 (22)

where θ is the wetted angle of a circular conduit. In Equation (22), it is noted that for a given ϕ,

θ is explicitly determined, which, in turn, is used to calculate h, A, and c. If h is greater than href,

12
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the flow in the star region is assumed to be pressurized, and hence the pressure wave celerity (a) is

used. Otherwise, the flow is assumed to be in open channel conditions and is calculated according

to Equation (17). The conditions in the star region (Eq. 21) are used to determine whether the

flow in the cell interface will pressurize or not, considering the flow conditions in the left and right

cells.

The original left and right wave speeds in the HLLS scheme use SL = ũ − c̃ and SR = ũ + c̃.

These wave speeds may result in substantial numerical oscillations when the flow transitions from

open channel to pressurized flow conditions. A better choice for the wave speeds that minimize

spurious oscillations is as follows:

SL = min(uL − cL, ũ− c̃, u⋆ − c⋆)

SR = max(uR + cR, ũ+ c̃, u⋆ + c⋆) (23)

It is noted in Equation (23) that the goal is to increase the magnitude of the left and right wave

speeds. In particular, the objective is to use the largest wave celerity resulting from either the flow

in the cell (cL or cR), Roe’s celerity (c̃), or that from the star region (c⋆). Even slightly better results

in terms of minimizing spurious oscillations are obtained when c̃ that appears in Equation (13) is

determined as:

c̃ = max(cR, c̃ (Eq. 15), c⋆) (24)

In all cases presented in this manuscript (test cases and actual systems), spurious oscillations were

not substantial using the above considerations. It is worth mentioning that the proposed approach

for minimizing spurious oscillations does not result in a substantial increase in computation time

because pressurization is imminent. In such cases, the pressure wave speed (a) would be utilized

regardless.

3 Computational Fluid Dynamics

The verification of the ITM results in this study was conducted using the Open Source Field

Operation and Manipulation (OpenFOAM) model. OpenFOAM is an open source library that
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provides a range of C++ libraries and utilities for finite volume, finite element, and Lagrangian

particle tracking (Weller et al. 1998; Direct 2017). Given the aim of simulating mixed flows that

involve transient flows, the CompressibleInterFoam solver, which is integrated into OpenFOAM, is

employed in all simulations. The CompressibleInterFoam solver uses the Volume of Fluid (VOF)

method to simulate the interface between air and water. To generate the grid system for the three

test cases, the OpenFoam utility polyDualMesh is utilized, following the approach described in

Jasak et al. (2007) and Macpherson et al. (2009).

In all CFD simulations described in this study, the realizable k-epsilon turbulence model is em-

ployed. This choice is based on recommendations from several studies that have highlighted its

suitability for simulating air-water interactions (e.g., Matveev 2020; Leon et al. 2019). Moreover,

the standard wall function, which is incorporated into the realizable k-epsilon model, can substan-

tially enhance the accuracy of simulations at near-wall locations where the y+ value is greater,

as demonstrated in Boroomand and Mohammadi (2019). In this study, a y+ value of 200 was

employed to characterize the log-law layer.

Pressure-velocity coupling is achieved through the use of the PISO (Pressure Implicit with Split-

ting of Operators) algorithm in CompressibleInterFoam (Issa 1986). The discretization of all spatial

terms is performed using the second order upwind scheme, while the first order implicit scheme is

used for temporal terms. To improve convergence, an adaptive time step is employed for all cases,

and the maximum allowable global Courant number is set to 0.8.

To convert the Manning coefficient value into a sand-grain roughness height (to be used in the

OpenFOAM simulations), three conversion equations [Eqs. 25 (USBR 1997), 26 (Moody 1947), 27

(Adams et al. 2012)] are utilized to obtain the sand-grain roughness values that can be used in

OpenFOAM.

nM =

√
fR1/3

8g
(25)

f =

[
1.14 + 2 log10

(
D

ε

)]−2

(26)
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ε = 11.03k (27)

where f is the Darcy-Weisbach friction factor, R is the hydraulic radius, ε is average height of

surface irregularities, D is pipe diameter, and k is the sand-grain roughness height.

