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A B S T R A C T   

Combined sewer overflows (CSOs), which typically occur during heavy rainfall events, pose significant threats to 
both public health and the environment. These threats encompass various concerns, including contamination of 
drinking water. Numerous studies have developed strategies aimed at mitigating the adverse effects of CSOs. 
These strategies include Green Infrastructure, Integrated Planning, and Smart Control Strategies. Among these, 
Smart Control Strategies have gained the most traction due to their exceptional cost-effectiveness. Nevertheless, 
the existing control methods face a challenge in striking the right balance between precision and computational 
efficiency. While employing full numerical methods as predictive models can provide high accuracy, they often 
prove inefficient in terms of runtime, especially when applied to real-world complex combined sewer systems. 
Conversely, reduced-order models tend to offer quicker results but may sacrifice accuracy. To address this issue, 
we propose an exploration of various mainstream machine learning models for CSO predictions. Additionally, we 
introduce a novel approach known as “inversion of neural networks” to bridge the gap between prediction and 
optimization. This innovative method enables us to use a single neural network for both CSO prediction and 
optimization tasks, resulting in a significant enhancement in terms of computational efficiency. The accuracy of 
our predictive approach has been validated through simulation results. In terms of optimization performance, it 
provides similar outcomes to the genetic algorithm, while significantly improving computational speed.   

1. Introduction 

A substantial portion of urban regions in Europe and North America 
continues to rely on combined sewer systems (Lund et al., 2020). The 
combined sewer system collects rainwater runoff, domestic sewage, and 
industrial wastewater in the same pipe (Jean et al., 2018). During heavy 
stormwater events, combined sewer overflows (CSOs) occur when the 
incoming flow exceeds the capacity of a sewer system (Gu et al., 2017; 
Zhao et al., 2017). When this occurs, untreated sewage and industrial 
wastewater discharge directly to nearby streams, rivers, and other water 
bodies. Consequently, this would result in significant environmental 
concerns (Brokamp et al., 2017; Botturi et al., 2021), and threaten public 
health (Ten Veldhuis et al., 2010; Gasperi et al., 2012; García et al., 
2017). Recognized as one of major contributor to water pollution (Gooré 
Bi et al., 2015), the United States Environmental Protection Agency 

(EPA) has developed a set of policies and initiated long-term control 
plans aimed at minimizing the adverse environmental consequences 
associated with this issue (Moffa, 1997; Tao et al., 2017). Multiple ap
proaches to minimize the impact of CSOs have been investigated by 
previous researchers, including investigations into Green/Gray Infra
structure (Cohen et al., 2012; Mancipe Muñoz, 2015; Tavakol-Davani 
et al., 2016; McGarity et al., 2017; Jean et al., 2021), Integrated Plan
ning (Zukovs & Marsalek, 2004; Autixier et al., 2014; Fu et al., 2019; 
Matthews et al., 2000, and Smart Control Strategies (Rathnayake & 
Anwar, 2019; Bachmann-Machnik et al., 2021; Lund et al., 2020; Van 
Der Werf et al., 2023). In recent years, Smart Control Strategies have 
gained popularity owing to their cost-effectiveness (Lund et al., 2018; 
Zhang et al., 2018). 

Throughout the past decades, the control algorithm has undergone 
substantial evolutionary progressions with regards to control strategy. 
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In the past, heuristic control is the major control strategy that was 
widely used in the engineering field (Box, 1978; Fuchs et al., 1997; 
Fuchs & Beeneken, 2005; Gavrilas, 2010; Kroll et al., 2018; Van Der 
Werf et al., 2022). However, the implementation of hierarchical control 
heavily relies either on the expertise and practical knowledge of the 
specific sewer system or on optimization techniques in order to deter
mine the appropriate set-points for actuators (Schütze et al., 2002; Lund 
et al., 2018). Thus, a few drawbacks are unavoidable when using heu
ristic control. Firstly, the determination of actuators set-points are 
typically based on the synthetic data derived from regression analysis, 

therefore, their fixed configuration settings restrict their adaptability to 
diverse rainfall-runoff events (Tian et al., 2022a). Furthermore, the 
experience and practical knowledge for heuristic control are signifi
cantly varied in each individual case. Consequently, the generalization 
of heuristic control to diverse catchments becomes challenging, partic
ularly in cases where substantial variations exist among the catchments 
(Van Der Werf et al., 2022). 

Model predictive control, as another control strategy, demonstrates 
superior adaptability and generalization capabilities (Pleau et al., 2005; 
Mollerup et al., 2016; Lund et al., 2018; Tian et al., 2022a). All model 

Fig. 1. Schematic of the study area, sub-catchment division, and impervious percentages. (a) Puritan Fenkell/Seven-Mile Collection System; (b) Metropolitan Sewer 
District of Greater Cincinnati. 
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predictive control methods need three essential elements: forecasting 
precipitation, predictive (nowcasting) model, and optimization algo
rithms (Sadler et al., 2019; Tian et al., 2022a). In terms of the border 
scope of optimal flood control, multiple previous researches have 
investigated the various combinations of these three elements. To name 
a few noteworthy examples, Genetic Algorithms with HEC-RAS (Leon 
et al., 2020; Albo-Salih et al., 2022), Pattern Search with HEC-RAS (Leon 
et al., 2021), Genetic Algorithms with HEC-HMS (Tang et al., 2020), 
Genetic Algorithms with SWMM (Sadeghi et al., 2022), Evolutionary 
Algorithm with SWMM (Yazdi, 2019), among others. In the context of 
minimizing combined sewer overflows, a few notable efforts have been 
made employing this technique (Zhao et al., 2017; Rathnayake & 
Anwar, 2019; Peng et al., 2021; El Ghazouli et al., 2022; Li et al., 2022). 
Over the past few years, the field of machine learning has experienced a 
significant surge in popularity within both research and practical ap
plications. Some previous studies have employed diverse machine 
learning models on CSOs prediction (Maltbie et al., 2021; Rosin et al., 
2021; Yin et al., 2022; Bakhshipour et al., 2023), and applied rein
forcement learning approach on CSOs optimization problems (Lund 
et al., 2020; Mullapudi et al., 2020; Balla et al., 2022; Tian et al., 2022a; 
Tian et al., 2022b; Yin et al., 2023; Zhang et al., 2023). 

