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ARTICLE INFO ABSTRACT

Keywords: Combined sewer overflows (CSOs), which typically occur during heavy rainfall events, pose significant threats to

Combined Sewer Overflow both public health and the environment. These threats encompass various concerns, including contamination of

gre(‘hc'tmn' drinking water. Numerous studies have developed strategies aimed at mitigating the adverse effects of CSOs.
ptimization

These strategies include Green Infrastructure, Integrated Planning, and Smart Control Strategies. Among these,
Smart Control Strategies have gained the most traction due to their exceptional cost-effectiveness. Nevertheless,
the existing control methods face a challenge in striking the right balance between precision and computational
efficiency. While employing full numerical methods as predictive models can provide high accuracy, they often
prove inefficient in terms of runtime, especially when applied to real-world complex combined sewer systems.
Conversely, reduced-order models tend to offer quicker results but may sacrifice accuracy. To address this issue,
we propose an exploration of various mainstream machine learning models for CSO predictions. Additionally, we
introduce a novel approach known as “inversion of neural networks” to bridge the gap between prediction and
optimization. This innovative method enables us to use a single neural network for both CSO prediction and
optimization tasks, resulting in a significant enhancement in terms of computational efficiency. The accuracy of
our predictive approach has been validated through simulation results. In terms of optimization performance, it
provides similar outcomes to the genetic algorithm, while significantly improving computational speed.

Machine Learning

1. Introduction (EPA) has developed a set of policies and initiated long-term control

plans aimed at minimizing the adverse environmental consequences

A substantial portion of urban regions in Europe and North America
continues to rely on combined sewer systems (Lund et al., 2020). The
combined sewer system collects rainwater runoff, domestic sewage, and
industrial wastewater in the same pipe (Jean et al., 2018). During heavy
stormwater events, combined sewer overflows (CSOs) occur when the
incoming flow exceeds the capacity of a sewer system (Gu et al., 2017;
Zhao et al., 2017). When this occurs, untreated sewage and industrial
wastewater discharge directly to nearby streams, rivers, and other water
bodies. Consequently, this would result in significant environmental
concerns (Brokamp et al., 2017; Botturi et al., 2021), and threaten public
health (Ten Veldhuis et al., 2010; Gasperi et al., 2012; Garcia et al.,
2017). Recognized as one of major contributor to water pollution (Gooré
Bi et al., 2015), the United States Environmental Protection Agency
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associated with this issue (Moffa, 1997; Tao et al., 2017). Multiple ap-
proaches to minimize the impact of CSOs have been investigated by
previous researchers, including investigations into Green/Gray Infra-
structure (Cohen et al., 2012; Mancipe Munoz, 2015; Tavakol-Davani
et al., 2016; McGarity et al., 2017; Jean et al., 2021), Integrated Plan-
ning (Zukovs & Marsalek, 2004; Autixier et al., 2014; Fu et al., 2019;
Matthews et al., 2000, and Smart Control Strategies (Rathnayake &
Anwar, 2019; Bachmann-Machnik et al., 2021; Lund et al., 2020; Van
Der Werf et al., 2023). In recent years, Smart Control Strategies have
gained popularity owing to their cost-effectiveness (Lund et al., 2018;
Zhang et al., 2018).

Throughout the past decades, the control algorithm has undergone
substantial evolutionary progressions with regards to control strategy.
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Fig. 1. Schematic of the study area, sub-catchment division, and impervious percentages. (a) Puritan Fenkell/Seven-Mile Collection System; (b) Metropolitan Sewer

District of Greater Cincinnati.

