

# The impact of the GLOSSY2 and GLOSSY2-LIKE BAHD-proteins in affecting the product profile of the maize fatty acid elongase

- 1 Liza Esther Alexander<sup>a,b,¶</sup>, Dirk Winkelman<sup>a,b,c¶</sup>, Kenna E. Stenback<sup>a,b</sup>, Madison Lane<sup>c</sup>,
- 2 Katelyn R. Campbell<sup>c</sup>, Elysse Trost<sup>c</sup>, Kayla Flyckt<sup>a,b</sup>, Michael A. Schelling<sup>a</sup>, Ludmila
- 3 Rizhsky<sup>a,b</sup>, Marna D. Yandeau-Nelson<sup>b,c,\*</sup>, Basil J. Nikolau<sup>a,b,\*</sup>
- 4 These authors share first authorship
- 5 \* These authors share senior authorship
- 6 a Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State
- 7 University, Ames, IA, USA.
- 8 b Center for Metabolic Biology, Iowa State University, Ames, IA, USA.
- 9 ° Department of Genetics, Development, and Cell Biology and Department of Ecology, Evolution,
- and Organismal Biology, Iowa State University, Ames, IA, USA.

#### 11 Current addresses:

- Liza Esther Alexander, Pattern Bioscience, 9600 Great Hills Trl Ste 160E, Austin, TX 78759. Email:
- liz.alex@gmail.com
- 14 Kenna E. Stenback, Department of Biological Chemistry and Molecular Pharmacology, Harvard
- 15 Medical School, Boston, MA 02215. Email: kenna stenback@hms.harvard.edu
- Ludmila Rizhsky, USDA/APHIS, 1920 Dayton Ave., Ames, IA 50010. Email: ludmilar@gmail.com
- 17 Kayla Flyckt, Corteva Agriscience, 7000 NW 62<sup>nd</sup> Ave, Johnston, IA 50131. Email:
- 18 kayla.flyckt@corteva.com
- 19 Katelyn R. Campbell, University of Iowa Hospitals and Clinics, 285 Newton Road, surgery
- 20 Department-CBRB-5269, Iowa city, IA 52246. Email: katierc97@gmail.com
- 21 \* Correspondence:
- 22 Basil J. Nikolau, dimmas@iastate.edu
- 23 Marna D. Yandeau-Nelson, myn@iastate.edu
- 24 **Keywords:** Fatty acid elongase<sub>1</sub>, very long chain fatty acids<sub>2</sub>, GLOSSY2<sub>3</sub>, GLOSSY2-LIKE<sub>4</sub>,
- 25 BAHD proteins<sub>5</sub>, maize<sub>6</sub>, cuticular waxes<sub>7</sub>, yeast<sub>8</sub>, synthetic biology<sub>9</sub>,
- 26 Abstract
- 27 The maize glossy2 and glossy2-like genes are homologs, which encode proteins that belong to the
- 28 BAHD family of acyltransferases. *In planta* genetic studies have demonstrated that these genes may
- be involved in the elongation of very long chain fatty acids (VLCFAs) that are precursors of the
- 30 cuticular wax fraction of the plant cuticle. VLCFAs are synthesized by a fatty acyl-CoA elongase
- 31 complex (FAE) that consists of four component enzymes. Previously, we functionally identified the
- maize FAE component enzymes by their ability to complement haploid Saccharomyces cerevisiae
- 33 strains that carry lethal deletion alleles for each FAE component enzyme. In this study we used these
- complemented haploid strains and wild-type diploid strains to evaluate whether the co-expression of

- either GLOSSY2 or GLOSSY2-LIKE with individual maize FAE component enzymes affects the
- 36 VLCFA product-profile of the FAE system. Wild-type diploid strains produced VLCFAs of up to 28-
- carbon chain length. Co-expression of GLOSSY2 or GLOSSY2-LIKE with a combination of maize
- 38 3-ketoacyl-CoA synthases stimulated the synthesis of longer VLCFAs, up to 30-carbon chain
- 39 lengths. However, such results could not be recapitulated when these co-expression experiments were
- 40 conducted in the yeast haploid mutant strains that lacked individual components of the endogenous
- 41 FAE system. Specifically, lethal yeast mutant strains that are genetically complemented by the
- 42 expression of maize FAE-component enzymes produce VLCFAs that range between 20- and 26-
- carbon chain lengths. However, expressing either GLOSSY2 or GLOSSY2-LIKE in these
- 44 complemented strains does not enable the synthesis of longer chain VLCFAs. These results indicate
- 45 that the apparent stimulatory role of GLOSSY2 or GLOSSY2-LIKE to enable the synthesis of longer
- chain VLCFAs in diploid yeast cells may be associated with mixing plant enzyme components with
- 47 the endogenous FAE complex.

#### 1 Introduction

- The plant cuticle provides the organism with the first physical barrier from deleterious agents in the
- environment. It consists of the polyester cutin, which is embedded and coated with a complex
- 51 mixture of unique, solvent-extractable lipids, commonly referred to as the cuticular waxes. These
- 52 cuticular waxes are primarily a mixture of linear very long chain fatty acids (VLCFAs) and
- derivatives (e.g., aldehydes, alcohols, hydrocarbons, ketones, and wax esters), predominantly of 24-
- carbon atoms and longer (Samuels *et al.*, 2008). Because the cuticle is produced by a single layer of
- epidermal cells and secreted to the plant surface, the molecular mechanisms that determine this
- 56 process have been difficult to characterize by classical biochemical strategies. However, mutant
- alleles that affect its deposition have been a powerful research tool to deciphering the metabolic
- 58 processes that underlie the deposition of cuticular waxes. These include the *glossy* mutants of maize
- (Bianchi et al., 1985; Schnable et al., 1994), and eceriferum mutants of Arabidopsis (Koornneef et
- 60 al., 1989).

48

- The maize *glossy2* (*gl2*) gene was initially identified in a mutant stock that failed to accumulate
- 62 normal levels of cuticular waxes on seedling leaves (Hayes and Brewbaker, 1928). Subsequently, the
- 63 molecular isolation of gl2 (Tacke et al., 1995) led to the realization that it is a homolog of the
- Arabidopsis CER2 gene (Xia et al., 1996). Both gl2 and cer2 mutations reduce the normal
- accumulation of cuticular waxes in maize and Arabidopsis, respectively, and both these mutations
- appear to affect the ability to elongate a specific chain-length of fatty acids. In maize, the gl2
- 67 mutation appears to block the ability to elongate fatty acids beyond the 30-carbon chain length
- 68 (Bianchi et al., 1975), whereas in Arabidopsis the *cer2* mutation affects the ability to elongate fatty
- acids beyond 26- or 28-carbon chain lengths (Jenks et al., 1995; McNevin et al., 1993; Negruk et al.,
- 70 1996).
- 71 At the time of these initial molecular characterizations, the GL2 (Tacke et al., 1995) and CER2 (Xia
- 72 et al., 1996) proteins were novel, and their biochemical functionality was unclear. However, upon
- 73 subsequent parallel molecular and biochemical characterization of a larger collection of proteins (St-
- Pierre and Luca, 2000), it became obvious that these two proteins are members of the BAHD family
- of enzymes that share a characteristic active site motif, the HXXXDX-motif, which catalyze
- acyltransferase reactions required in the biosynthesis of a variety of specialized metabolites (D'Auria,
- 77 2006; Moghe et al., 2023). BAHD acyltransferases were apparently important during the terrestrial
- 78 colonization by plants, evidenced by the evolutionary expansion of the number of BAHD genes
- encoded by angiosperm genomes (~50-200 genes per genome). This compares to fungal genomes,

- 80 which appear to be the evolutionary origin of the BAHD protein as they contain fewer than five
- 81 BAHD genes per genome (Kruse et al., 2022). This evolutionary expansion and diversification of
- BAHD proteins appears to have supported the establishment of a wide range of biosynthetic 82
- 83 machinery that generates the rich array of specialized metabolites that occur in the plant kingdom.
- 84 BAHD proteins have been phylogenetically classified into six major clades, each of which display
- 85 unique abilities to catalyze the acylation of different types of substrates (D'Auria, 2006; Kruse et al.,
- 2022; Moghe et al., 2023). The common feature among these biochemically characterized proteins is 86
- the ability to acylate either an alcohol or amine functional group, generating either ester or amide 87
- products, respectively. The exception to this generalization is the clade that contains the Arabidopsis 88
- 89 CER2 and CER2-LIKE family of proteins (Haslam et al., 2017; Haslam et al., 2015; Haslam and
- 90 Kunst, 2020; Xia et al., 1996) and the maize GL2 and GL2-LIKE proteins (Alexander et al., 2020;
- 91 Tacke et al., 1995). Although heterologous expression studies in yeast have indicated that the CER2
- 92 and CER2-LIKE proteins interact with one of the enzyme components of the fatty acid elongase
- 93 (FAE) system, and thereby affect the fatty acid product profile of the system (Gonzales-Vigil et al.,
- 94 2021; Haslam et al., 2017; Haslam et al., 2015; Haslam and Kunst, 2013; Haslam and Kunst, 2020;
- 95 Haslam et al., 2012; Wang et al., 2017), the exact biochemical mechanism of how this is achieved
- 96 remains unclear.
- 97 The FAE complex carries out the elongation of preexisting 16- and 18-carbon fatty acyl-CoAs to acyl
- 98 chains of 20 carbons and longer, using malonyl-CoA as the elongating substrate. This complex is
- 99 composed of four enzymatic components that iteratively catalyze cycles of Claisen condensation-
- 100 reduction-dehydration and reduction reactions, resulting in the elongation of the acyl chain by 2-
- 101 carbon atoms per cycle (Leonard et al., 2004). The FAE system is metabolically significant because
- 102 it generates very long chain fatty acyl-CoAs, which are used as substrates to assemble such complex
- 103 lipids as membrane phospholipids, storage lipids, sphingolipids (Harrison et al., 2018; Haslam and
- 104 Feussner, 2022), eicosanoids (Smith, 1989; Thulasingam and Haeggström, 2020), and the plant
- 105 cuticle (Barbero, 2016; Samuels et al., 2008; Yeats and Rose, 2013).
- 106 Underlying the phylogenetic diversity of these VLCFA-derived lipids, the plant FAE system displays
- 107 genetic and biochemical diversity among the enzymatic components that constitute the complex
- 108 (Campbell et al., 2019). Specifically, two distinct types of enzymes catalyze the Claisen
- 109 condensation reactions of FAE; these are 3-ketoacyl-CoA synthases (KCSs), initially identified as the
- 110 product of the Arabidopsis FAE1 gene (James et al., 1995), and Elongation-defective proteins
- (ELOs), which were initially identified in yeast (Oh et al., 1997; Toke and Martin, 1996). The KCS 111
- 112 enzymes occur exclusively in plants, whereas ELOs are present in plants, fungi, and animals
- 113 (Leonard et al., 2004). The three other component-enzymes of the FAE complex are: i) 3-ketoacyl-
- 114 CoA reductase (KCR), ii) 3-hydroxyacyl-CoA dehydratase (HCD) and iii) enoyl-CoA reductase
- 115 (ECR). Apart from the KCR component, which was initially identified as the product of the maize
- 116 glossy8a gene (Xu et al., 1997; Xu et al., 2002), the plant homologs of HCD and ECR have been
- 117 identified by the genetic complementation of yeast strains that carry null allele mutations in genes
- 118 that encode these functions (Bach et al., 2008; Campbell et al., 2019; Gable et al., 2004), namely the
- 119 yeast PHS1 (Denic and Weissman, 2007) and TSC13 (Kohlwein et al., 2001) genes, respectively.
- 120 The maize genome encompasses considerable genetic redundancy among these enzymatic
- components, particularly in the enzymes that catalyze the first two reactions of the FAE cycle; there 121
- 122 are 26 genes encoding for the KCS-type enzyme, possibly up to six genes encoding the ELO-type
- 123 enzyme (Campbell et al., 2019; Stenback et al., 2022), and two genes encoding the KCR enzyme
- 124 (Dietrich et al., 2005). In contrast, only single copy genes of the HCD and ECR component enzymes