However, there are several research gaps that need to be addressed. 
Firstly, predicting CSOs poses a unique challenge as it differs from other 
time series problems characterized by long histories of continuous pat
terns (e.g. water stage prediction is riverine system). In the CSO prob
lem, the CSO rate remains zero for approximately 99 % of the time and 
experiences sudden spikes during a few hours before returning to zero. 
This atypical pattern makes it difficult for standard time series predic
tion techniques, involving data collection and model construction, to 
accurately capture CSO behavior. Previous research has tried to over
come this issue by shortening the prediction time (Rosin et al., 2021; Yin 
et al., 2022; Bakhshipour et al., 2023), but this approach significantly 
reduces the applicability of the model in real-world scenarios. Secondly, 
CSOs only occur during heavy rainfall events, making it challenging to 
collect a sufficient amount of training data from historical events. In this 
study, we only focus on the rainfall induced CSO. The infiltration 
induced CSO is considered as another topic (Liu et al., 2018; Su et al., 
2020). Many previous control strategy studies have relied on hypo
thetical or regression rainfall data with return periods to build the 
training dataset, but relying solely on hypothetical rainfall data can 
compromise the accuracy of predictions during real rainfall events. 
Integrating both historical event data and hypothetical rainfall data into 
the training dataset presents difficulties, as they often do not align in the 
same dimension. Thus, a novel approach is required to effectively 
combine both types of data for training the CSO prediction model. 
Thirdly, it’s important to note that all the previous research has focused 
on testing their method in very small and highly simplified sewer sys
tems. In the real world, sewer systems are much more complex. There
fore, the prediction and optimization performance of these methods 
used in past research cannot be guaranteed for real-world applications. 
Last but most importantly, the current control methods struggle to keep 
balance between accuracy and the total computational time required for 
optimization. The utilization of full numerical methods as predictive 
models provides high accuracy but proves inefficient in terms of time, 
especially when applied to real-world complex combined sewer systems. 
Conversely, the use of reduced-order models typically delivers faster 
results but often falls short in terms of accuracy. To the best of the au
thor’s knowledge, all current methods still rely on conventional model 
predictive control frameworks, which are built upon non-gradient-based 
optimization algorithms and numerical models. While this framework 
can indeed provide remarkably accurate outcomes, it is extremely 
computational inefficient. Currently, there is no existing method that 
can effectively bridge the information gap between simulation and 
optimization because gradient-based optimizers cannot be directly in
tegrated with either full or reduced-order numerical simulations. 
Therefore, it becomes imperative to establish a bridge between 

predictive model and optimization frameworks to minimize CSOs and 
address all other optimization challenges. 

The main objectives of this paper are to address the previously 
mentioned research gaps comprehensively. Firstly, we aim to develop a 
machine learning framework capable of utilizing both historical and 
hypothetical data. In this paper, we have demonstrated that our 
framework have the ability to perform long-term predictions of the total 
CSO volume over the entire duration of a rainfall event. Additionally, 
the model exhibited high prediction accuracy in the real world existing 
complex combined sewer systems. Secondly, we proposed a novel 
approach called “inversion of neural networks” to bridge the machine 
learning prediction and optimization. The details of “inversion of neural 
networks” are shown in section 2.6. Through this method, we demon
strate the high accuracy and extreme computation efficiency of the 
proposed framework, allowing for real-time updating of gate positions 
based on the latest weather forecast. This bridging of machine learning 
prediction and optimization promises significant feasibility and effec
tiveness in practical applications. 

2. Methodology 

2.1. Study area 

To prove our framework has capability to predict and optimize the 
real-world complex combined sewer systems, we selected two existing 
combined sewer systems within the United States as the study area in 
this paper. The first combined sewer system is Puritan Fenkell/Seven- 
Mile Collection System, which exhibits a more standardized dimension 
in terms of isolated sewer system. The second selected study area for our 
research is the Metropolitan Sewer District of Greater Cincinnati, which 
represents an intricate and complex sewer system within a large urban 
setting. The schematic of the study area, sub-catchment division, and 
impervious percentages for both Puritan Fenkell/Seven-Mile Collection 
System and Metropolitan Sewer District of Greater Cincinnati are shown 
in Fig. 1 (a) and 1 (b), respectively. 

Detroit (42.3314◦ N, 83.0458◦ W) stands as Michigan’s largest and 
most populous city, and it also holds the distinction of being the largest 
city in the United States on the border with Canada. On the northwest 
side of Detroit lies the Puritan Fenkell/Seven-Mile Collection System 
(PFSMC), which is owned by the Great Lakes Water Authority. The 
Puritan Fenkell/Seven-Mile Collection System is a relatively isolated 
system comprising two CSO treatment facilities. These two facilities are 
specifically designed to handle minor storms, offering screening, 
settling, skimming, and disinfection processes to ensure water quality 
before discharging excess water into the local river during more severe 
storms. 

Cincinnati (39.1031◦ N, 84.5120◦ W) is a city in Ohio who lies on the 
northern banks where the Licking and Ohio rivers meet. On the west side 
of the city, you can find the Metropolitan Sewer District of Greater 
Cincinnati. This system is responsible for collecting and transporting 
flows from different combined/separate sewer areas to the Muddy Creek 
wastewater treatment plant (WWTP) during minor storms. However, 
during heavy storms, there are 16 Combined Sewer Overflow (CSO) 
outfalls that can directly release untreated water into the Ohio River. 

2.2. Data generation 

The training data for our framework can be obtained from either 
historical monitoring or numerical simulation. Ideally, using historical 
monitoring data holds greater potential for enhancing prediction accu
racy because all numerical models rarely achieve 100 % accuracy in 
simulating all scenarios. However, monitoring the flow and water depth 
at a single specific location for several months can incur costs amounting 
to thousands of dollars so that makes long-time monitoring the entire 
sewer system economically unfeasible. Thus, we employ Environmental 
Protection Agency Storm Water Management Model (EPA SWMM) to 
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generate the required data in this study. The schematic of the study area 
in the SWMM model is shown in Fig. 2. For the convenience purpose, the 
Puritan Fenkell/Seven-Mile Collection System will be referred to as “C- 
town” and the Metropolitan Sewer District of Greater Cincinnati will be 
referred to as “D-town” for the rest sections in this paper. The CSO 
location and direction can be found at red arrow. 