In the past, heuristic control is the major control strategy that was
widely used in the engineering field (Box, 1978; Fuchs et al., 1997;
Fuchs & Beeneken, 2005; Gavrilas, 2010; Kroll et al., 2018; Van Der
Werf et al., 2022). However, the implementation of hierarchical control
heavily relies either on the expertise and practical knowledge of the
specific sewer system or on optimization techniques in order to deter-
mine the appropriate set-points for actuators (Schiitze et al., 2002; Lund
et al., 2018). Thus, a few drawbacks are unavoidable when using heu-
ristic control. Firstly, the determination of actuators set-points are
typically based on the synthetic data derived from regression analysis,

therefore, their fixed configuration settings restrict their adaptability to
diverse rainfall-runoff events (Tian et al., 2022a). Furthermore, the
experience and practical knowledge for heuristic control are signifi-
cantly varied in each individual case. Consequently, the generalization
of heuristic control to diverse catchments becomes challenging, partic-
ularly in cases where substantial variations exist among the catchments
(Van Der Werf et al., 2022).

Model predictive control, as another control strategy, demonstrates
superior adaptability and generalization capabilities (Pleau et al., 2005;
Mollerup et al., 2016; Lund et al., 2018; Tian et al., 2022a). All model
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predictive control methods need three essential elements: forecasting
precipitation, predictive (nowcasting) model, and optimization algo-
rithms (Sadler et al., 2019; Tian et al., 2022a). In terms of the border
scope of optimal flood control, multiple previous researches have
investigated the various combinations of these three elements. To name
a few noteworthy examples, Genetic Algorithms with HEC-RAS (Leon
etal., 2020; Albo-Salih et al., 2022), Pattern Search with HEC-RAS (Leon
et al., 2021), Genetic Algorithms with HEC-HMS (Tang et al., 2020),
Genetic Algorithms with SWMM (Sadeghi et al., 2022), Evolutionary
Algorithm with SWMM (Yazdi, 2019), among others. In the context of
minimizing combined sewer overflows, a few notable efforts have been
made employing this technique (Zhao et al., 2017; Rathnayake &
Anwar, 2019; Peng et al., 2021; El Ghazouli et al., 2022; Li et al., 2022).
Over the past few years, the field of machine learning has experienced a
significant surge in popularity within both research and practical ap-
plications. Some previous studies have employed diverse machine
learning models on CSOs prediction (Maltbie et al., 2021; Rosin et al.,
2021; Yin et al., 2022; Bakhshipour et al., 2023), and applied rein-
forcement learning approach on CSOs optimization problems (Lund
et al., 2020; Mullapudi et al., 2020; Balla et al., 2022; Tian et al., 2022a;
Tian et al., 2022b; Yin et al., 2023; Zhang et al., 2023).

However, there are several research gaps that need to be addressed.
Firstly, predicting CSOs poses a unique challenge as it differs from other
time series problems characterized by long histories of continuous pat-
terns (e.g. water stage prediction is riverine system). In the CSO prob-
lem, the CSO rate remains zero for approximately 99 % of the time and
experiences sudden spikes during a few hours before returning to zero.
This atypical pattern makes it difficult for standard time series predic-
tion techniques, involving data collection and model construction, to
accurately capture CSO behavior. Previous research has tried to over-
come this issue by shortening the prediction time (Rosin et al., 2021; Yin
et al., 2022; Bakhshipour et al., 2023), but this approach significantly
reduces the applicability of the model in real-world scenarios. Secondly,
CSOs only occur during heavy rainfall events, making it challenging to
collect a sufficient amount of training data from historical events. In this
study, we only focus on the rainfall induced CSO. The infiltration
induced CSO is considered as another topic (Liu et al., 2018; Su et al.,
2020). Many previous control strategy studies have relied on hypo-
thetical or regression rainfall data with return periods to build the
training dataset, but relying solely on hypothetical rainfall data can
compromise the accuracy of predictions during real rainfall events.
Integrating both historical event data and hypothetical rainfall data into
the training dataset presents difficulties, as they often do not align in the
same dimension. Thus, a novel approach is required to effectively
combine both types of data for training the CSO prediction model.
Thirdly, it’s important to note that all the previous research has focused
on testing their method in very small and highly simplified sewer sys-
tems. In the real world, sewer systems are much more complex. There-
fore, the prediction and optimization performance of these methods
used in past research cannot be guaranteed for real-world applications.
Last but most importantly, the current control methods struggle to keep
balance between accuracy and the total computational time required for
optimization. The utilization of full numerical methods as predictive
models provides high accuracy but proves inefficient in terms of time,
especially when applied to real-world complex combined sewer systems.
Conversely, the use of reduced-order models typically delivers faster
results but often falls short in terms of accuracy. To the best of the au-
thor’s knowledge, all current methods still rely on conventional model
predictive control frameworks, which are built upon non-gradient-based
optimization algorithms and numerical models. While this framework
can indeed provide remarkably accurate outcomes, it is extremely
computational inefficient. Currently, there is no existing method that
can effectively bridge the information gap between simulation and
optimization because gradient-based optimizers cannot be directly in-
tegrated with either full or reduced-order numerical simulations.
Therefore, it becomes imperative to establish a bridge between
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predictive model and optimization frameworks to minimize CSOs and
address all other optimization challenges.