To account for the compressibility of air, the ideal gas law is employed, with an operational

density of 1.225 kg m−3. The speed of sound is converted to isotropic bulk modulus using Eq. 28:

Ks = ρa2 . (28)

where Ks is the isotropic bulk modulus, and a is the sound speed in water, which is the same

as the pressure wave speed. As pointed out by Mandair et al. (2020), the pressure wave speed is

influenced by pipe wall deformation. However, our CFD model disregards fluid-structure interaction

and maintains a constant cross-sectional area. Consequently, this compressibility model is only

partially physical, as the depiction of pipe elastic effects is approximated by the wave speed.

4 Numerical Tests

The objective of this section is to evaluate the accuracy of the proposed model using three simple

but representative test cases. The first test case objective was to showcase the ability of the model

in achieving stationarity in all flow regimes (open channel flows, pressurized flows and mixed flow

interfaces). The second test case objective was to demonstrate the capability of the model in

simulating a positive mixed flow interface for a realistic pressure wave celerity without producing

significant numerical oscillations. The third test case objective was to demonstrate the capability of

the model to simulate full pipe flows with negative gauge pressures using the experiments reported

in Vasconcelos et al. (2006). For the Open-FOAM meshing, prior to the conversion to a polyhedral

mesh, a tetrahedral mesh was generated with target sizes of 0.05 m, 0.05 m, and 0.01 m for cases

1, 2, and 3, respectively. The target size is the same for test cases 1 and 2, attributed to their

similar geometric scale (e.g., pipe diameter). In contrast, the third test case has a smaller target

size, reflective of the reduced scale of the setup itself. The results of the ITM model are compared
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with those of the Open-FOAM model, as well as laboratory data wherever possible.

Test 1: Flow Stationarity

The aim of this test is to showcase the ability of the proposed model in achieving stationarity in all

flow regimes (open channel flows, pressurized flows and mixed flow interfaces) and for a relatively

large slope pipe system (10%). The test case is designed in such a way that the pipe system has all

the above flow regimes and the ITM screenshot of the initial flow conditions is illustrated in Figure

2. The system consists of two pipes, with the left pipe having a 10% downward slope (positive

slope) and the right pipe exhibiting a 10% upward slope (negative slope). Both pipes have a length

of 50 m, a diameter of 3 m, a Manning’s roughness coefficient of 0.013, and a pressure wave celerity

of 1000 m s−1. The initial water elevation in the entire system is set to 54 m. The simulation was

performed using 2000 cells in each conduit and a Courant number of 0.80. In the ITM model, a

uniform time step is applied across the entire pipe domain.

The CFD results for water elevation and velocity indicate a simulation precision of 2×10−3 and

8×10−7, respectively. It is evident from these findings that the CFD model struggle to maintain

stationarity conditions. Conversely, ITM demonstrates the ability to sustain stationarity condi-

tions for both water elevation and velocity, approaching the precision limit of double-precision

computation (accuracy up to fifteen decimal places).

Test 2: Positive Mixed Flow Interface

The purpose of this test is to demonstrate the capability of the proposed model in simulating a

positive mixed flow interface for a realistic pressure wave celerity without producing significant

numerical oscillations. The test configuration, as shown in Figure 3, consists of two pipes, with the

left pipe having a 2% downward slope (positive slope) and the right pipe exhibiting a 2% upward

slope (negative slope). Both pipes have a length of 20 m, a diameter of 0.5 m, a Manning’s roughness

coefficient of 0.015, and a pressure wave celerity of 1000 m s−1. The initial flow in both pipes is

set at 0.15 m3 s −1, with a normal depth of 0.1958 m and a Froude number of 1.76 (supercritical

flow). The collision of these opposing flows in the supercritical regime at the intersection of the

pipes generates two hydraulic bores. Initially, these bores exhibit open channel flow conditions,

eventually transitioning to pressurized conditions, forming a mixed flow interface. The upstream

and downstream boundary conditions (BC) are set to be equal to the initial discharge in the pipe
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with a flow depth equal to the normal depth (QBC = 0.15 m3 s −1 and hBC = 0.1958 m). The

simulation was performed using 4000 cells in each conduit and a Courant number of 0.80. The time

for outputting the results is 0.0001 s.