- have been characterized to date (Campbell et al., 2019). The molecular genetic characterizations of
- the Arabidopsis CER2 and four CER2-LIKE proteins indicate that they interact with the KCS
- enzymatic component of FAE to affect the chain-length products of the FAE system (Haslam et al.,
- 128 2017: Haslam et al., 2015: Haslam and Kunst, 2013: Haslam and Kunst, 2020). The current study is
- premised on prior experiments, which indicated that one of the maize paralogs, GL2-LIKE, is a
- functional homolog of CER2, whereas the other, GL2, appears not to be a functional homolog. Both
- GL2 and GL2-LIKE share a high degree of sequence homology to CER2, including the canonical
- BAHD HXXXDX-catalytic motif (Alexander *et al.*, 2020).
- 133 This study is focused on understanding the functionality of the GL2 and GL2-LIKE proteins in the
- 134 context of the functionality model described above for the Arabidopsis homologs (i.e., CER2 and
- 135 CER2-LIKE proteins) (reviewed by Haslam *et al.*, 2017). The experiments described herein take
- advantage of the *in vivo* yeast-based system that has previously been used to functionally identify the
- individual components of the maize FAE complex (Campbell et al., 2019; Stenback et al., 2022),
- which made it possible to mix and match individual maize FAE enzyme components with either GL2
- or GL2-LIKE proteins, and thereby test whether these maize BAHD proteins modify the *in vivo*
- generated VLCFA product-profile of the resulting yeast strains. The results of these experiments
- suggest that the apparent stimulatory role of GL2 or GL2-LIKE to enable the synthesis of longer
- chain VLCFAs may be associated with mixing plant components with the endogenous FAE enzyme
- complex.

145

### 144 2 Materials and Methods

# 2.1 Molecular Cloning

- The ORFs coding for the GL2 (GRMZM2G098239; Zm00001d002353) and GL2-
- 147 LIKE (GRMZM2G315767; Zm00001d024317) proteins were codon-optimized for expression in
- 148 yeast using GeneOptimizer (GeneArt, LifeTechnologies) and Arabidopsis (OptimumGene
- 149 (GenScript; <u>www.genscript.com</u>), respectively. These sequences were chemically synthesized
- 150 (GenScript; GeneArt, LifeTechnologies). These DNA fragments were cloned into high-copy
- episomal yeast plasmids, pAG426 (URA3) or pAG423 (HIS3) (Invitrogen, Carlsbad, CA) using
- either the Gateway® cloning system (Invitrogen, Carlsbad, CA) or In-Fusion® cloning system
- 153 (Takara Bio USA, Inc., Mountain View, CA). Depending on the experiment, expression from the
- episomal plasmids was under the control of a galactose-inducible promoter (GAL1) or the
- 155 constitutive glyceraldehyde-3-P-dehydrogenase (*GPD*) promoter. All recombinant yeast shuttle
- vectors were confirmed by DNA sequencing and were maintained in E. coli TOP10 cells (Invitrogen,
- 157 Carlsbad, CA), using Luria Bertani (LB) media supplemented with the appropriate antibiotics.

### 158 2.2 Yeast Strains and Media

- The yeast strains, INVSc1, BY4743, BY4741, and BY4742 were obtained from Open Biosystems
- 160 (ThermoFisher Scientific, Rockford, IL) and maintained in YPD (yeast peptone dextrose) or
- synthetic complete (SC) dropout media. Yeast strains carrying mutations in the endogenous FAE
- 162 component genes and complemented by maize FAE component genes were previously described
- 163 (Campbell et al., 2019; Stenback et al., 2022). All yeast strains expressing the maize GL2 or GL2-
- LIKE proteins were selected by their ability to grow on minimal medium (SD) lacking the
- appropriate amino acid or nucleobase (e.g., uracil). The induction of expression from the *GAL1*
- promoter was accomplished by replacing glucose with 2% (w/v) galactose in SC medium. Yeast
- 167 cultures were grown according to standard procedures in appropriate media at 30 °C (Adams and

- 168 Kaiser, 1998). For fatty acid analysis experiments, all strains were grown for 72 hours with exception
- of the INVSc1 strain that expressed maize proteins from the GAL1 promoter; these strains were
- 170 grown for 48 hours.

# 171 2.3 Yeast Transformation

- 172 Plasmids were transformed into yeast using a standard lithium acetate transformation protocol (Gietz
- and Woods, 2002). Briefly, 3 µL of salmon sperm DNA, 1 µg of plasmid DNA, and 100 µL
- transformation mix (200 μL of 2 M lithium acetate; 800 μL of 50% (w/v) PEG; 7.7 μL of β-
- mercaptoethanol) were added to a 1.5 mL microcentrifuge tube and mixed by vortexing. Yeast cells
- 176 from a large colony were added to the mix, vortexed, and incubated at 37 °C for 30 min. Samples
- were then centrifuged at 900 g for 5 min, and the cell pellet was resuspended in 200  $\mu$ L of sterile
- water and plated on selective solid media. The plates were incubated at 30 °C for 2-3 days. The non-
- recombinant vector was transformed into each strain and used as a control.

# 2.4 Fatty Acid Analysis

180

198

205

- 181 Cell pellets were lyophilized, and after the addition of 10 µg of nonadecanoic acid as an internal
- standard, fatty acids were extracted and converted to methyl esters by the addition of 1 mL 5%
- sulfuric acid in methanol, followed by incubation of the mixture at 80 °C for 1 h. After cooling, 2 mL
- of 0.9% (w/v) aqueous NaCl was added, and fatty acid methyl esters were extracted thrice with 1 mL
- of 4:1 hexane:chloroform. After each extraction, phases were separated and the organic phase was
- removed and pooled, and samples were dried under a stream of nitrogen gas to a final volume of
- ~250 μL. One microliter of each sample was analyzed by gas chromatography-flame ionization
- detection (GC-FID) or gas chromatography-mass spectrometry (GC-MS).
- 189 GC-FID analysis was conducted with an Agilent 6890 GC, equipped with a DB-1 MS capillary
- 190 column (15 m x 0.25 mm x 0.25 μm, Agilent 122-0112). Chromatography was conducted with
- helium gas, at a flow-rate of 1.2 mL/min, and an inlet temperature at 280 °C. The column oven
- temperature was initially held at 80 °C for 1 min, then ramped at 15° C/min to 230 °C and held for 2
- min, and then ramped at 15 °C/min to 340°C and held there for 2 min. For peak identification
- purposes, chromatograms were compared with fatty acid methyl ester standards (8:0-30:0) and
- parallel GC-MS analyses were queried against the NIST 14 Mass Spectral Library. Samples that
- were analyzed by GC-MS were first silvlated with 50 µL N,O-Bis(trimethylsilyl)trifluoroacetamide
- 197 (BSTFA) with 1% trimethylchlorosilane (TMCS) (Sigma-Aldrich), prior to chromatography.

### 2.5 Statistical Analysis

- 199 Statistical significance of the differences in fatty acid profiles were determined by analyzing 3-6
- 200 replicates of each yeast strain, as defined in the captions of each figure. In all cases, statistical
- 201 comparisons are made only from cultures that were grown in parallel in the same incubator. Fatty
- acid abundance data are reported in Supplemental Table 1, and statistical significance between
- 203 genotypes was determined by Tukey's Honest Significant Difference (HSD) test following ANOVA.
- The p-values for all Tukey's HSD tests for each experiment are included in Supplemental Table 2.

# 2.6 Western blot analysis

- 206 Protein extracts were prepared from yeast cell pellets using the YeastBuster Protein Extraction
- Reagent, (Novagen Sigma-Aldrich, Inc., St. Louis, MO). In brief, weighed cell pellets were
- suspended in YeastBuster Reagent (5 ml/g cell pellet) and 0.5 M Tris(hydroxypropyl) phosphine (50

- 209 µl/g cell pellet). The cell suspensions were agitated for 15-20 min at room temperature and then
- 210 centrifuged at 16,000 g for 20 min at 4 °C. The supernatant was collected and subjected to SDS-
- 211 PAGE, and proteins were electrophoretically transferred from the polyacrylamide gel to a
- 212 nitrocellulose membrane using a Bio-Rad Criterion<sup>TM</sup> blotter (Bio-Rad, Hercules, CA). Membranes
- were first incubated in a solution of 5% (w/v) non-fat milk powder, dissolved in TBST buffer (0.1%
- 214 (v/v) Tween 20, 0.15 M NaCl, 2 mM KCl, 20 mM Tris-HCl, pH 7.5) that contained GL2-specific
- antiserum (1:1000 dilution) (Alexander et al., 2020), and then with a solution containing horseradish
- 216 peroxidase-linked to goat anti-mouse IgG antibody (Bio-Rad) (1:1000 dilution). After extensive
- washing with TBST buffer, the antigen-antibody complexes were detected using the Pierce ECL
- 218 chemi-luminescent detection system (ThermoFischer Scientific) and visualized on the ChemiDoc
- 219 XRS+ gel documentation system (Bio-Rad).