The main objectives of this paper are to address the previously
mentioned research gaps comprehensively. Firstly, we aim to develop a
machine learning framework capable of utilizing both historical and
hypothetical data. In this paper, we have demonstrated that our
framework have the ability to perform long-term predictions of the total
CSO volume over the entire duration of a rainfall event. Additionally,
the model exhibited high prediction accuracy in the real world existing
complex combined sewer systems. Secondly, we proposed a novel
approach called “inversion of neural networks” to bridge the machine
learning prediction and optimization. The details of “inversion of neural
networks” are shown in section 2.6. Through this method, we demon-
strate the high accuracy and extreme computation efficiency of the
proposed framework, allowing for real-time updating of gate positions
based on the latest weather forecast. This bridging of machine learning
prediction and optimization promises significant feasibility and effec-
tiveness in practical applications.

2. Methodology
2.1. Study area

To prove our framework has capability to predict and optimize the
real-world complex combined sewer systems, we selected two existing
combined sewer systems within the United States as the study area in
this paper. The first combined sewer system is Puritan Fenkell/Seven-
Mile Collection System, which exhibits a more standardized dimension
in terms of isolated sewer system. The second selected study area for our
research is the Metropolitan Sewer District of Greater Cincinnati, which
represents an intricate and complex sewer system within a large urban
setting. The schematic of the study area, sub-catchment division, and
impervious percentages for both Puritan Fenkell/Seven-Mile Collection
System and Metropolitan Sewer District of Greater Cincinnati are shown
in Fig. 1 (a) and 1 (b), respectively.

Detroit (42.3314° N, 83.0458° W) stands as Michigan’s largest and
most populous city, and it also holds the distinction of being the largest
city in the United States on the border with Canada. On the northwest
side of Detroit lies the Puritan Fenkell/Seven-Mile Collection System
(PFSMC), which is owned by the Great Lakes Water Authority. The
Puritan Fenkell/Seven-Mile Collection System is a relatively isolated
system comprising two CSO treatment facilities. These two facilities are
specifically designed to handle minor storms, offering screening,
settling, skimming, and disinfection processes to ensure water quality
before discharging excess water into the local river during more severe
storms.

Cincinnati (39.1031° N, 84.5120° W) is a city in Ohio who lies on the
northern banks where the Licking and Ohio rivers meet. On the west side
of the city, you can find the Metropolitan Sewer District of Greater
Cincinnati. This system is responsible for collecting and transporting
flows from different combined/separate sewer areas to the Muddy Creek
wastewater treatment plant (WWTP) during minor storms. However,
during heavy storms, there are 16 Combined Sewer Overflow (CSO)
outfalls that can directly release untreated water into the Ohio River.