Figures 4 and 5 illustrate the pressure head and average velocity time traces at point 1 (situated

at midway of the left pipe) for both the ITM and CFD models. For complementing the ITM

results, Figure 6 presents the piezometric head at three time snapshots (2, 6 and 10 seconds).

The simulation was limited to 10 seconds due to the extensive CPU time required for the CFD

model with a pressure wave celerity of 1000 m s−1, which amounted to approximately three weeks.

As shown in Figs. 4 and 5, the ITM and CFD models exhibit a good agreement for both the

pressure head and velocity. As depicted in Figure 4, the CFD model, simulating air-water flows,

reveals small fluctuations in the pressure head before the positive interface arrives P1, indicative

of slight surface instabilities. Surface instabilities are known to occur in supercritical flows due

to pronounced interactions between air and water (Kramer and Chanson 2018). ITM lacks the

capability to simulate surface instabilities because it is a single-phase model. Consequently, as

depicted in Figure 4, the pressure head in the ITM model remains constant until the positive

interface reaches P1.

After the positive interface arrives at P1, as shown in Figure 4, the CFD model depicts a con-

stant hydraulic jump in open channel conditions for about one second (8.2 to 9.3 s) before fully

pressurizing. The ITM model also predicts a hydraulic jump in open channel conditions before

fully pressurizing, however the hydraulic jump depth in the ITM model is slightly overpredicted.

After pressurization, the pressure head in both models is more or less the same. Figure 4 also

shows that the maximum pressure fluctuations in the ITM model during pressurization is small

(∼ 2 cm) even when the pressure wave celerity used in the simulations is 1000 m s−1. It is worth

noting that these small oscillations, with a frequency corresponding to that of the acoustic wave,

remain imperceptible in the piezometric head plot (Fig. 6). They originate from the propagation

of acoustic waves within the pressurized section of the pipe. The results for the average velocity

(Figure 5) exhibit a good agreement between both models, particularly regarding the timing of the

positive interface arrival and the velocity magnitude after the positive interface reaches P1.
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Test 3: Negative Piezometric Pressure Flows

This test demonstrates the capability of the proposed model to simulate full pipe flows with negative

gauge pressures using the experiments reported in Vasconcelos et al. (2006), which laboratory setup

is shown in Figure 7. To create conditions where negative pressure heads would emerge, the center

portion of the pipeline was elevated. The first half of the pipe had an upward slope of roughly

2.0%, while the second half had a corresponding downward slope, with the pipe being elevated

approximately 0.15 m at the center compared to the ends. The experimental setup is comprised

of an acrylic pipeline with an inner diameter of 9.4 cm and a length of 14.33 m, connected at

its upstream end by a box tank and at its downstream end by a cylindrical tank. The pressure

wave celerity used in the simulations was 300 m s−1, which value was obtained from experimental

measurements of pressure pulse propagation between two pressure transducers, as reported in

Vasconcelos et al. (2006). Simulations of the ITM model were conducted using 400 cells and a

Courant number (Cr) value of 0.80. The outflow was assumed constant and a value of 0.45 L s−1

was estimated by observing the change in water volume over time. For estimating energy losses,

Vasconcelos et al. (2006) used a Manning roughness coefficient of 0.012, which was also used in this

test case. The meshing used in the CFD simulation is presented at the beginning of the Numerical

Tests section, while the methodology used in the simulations is described in the Computational

Fluid Dynamics section.

The system was filled to a level of 0.30 m at the box tank, and after achieving stationary

conditions, a syphon outflow was abruptly initiated at the box tank at t = 0. As the water level in

the box tank decreased, sub-atmospheric pressures were created at the center of the pipe, resulting

in a complex flow pattern. When the water level at the box tank fell below the pipe crown, air

at atmospheric pressure from the box tank interacts with the sub-atmopheric pressure in the

pipe resulting in a complex two-phase flow phenomena. Because the ITM model is unable to

simulate two-phase flows, the comparison between the model predictions and experimental results

is presented until right before the air intrusion from the box tank into the pipe. In the experiment,

this air intrusion occurred at t = 42.5 s (Vasconcelos et al. 2006), while in the ITM model, it

occurred approximately one second earlier (t ≈ 41.5 s).