The C-town SWMM model is relatively simpler. It consists of 19 sub- 
catchments, 37 junctions, 6 outfalls, 4 storage units, 38 conduits, 3 
pumps, 7 orifices, and 4 weirs. Among the 6 outfalls, two are directly 
connected to the CSO treatment facilities, while the remaining 4 outfalls 
possess the potential to release untreated wastewater into the local river. 
There are currently four existing weirs in place to prevent CSO occur
rences during regular stormwater events. These weirs not only serve the 
purpose of preventing CSO, but they also provide us with a convenient 
means of tracking the CSO rate because the CSO rate at each location is 
actually equal to the corresponding weir flow rate. Conversely, the D- 
town SWMM model is significantly more complex. It consists of 2592 
sub-catchments, 5147 junctions, 31 outfalls, 64 storage units, 6099 
conduits, 11 pumps, 268 orifices, and 34 weirs. In the D-town system, 
out of the total 31 outfalls, 16 are connected to the CSO treatment fa
cilities, leaving the remaining 15 with the potential to discharge un
treated wastewater into the local river. Similar to C-town, all 15 of these 
locations are equipped with existing weirs that effectively prevent CSO 
events during regular stormwater events. Thus, we can employ the same 
method to track the CSO rate in D-town as well. Due to the complexity of 
our domain, it is not feasible to include all the necessary details in this 
text. Therefore, we have uploaded both SWMM model files on GitHub 
for reference. You can find them at the following address: [https://gith 
ub.com/ZedaYin/Predicting-and-Minimizing-Combined-Sewer- 
Overflows]. 

In this study, we used both historical rainfall data and synthetic 
rainfall data in this study. Regarding the historical rainfall data, we have 
acquired records from rain gauges spanning the past 20 years. However, 
due to the presence of the existing weirs in both systems, CSOs have only 

occurred during instances of heavy rainfall events. As a result, this 
greatly reduces the effective training dataset, with our outputs having a 
value of zero approximately 99 % of the time. To encompass more useful 
simulation scenarios, we incorporated synthetic rainfall data obtained 
from the local Intensity Duration Frequency (IDF) analysis. In accor
dance with the guidelines provided by the City of Detroit Water and 
Sewerage Department Manual, the local rainfall characteristics in C- 
town align with the NOAA Atlas 14 Precipitation-Frequency Atlas and 
can be represented by equation (1). Similarly, as indicated by the City of 
Cincinnati Division of Stormwater Management, the IDF equation for 
the D-town area can be expressed as equation (2). Both agencies 
recommend utilizing the Natural Resources Conservation Service 
(NRCS) Midwest-Southeast (MSE) type 3 to obtain the 24-hour contin
uous rainfall distribution. 

i =
38.416T0.208

(12.3258 + D)
0.841 (1)  

i = eC1+C2ln(D)+C3(ln(D))2
(2)  

where i denotes rainfall intensity in inch per hour, T represents return 
period in years, and D stands for the rainfall duration in minute, the 
coefficient C1, C2, and C3 can be obtained from the table provided in the 
manual. 

One of the main objectives of this framework involves the optimi
zation stage. Consequently, our predictive machine learning models 
must be capable of providing responses to changes in the control units. 
Manually inputting various sets of time-series data into the SWMM 
graphical user interface (GUI) can be a time-consuming process. To 
address this issue, we employed PySWMM, a Python software package, 
which allowed us to efficiently create and manipulate the time-series 
control unit states (such as orifice gate states) in our model. In order 
to expand the training dataset and incorporate variations in the 
controlled gates, we utilized a uniform distribution, ranged from zero 

Fig. 2. Schematic of study area in SWMM model. (a) Puritan Fenkell/Seven-Mile Collection System; (b) Metropolitan Sewer District of Greater Cincinnati.  
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(fully closed) to 1 (fully open), to generate time-series data for each 
individual controlled orifice gate. This approach allowed us to incor
porate a wider range of scenarios and increase the diversity of our 
training data. 

2.3. Data preprocessing 

To ensure a precise representation of the physics and practical 
applicability of the framework in real-world scenarios, we integrated the 
exact same input variables used by the SWMM model into our machine 
learning framework. These input variables only consist of rainfall in
tensities, outfall water depth, and gate states. Also, we assumed that 
initial conditions for both CSO system are empty. In this study, we also 
assume all the existing structures are undamaged. The damage of 
structure induced CSO could be found on the other related work (Liu 
et al., 2021). 

Typically, in machine learning time series forecasting problems, 
incorporating a historical window of past data is common for achieving 
more accurate results. However, we discovered that including such a 
history window can disrupt predictions during the initial timesteps 
when the control unit undergoes changes, as observed by Shi et al. 
(2023). Moreover, unlike other time-series forecasting projects, such as 
predicting tide elevation, our dataset is more like event-based due to the 
occurrence of Combined Sewer Overflows (CSOs) only during heavy 
stormwater events. Therefore, the information contained within the past 
window at each location appears to lack significance or relevance, and 
we did not use this past window in this study. 

There are two mainstream preprocessing techniques that are 
commonly used in the machine learning field. The first method is to 
organize all covariates and targets at each timestep into a 2D structure, 
and subsequently flattening the entire table into a 1D representation that 
preserves the temporal features. The second technique involves incor
porating time indexes (e.g., date, time, day of week, date of moth, etc.) 
into the 2D time-feature table. Time indexes can offer significant ad
vantages when predicting obvious periodic features such as tides or 
power consumption. However, the second method requires a long 
continuous time window in both training and testing, which is hard to 
achieve in our event-based dataset. Furthermore, our CSO prediction is 
not periodic at all. Thus, the first technique is the best solution in this 
paper. The details of input variable preprocessing and reconstruction are 
illustrated in Fig. 3. 

The output variables follow a similar approach to the first technique, 
but with slight differences due to specific reasons. Firstly, the CSO rates 
exhibit a distinct pattern during heavy stormwater events, resembling a 
striking shape with large values occurring within a short period (1 min 
to 1 h), while remaining zero the rest of the time. This unique charac
teristic poses a significant challenge for all machine learning models. 
Additionally, during the optimization stage, most optimization 

algorithms are designed to work with a single value as the final reward/ 
fitness/objective value. While the time series pattern of the output may 
provide more information for human interpretation, it does not neces
sarily offer additional information that can significantly benefit the 
optimization algorithms. Thus, it would be ideal for this study to utilize 
the total CSO volume at each location and total nodal flooding volume at 
the entire system over the entire event as our output features. As indi
cated in equation (3), the total CSO volume can be calculated as the 
integral of the CSO rate over time. In a discrete time-point representa
tion, it can be expressed using a summation format by applying the 
trapezoidal rule. Since our output sampling time is a constant value, the 
equation can be simplified to its final form, incorporating only the CSO 
rates Qi and Qi+1 within the loop summation. In such a case, the details 
of input variables preprocessing, and reconstruction can be illustrated in 
Fig. 4. 