220

# 2.7 Reverse Transcription (RT)-PCR analysis

- Yeast strains expressing maize proteins were grown in liquid cultures and cells were pelleted by
- centrifugation. RNA was extracted from the resultant cell pellets utilizing the RNeasy Mini Kit
- (Qiagen, Germantown, MD) according to manufacturer's instructions. Contaminating DNA was
- removed from the RNA samples by treatment with RQ1 RNase-Free DNase (Promega, Madison,
- WI), and 1 µg of RNA was used for cDNA synthesis using either the Superscript IV Synthesis Kit
- 226 (ThermoFisher Scientific) or PrimeScript Synthesis Kit (Takara Bio USA, San Jose, CA) according
- 227 to manufacturer's instructions. PCR was conducted using the resultant cDNA as template, GoTaq
- Green Master Mix (Promega) and gene-specific primer pairs to assess the expression of ZmKCS6
- 229 (Primer 1: 5'-GTGAACCTCAAGCACGTCAA-3' and Primer 2: 5'-
- 230 CTCTTGTCGTCGCTGAT-3'), GL2 (Primer 1: 5'-ATGGTTTTCGAACAACACGAAG-3' and
- Primer 2: 5'-TTAAGCAACATGTAAAGCAGAACCC-3'), and GL2-LIKE (Primer 1: 5'-
- 232 ATGGTTGTTGAGGCTAACTCTG-3' and Primer 2: 5'-TCAAGCAACTCTAAGTGCATCC-3').
- 233 ZmKCS5 expression was assessed by utilizing Q5 High-Fidelity Polymerase with GC enhancer
- 234 (NEB, UK) with gene-specific primer pairs (Primer 1: 5'- CAGAAGAACCTGCAGCTGTC-3' and
- 235 Primer 2: 5'- GCCGCTGCCGAAGCCGATCTGCCAG-3'). Each cDNA sample was also subjected
- 236 to PCR analysis by using primers specific for the yeast GLC7 gene (Primer 1: 5'-
- 237 CCAGATCTATATTCATAAAGCAACCC-3' and Primer 2: 5'-
- 238 GATAATTAGATTCTGGCGGGAATC-3'). This test PCR assay established that all cDNA samples
- 239 lacked the GLC7 intron, indicating that the template samples were not contaminated by genomic
- DNA. The thermal cycling program for PCR was initiated at 95 °C for 3 min, and then 35 cycles of
- incubations at 95 °C for 30 s, 56 °C for 45 s, and 72 °C for 1.5 min; followed by a final extension
- step at 72 °C for 5 min.

# 243 2.8 Accession Numbers

- Sequence data from this article can be found in the GenBank/EMBL data libraries under accession
- 245 numbers: GRMZM2G098239 and Zm00001d002353 (Gl2); GRMZM2G315767 and
- 246 Zm00001d024317 (*Gl2-like*); GRMZM2G393897 and Zm00001d009608 (ZmKCS4);
- 247 AC233893.1 FG003 and Zm00001d048061 (ZmKCS5); GRMZM2G164974 and
- 248 Zm00001d028241(ZmKCS6); GRMZM2G160417 and Zm00001d039053 (ZmKCS15);
- 249 AC205703.4 FG006 and Zm00001d017111(Gl8a; ZmKCR1); GRMZM2G087323 and
- 250 Zm00001d050992 (*Gl8b*; ZmKCR2); GRMZM2G151087 and Zm00001d039856 (ZmHCD).

### **251 3 Results**

### 252 3.1 Effect of Co-expressing Maize GL2 or GL2-LIKE with Maize KCS Homologs in Wild-

# 253 type Diploid Yeast Strains

- Based on the carbon chain lengths of the alkyl derivatives that occur in the cuticular waxes of maize
- 255 (Bianchi et al., 1985), the maize FAE system should have the ability to produce VLCFAs as long as
- 256 34-carbon atoms. Moreover, *in planta* characterizations of mutations in the maize *gl2* gene indicate
- 257 that it may be involved in the ability of plant cells to produce VLCFAs beyond 26:0 and 28:0, and up
- 258 to 34:0 (Alexander et al., 2020; Bianchi et al., 1975). Therefore, analogous to the Arabidopsis FAE
- 259 system, where interactions between the Arabidopsis CER2-LIKE proteins and KCS paralogs
- stimulate the terminal elongation cycle(s) of the FAE system to generate longer chain VLCFAs
- 261 (Haslam et al., 2017), yeast expression experiments evaluated whether GL2 or GL2-LIKE could
- affect the VLCFA profiles produced by co-expression with ZmKCS homologs. Initial experiments
- were conducted with ZmKCS5 or ZmKCS6, which are the closest homologs to the Arabidopsis
- 264 CER6-encoded KCS (Campbell et al., 2019) that specifically interact with CER2 in the Arabidopsis
- 265 FAE system (Haslam *et al.*, 2017; Haslam *et al.*, 2015).
- Figure 1 shows the results of such experiments using the diploid INVSc1 strain as the expression
- 267 host. The wild-type INVSc1 strain yields a VLCFA titer of ~7.5 μmol/g dry weight, and these
- VLCFAs range from 20:0 to 28:0, with the most abundant VLCFA being 26:0. The individual
- expression of ZmKCS5, ZmKCS6, GL2 or GL2-LIKE does not significantly affect the VLCFA
- 270 titers, as compared to the wild-type host strain (Fig. 1A and 1B). However, the co-expression of
- 271 ZmKCS5 (Fig. 1A and 1C) or ZmKCS6 (Fig. 1B and 1D) with either GL2 or GL2-LIKE induced an
- approximately 2-fold increase in the VLCFA titer (Fig. 1A and 1B), and this is particularly
- associated with increased accumulation of the 24:0, 26:0 and 28:0 VLCFAs (Fig. 1C and 1D). The
- fact that these increased titers occur only upon the co-expression of ZmKCS and GL2 homologs, and
- 275 not when these maize proteins were individually expressed, is indicative that the GL2 homologs
- affect the activity of the ZmKCS proteins; possibly via interactions between the co-expressed
- proteins, analogous to the CER2-KCS interactions in Arabidopsis (Haslam et al., 2017).
- However, these results do not recapitulate the *in planta* expectation based on the *gl2* mutant
- 279 phenotype, which indicates that this gene may be involved in the ability of plant cells to produce
- VLCFAs of beyond 28:0 and up to 34:0 (Alexander et al., 2020; Bianchi et al., 1975). Therefore, we
- considered whether this may be associated with either the promoter that was used in the co-
- expression experiments (i.e., the galactose inducible *GAL1* promoter) or by the particular yeast strain
- 283 that was used, INVSc1, whose provenance is proprietary, and unknown. Hence, both the GL2 and
- GL2-LIKE proteins were individually co-expressed with either ZmKCS5 or ZmKCS6 under the
- control of the constitutive, glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter (Bitter et al.,
- 286 1987) in the diploid strain, BY4743, which has a well-defined pedigree (Brachmann *et al.*, 1998).
- In contrast to the results obtained with the GAL1 promoter, these experiments with the GPD
- promoter in either the INVSc1 or BY4743 diploid strains generated qualitatively different VLCFA
- profiles (Fig. 2) that more accurately recapitulate the *in planta* chemotypes expected for the GL2
- 290 protein (Bianchi et al., 1975). Specifically, in both the INVSc1 (Fig. 2A and B) and BY4743 (Fig. 2C
- and 2D) strains, the co-expression of GL2 or GL2-LIKE with either ZmKCS5 or ZmKCS6 induced
- 292 the accumulation of 30:0 VLCFA, a product that was undetectable in the other strains that singularly
- 293 expressed ZmKCS5, ZmKCS6, GL2 or GL2-LIKE (compare Fig. 1 and Fig. 2). These distinct
- observations between the use of the GPD and GAL1 promoters in different diploid strains indicate
- 295 that additional insights are required to dissect the complexity of co-expressing FAE components in

- 296 heterologous biological systems, such as plant FAE components in yeast strains that also carry an
- 297 endogenous FAE system.

## 298 3.2 Effect of Co-expressing Maize GL2 or GL2-LIKE with Maize KCS Isozymes as

# 299 Replacements of the Yeast ELO3 Component-Enzyme of FAE

- To overcome the complexity of genetically adding heterologous maize FAE components to an intact
- FAE system (i.e., the yeast FAE), we co-expressed ZmKCS paralogs with either GL2 or GL2-LIKE
- in a yeast strain that lacked the analogous endogenous yeast FAE component enzyme. These
- experiments were conducted in a haploid strain (i.e., BY4742, which is one of the haploid
- progenitors of the diploid strain, BY4743 (Brachmann et al., 1998)) that carries mutations in genes
- 305 coding for yeast FAE component genes. The yeast FAE system does not utilize KCS-type
- 306 condensing enzymes, but rather utilizes ELO-type condensing enzymes, encoded by the *ELO1*, *ELO2*
- or *ELO3* genes (Oh et al., 1997; Toke and Martin, 1996). Because ELO3 has the ability to catalyze
- 308 the terminal cycles of fatty acid elongation using preexisting 24:0 and 26:0 acyl-CoAs (Denic and
- Weissman, 2007; Oh et al., 1997), we first recapitulated the above experiments in the BY4742
- haploid strain that carried an *elo3* null allele (note that this strain carries functional *ELO1* and *ELO2*
- 311 genes). In these experiments we individually expressed ZmKCS4, ZmKCS5, ZmKCS6 and
- 312 ZmKCS15 in the *elo3* mutant yeast strain, and compared the VLCFA profiles when these ZmKCS
- 313 isozymes were co-expressed with either GL2 or GL2-LIKE (Fig. 3). The rationale for including
- 314 ZmKCS4 and ZmKCS15 isozymes is based on the fact that these two plant isozymes have been
- shown to be functional in yeast (Stenback *et al.*, 2022).
- As with the diploid strains, the wild-type BY4742 haploid strain produced VLCFAs that range
- between 20 and 28 carbon chain lengths, with 26:0 accounting for 80% of the VLCFAs. The effect
- of the *elo3* mutation was to eliminate the accumulation of 26:0 and 28:0, and thus the predominant
- 319 VLCFA in this mutant yeast strain was 24:0. The expression of ZmKCS5 or ZmKCS6 in the *elo3*
- mutant strain had no effect on the fatty acid profiles (Fig. 3A and 3B). However, the expression of
- 321 ZmKCS4 or ZmKCS15 in the *elo3* mutant strain resulted in partially restoring the ability of the strain
- 322 to produce the longer VLCFAs; specifically these strains produced small but statistically significant
- 323 quantities of 26:0 (Fig. 3C and 3D). Thus, in contrast to ZmKCS4 or ZmKCS15, neither ZmKCS5 or
- 324 ZmKCS6 were capable of replacing the *elo3* function. Moreover, the co-expression of either GL2 or
- 325 GL2-LIKE with each of these four ZmKCS isozymes was incapable of modifying the abilities of the
- resulting strains to produce larger quantities of the longer chain VLCFAs (i.e., 26:0, 28:0, or 30:0)
- 327 (Fig. 3).