Figure 8 shows the experimental and simulated velocities at a distance of 9.9 m downstream of

the box tank for both CFD and ITM models. Meanwhile, Figure 9 illustrates the experimental and

model predictions of piezometric depth at 14.1 m downstream of the box tank. As demonstrated in

18



March 31, 2024 Journal of Hydraulic Research ITM˙HLLS˙JHR

these figures, the ITM and CFD models show satisfactory agreement with the experimental data

for both velocity and pressure head. The velocity results from both models match the experimental

data well in terms of the frequency of oscillations, but overestimate the velocity amplitudes. As

suggested by Vasconcelos et al. (2006), this could be due, in part, to the assumption of uniform

outflow being inaccurate, and the neglect of minor losses and unsteady friction in the model.

It is worth noting that the ITM model and most one-dimensional sewer models consider only

steady friction factors (e.g., Manning’s equation), which are known to underestimate the rate of

attenuation of the pressure and velocity oscillations (e.g., Zhou et al. 2019; Tosan et al. 2022).

5 Application to Three Actual Sewer Systems

This section presents the ITM input files and videos with the corresponding simulation results

for three sewer systems that closely resemble real-world conditions. The three sewer systems are

denoted as cases A, B and C. A brief description of these sewer systems along with the links for the

input files and corresponding videos are presented below. The three input files and accompanying

videos showcasing the results are available on GitHub at the following link: https://github.com/

artuleon/ITM_version2_0/blob/main/README.md.

5.1 Case A

This sewer system encompasses a complex sewer network involving the operation of three pumps

depending on the water depth at control nodes. The system includes a three-way junction, drop-

shafts and reservoirs, as shown in Figure 10. Besides GitHub, the input file can be obtained

from the following link: https://web.eng.fiu.edu/arleon/ITM/InputFiles/CASEA.inp. To il-

lustrate a close-up view of tunnel pressurization and depressurization, the reader can find the

video depicting the pressure head results between nodes DAC1 and 03 at the following link:

https://web.eng.fiu.edu/arleon/ITM/Videos/ITM_CASEA.mp4

As can be observed in the video, the system begins in a dry state and subsequently switches

to free surface flow conditions as inflows enter the system. When the control nodes reach thresh-

olds pre-defined in a control curve, the pumps begin to operate. The video shows that dropshafts

DAC1, 07, 06, and 05, along with a section of the tunnel system surrounding these nodes, expe-

rience pressurization due to significant inflows without exhibiting apparent numerical instabilities.
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Eventually, as the inflows subside, the pressurized regions depressurize and return to open-channel

flow conditions without displaying any apparent numerical instabilities. As pumping continues,

most of the piping system transitions to a dry state.

5.2 Case B

This sewer system encompasses a complex sewer network involving two gates, one of which is

operated according to the specified time of the simulation (time series) and the second, depending

on the water depth at a control node. The system includes three-way junctions, multiple dropshafts

with inflow hydrographs and a weir, as shown in Figure 11. Besides GitHub, the input file can be

obtained from the following link: https://web.eng.fiu.edu/arleon/ITM/InputFiles/CASEB.

inp. The video of the pressure head results between nodes DS3 and DS12 can be obtained from

the following link: https://web.eng.fiu.edu/arleon/ITM/Videos/ITM_CASEB.mp4

The operation of the gates, coupled with significant inflow hydrographs, causes the pressurization

of various parts of the system. The video shows the upstream propagation of a mixed flow inter-

face passing various dropshafts with inflow hydrographs without exhibiting substantial numerical

instabilities. It is noted that some oscillations are evident when the positive mixed flow interface

passes through dropshafts with inflows. The inflows add mass to the system, creating oscillations,

especially when the flow is pressurized.

5.3 Case C

This sewer system encompasses a sewer network involving multiple dropshafts with inflow hy-

drographs, as shown in Figure 12. Besides GitHub, the input file can be obtained from the

following link: https://web.eng.fiu.edu/arleon/ITM/InputFiles/CASEC.inp. The video of

the pressure head results between nodes 1 and 11 can be obtained from the following link:

https://web.eng.fiu.edu/arleon/ITM/Videos/ITM_CASEC.mp4

As can be observed in the video, a mixed flow interface propagates upstream passing various

dropshafts with inflow hydrographs without exhibiting substantial numerical instabilities. In a

similar way to Case B, some oscillations are evident when the positive mixed flow interface passes

through dropshafts with inflows.
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6 Conclusions