Vol =

∫ t

0
Qdt ≅

∑t−1

i=0

1
2

(Qi + Qi+1)*Δti = Δt
∑t−1

i=0

1
2

(Qi + Qi+1)if Δtiisconstant

(3)  

where Q represents for CSO rate or nodal flooding rate, t stands for time. 

2.4. Machine learning model architecture 

In this paper, we explored a wide range of popular backbone struc
tures, including tree-based models (Xgboost), purely deep neural 
network models (MLP), recurrent-based models (GRU and LSTM), 
convolution-based models (CNN and ResNet), and attention-based 
models (Seq2Seq Attention). The detailed architecture of these ma
chine learning models will be introduced supplementary material. 

2.5. Performance metrics 

To better measure the performance of our machine learning models, 
serval metrics are used in this paper. Mean absolute errors (MAE, shown 
in equation (4) and root mean square error (RMSE, shown in equation 
(5) are definitely most widely used in terms of comparing two arrays. 
MAE calculates the average absolute difference between the elements of 
the two arrays, while RMSE calculates the square root of the average 
squared difference between the elements of the two arrays. Additionally, 
R-squared (R2, shown in equation (6) is also a widely known parameter, 

Fig. 3. The preprocessing and reconstruction of input variables.  

Fig. 4. The preprocessing and reconstruction of output variables.  
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Fig. 5. Optimization Loop. (a) traditional structure; (b) Inversion of Neural network.  
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which measures the proportion of the variance in one array that is 
predictable from the other array. It provides an indication of how well 
the two arrays are correlated. Lastly, mean absolute percentage error 
(MAPE, shown in equation (7) is also a commonly used metrics in 
forecasting and time series analysis, which is used for measuring the 
percentage difference between the elements of the two arrays. 

MAE =

∑n
i=1(Yprediction − Ytrue)

n
(4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Yprediction − Ytrue)

2

n

√
√
√
√
√

(5)  

R2 = 1 −

∑n
i=1(Yprediction − Ytrue)

2

∑n
i=1(Yprediction − Yprediction)

2 (6)  

Fig. 6. CSO volume prediction for C-town case: (a) location of W35391 on September 12th, 2018 event; (b) location of W35444 on September 12th, 2018 event; (c) 
location of W35391 on August 7th, 2019 event; (d) location of W35444 on August 7th, 2019 event. 
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MAPE =
100

n
∑n

i=1

⃒
⃒
⃒
⃒
Yprediction − Ytrue

Ytrue

⃒
⃒
⃒
⃒ (7)  

where Yprediction represents the model output, Yprediction stands for the 
mean value of the model outputs, Ytrue represents ground truth, Ytrue 
stands for the mean value of the ground truth, and n means the number 
of total sample points. 

2.6. Inversion for optimization 

In the context of the optimization control problem, a closed-loop 
structure is essential. This allows optimization algorithms to obtain 
states from the environment/response surface and provide the best ac
tions during each iteration. Fig. 5 (a) illustrates the classic optimization 
loop for minimizing the CSO problem. In traditional optimization ap
proaches, taking our case as example, the flow solver (SWMM model) 
takes boundary conditions and all orifice gate positions as inputs to 
compute the CSO rate, which serves as the output. The objective func
tion is then constructed, typically involving algebraic operations like 
summing or integrating the CSO rate to create a single value to deliver to 
the optimization algorithms. The optimization algorithm, such as the 
genetic algorithm mentioned, takes the calculated value, and provides 
the optimal gate positions for the flow solver input. It is important to 
note that the optimization results are usually limited to adjusting gate 
positions since most of the boundary conditions (e.g., rainfall, down
stream water stage) cannot be optimized. Consequently, the value “k” in 
Fig. 5 (a) is typically smaller than the input dimension “n,” and it is 
necessary to use code to properly place the gate position within the next 
iteration’s input for the flow solver. 

However, within the confines of this traditional optimization 
framework, only non-gradient optimization algorithms can be 
employed. This limitation arises because the entire process lacks the 
capability to trace differentiations, especially during the flow solver 
stage. Notably, one significant advantage of utilizing neural networks as 
environments or response surfaces to predict the CSO volume or rate, 
which has been widely overlooked in prior research, is that it renders the 
entire loop differentiable. By achieving differentiability throughout the 
loop, we gain the ability to utilize a gradient-based optimizer to replace 
the non-gradient optimization algorithms. Gradient-based optimizers 
are typically renowned for their speed and efficiency. This process, 
referred to as the inversion of the neural network, is represented in our 
case by the structure depicted in Fig. 5 (b). 

The purple line depicted in Fig. 5 (b) represents the traced gradient. 
To calculate the gradient, it is necessary to track it from the optimizer’s 
input all the way to its output. The process of achieving this through 
code differs slightly based on the automatic differential computation 

graph method being used. The dynamic computation graph approach is 
highly recommended due to its convenience. 

3. Result and discussion 

3.1. Prediction performance analysis 

3.1.1. Prediction performance analysis on C-town 
We tested the model’s performance using two historical rainfall 

events for C-town: one starting on September 12th, 2018, and the other 
on August 7th, 2019. Since minimizing CSO is one of our major objec
tives, our machine learning models were designed to accurately predict 
the total CSO volume at each potential CSO location. As mentioned 
above, the C-town case has 2 potential CSO output: W35391 and 
W35444. To evaluate the model’s effectiveness and better visualize the 
results, we employed random gate positions during testing for each 
event. To be more specifically, we performed machine learning pre
dictions on 50 random gate positions for the rainfall event starting on 
September 12th, 2018, and these results are depicted in Fig. 6 (a) and 
(b). Similarly, for the rainfall event beginning on August 7th, 2019, we 
conducted predictions on another 50 random gate positions, and the 
outcomes are displayed in Fig. 6 (c) and (d). Fig. 6 illustrates that all of 
our models demonstrated commendable accuracy and effectively 
captured the underlying trends. This also suggests that our models have 
the capability to assess which set of random gate positions performs 
better in terms of minimizing CSOs. 