### 328 3.3 Effect of Co-expressing Maize GL2 or GL2-LIKE with Maize KCS Isozymes that

# 329 Functionally Replace the Yeast ELO Function

- As demonstrated by the synthetic lethality associated with the *elo2 elo3* double mutant, the ability to
- produce VLCFAs is essential for yeast viability (Oh et al., 1997; Toke and Martin, 1996). Moreover,
- prior characterizations have established that five ZmKCS isozymes (i.e., ZmKCS2, ZmKCS4,
- ZmKCS11, ZmKCS15, and ZmKCS20) are capable of genetically rescuing this lethality of the *elo2*
- 334 elo3 double mutant (Stenback et al., 2022). Therefore, we used these rescued strains to evaluate
- whether the co-expression of GL2 or GL2-LIKE could modify the product profile of the FAE system,
- indicative of interactions with the ZmKCS isozymes.
- As previously reported (Stenback et al., 2022), in the absence of either GL2 or GL2-LIKE, the
- expression of ZmKCS2 enables the elongation of fatty acids to 22-carbon chain length, whereas

- ZmKCS4, ZmKCS11, and ZmKCS20 enables the elongation of fatty acids to 24-carbon chain length,
- and ZmKCS15 can elongate fatty acids up to 26-carbon atoms (Fig. 4). These acyl-products include
- 341 VLCFAs and 2-hydroxy-VLCFAs, which are hydroxylated post-synthesis in the assembly of
- ceramide-based lipids (Erdbrügger and Fröhlich, 2021). The co-expression of either GL2 or GL2-
- LIKE with each of these ZmKCS isozymes did not cause any qualitative change in the VLCFA
- profiles; namely there were no new VLCFA products generated that were absent from the strains that
- only expressed the ZmKCS isozyme. Rather, there were statistically significant quantitative changes
- in the accumulation of some of the VLCFA products. For example, GL2-LIKE caused increased
- accumulation of 2-hydroxy-22:0 or 2-hydroxy-24:0 when it was co-expressed with ZmKCS11 (Fig.
- 348 4C) or ZmKCS15 (Fig. 4D), respectively; the latter change was accompanied by the decreased
- accumulation of 26:0 (Fig. 4D).

## 350 3.4 Effect of Co-expressing Maize GL2 or GL2-LIKE in Combination with Pairs of Maize

### 351 KCS Isozymes

- 352 The findings observed with the GL2 and GL2-LIKE proteins (Figure 4) are not consistent with the
- model developed with the Arabidopsis homologs of these proteins (i.e., the CER2 and CER2-LIKE
- proteins) (Haslam et al., 2017). This difference between the maize and Arabidopsis homologs may be
- associated with the fact that the CER2 and CER2-LIKE proteins mediate this effect by specifically
- interacting with the CER6- or CER60-encoded KCS isozymes (Haslam et al., 2015). The difference
- between the two systems (i.e., maize versus Arabidopsis) may be due to the fact that the ZmKCS
- isozymes used in the current study are in a phylogenetic clade that is distinct from the Arabidopsis
- 359 CER6- or CER60-encoding KCS isozymes. In maize, the phylogenetic homologs to the CER6-and
- 360 CER60-encoding KCSs are ZmKCS5 and ZmKCS6 (Campbell et al., 2019). However, because
- 361 ZmKCS5 and ZmKCS6 are incapable of complementing the yeast *elo2 elo3* double mutant strain
- 362 (Stenback et al., 2022), it was not possible to co-express them individually with GL2 or GL2-LIKE
- in the yeast system lacking the native condensing enzymes. Therefore, we co-expressed either
- 364 ZmKCS5 or ZmKCS6 in the yeast *elo2 elo3* double mutant strain that was rescued by genetic
- complementation by the expression of ZmKCS15. This complemented strain was chosen because it
- was capable of producing the longest VLCFAs (i.e., up to 26:0) (Stenback et al., 2022). Figure 5
- 367 shows that the co-expression of GL2 or GL2-LIKE with either ZmKCS5 or ZmKCS6 in the
- 368 ZmKCS15-rescued *elo2 elo3* double mutant had no effect on the VLCFA profiles that were
- 369 generated.
- 370 Comparing the VLCFA profiles in Figures 4D and 5A, we found that the co-expression of ZmKCS15
- with ZmKCS5 in the *elo2 elo3* double mutant is no different than solely expressing ZmKCS15 in this
- 372 strain, and the co-expression of GL2 or GL2-LIKE with both ZmKCS15 and ZmKCS5 had little
- effect on the profile (Fig. 5A). Similar results were obtained when ZmKCS15 expression was
- 374 combined with ZmKCS6 expression; the most pronounced apparent effect, which is not statistically
- significant, was a 50% reduction in the accumulation of 2-hydroxy-26:0 upon the co-expression with
- 376 GL2-LIKE (Fig. 5B).

# 3.7 3.5 Effect of Co-expressing GL2 and GL2-LIKE with other FAE Components

- 378 Prior studies have indicated that protein-protein interactions among the FAE component enzymes are
- important for VLCFA biosynthesis; in the Arabidopsis system this includes interactions between
- 380 CER2-LIKE proteins and the KCR, HCD and ECR components (Kim et al., 2022). Therefore, using
- 381 the yeast strains that we previously developed to functionally characterize these additional
- components of the maize FAE system (Campbell et al., 2019), we evaluated whether the GL2 or

- 383 GL2-LIKE proteins can interact with additional FAE components (i.e., ZmKCR1, ZmKCR2 and
- 384 ZmHCD) and thereby affect the VLCFA product-profile of the FAE system.
- We evaluated if either GL2 or GL2-LIKE could affect changes in VLCFA profiles upon co-
- expression with either ZmKCR1 (gl8a) or ZmKCR2 (gl8b) (Dietrich et al., 2005; Xu et al., 1997; Xu
- 287 et al., 2002). These co-expression experiments were conducted in yeast strains that lacked the
- endogenous yeast KCR (i.e., the ybr159∆ mutant strain) (Han et al., 2002). The yeast ybr159∆
- mutation is lethal, but can be rescued by the expression of either ZmKCR1 or ZmKCR2 (Campbell et
- al., 2019). The resulting rescued yeast strains produced VLCFA profiles that are similar to those that
- occur in the wild-type strain, with 26:0 being the most abundant VLCFA (Fig. 6). The co-expression
- of either GL2 or GL2-LIKE with the two maize KCR isozymes, ZmKCR1 (Fig. 6A) or ZmKCR2
- 393 (Fig. 6B), produced minor, but statistically significant quantitative changes in the VLCFA profiles,
- 394 affecting only 22:0, 24:0, and 26:0.

406

- Finally, using the same strategy we investigated if GL2 or GL2-LIKE interacts with ZmHCD to
- affect VLCFA profiles, by co-expressing the two combinations in the yeast *hcd* mutant strain
- 397 (Campbell *et al.*, 2019). Figure 6C compares the VLCFA profiles of the ZmHCD-rescued *hcd* mutant
- 398 yeast strains, with and without the co-expression of either GL2 or GL2-LIKE. Although the VLCFA
- profile of the yeast strain is not altered when ZmHCD is expressed in the wild-type background, the
- 400 profile is strikingly different when ZmHCD is expressed in the *hcd* mutant background. Specifically,
- 201 ZmHCD complementation induces the appearance of 3-hydroxy-VLCFAs of 20 and 22 carbon chain
- lengths and a 50% reduction in 26:0. We suggest that this is because the maize HCD is not as
- 403 efficient in replacing the endogenous yeast HCD in converting 3-hydroxyacyl-CoA to the enoyl-
- CoA, and thus 3-hydroxy-VLCFAs accumulate. Even so, the co-expression of ZmHCD with either
- 405 GL2 or GL2-LIKE did not further alter the VLCFA profiles of the rescued strains (Fig. 6C).

### 3.6 Molecular confirmation of the expression of maize genes in yeast

- The expression of ZmKCS2, ZmKCS4, ZmKCS11, ZmKCS15 and ZmKCS20 proteins in yeast cells
- was genetically confirmed because their presence rescued the lethality associated with the yeast *elo2*
- 409 elo3 double mutant strain (e.g., Fig. 4). In addition, changes in VLCFA profiles in a number of yeast
- strains indicate that the GL2 and GL2-LIKE proteins were successfully expressed (e.g., Fig. 1 and 2).
- However, in some strains that were engineered to express these proteins, the resultant VLCFA
- profiles were very similar to those generated by the host strain (e.g., Fig. 3-5). Therefore, we sought
- 413 molecular evidence to confirm successful expression of the GL2 and GL2-LIKE proteins, and
- ZmKCS isozymes. Such confirmation was obtained by either Western blot or RT-PCR analyses.
- For example, Figure 3E shows Western blot analyses of protein extracts from a subset of the yeast
- 416 elo3-mutant strains, which confirms that the GL2 protein was successfully expressed in these
- 417 experiments, even though its expression did not generate a change in the VLCFA profile.
- Analogously, RT-PCR analysis confirmed the expression of the Gl2 and Gl2-like mRNA in the yeast
- 419 elo2 elo3 double mutant strains that were genetically complemented by the expression of the
- ZmKCS2, ZmKCS4, ZmKCS11, ZmKCS15 or ZmKCS20 proteins (Fig. 4F), even though the
- 421 expression of *Gl2* and *Gl2-like* did not qualitatively change the VLCFA profiles (Figs. 4A-4E).
- Similarly, we evaluated the expression of mRNAs encoding for GL2 or GL2-LIKE proteins and
- either ZmKCS5 (Fig. 5B) or ZmKCS6 (Fig. 5D), which were co-expressed with ZmKCS15 in the
- 424 yeast *elo2 elo3* double mutant strain. This double mutant strain is only viable because of the
- expression of the ZmKCS15 protein (Fig. 4D). Thus, in these strains ZmKCS15 was co-expressed

- with either ZmKCS5 or ZmKCS6, in the presence or absence of either GL2 or GL2-LIKE. RT-PCR
- analyses confirmed the expression of Gl2 and Gl2-like mRNAs and either ZmKCS5 (Fig. 5B) or
- 428 ZmKCS6 (Fig. 5D), even though these genetic modifications did not affect changes in the VLCFA
- 429 profiles (Fig. 5A and 5C).