The present paper presents an improved shock-capturing Finite Volume one-dimensional model,

which was implemented in the existing open source Illinois Transient Model (ITM). The major

changes made to ITM include replacing the original two-governing equation model with the two-

component pressure approach model to improve computational speed, using an improved Riemann

solver that preserves stationary conditions in sloped pipes, and proposing a new method for the

treatment of open channel flow cells near pressurization or adjacent to pressurized cells to minimize

spurious oscillations when utilizing the TPA model. The accuracy of the new ITM model was tested

using three test cases. The model’s performance was compared with those of a commonly used

Computational Fluid Dynamics (CFD) model. Moreover, to demonstrate the model’s potential

for simulating real systems, the model was applied to three sewer systems that closely resemble

real-world conditions. The key results are as follows:

(1) The results indicate that the ITM model is capable of achieving “lake at rest” conditions

(horizontal still water) for steep slopes, when the flow is adjacent to dry regions (wet-dry bed

interfaces), and under partial open-channel and partial surcharged flow conditions. No ITM

simulations displayed the characteristics of “numerical storms”.

(2) The results demonstrate that the ITM model can simulate positive mixed flow interfaces

without generating significant numerical oscillations even when using a pressure wave speed

of 1000 m s−1.

(3) Although the ITM simulations for the three intentionally modified sewer systems were not

verified using CFD due to the systems’ large scale, the videos of the simulations show quali-

tatively reasonable results.

Data Availability Statement

All data and code that support the findings of this study are available from the correspond-

ing author. The ITM model can be found at the website of the Illinois Transient Model

(https://web.eng.fiu.edu/arleon/ITM.htm). The input files for the three actual sewer systems

can be found athttps://web.eng.fiu.edu/arleon/ITM/InputFiles/CASEA.inp, (https://web.

eng.fiu.edu/arleon/ITM/InputFiles/CASEB.inp), and (https://web.eng.fiu.edu/arleon/

ITM/InputFiles/CASEC.inp).
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Notation

The following symbols are used in this paper:

A cross-sectional area of the flow;

a pressure wave speed;

Aref cross-sectional area of the flow corresponding to href;

b channel width as a function of elevation (η) and along-stream location (x);

D pipe diameter;

F flux vector;

f Darcy-Weisbach friction factor;

g gravitational acceleration;

gI1 represents hydrostatic pressure thrust;

gI2 represents lateral pressure force due to longitudinal width variation;

H measure of the impact of the stationary wave associated to the source terms in the mass flux;

h flow depth;

hc distance between the free surface and the centroid of the flow cross-sectional area;

href reference state depth;

hs surcharging pressure head;

k sand-grain roughness height;

nM Manning’s roughness coefficient;

P wetted perimeter;

Q flow discharge;

R hydraulic radius;

S source term vector;

Sf energy line slope;

SL, SR left and right wave speed, respectively;

So bed slope;

T free surface width;

t time;

U vector variable;

u flow velocity;

x longitudinal coordinate;

δ spatial difference between cell i+ 1 and i;

ε average height of surface irregularities;

ϕ variable that is a function of the water depth and that is needed to calculate u⋆;

η local variable for integration over the depth.
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Figure 1 Principle of the HLLS Riemann solver in the phase space

Figure 2 Geometry of Test 1 showing the initial water elevation.
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P1

Q = 0.15 m3/s

Figure 3 Geometry configuration for Test 2
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Figure 4 Test 2: Pressure Head (m) time trace at P1 for the CFD and ITM models
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Figure 5 Test 2: Average velocity (m s−1) time trace at P1 for the CFD and ITM models

Figure 6 Test 2: ITM Piezometric head for Test case 2 at three different time snapshots
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Figure 7 Geometry of Test 3. This test case corresponds to the Experiment in Vasconcelos et al. (2006)
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Figure 8 Test 3: Simulated and measured average velocity (m s−1) time trace in study point P2
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Figure 9 Test 3: Simulated and measured pressure head (m) time trace in study point P1
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Figure 10 Schematic of sewer system for Case A

.
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Figure 11 Schematic of sewer system for Case B

.

Figure 12 Schematic of sewer system for Case C

.
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