2.2. Data generation

The training data for our framework can be obtained from either
historical monitoring or numerical simulation. Ideally, using historical
monitoring data holds greater potential for enhancing prediction accu-
racy because all numerical models rarely achieve 100 % accuracy in
simulating all scenarios. However, monitoring the flow and water depth
at a single specific location for several months can incur costs amounting
to thousands of dollars so that makes long-time monitoring the entire
sewer system economically unfeasible. Thus, we employ Environmental
Protection Agency Storm Water Management Model (EPA SWMM) to



Z. Yin et al.

Journal of Hydrology 628 (2024) 130515

(2)

generate the required data in this study. The schematic of the study area
in the SWMM model is shown in Fig. 2. For the convenience purpose, the
Puritan Fenkell/Seven-Mile Collection System will be referred to as “C-
town” and the Metropolitan Sewer District of Greater Cincinnati will be
referred to as “D-town” for the rest sections in this paper. The CSO
location and direction can be found at red arrow.

The C-town SWMM model is relatively simpler. It consists of 19 sub-
catchments, 37 junctions, 6 outfalls, 4 storage units, 38 conduits, 3
pumps, 7 orifices, and 4 weirs. Among the 6 outfalls, two are directly
connected to the CSO treatment facilities, while the remaining 4 outfalls
possess the potential to release untreated wastewater into the local river.
There are currently four existing weirs in place to prevent CSO occur-
rences during regular stormwater events. These weirs not only serve the
purpose of preventing CSO, but they also provide us with a convenient
means of tracking the CSO rate because the CSO rate at each location is
actually equal to the corresponding weir flow rate. Conversely, the D-
town SWMM model is significantly more complex. It consists of 2592
sub-catchments, 5147 junctions, 31 outfalls, 64 storage units, 6099
conduits, 11 pumps, 268 orifices, and 34 weirs. In the D-town system,
out of the total 31 outfalls, 16 are connected to the CSO treatment fa-
cilities, leaving the remaining 15 with the potential to discharge un-
treated wastewater into the local river. Similar to C-town, all 15 of these
locations are equipped with existing weirs that effectively prevent CSO
events during regular stormwater events. Thus, we can employ the same
method to track the CSO rate in D-town as well. Due to the complexity of
our domain, it is not feasible to include all the necessary details in this
text. Therefore, we have uploaded both SWMM model files on GitHub
for reference. You can find them at the following address: [https://gith
ub.com/ZedaYin/Predicting-and-Minimizing-Combined-Sewer-
Overflows].

In this study, we used both historical rainfall data and synthetic
rainfall data in this study. Regarding the historical rainfall data, we have
acquired records from rain gauges spanning the past 20 years. However,
due to the presence of the existing weirs in both systems, CSOs have only

(b)

Fig. 2. Schematic of study area in SWMM model. (a) Puritan Fenkell/Seven-Mile Collection System; (b) Metropolitan Sewer District of Greater Cincinnati.

occurred during instances of heavy rainfall events. As a result, this
greatly reduces the effective training dataset, with our outputs having a
value of zero approximately 99 % of the time. To encompass more useful
simulation scenarios, we incorporated synthetic rainfall data obtained
from the local Intensity Duration Frequency (IDF) analysis. In accor-
dance with the guidelines provided by the City of Detroit Water and
Sewerage Department Manual, the local rainfall characteristics in C-
town align with the NOAA Atlas 14 Precipitation-Frequency Atlas and
can be represented by equation (1). Similarly, as indicated by the City of
Cincinnati Division of Stormwater Management, the IDF equation for
the D-town area can be expressed as equation (2). Both agencies
recommend utilizing the Natural Resources Conservation Service
(NRCS) Midwest-Southeast (MSE) type 3 to obtain the 24-hour contin-
uous rainfall distribution.

. 38.41670-208
e (7T @
(12.3258 + D)

i—= eC|+C3]n(D)+CS(ln(D))Z 2)
where i denotes rainfall intensity in inch per hour, T represents return
period in years, and D stands for the rainfall duration in minute, the
coefficient C;, Co, and C3 can be obtained from the table provided in the
manual.

One of the main objectives of this framework involves the optimi-
zation stage. Consequently, our predictive machine learning models
must be capable of providing responses to changes in the control units.
Manually inputting various sets of time-series data into the SWMM
graphical user interface (GUI) can be a time-consuming process. To
address this issue, we employed PySWMM, a Python software package,
which allowed us to efficiently create and manipulate the time-series
control unit states (such as orifice gate states) in our model. In order
to expand the training dataset and incorporate variations in the
controlled gates, we utilized a uniform distribution, ranged from zero
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Fig. 3. The preprocessing and reconstruction of input variables.