#### 4 Discussion

430

- The BAHD class of acyltransferases was initially identified by the biochemical characterization of
- four enzymes that are involved in the biosynthesis of plant secondary metabolites (St-Pierre and
- 433 Luca, 2000). Subsequently, hundreds of these enzymes have been characterized from diverse
- phylogenetic sources, and they have been classified into seven different sequence-based clades,
- which also segregate these enzymes according to the chemical nature of the substrate that is acylated
- 436 (Kruse et al., 2022; Moghe et al., 2023). One of these clades (i.e., Clade 2) contains proteins (i.e.,
- 437 GL2 and CER2) whose acyltransferase activity is uncharacterized. These two proteins were
- 438 genetically defined by mutant alleles that affect the normal accumulation of cuticular waxes (Hayes
- and Brewbaker, 1928; Koornneef et al., 1989). Following the molecular characterization of these
- genetic loci (Negruk et al., 1996; Tacke et al., 1995; Xia et al., 1996), the homologous Gl2-like locus
- (Alexander et al., 2020) and four homologous CER2-LIKE loci (Haslam et al., 2015; Haslam and
- Kunst, 2020; Pascal et al., 2013) were identified in maize and Arabidopsis, respectively.
- Additionally, homologs of these proteins have been characterized from a number of different plant
- species, including rice (Wang et al., 2017), onion (Liu et al., 2023), broccoli (Han et al., 2021),
- cabbage (Ji et al., 2021), and poplar (Gonzales-Vigil et al., 2021).
- The functionality of these proteins has been based on a model developed from extensive
- characterizations of the Arabidopsis CER2 and CER2-LIKE proteins (reviewed by Haslam et al.,
- 448 (2017)). These characterizations indicate that the CER2 and CER2-LIKE proteins are modulators of
- the product-profile of the FAE system, mediated by physical interactions with the KCS component of
- 450 the FAE system (Haslam and Kunst, 2020; Kim et al., 2022). Hence, in the presence of CER2 or
- 451 CER2-LIKE, the FAE system can produce longer chain VLCFAs than in their absence (Haslam et
- 452 al., 2015; Haslam and Kunst, 2020; Haslam et al., 2012). This functionality model was primarily
- developed from the analyses of yeast strains that co-express Arabidopsis KCS isozymes with CER2
- or CER2-LIKE proteins. Specifically, the singular expression of an Arabidopsis KCS isozyme in
- 455 yeast produces VLCFAs of only 28-carbon chain length. However, co-expression of CER2 or CER2-
- 456 LIKE proteins with Arabidopsis KCS isozymes enables the yeast strain to produce VLCFAs of
- longer chain lengths, up to 34-carbon atoms (Haslam et al., 2015; Haslam and Kunst, 2020; Haslam
- 458 et al., 2012). Moreover, this modification of the product profile of the FAE system by CER2 and
- 459 CER2-LIKE proteins displays specificity, occurring only with the Arabidopsis KCS6 (CER6;
- 460 AT1G68530) and KCS5 (*CER60*; AT1G25450) proteins, and does not occur with KCS1
- 461 (AT1G01120), KCS10 (*FIDDLEHEAD*; AT2G26250), KCS9 (AT2G16280) or KCS20
- 462 (AT5G43760) (Haslam *et al.*, 2015). This model provides an explanation for the observed *in planta*
- change in the cuticular wax phenotypes expressed by the loss-of-function cer2 or cer2-like mutants.
- Specifically, Arabidopsis *cer2* mutants do not accumulate cuticular VLCFAs and derivative products
- 465 that are greater than 28-carbon chain length, whereas in the wild-type state these cuticular
- components are derived from 30- to 34-carbon VLCFAs (Haslam et al., 2015; Haslam and Kunst,
- 467 2020; Haslam *et al.*, 2012; Negruk *et al.*, 1996).
- We had previously characterized the functionality of the maize GL2 and GL2-LIKE proteins relative
- 469 to CER2 function by *in planta* genetic complementation experiments, which indicated that the two
- 470 maize homologs have overlapping and distinct functions. Specifically, the transgenic expression of

- either the GL2 or GL2-LIKE protein in Arabidopsis can complement the *cer2* mutation by restoring
- 472 the production of VLCFAs of 26:0 and greater chain lengths. However, whereas the GL2-LIKE
- protein requires an intact HXXXDX catalytic-motif to fully complement the cer2 function, GL2
- protein can accomplish this complementation without an intact HXXXDX motif (Alexander et al.,
- 475 2020).
- In this study we explored the potential interactions between the GL2 or GL2-LIKE proteins with the
- 477 maize FAE components, using yeast as the co-expression platform. Extrapolating from the
- 478 functionality model developed for the homologous CER2 and CER2-LIKE proteins, we initially
- focused on the ability of GL2 or GL2-LIKE to affect the capability of ZmKCS isozymes to produce
- longer chain VLCFAs. We found that the effects of GL2 or GL2-LIKE were dependent on the yeast
- strain that was used and on the promoter that was used to drive the co-expression of these proteins.
- Specifically, when co-expression was controlled by the *GAL1* promoter, in the diploid INVSc1 yeast
- strain, both GL2 or GL2-LIKE affected the ability of ZmKCSs to produce larger quantities of the
- longer chain VLCFAs, without enabling additional elongation cycles that would produce even longer
- chain products (i.e., only producing VLCFAs of up to 28-carbon atoms). However, when co-
- expression was controlled by the constitutive GPD promoter, in both diploid strains (i.e., INVSc1 or
- 487 BY4743), both GL2 or GL2-LIKE stimulated the ability of ZmKCSs to produce the longer chain
- VLCFAs (i.e., 30:0) that could not be produced in the absence of GL2 or GL2-LIKE.
- 489 Although the latter results with the *GPD* promoters are consistent with the functionality model
- developed with the Arabidopsis CER2 and CER2-LIKE proteins (Haslam et al., 2017), we
- considered the possibility that the inconsistent results obtained with the *GAL1* promoter in the
- 492 INVSc1 strain may be associated with the complexity of co-expressing the ZmKCS isozymes with
- 493 GL2 or GL2-LIKE in a host that has an intact endogenous FAE system. Adding to this complexity is
- 494 the fact that the endogenous yeast FAE system does not utilize a KCS-type condensing enzyme, but
- rather utilizes a combination of three ELO-type condensing enzymes (ELO1, ELO2 and ELO3) (Oh
- 496 et al., 1997; Toke and Martin, 1996). This complexity was partially overcome by taking advantage of
- 497 yeast strains that we had previously developed, which were viable only because of the expression of
- 498 maize FAE components (Campbell et al., 2019; Stenback et al., 2022). These strains carry null
- alleles in the endogenous FAE component genes (i.e., elo2 elo3 double mutant, kcr and hcd mutants),
- which is a lethal condition. However, the lethality associated with these mutants was rescued by the
- expression of individual maize FAE components. The co-expression of GL2 or GL2-LIKE in these
- strains did not significantly affect the VLCFA profiles produced by the resulting strains, in particular
- there was no induction of the synthesis of longer chain VLCFAs (i.e., of 30-carbons or longer), as
- was expected based on the functionality model developed with the Arabidopsis CER2 and CER2-
- 505 *LIKE* genes (Haslam *et al.*, 2017).
- There are a number of potential explanations for these observations. For example, the GL2 and GL2-
- 507 LIKE proteins may have functions that are distinct from the CER2 or CER2-LIKE proteins.
- However, our prior study, which demonstrated that the *in planta* expression of the two maize proteins
- can genetically complement the *cer2* mutation, is inconsistent with this explanation (Alexander et al.,
- 510 2020). Another possibility is that the effect of the GL2 and GL2-LIKE proteins on FAE is masked by
- 511 the fact that the yeast strains that we developed expressed a hybrid FAE system that mixed maize and
- yeast components. This is a very viable explanation because bimolecular fluorescence
- 513 complementation and yeast two-hybrid assays have indicated that protein–protein interactions are
- 514 important in the assembly of a functional FAE system (Kim et al., 2022). This is of particular
- significance because the yeast FAE system uses an ELO-type enzyme to catalyze the Claisen
- 516 condensation reaction to generate the new carbon-carbon bond that enables the elongation of the

- substrate (Oh et al., 1997; Toke and Martin, 1996), whereas the interaction between CER2 or CER2-
- 518 LIKE proteins with FAE is mediated through interactions with the KCS component (Haslam et al.,
- 519 2017). Indeed, with the many recent synthetic biological reagents that have been developed for yeast,
- it is becoming possible to evaluate this last possibility by reconstituting the entire plant FAE system.
- Most recently, the effect of the CER2 and CER2-LIKE proteins have been demonstrated with yeast
- 522 strains that comprehensively express the Arabidopsis FAE system (Batsale et al., 2023), although
- 523 these strains are also co-expressing the endogenous yeast FAE system. Based upon our prior
- reconstitution experiments (Campbell et al., 2019; Stenback et al., 2022) it should be possible to
- develop viable yeast strains that are solely expressing a maize FAE system, which can be used to
- specifically evaluate the functionality of GL2 or GL2-LIKE in affecting VLCFA production.

### 527 **5** Conflict of Interest

- The authors declare that the research was conducted in the absence of any commercial or financial
- relationships that could be construed as a potential conflict of interest.

#### 530 **6 Author Contributions**

- Conceptualization, M.D.Y-N. and B.J.N.; data curation, L.E.A. and D.W.; formal analysis, L.E.A.
- and D.W.; funding acquisition, B.J.N. and M.D.Y-N.; investigation, L.E.A., D.W., K.E.S., K.R.C.,
- 533 E.T., K.F., M.A.S., L.R.; methodology, L.E.A., D.W., K.E.S., M.L., K.R.C., E.T., K.F., M.A.S.,
- L.R.; project administration, M.D.Y-N. and B.J.N.; resources, M.D.Y-N. and B.J.N.; supervision,
- 535 L.E.A., D.W., M.D.Y-N. and B.J.N.; Visualization, L.E.A., D.W., M.L. and B.J.N.; writing original
- draft preparation, L.E.A. and D.W.; writing review & editing, L.E.A., D.W., M.L., M.D.Y-N. and
- B.J.N. All authors have read and agreed to the published version of the manuscript.

# 538 7 Funding

- This work was supported by the State of Iowa, through Iowa State University's Center for Metabolic
- Biology, by the National Science Foundation through grant MCB-2212799 to B.J.N. and M.D.Y.-N,
- and the East Asia and Pacific Summer Institutes for U.S. Graduate Students (EAPSI) program of the
- National Science Foundation (grant OISE–1614020 to L.E.A.). Additional support was provided by
- USDA-NIFA Hatch projects IOW0382 (B.J.N.) and IOW03649 (M.D.Y.-N.).

# 544 8 Acknowledgments

- The authors acknowledge Dr. Alexis A. Campbell for providing the maize FAE component yeast
- replacement strains, and the W. M. Keck Metabolomics Research Laboratory, Office of
- Biotechnology, Iowa State University, Ames IA, for providing access to analytical instrumentation
- and Drs. Ann Perera and Lucas J. Showman for their assistance and support regarding metabolite
- 549 profiling.

553

### 550 9 Data and Materials Availability Statement

- The original contributions presented in the study are included in the article/supplementary material,
- further inquiries can be directed to the corresponding author.