To enhance the model performance evaluation, we further generated 
2000 different sets of gate positions for each event, resulting in a total of 
4000 sets. All four metrics (MAE, RMSE, R2, and MAPE) were computed 
based on these 4000 sets. Table 1 illustrates that the models exhibit 
commendable performance, with MAPE ranging from 3.64 % to 1.77 % 
and R2 from 0.993889 to 0.997768. Considering the magnitude of total 
CSO volume as shown in Fig. 6, the MAE values ranging from 478.51 to 
242.41 can also be regarded as indicative of good accuracy. In our C- 
town test case, the Seq2Seq model with attention demonstrates superior 

Fig. 6. (continued). 

Table 1 
Metrics for the C-town Case.   

MAE [m3] RMSE [m3] R2 MAPE 

Xgboost  478.51  1255.38  0.993889  3.64 % 
MLP  411.30  1138.87  0.994922  3.32 % 
GRU  256.14  756.66  0.997768  1.91 % 
LSTM  251.79  791.11  0.997595  1.89 % 
CNN  419.08  1034.06  0.995804  2.73 % 
ResNet  457.44  1120.32  0.994929  3.39 % 
Seq2Seq  242.41  761.96  0.997768  1.77 %  
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performance across all four metrics employed. 
Violin plots are commonly utilized to illustrate the distribution of 

errors, showcasing the density distribution of errors alongside key sta
tistics such as the median, peak value, 25th percentile, and 75th 
percentile (see the top and bottom of the small black box inside the 
violin shape). Fig. 7 presents the violin plots representing the error 
density distribution for the C-town model’s output. Among the models 
assessed, namely GRU, LSTM, and Seq2Seq with attention, they stand 
out due to their better error distribution. These models exhibit a much 
more concentrated error within the −2000 to 2000 m3 range, and their 
peak errors are notably smaller compared to the other models. Consid
ering the total CSO volume in the two test events are ranging from 0 to 
90000 m3, many of our machine learning models, particularly the 
Seq2Seq with attention model, achieve peak errors between −4000 to 
4000 m3, which can be considered a high level of accuracy. 

3.1.2. Prediction performance analysis on D-town 
Similarly, we conducted tests and visualized the model performance 

using 50 random gate positions in D-town case. Since D-town case is 
much larger and more complex, along with 16 potential CSO outputs 
within the model, led us to present results from a single rainfall event 
that occurred on November 4th, 2017 in Fig. 8. Due to the length limit of 
context, we selected four CSO locations randomly to illustrate the re
sults. The CSO volume prediction results for D-town are shown in Fig. 8. 
Similar to C-town case, all of our models exhibited impressive accuracy 
and successfully captured the underlying trends. Based on the testing 
and visualization from both C-town and D-town cases, we can conclude 
that our machine learning models have the ability to capture complex 
patterns and predict CSO volume with high precision. 

Similar to the pervious C-town case, we employed 2000 distinct sets 
of gate positions for two rainfall events to evaluate the model accuracy 
metrics in the D-town scenario. The specific metrics for the D-town case 
are presented in Table 2. The proposed models consistently deliver 
outputs with excellent accuracy, as evidenced by the Mean Absolute 
Percentage Error (MAPE) ranging from 2.84 % to 1.86 % for all models. 
The performance of each model has undergone significant changes 
compared to the C-town case. The CNN model exhibits higher accuracy, 
whereas the LSTM performance drops a lot in our D-town case. The GRU 
model outperforms all other models in the D-town case, achieving the 
highest prediction accuracy across all four metrics used. In short, 
determining which model will provide optimal performance across all 
existing combined sewer systems is challenging. However, based on this 
study, it is advisable to begin with a recurrent-based model or a Seq2Seq 
with attention model, as they have demonstrated better performance. 

Fig. 9 presents the violin plots representing the error density distri
bution for the D-town model’s output. Compared to the previous case, 
all models exhibit significantly reduced peak errors in our D-town case. 
The GRU, Xgboost, and Seq2Seq models emerge as the top three per
formers in terms of prediction error distribution. However, it appears 
that the Seq2Seq model has a tendency to slightly overestimate the re
sults. Surprisingly, despite being the most lightweight model, Xgboost 
outperforms several training-heavy models in our D-town scenario, such 
as LSTM and ResNet. 

Based on all the aforementioned tests and metrics, we can conclude 
that all of our machine learning models are capable of predicting the 
total CSO volume throughout the entire events based on the provided 
boundary and initial conditions. However, when evaluating their per
formance in C-town and D-town cases, we recommend considering the 
GRU, LSTM, or Seq2Seq models for higher accuracy. Additionally, the 
Xgboost model, as our lightweight and fastest, can also provide reliable 
results in some cases. However, the Xgboost model can only perform the 
CSO volume prediction because it does not support the time series type 
of outputs. Despite ResNet model’s success in other time series fore
casting problems (Chen and Cong, 2022; Yu et al., 2022; Silva et al., 
2023), its performance in our two test cases is not ideal. 

3.2. Total CSOs volume VS time series CSOs rates prediction 

There has been a limited amount of research on predicting CSO 
problems. Among this limited research, the majority has been dedicated 
to the prediction of time series CSO rates (Maltbie et al., 2021; Rosin 
et al., 2021; Yin et al., 2022). However, predicting CSO rates has two 
significant reasons compared to predicting the total volume, as done in 
this paper. 

The first major reason is related to accuracy. We experimented and 
tested all of our proposed models, except Xgboost, for time series CSO 
rate prediction by using the C-town case. The results, presented in 
Table 3, demonstrate that most models perform better in predicting CSO 
volume. This outcome is reasonable because predicting CSO rates in
volves an additional dimension compared to CSO volume prediction. 
Furthermore, the nature of CSO rates, being more like spikes or sudden 
bursts instead of continuous patterns like many other time series prob
lems, adds complexity to the prediction task. As a result, the accuracy of 
time series CSO rate prediction is lower than that of total CSO volume 
prediction. The Seq2Seq model stands out as the top performer in time 
series CSO rate prediction due to its unique outcome method. This 
approach involves predicting the next output based on the input and the 
previous output, allowing it to make predictions one element at a time. 

Fig. 7. Prediction error density distribution for C-town: (a) rainfall event starts on 09–12-18; (b) rainfall event starts on 08–07-19.  
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In contrast, other models provide all results in one go, contributing to 
the high dimensionality problem. The Seq2Seq model’s ability to handle 
predictions step-by-step partially addresses this challenge. 