(fully closed) to 1 (fully open), to generate time-series data for each
individual controlled orifice gate. This approach allowed us to incor-
porate a wider range of scenarios and increase the diversity of our
training data.

2.3. Data preprocessing

To ensure a precise representation of the physics and practical
applicability of the framework in real-world scenarios, we integrated the
exact same input variables used by the SWMM model into our machine
learning framework. These input variables only consist of rainfall in-
tensities, outfall water depth, and gate states. Also, we assumed that
initial conditions for both CSO system are empty. In this study, we also
assume all the existing structures are undamaged. The damage of
structure induced CSO could be found on the other related work (Liu
et al., 2021).

Typically, in machine learning time series forecasting problems,
incorporating a historical window of past data is common for achieving
more accurate results. However, we discovered that including such a
history window can disrupt predictions during the initial timesteps
when the control unit undergoes changes, as observed by Shi et al.
(2023). Moreover, unlike other time-series forecasting projects, such as
predicting tide elevation, our dataset is more like event-based due to the
occurrence of Combined Sewer Overflows (CSOs) only during heavy
stormwater events. Therefore, the information contained within the past
window at each location appears to lack significance or relevance, and
we did not use this past window in this study.

There are two mainstream preprocessing techniques that are
commonly used in the machine learning field. The first method is to
organize all covariates and targets at each timestep into a 2D structure,
and subsequently flattening the entire table into a 1D representation that
preserves the temporal features. The second technique involves incor-
porating time indexes (e.g., date, time, day of week, date of moth, etc.)
into the 2D time-feature table. Time indexes can offer significant ad-
vantages when predicting obvious periodic features such as tides or
power consumption. However, the second method requires a long
continuous time window in both training and testing, which is hard to
achieve in our event-based dataset. Furthermore, our CSO prediction is
not periodic at all. Thus, the first technique is the best solution in this
paper. The details of input variable preprocessing and reconstruction are
illustrated in Fig. 3.

The output variables follow a similar approach to the first technique,
but with slight differences due to specific reasons. Firstly, the CSO rates
exhibit a distinct pattern during heavy stormwater events, resembling a
striking shape with large values occurring within a short period (1 min
to 1 h), while remaining zero the rest of the time. This unique charac-
teristic poses a significant challenge for all machine learning models.
Additionally, during the optimization stage, most optimization

Journal of Hydrology 628 (2024) 130515

Ya(to) e
ya(ty) ne

yi(to)
yity)

Nitw | Yaltw

Loop Sum
as eq. 3

Viltotw) | Yalto-tw) cor
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algorithms are designed to work with a single value as the final reward/
fitness/objective value. While the time series pattern of the output may
provide more information for human interpretation, it does not neces-
sarily offer additional information that can significantly benefit the
optimization algorithms. Thus, it would be ideal for this study to utilize
the total CSO volume at each location and total nodal flooding volume at
the entire system over the entire event as our output features. As indi-
cated in equation (3), the total CSO volume can be calculated as the
integral of the CSO rate over time. In a discrete time-point representa-
tion, it can be expressed using a summation format by applying the
trapezoidal rule. Since our output sampling time is a constant value, the
equation can be simplified to its final form, incorporating only the CSO
rates Q; and Q;;; within the loop summation. In such a case, the details
of input variables preprocessing, and reconstruction can be illustrated in
Fig. 4.

s 1—1 1 t—1 1
Vol = /0 Qdr =~ ;E(QH-QM)*AZ,- = AI;E(QI' + Qi11)if Atiisconstant
(3)

where Q represents for CSO rate or nodal flooding rate, t stands for time.