# 10 Supplementary Material

- 554 **Supplemental Table 1.** VLCFA accumulation in yeast strains expressing maize FAE components in
- 555 combination with GL2 or GL2-LIKE
- 556 **Supplemental Table 2.** Statistically significant differences in VLCFA accumulation
- 557 11 References
- 558 Adams A, Kaiser C. 1998. Methods in yeast genetics: A Cold Spring Harbor Laboratory Course
- 559 Manual. Cold Spring Harbor Laboratory Press, Plainview, NY.
- Alberti S, Gitler AD, Lindquist S. 2007. A suite of Gateway cloning vectors for high-throughput
- genetic analysis in *Saccharomyces cerevisiae*. Yeast **24**, 913-919.
- Alexander LE, Okazaki Y, Schelling MA, Davis A, Zheng X, Rizhsky L, Yandeau-Nelson MD,
- Saito K, Nikolau BJ. 2020. Maize Glossy2 and Glossy2-like genes have overlapping and distinct
- functions in cuticular lipid deposition. Plant Physiol **183**, 840-853.
- Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP,
- Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD. 2008. The
- very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for
- plant development. Proc Natl Acad Sci U S A **105**, 14727-14731.
- Barbero F. 2016. Cuticular lipids as a cross-talk among ants, plants and butterflies. Int J Mol Sci 17,
- 570 1966.
- Batsale M, Alonso M, Pascal S, Thoraval D, Haslam RP, Beaudoin F, Domergue F, Joubes J.
- 572 2023. Tackling functional redundancy of Arabidopsis fatty acid elongase complexes. Front Plant Sci
- **14**, 1107333.
- Bianchi A, Bianchi G, Avato P, Salamini F. 1985. Biosynthetic pathways of epicuticular wax of
- maize as assessed by mutation, light, plant age and inhibitor studies. Maydica **30**, 179-198.
- 576 **Bianchi G, Avato P, Salamini F**. 1975. *Glossy* mutants of maize, VI chemical constituents of
- glossy-2 epicuticular waxes. Maydica **20**, 165-173.
- 578 Bitter GA, Egan KM, Koski RA, Jones MO, Elliott SG, Giffin JC. 1987. Expression and
- secretion vectors for yeast. Methods Enzymol 153, 516-544.
- 580 Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion
- strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-
- mediated gene disruption and other applications. Yeast 14, 115-132.
- 583 Campbell AA, Stenback KE, Flyckt K, Hoang T, Perera MADN, Nikolau BJ. 2019. A single-cell
- platform for reconstituting and characterizing fatty acid elongase component enzymes. PLoS One 14.
- 585 e0213620.
- 586 **D'Auria JC**. 2006. Acyltransferases in plants: A good time to be BAHD. Curr Op Plant Biol 9, 331-
- 587 340.
- 588 **Denic V, Weissman JS**. 2007. A molecular caliper mechanism for determining very long-chain fatty
- 589 acid length. Cell **130**, 663-677.
- 590 Dietrich CR, Perera MADN, Yandeau-Nelson MD, Meeley RB, Nikolau BJ, Schnable PS. 2005.
- 591 Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid
- elongase is essential for maize (Zea mays L.) development. Plant J 42, 844-861.
- **Erdbrügger P, Fröhlich F**. 2021. The role of very long chain fatty acids in yeast physiology and
- 594 human diseases. Biol Chem **402**, 25-38.
- **Gable K, Garton S, Napier JA, Dunn TM**. 2004. Functional characterization of the *Arabidopsis*
- 596 thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating
- 597 system. J Exp Bot **55**, 543-545.
- 598 Gietz RD, Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded carrier
- 599 DNA/polyethylene glycol method. Methods Enzymol **350**, 87-96.

- 600 Gonzales-Vigil E, von Loessl ME, Chen JY, Li S, Haslam TM, Kunst L, Mansfield SD. 2021.
- Understanding the role of *Populus* ECERIFERUM2-likes in the biosynthesis of very-long-chain fatty
- acids for cuticular waxes. Plant Cell Physiol **62**, 827-838.
- Han F, Huang J, Xie Q, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Wang Y, Ji J, Li Z.
- 604 2021. Genetic mapping and candidate gene identification of *BoGL5*, a gene essential for cuticular
- wax biosynthesis in broccoli. BMC Genomics 22, 811.
- Han G, Gable K, Kohlwein SD, Beaudoin F, Napier JA, Dunn TM. 2002. The Saccharomyces
- 607 cerevisiae YBR159w gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J Biol
- 608 Chem **277**, 35440-35449.
- Harrison PJ, Dunn TM, Campopiano DJ. 2018. Sphingolipid biosynthesis in man and microbes.
- 610 Nat Prod Rep **35**, 921-954.
- Haslam TM, Feussner I. 2022. Diversity in sphingolipid metabolism across land plants. J Exp Bot
- 612 **73**, 2785-2798.
- Haslam TM, Gerelle WK, Graham SW, Kunst L. 2017. The unique role of the ECERIFERUM2-
- 614 LIKE clade of the BAHD acyltransferase superfamily in cuticular wax metabolism. Plants 6, 23.
- Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernández AM,
- Beaudoin F, Napier JA, Kunst L, Joubés J. 2015. ECERIFERUM2-LIKE proteins have unique
- biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol 167,
- 618 682-692.
- Haslam TM, Kunst L. 2013. Extending the story of very-long-chain fatty acid elongation. Plant Sci
- **210**, 93-107.
- Haslam TM, Kunst L. 2020. Arabidopsis ECERIFERUM2-LIKEs Are mediators of condensing
- enzyme function. Plant Cell Physiol **61**, 2126-2138.
- Haslam TM, Mañas-Fernández A, Zhao L, Kunst L. 2012. Arabidopsis ECERIFERUM2 is a
- 624 component of the fatty acid elongation machinery required for fatty acid extension to exceptional
- 625 lengths. Plant Physiol **160**, 1164-1174.
- Hayes HK, Brewbaker HE. 1928. Glossy Seedlings in Maize. Am Nat 62, 228-235.
- James DW, Jr., Lim E, Keller J, Plooy I, Ralston E, Dooner HK. 1995. Directed tagging of the
- 628 Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon Activator. Plant
- 629 Cell 7, 309-319.
- Jenks MA, Tuttle HA, Eigenbrode SD, Feldmann KA. 1995. Leaf epicuticular waxes of the
- 631 Eceriferum mutants in Arabidopsis. Plant Physiol 108, 369-377.
- Ji J, Cao W, Tong L, Fang Z, Zhang Y, Zhuang M, Wang Y, Yang L, Lv H. 2021. Identification
- and validation of an ECERIFERUM2- LIKE gene controlling cuticular wax biosynthesis in cabbage
- 634 (Brassica oleracea L. var. capitata L.). Theor Appl Genet 134, 4055-4066.
- 635 Kim J, Kim RJ, Lee SB, Suh MC. 2022. Protein-protein interactions in fatty acid elongase
- complexes are important for very-long-chain fatty acid synthesis. J Exp Bot 73, 3004-3017.
- Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D, Dunn T. 2001. Tsc13p is
- required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface
- 639 in Saccharomyces cerevisiae. Mol Cell Biol 21, 109-125.
- Koornneef M, Hanhart CJ, Thiel F. 1989. A genetic and phenotypic description of *Eceriferum*
- 641 (Cer) mutants in Arabidopsis thaliana. J Hered **80**, 118-122.
- Kruse LH, Weigle AT, Irfan M, Martínez-Gómez J, Chobirko JD, Schaffer JE, Bennett AA,
- 643 **Specht CD, Jez JM, Shukla D, Moghe GD**. 2022. Orthology-based analysis helps map evolutionary
- diversification and predict substrate class use of BAHD acyltransferases. Plant J 111, 1453-1468.
- 645 Leonard AE, Pereira SL, Sprecher H, Huang YS. 2004. Elongation of long-chain fatty acids. Prog
- 646 Lipid Res **43**, 36-54.
- 647 Liu L, Xu H, Zhang W, Xing J, Zhu M, Zhang Y, Wang Y. 2023. Genome-wide analysis of the
- BAHD Family in elsh onion and CER2-LIKEs Involved in Wax Metabolism. Genes 14, 1286.

- McNevin JP, Woodward W, Hannoufa A, Feldmann KA, Lemieux B. 1993. Isolation and
- characterization of eceriferum (cer) mutants induced by T-DNA insertions in Arabidopsis thaliana.
- 651 Genome **36**, 610-618.
- Moghe G, Kruse LH, Petersen M, Scossa F, Fernie AR, Gaquerel E, D'Auria JC. 2023. BAHD
- company: The ever-expanding roles of the BAHD acyltransferase gene family in plants. Ann Rev
- 654 Plant Biol **74**, 165-194.
- Negruk V, Yang P, Subramanian M, McNevin JP, Lemieux B. 1996. Molecular cloning and
- characterization of the CER2 gene of Arabidopsis thaliana. Plant J 9, 137-145.
- Oh CS, Toke DA, Mandala S, Martin CE. 1997. ELO2 and ELO3, homologues of the
- 658 Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for
- sphingolipid formation. J Biol Chem **272**, 17376-17384.
- Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue
- **F, Joubés J**. 2013. The *Arabidopsis cer26* mutant, like the *cer2* mutant, is specifically affected in the
- very long chain fatty acid elongation process. Plant J 73, 733-746.
- 663 Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: Cuticular wax formation by epidermal
- 664 cells. Annu Rev Plant Biol **59**, 683-707.
- 665 Schnable PS, Stinard PS, Wen T-J, Heinen S, Weber D, Zhang L, Hansen JD, Nikolau BJ.
- 1994. The genetics of cuticular wax biosynthesis. Maydica 39, 279-287.
- 667 Smith WL. 1989. The eicosanoids and their biochemical mechanisms of action. Biochem J 259, 315-
- 668 324.
- 669 **St-Pierre B, Luca VD**. 2000. Evolution of acyltransferase genes: Origin and diversification of the
- BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv Phytochem
- 671 **34**, 285-315.
- 672 Stenback KE, Flyckt KS, Hoang T, Campbell AA, Nikolau BJ. 2022. Modifying the yeast very
- long chain fatty acid biosynthetic machinery by the expression of plant 3-ketoacyl CoA synthase
- 674 isozymes. Sci Rep **12**, 13235.
- Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzini S, Salamini F, Döring HP.
- 676 1995. Transposon tagging of the maize *Glossy2* locus with the transposable element *En/Spm*. Plant J
- **8**, 907-917.
- 678 **Thulasingam M, Haeggström JZ**. 2020. Integral membrane enzymes in eicosanoid metabolism:
- 679 Structures, mechanisms and inhibitor design. J Mol Biol 432, 4999-5022.
- Toke DA, Martin CE. 1996. Isolation and characterization of a gene affecting fatty acid elongation
- in Saccharomyces cerevisiae. J Biol Chem 271, 18413-18422.
- Wang X, Guan Y, Zhang D, Dong X, Tian L, Qu LQ. 2017. A β-ketoacyl-CoA synthase is
- involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor. Plant
- 684 Physiol **173**, 944-955.
- Kia Y, Nikolau BJ, Schnable PS. 1996. Cloning and characterization of CER2, an Arabidopsis gene
- that affects cuticular wax accumulation. Plant Cell 8, 1291-1304.
- Ku X, Dietrich CR, Delledonne M, Xia Y, Wen TJ, Robertson DS, Nikolau BJ, Schnable PS.
- 688 1997. Sequence analysis of the cloned *glossy8* gene of maize suggests that it may code for a β-
- ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115, 501-510.
- Ku X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS. 2002. The endoplasmic reticulum-
- associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the
- 692 production of cuticular waxes. Plant Physiol **128**, 924-934.
- Yeats TH, Rose JK. 2013. The formation and function of plant cuticles. Plant Physiol 163, 5-20.