The second reason is that higher dimensionality output is not ad
vantageous for most popular genetic algorithms, including genetic al
gorithm, pattern search, and reinforcement learning. While time series 
CSO rates can offer additional information to human observers, such as 
identifying peak flow occurrences, it does not provide the same level of 
intuitiveness to optimization algorithms. All these popular optimization 
algorithms are typically designed to maximize or minimize a single 
value derived from specific loss, objective, or reward functions. Using 
CSO volume values instead of CSO rate arrays barely has an impact on 
the accuracy during the optimization stage. However, using total CSO 
volumes as the output significantly enhances the computational 

efficiency of the entire optimization loop. This improvement occurs 
because providing CSO volumes as output allows the computer to avoid 
handling the complexities of time series arrays within the user-defined 
loss, objective, or reward functions. 

3.3. Comparison with conventional optimization framework and 
verification for inversion 

Applying the inversion that is introduced in section 2.6, we can 
obtain the optimal series of gate positions and corresponding optimal 
CSO results at potential CSO locations. In every test conducted, we 
consistently assigned a weight of 10 to total flooding and a weight of 1 to 
each CSO location. This decision was made because the potential for 
untreated water flowing through the nodes (manholes) may cause more 

Fig. 8. CSO volume prediction for D-town case: (a) location of CSO weir 415; (b) location of CSO weir 404; (c) location of CSO weir 654; (d) location of CSO 
weir 411. 
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significant damage. As a result, we aimed to avoid this nodal flooding 
scenario during the optimization stage. 

Some researchers and engineers might not trust the results since all 
the computation process is completed in a single neural network. Thus, 
we have employed the most conservative verification method to confirm 
the effectiveness of our inversion approach. The optimal series of gate 
positions obtained through the inversion method were utilized as gate 
inputs in the SWMM model. By employing the SWMM model, we were 
able to calculate the corresponding CSO output at each location. 
Furthermore, we established a baseline case for comparison purposes. In 
this case, we employed the widely-used traditional optimization algo
rithm, genetic algorithm, and integrated it with the SWMM model as the 
optimization environment. This allowed us to assess the performance of 

Fig. 8. (continued). 

Table 2 
Metrics for the D-town Case.   

MAE [m3] RMSE [m3] R2 MAPE 

Xgboost  116.52  196.18  0.941258  1.90 % 
MLP  192.35  310.54  0.840966  3.55 % 
GRU  103.87  188.67  0.945844  1.86 % 
LSTM  131.24  224.43  0.925754  2.31 % 
CNN  134.07  229.86  0.922002  2.39 % 
ResNet  161.70  265.02  0.899441  2.84 % 
Seq2Seq  110.97  198.98  0.940232  1.98 %  

Fig. 9. Prediction error density distribution for D-town: (a) rainfall event starts on 06–18-21; (b) rainfall event starts on 11–04-17.  

Table 3 
Comparison of total CSOs volume prediction and time series CSOs rates prediction.   

MAE of CSO Volume Prediction 
[m3] 

MAE of CSO rate Prediction 
[m3] 

Difference RMSE of CSO Volume Prediction 
[m3] 

RMSE of CSO rate Prediction 
[m3] 

Difference 

MLP  411.30  443.48  +7.82 %  1138.87  1162.45  +2.07 % 
GRU  256.14  265.32  +3.58 %  756.66  830.89  +9.81 % 
LSTM  251.79  278.11  +10.45 %  791.11  841.56  +6.38 % 
CNN  419.08  443.65  +5.86 %  1034.06  1043.16  +0.88 % 
ResNet  457.44  649.88  +42.07 %  1120.32  1506.35  +34.45 % 
Seq2Seq  242.41  259.84  +7.19 %  761.96  744.87  −2.24 %  
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our inversion method against the conventional approach. 
The performance of the genetic algorithm is influenced by its 

hyperparameters. To evaluate this impact, we conducted a hyper
parameter convergence test as shown in Fig. 10. The convergence test 
was carried out on the C-town case at August 7th, 2019 event. The 
number of generations are set as 100, 200, 400, 800, 1500, 2000, in the 
test case 1 to 6, respectively. The number of parents mating are set as 4, 
4, 8, 8, 16, 32, and the number of solution are set as 8, 16, 32, 32, 64, 
128, in the test case 1 to 6, respectively. By examining the convergence 
behavior under these different settings, we found that the settings in test 
case 4 is a good choice in terms of both accuracy and computation 
efficiency. 

The comparison of conventional optimization (GA + SWMM) and 
inversion of neural network on the C-town case at August 7th, 2019 
event is shown in Table 4. As illustrated in Fig. 10, the rainfall event on 
August 7th, 2019, was moderately heavy in comparison to the event on 
September 12th, 2018. Consequently, all the methods listed in Table 4 
were successful in minimizing total CSO to zero during the event. 
However, the notable distinction lies in the computation time, where the 

inversion method significantly outperforms the conventional optimiza
tion framework. The computation time for the inversion method ranged 
from 0.65 to 61.53 s, making real-time optimization control feasible. 
This enables the optimal gate positions to be promptly updated based on 
the latest weather forecast in real-time scenarios. 

Table 5 presents a comparison between the conventional optimiza
tion (GA + SWMM) and the neural network inversion approach applied 
to the D-town case on November 4th, 2017. In this scenario, D-town has 
a much larger catchment than C-town and comprises 16 potential CSO 
outlets directly discharging into the Ohio River. By using the conven
tional optimization framework, the total CSO volume in the entire sys
tem was minimized to 135,306 m3. The optimization also significantly 
minimized CSO volumes at each location, compared to the visualization 
shown in Fig. 6. Alternatively, the inversion methods achieved a total 
CSO volume within the range of 131,226 to 140,520 m3, which shows a 
similar performance to the conventional approach. However, it’s 
important to note that the computation time required by the conven
tional optimization framework was exceedingly long, which takes up to 
13.8 days. Such a long processing time makes the entire optimization 
framework meaningless in the real-world applications. The slowness 
was mainly attributed to the numerical model’s time-consuming re
sponses, as it needed to run thousands of times to compute numerous 
gate position setups and to update CSO states. The numerical model 
needs to take around four to five minutes to compute this complex D- 
town cases, making it is unfeasible for practical optimization usage. In 
contrast, our inversion method successfully addressed this problem, 
completing the entire optimization process with a much short time. The 
computation time ranged from 3.24 s to 794.27 s, depending on the 
complexity of machine learning models. Such a significant improvement 
in computation time even makes real-time optimal control feasible, as 
the inversion method can continuously update the best solution based 
on weather forecast updates. 