2.4. Machine learning model architecture

In this paper, we explored a wide range of popular backbone struc-
tures, including tree-based models (Xgboost), purely deep neural
network models (MLP), recurrent-based models (GRU and LSTM),
convolution-based models (CNN and ResNet), and attention-based
models (Seq2Seq Attention). The detailed architecture of these ma-
chine learning models will be introduced supplementary material.

2.5. Performance metrics

To better measure the performance of our machine learning models,
serval metrics are used in this paper. Mean absolute errors (MAE, shown
in equation (4) and root mean square error (RMSE, shown in equation
(5) are definitely most widely used in terms of comparing two arrays.
MAE calculates the average absolute difference between the elements of
the two arrays, while RMSE calculates the square root of the average
squared difference between the elements of the two arrays. Additionally,
R-squared (Rz, shown in equation (6) is also a widely known parameter,
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Fig. 6. CSO volume prediction for C-town case: (a) location of W35391 on September 12th, 2018 event; (b) location of W35444 on September 12th, 2018 event; (c)
location of W35391 on August 7th, 2019 event; (d) location of W35444 on August 7th, 2019 event.

which measures the proportion of the variance in one array that is

predictable from the other array. It provides an indication of how well

the two arrays are correlated. Lastly, mean absolute percentage error RMSE —
(MAPE, shown in equation (7) is also a commonly used metrics in

forecasting and time series analysis, which is used for measuring the
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where Ypregicrion T€Presents the model output, Ypregicrion Stands for the MAE [m®] RMSE [m’] R* MAPE
mean value of the model outputs, Y. represents ground truth, Y. Xgboost 478.51 1255.38 0.993889 3.64 %
stands for the mean value of the ground truth, and n means the number MLP 411.30 1138.87 0.994922 3.32%
f total sample point. GRU 256.14 756.66 0.997768 1.91 %
Ol total sample points. LSTM 251.79 791.11 0.997595 1.89%
CNN 419.08 1034.06 0.995804 2.73 %
. L ResNet 457.44 1120.32 0.994929 3.39 %
2.6. Inversion for optimization Seq2Seq 242.41 761.96 0.997768 1.77 %

In the context of the optimization control problem, a closed-loop
structure is essential. This allows optimization algorithms to obtain
states from the environment/response surface and provide the best ac-
tions during each iteration. Fig. 5 (a) illustrates the classic optimization
loop for minimizing the CSO problem. In traditional optimization ap-
proaches, taking our case as example, the flow solver (SWMM model)
takes boundary conditions and all orifice gate positions as inputs to
compute the CSO rate, which serves as the output. The objective func-
tion is then constructed, typically involving algebraic operations like
summing or integrating the CSO rate to create a single value to deliver to
the optimization algorithms. The optimization algorithm, such as the
genetic algorithm mentioned, takes the calculated value, and provides
the optimal gate positions for the flow solver input. It is important to
note that the optimization results are usually limited to adjusting gate
positions since most of the boundary conditions (e.g., rainfall, down-
stream water stage) cannot be optimized. Consequently, the value “k” in
Fig. 5 (a) is typically smaller than the input dimension “n,” and it is
necessary to use code to properly place the gate position within the next
iteration’s input for the flow solver.

However, within the confines of this traditional optimization
framework, only non-gradient optimization algorithms can be
employed. This limitation arises because the entire process lacks the
capability to trace differentiations, especially during the flow solver
stage. Notably, one significant advantage of utilizing neural networks as
environments or response surfaces to predict the CSO volume or rate,
which has been widely overlooked in prior research, is that it renders the
entire loop differentiable. By achieving differentiability throughout the
loop, we gain the ability to utilize a gradient-based optimizer to replace
the non-gradient optimization algorithms. Gradient-based optimizers
are typically renowned for their speed and efficiency. This process,
referred to as the inversion of the neural network, is represented in our
case by the structure depicted in Fig. 5 (b).

The purple line depicted in Fig. 5 (b) represents the traced gradient.
To calculate the gradient, it is necessary to track it from the optimizer’s
input all the way to its output. The process of achieving this through
code differs slightly based on the automatic differential computation

graph method being used. The dynamic computation graph approach is
highly recommended due to its convenience.