### 694 FIGURE LEGENDS

- 695 **Figure 1.** VLCFA accumulation in the INVSc1 yeast diploid strain co-expressing GL2 or GL2-
- 696 LIKE with ZmKCS isozymes. A) VLCFA accumulation in WT (INVSc1) and the isogenic yeast

- 697 strains expressing individually or in combination ZmKCS5 and GL2 or GL2-LIKE. **B)** VLCFA
- 698 accumulation in WT (INVSc1) and the isogenic yeast strains expressing individually or in
- 699 combination ZmKCS6 and GL2 or GL2-LIKE. C) VLCFA composition in WT (INVSc1) and the
- 700 isogenic yeast strains expressing individually or in combination ZmKCS5 and GL2 or GL2-LIKE.
- 701 **D)** VLCFA composition in WT (INVSc1) and the isogenic yeast strains expressing individually or in
- 702 combination ZmKCS6 and GL2 or GL2-LIKE. All maize genes were episomally expressed under the
- 703 transcriptional control of the galactose-inducible *GAL1* promoter. All data are the average + standard
- 704 error (n = 6). Statistical significance of differences among all yeast strains was determined by
- 705 Tukey's HSD test (Supplemental Table 2). In panels A and B, different letters above each data bar
- 706 indicate statistically significant differences among the strains (p-value < 0.05). In panels C and D.
- 707 asterisks identify statistically significant differences (p-value  $\leq 0.05$ ) between the strain expressing
- 708 only a ZmKCS isozyme and the strain co-expressing the ZmKCS isozyme with GL2 (red asterisk) or
- 709 with GL2-LIKE (black asterisk).
- 710 Figure 2. VLCFA accumulation in the yeast diploid strains, INVSc1 and BY4743, co-expressing
- 711 GL2 or GL2-LIKE with ZmKCS isozymes. A) VLCFA composition in WT (INVSc1), and the
- 712 isogenic yeast strains expressing individually or in combination ZmKCS5 and GL2 or GL2-LIKE.
- 713 B) VLCFA composition in WT (INVSc1), and the isogenic yeast strains expressing individually or in
- 714 combination ZmKCS6 and GL2 or GL2-LIKE. C) VLCFA composition in WT (BY4743) and the
- 715 isogenic yeast strains expressing individually or in combination ZmKCS5 and GL2 or GL2-LIKE.
- 716 **D)** VLCFA composition in WT (BY4743) and the isogenic yeast strains expressing individually or in
- 717 combination ZmKCS6 and GL2 or GL2-LIKE. All maize genes were episomally expressed under the
- 718 transcriptional control of the constitutive GPD promoter. All data are the average + standard error (n
- 719 = 3). Statistical significance of differences among all yeast strains was determined by Tukey's HSD
- 720 test (Supplemental Table 2). Asterisks identify statistically significant differences (p-value  $\leq 0.05$ )
- 721 between the strain expressing only a ZmKCS isozyme and the strain co-expressing the ZmKCS
- isozyme with GL2 (red asterisk) or with GL2-LIKE (black asterisk). 722
- 723 Figure 3. VLCFA accumulation in the yeast haploid strain (BY4742) carrying an *elo3* null allele co-
- 724 expressing GL2 or GL2-LIKE with ZmKCS isozymes. A) VLCFA composition of yeast *elo3* mutant
- 725 strains expressing individually or in combination ZmKCS5 and GL2 or GL2-LIKE. B) VLCFA
- 726 composition of yeast elo3 mutant strains expressing individually or in combination ZmKCS6 and
- 727 GL2 or GL2-LIKE. C) VLCFA composition of yeast elo3 mutant strains expressing individually or
- 728 in combination ZmKCS4 and GL2 or GL2-LIKE. **D)** VLCFA composition of yeast *elo3* mutant
- 729 strains expressing individually or in combination ZmKCS15 and GL2 or GL2-LIKE. E) GL2 protein
- 730 expression demonstrated by Western blot analyses of the indicated strains (n=3). All maize genes
- 731 were episomally expressed under the transcriptional control of the constitutive GPD promoter. All
- 732 fatty acid composition data are the average + standard error (n = 4). Statistical significance of
- 733 differences among all yeast strains was determined by Tukey's HSD test (Supplemental Table 2).
- 734 There were no statistically significant differences (p-value  $\leq 0.05$ ) in VLCFA profiles between the
- 735 strain expressing only a ZmKCS isozyme and the strain co-expressing the ZmKCS isozyme with
- 736 GL2 or with GL2-LIKE.
- 737 Figure 4. VLCFA accumulation upon co-expressing GL2 or GL2-LIKE with ZmKCS isozymes that
- 738 genetically complement the lethality of the elo2 elo3 double mutant yeast strain. VLCFA
- 739 composition of yeast *elo2 elo3* double mutant strains expressing individually or in combination GL2
- 740 or GL2-LIKE and ZmKCS2 (A), ZmKCS4, (B) ZmKCS11 (C), ZmKCS15 (D), and ZmKCS20 (E).
- 741 F) RT-PCR analysis of the expression of the Gl2 (1300-bp product) and Gl2-like (1400-bp product)
- 742 mRNAs in the indicated yeast strains. All maize genes were episomally expressed under the
- 743 transcriptional control of the *GPD* constitutive promoter. Data are the average + standard error (n=3).

- Statistical significance of differences among all yeast strains was determined by Tukey's HSD test
- 745 (Supplemental Table 2). Asterisks identify statistically significant differences (p-value  $\leq 0.05$ )
- between the strain expressing only a ZmKCS isozyme and the strain co-expressing that ZmKCS
- isozyme with GL2 (red asterisk) or with GL2-LIKE (black asterisk).
- 748 **Figure 5.** VLCFA accumulation upon co-expressing GL2 or GL2-LIKE with different combinations
- of ZmKCS isozymes that rescue the lethality of the *elo2 elo3* double mutant yeast strain. A) VLCFA
- composition of yeast *elo2 elo3* double mutant strains genetically complemented by the combined co-
- expression of the ZmKCS15 and ZmKCS5 isozymes, in the absence or presence of either GL2 or
- GL2-LIKE. **B)** RT-PCR analysis of the expression of the *Gl2* (1300-bp product), *Gl2-like* (1400-bp
- product) and ZmKCS5 (168-bp product) mRNAs in the indicated yeast strains. C) VLCFA
- composition of yeast *elo2 elo3* double mutant strains genetically complemented by the combined co-
- expression of the ZmKCS15 and ZmKCS6 isozymes, in the absence or presence of either GL2 or
- GL2-LIKE. **D)** RT-PCR analysis of the expression of the *Gl2* (1300-bp product), *Gl2-like* (1400-bp
- product) and ZmKCS6 (330-bp product) mRNAs in the indicated yeast strains. All maize genes were
- episomally expressed under the transcriptional control of the *GPD* constitutive promoter. Data are the
- 759 average + standard error (n=3). Statistical significance of differences among all yeast strains was
- determined by Tukey's HSD test (Supplemental Table 2). There were no statistically significant
- differences (p-value  $\leq$  0.05) in VLCFA profiles between the strain co-expressing combinations of
- 762 ZmKCS isozymes in the absence or presence of either GL2 or GL2-LIKE.
- Figure 6. VLCFA accumulation upon co-expressing GL2 or GL2-LIKE with ZmKCR1, ZmKCR2
- or ZmHCD that rescue the lethality of the yeast kcr or hcd null alleles, respectively. A) VLCFA
- composition of the yeast kcr mutant strain genetically rescued by the expression of ZmKCR1, in the
- absence or presence of either GL2 or GL2-LIKE. **B)** VLCFA composition of the yeast *kcr* mutant
- strain genetically rescued by the expression of ZmKCR2, in the absence or presence of either GL2 or
- GL2-LIKE. C) VLCFA composition of the yeast *hcd* mutant strain genetically rescued by the
- expression of ZmHCD, in the absence or presence of either GL2 or GL2-LIKE. All maize genes were
- episomally expressed under the transcriptional control of the galactose-inducible *GAL1* inducible
- promoter. Data are the average + standard error (n=4). Statistical significance of differences among
- all yeast strains was determined by Tukey's HSD test (Supplemental Table 2). Asterisks identify
- statistically significant differences (p-value  $\leq$  0.05) between the strain expressing GL2 (red asterisk)
- or with GL2-LIKE (black asterisk), relative to their absence.