4. Conclusion 

In conclusion, we developed and evaluated seven mainstream ma
chine learning models for rainfall induced CSOs prediction in two 

Fig. 10. Convergence test for genetic algorithm.  

Table 4 
Comparison of conventional optimization and inversion of neural network on the C-town case at August 7th, 2019 event.   

GA MLP GRU LSTM CNN ResNet Seq2Seq 

CSOs on W35391 [m3] 0 0 0 0 0 0 0 
CSOs on W35444 [m3] 0 0 0 0 0 0 0 
Total CSOs Volume [m3] 0 0 0 0 0 0 0 
Time [s] 12628.61 0.65 19.41 40.87 0.71 2.28 61.53  

Table 5 
Comparison of conventional optimization and inversion of neural network on the D-town case at November 4th, 2017 event.   

GA MLP GRU LSTM CNN ResNet Seq2Seq 

CSO on 412 [m3] 6592 3905. 4269 8060 2894 2436 3758 
CSO on 415 [m3] 4042 3463 3957 2698 6034 6235 3246 
CSO on 404 [m3] 10,970 8726 10,420 8932 8437 9874 8251 
CSO on 403 [m3] 755 792 936 214 832 135 642 
CSO on 402 [m3] 2052 600 2481 490 5327 627 3028 
CSO on 406 [m3] 7545 6353 8851 8075 6748 9112 8907 
CSO on 654 [m3] 7919 7906 7796 8487 8812 9322 9584 
CSO on 408 [m3] 21,190 23,742 24,286 21,540 23,069 20,411 24,172 
CSO on 541 [m3] 1700 1463 1721 1286 2565 1425 1503 
CSO on 223 [m3] 10,593 8996 8611 9327 7930 10,621 8187 
CSO on 411 [m3] 28,613 32,116 31,328 28,022 32,560 33,198 27,443 
CSO on 414 [m3] 1814 1768 2004 2197 1854 1714 2021 
CSO on 415B [m3] 13,325 12,163 13,745 11,697 13,840 17,676 15,654 
CSO on 413 [m3] 2215 1976 1738 1826 2810 2698 1993 
CSO on 416 [m3] 15,973 17,249 16,460 18,572 16,807 13,926 14,972 
Total CSOs Volume [m3] 135,306 131,226 138,605 131,423 140,520 139,411 133,361 
Time [s] 1,196,444 74.77 392.32 559.91 3.24 5.17 794.27  
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existing combined sewer systems. All the models have demonstrated 
high accuracy when evaluated on our test set. Additionally, we intro
duced and successfully implemented the inversion of neural networks 
method to minimize the CSO. The key findings can be summarized as 
follows: 

• Our machine learning models demonstrated consistently high accu
racy in predicting CSOs. The mean absolute percentage error ranged 
from 1.77 % to 3.64 % for Puritan Fenkell/Seven-Mile Collection 
System and from 1.86 % to 2.84 % for Metropolitan Sewer District of 
Greater Cincinnati.  

• The study revealed that the prediction of total CSOs volume is more 
accurate than the prediction of time series CSO rates across all tested 
machine learning models. Moreover, the total CSOs volume predic
tion exhibited a better fit in the optimization process, making it a 
more suitable choice for optimization purposes.  

• The introduced inversion of neural networks method approach can 
provide the high-quality optimal results comparable to the conven
tional GA optimization method. Furthermore, the inversion process 
using neural networks exhibited a substantial performance advan
tage over the traditional GA optimization framework in terms of 
speed. The completion times for the entire optimization process 
ranged from as little as 3.24 s to a maximum of 794.27 s, whereas the 
GA approach required a lengthy 13.5 days to complete. This 
remarkable speed makes real-time optimal control feasible, as the 
inversion method can continuously update the best solution based on 
weather forecast updates. 
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Mancipe Muñoz, N.A., 2015. Detention-based Green/Gray Infrastructure Framework to 
Control Combined Sewer Overflows. University of Cincinnati). Doctoral 
dissertation,.  

Matthews, S., Bingham, D.R., Greenland, F., 2000. Combined Sewer Overflow Facilities 
Plan for the Cleveland Westerly District. In: Collection Systems Conference 2000. 
Water Environment Federation, pp. 544–555. 

McGarity, A. E., Szalay, S., & Cohen, J. (2017). StormWISE model using green 
infrastructure to achieve Philadelphia’s CSO volume reductions at minimum cost. In 
World Environmental and Water Resources Congress 2017 (pp. 334-344). 

Moffa, P.E. (Ed.), 1997. The Control and Treatment of Combined Sewer Overflows. John 
Wiley & Sons. 

Mollerup, A.L., Mikkelsen, P.S., Sin, G., 2016. A methodological approach to the design 
of optimising control strategies for sewer systems. Environ. Model. Softw. 83, 
103–115. 

Mullapudi, A., Lewis, M.J., Gruden, C.L., Kerkez, B., 2020. Deep reinforcement learning 
for the real time control of stormwater systems. Adv. Water Resour. 140, 103600. 

Peng, Z., Jin, X., Sang, W., Zhang, X., 2021. Optimal Design of Combined Sewer 
Overflows Interception Facilities Based on the NSGA-III Algorithm. Water 13 (23), 
3440. 

Pleau, M., Colas, H., Lavallée, P., Pelletier, G., Bonin, R., 2005. Global optimal real-time 
control of the Quebec urban drainage system. Environ. Model. Softw. 20 (4), 
401–413. 

Rathnayake, U., Anwar, A.F., 2019. Dynamic control of urban sewer systems to reduce 
combined sewer overflows and their adverse impacts. J. Hydrol. 579, 124150. 

Rosin, T.R., Romano, M., Keedwell, E., Kapelan, Z., 2021. A committee evolutionary 
neural network for the prediction of combined sewer overflows. Water Resour. 
Manag. 35, 1273–1289. 

Sadeghi, S., Samani, J., Samani, H., 2022. Optimal Design of Storm Sewer Network Based 
on Risk Analysis by Combining Genetic Algorithm and SWMM Model. Amirkabir 
Journal of Civil Engineering 54 (5), 1903–1924. 