Fig 1

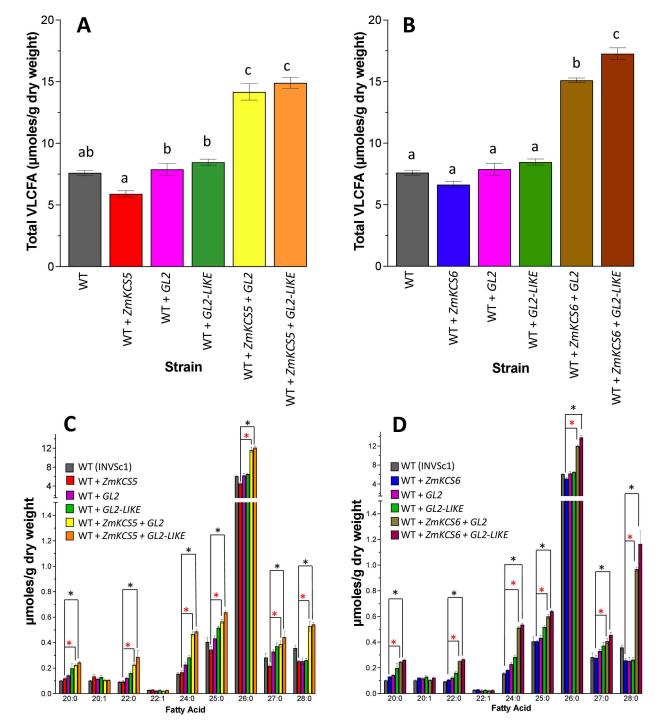
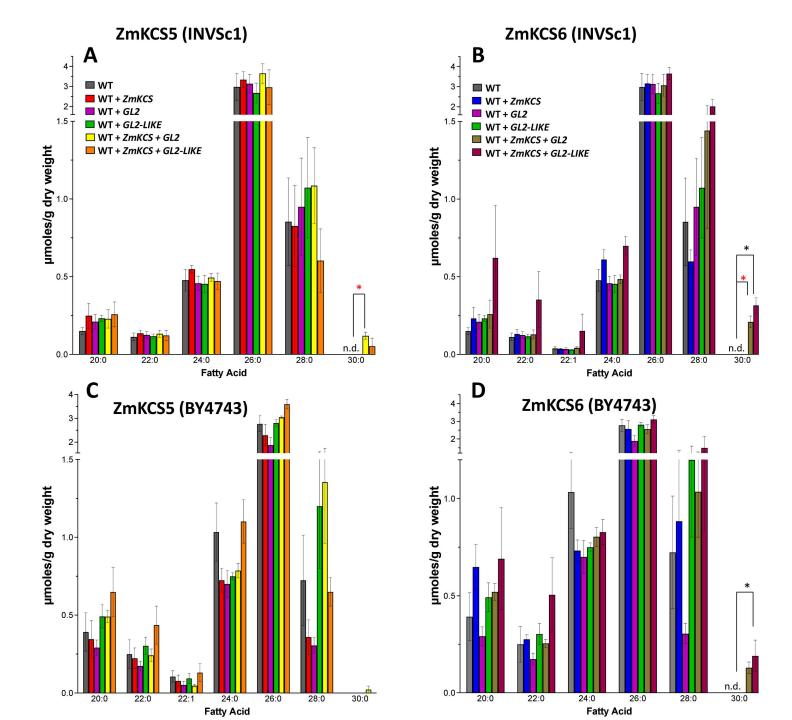
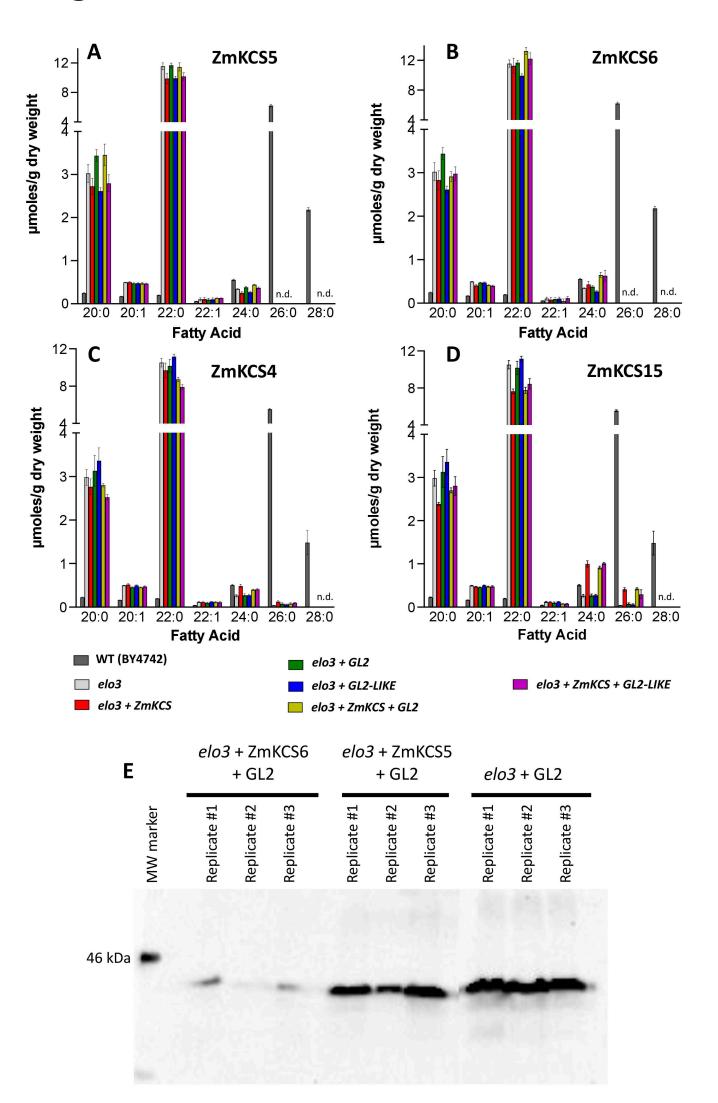
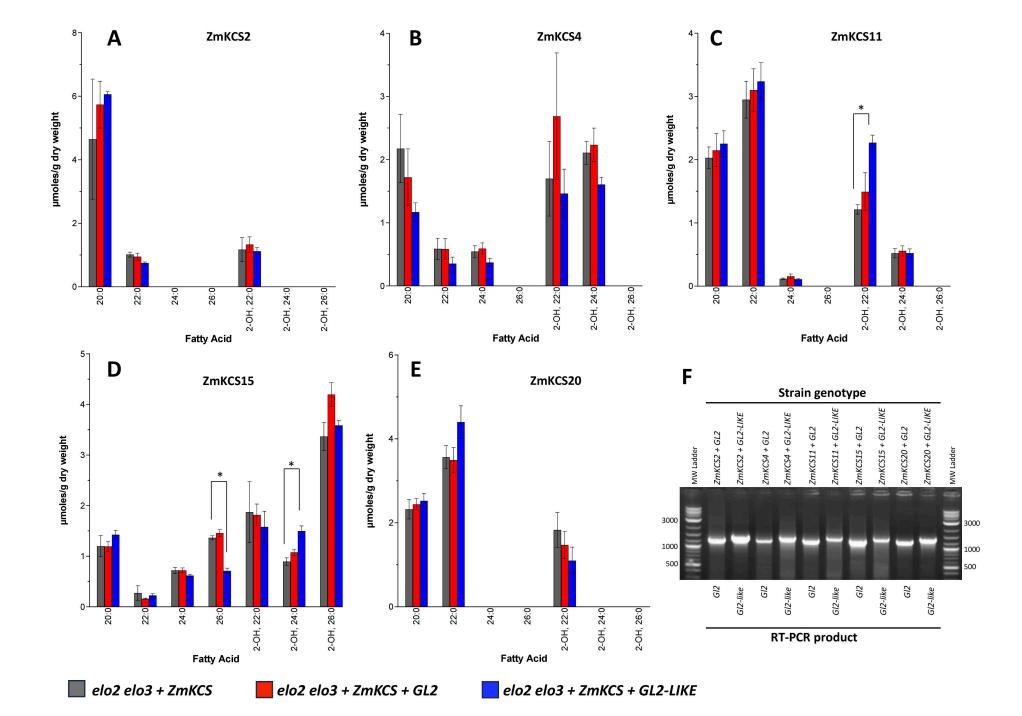
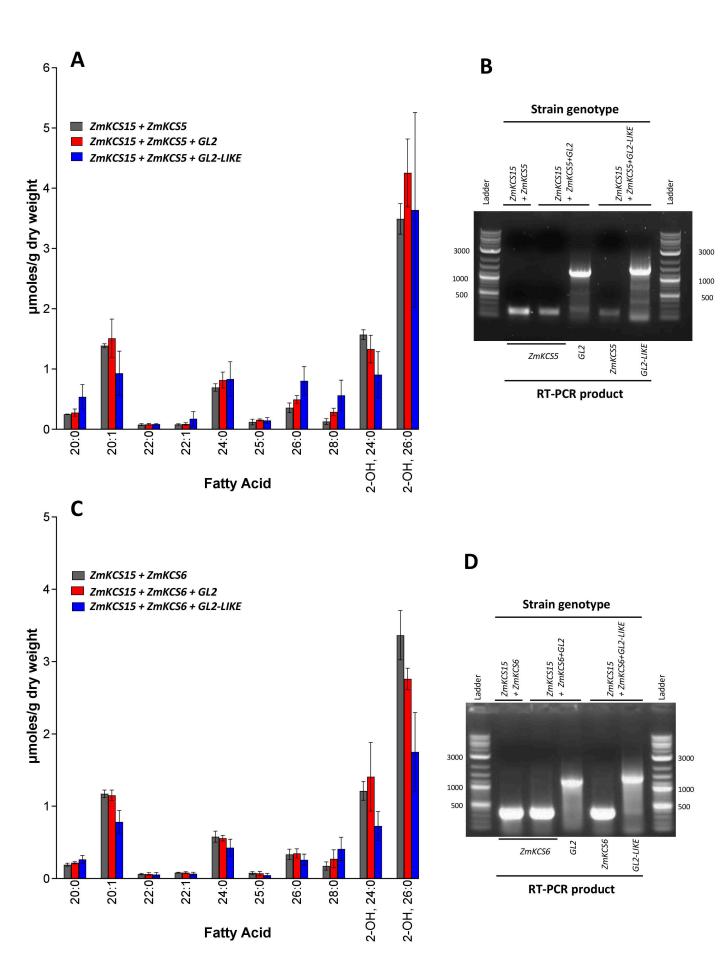
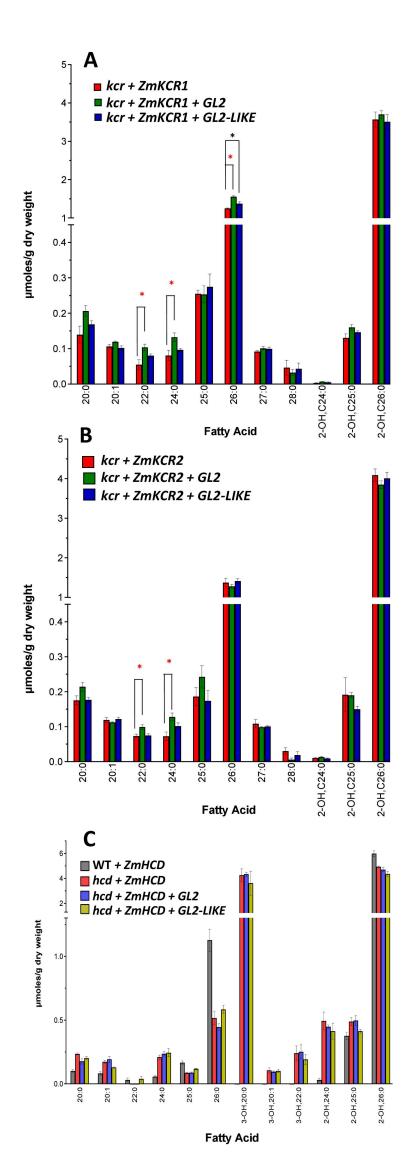




Fig 2



# Figure 3



Figure 4



# Figure 5



# Figure 6