Sadler, J.M., Goodall, J.L., Behl, M., Morsy, M.M., Culver, T.B., Bowes, B.D., 2019. 
Leveraging open source software and parallel computing for model predictive 
control of urban drainage systems using EPA-SWMM5. Environ. Model. Softw. 120, 
104484. 

Schütze, M., Campisano, A., Colas, H., Schilling, W., & Vanrolleghem, P. A. (2002). Real- 
time control of urban wastewater systems-where do we stand today?. In Global 
Solutions for Urban Drainage (pp. 1-17). 

Shi, J., Yin, Z., Myana, R., Ishtiaq, K., John, A., Obeysekera, J., ... & Narasimhan, G. 
(2023). Deep Learning Models for Water Stage Predictions in South Florida. arXiv 
preprint arXiv:2306.15907. 

Silva, A.Q.B., Gonçalves, W.N., Matsubara, E.T., 2023. DESCINet: A hierarchical deep 
convolutional neural network with skip connection for long time series forecasting. 
Expert Syst. Appl. 120246. 

Su, X., Liu, T., Beheshti, M., Prigiobbe, V., 2020. Relationship between infiltration, sewer 
rehabilitation, and groundwater flooding in coastal urban areas. Environ. Sci. Pollut. 
Res. 27, 14288–14298. 

Tang, Y., Leon, A.S., Kavvas, M.L., 2020. Impact of dynamic storage management of 
wetlands and shallow ponds on watershed-scale flood control. Water Resour. Manag. 
34, 1305–1318. 

Tao, J., Li, Z., Peng, X., Ying, G., 2017. Quantitative analysis of impact of green 
stormwater infrastructures on combined sewer overflow control and urban flooding 
control. Front. Environ. Sci. Eng. 11, 1–12. 

Tavakol-Davani, H., Burian, S.J., Devkota, J., Apul, D., 2016. Performance and cost- 
based comparison of green and gray infrastructure to control combined sewer 
overflows. Journal of Sustainable Water in the Built Environment 2 (2), 04015009. 

Ten Veldhuis, J.A.E., Clemens, F.H.L.R., Sterk, G., Berends, B.R., 2010. Microbial risks 
associated with exposure to pathogens in contaminated urban flood water. Water 
Res. 44 (9), 2910–2918. 

Tian, W., Liao, Z., Zhi, G., Zhang, Z., & Wang, X. (2022a). Combined Sewer Overflow and 
Flooding Mitigation Through a Reliable Real-Time Control Based on Multi- 
Reinforcement Learning and Model Predictive Control. Water Resources Research, 
58(7), e2021WR030703. 

Tian, W., Liao, Z., Zhang, Z., Wu, H., & Xin, K. (2022b). Flooding and Overflow 
Mitigation Using Deep Reinforcement Learning Based on Koopman Operator of 
Urban Drainage Systems. Water Resources Research, 58(7), e2021WR030939. 

Van Der Werf, J.A., Kapelan, Z., Langeveld, J., 2022. Towards the long term 
implementation of real time control of combined sewer systems: a review of 
performance and influencing factors. Water Sci. Technol. 85 (4), 1295–1320. 

Van Der Werf, J.A., Kapelan, Z., Langeveld, J., 2023. Real-time control of combined 
sewer systems: Risks associated with uncertainties. J. Hydrol. 617, 128900. 

Yazdi, J., 2019. Optimal operation of urban storm detention ponds for flood 
management. Water Resour. Manag. 33, 2109–2121. 

Yin, Z., Zahedi, L., Leon, A. S., Amini, M. H., & Bian, L. A Machine Learning Framework 
for Overflow Prediction in Combined Sewer Systems. In World Environmental and 
Water Resources Congress 2022 (pp. 194-205). 

Yin, Z., Leon, A. S., Sharifi, A., & Amini, M. H. Optimal Control of Combined Sewer 
Systems to Minimize Sewer Overflows by Using Reinforcement Learning. In World 
Environmental and Water Resources Congress 2023 (pp. 711-722). 

Yu, X., Liu, Y., Sun, Z., Qin, P., 2022. Wavelet-based ResNet: A deep-learning model for 
prediction of significant wave height. IEEE Access 10, 110026–110033. 

Zhang, D., Lindholm, G., Ratnaweera, H., 2018. Use long short-term memory to enhance 
Internet of Things for combined sewer overflow monitoring. J. Hydrol. 556, 
409–418. 

Zhang, Z., Tian, W., Liao, Z., 2023. Towards coordinated and robust real-time control: a 
decentralized approach for combined sewer overflow and urban flooding reduction 
based on multi-agent reinforcement learning. Water Res. 229, 119498. 

Zhao, W., Beach, T.H., Rezgui, Y., 2017. Automated model construction for combined 
sewer overflow prediction based on efficient LASSO algorithm. IEEE Transactions on 
Systems, Man, and Cybernetics: Systems 49 (6), 1254–1269. 

Zukovs, G., Marsalek, J., 2004. Planning and design of combined sewer overflow 
treatment. Water Quality Research Journal 39 (4), 439–448. 

Z. Yin et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0022-1694(23)01457-9/h0190
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0190
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0190
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0190
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0205
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0205
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0205
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0210
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0210
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0210
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0220
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0220
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0225
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0225
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0225
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0230
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0230
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0235
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0235
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0235
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0240
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0240
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0240
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0245
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0245
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0250
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0250
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0250
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0255
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0255
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0255
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0260
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0260
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0260
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0260
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0275
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0275
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0275
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0280
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0280
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0280
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0290
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0290
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0290
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0295
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0295
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0295
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0300
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0300
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0300
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0305
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0305
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0305
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0320
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0320
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0320
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0325
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0325
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0335
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0335
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0350
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0350
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0355
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0355
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0355
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0360
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0360
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0360
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0365
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0365
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0365
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0370
http://refhub.elsevier.com/S0022-1694(23)01457-9/h0370

	Forecasting and optimization for minimizing combined sewer overflows using Machine learning frameworks and its inversion te ...
	1 Introduction
	2 Methodology
	2.1 Study area
	2.2 Data generation
	2.3 Data preprocessing
	2.4 Machine learning model architecture
	2.5 Performance metrics
	2.6 Inversion for optimization

	3 Result and discussion
	3.1 Prediction performance analysis
	3.1.1 Prediction performance analysis on C-town
	3.1.2 Prediction performance analysis on D-town

	3.2 Total CSOs volume VS time series CSOs rates prediction
	3.3 Comparison with conventional optimization framework and verification for inversion

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A Supplementary data
	References