3. Result and discussion
3.1. Prediction performance analysis

3.1.1. Prediction performance analysis on C-town

We tested the model’s performance using two historical rainfall
events for C-town: one starting on September 12th, 2018, and the other
on August 7th, 2019. Since minimizing CSO is one of our major objec-
tives, our machine learning models were designed to accurately predict
the total CSO volume at each potential CSO location. As mentioned
above, the C-town case has 2 potential CSO output: W35391 and
W35444. To evaluate the model’s effectiveness and better visualize the
results, we employed random gate positions during testing for each
event. To be more specifically, we performed machine learning pre-
dictions on 50 random gate positions for the rainfall event starting on
September 12th, 2018, and these results are depicted in Fig. 6 (a) and
(b). Similarly, for the rainfall event beginning on August 7th, 2019, we
conducted predictions on another 50 random gate positions, and the
outcomes are displayed in Fig. 6 (c) and (d). Fig. 6 illustrates that all of
our models demonstrated commendable accuracy and effectively
captured the underlying trends. This also suggests that our models have
the capability to assess which set of random gate positions performs
better in terms of minimizing CSOs.

To enhance the model performance evaluation, we further generated
2000 different sets of gate positions for each event, resulting in a total of
4000 sets. All four metrics (MAE, RMSE, R?, and MAPE) were computed
based on these 4000 sets. Table 1 illustrates that the models exhibit
commendable performance, with MAPE ranging from 3.64 % to 1.77 %
and R2 from 0.993889 to 0.997768. Considering the magnitude of total
CSO volume as shown in Fig. 6, the MAE values ranging from 478.51 to
242.41 can also be regarded as indicative of good accuracy. In our C-
town test case, the Seq2Seq model with attention demonstrates superior
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Fig. 7. Prediction error density distribution for C-town: (a) rainfall event starts on 09-12-18; (b) rainfall event starts on 08-07-19.

performance across all four metrics employed.

Violin plots are commonly utilized to illustrate the distribution of
errors, showcasing the density distribution of errors alongside key sta-
tistics such as the median, peak value, 25th percentile, and 75th
percentile (see the top and bottom of the small black box inside the
violin shape). Fig. 7 presents the violin plots representing the error
density distribution for the C-town model’s output. Among the models
assessed, namely GRU, LSTM, and Seq2Seq with attention, they stand
out due to their better error distribution. These models exhibit a much
more concentrated error within the —2000 to 2000 m® range, and their
peak errors are notably smaller compared to the other models. Consid-
ering the total CSO volume in the two test events are ranging from 0 to
90000 m®, many of our machine learning models, particularly the
Seq2Seq with attention model, achieve peak errors between —4000 to
4000 m>, which can be considered a high level of accuracy.

3.1.2. Prediction performance analysis on D-town

Similarly, we conducted tests and visualized the model performance
using 50 random gate positions in D-town case. Since D-town case is
much larger and more complex, along with 16 potential CSO outputs
within the model, led us to present results from a single rainfall event
that occurred on November 4th, 2017 in Fig. 8. Due to the length limit of
context, we selected four CSO locations randomly to illustrate the re-
sults. The CSO volume prediction results for D-town are shown in Fig. 8.
Similar to C-town case, all of our models exhibited impressive accuracy
and successfully captured the underlying trends. Based on the testing
and visualization from both C-town and D-town cases, we can conclude
that our machine learning models have the ability to capture complex
patterns and predict CSO volume with high precision.

Similar to the pervious C-town case, we employed 2000 distinct sets
of gate positions for two rainfall events to evaluate the model accuracy
metrics in the D-town scenario. The specific metrics for the D-town case
are presented in Table 2. The proposed models consistently deliver
outputs with excellent accuracy, as evidenced by the Mean Absolute
Percentage Error (MAPE) ranging from 2.84 % to 1.86 % for all models.
The performance of each model has undergone significant changes
compared to the C-town case. The CNN model exhibits higher accuracy,
whereas the LSTM performance drops a lot in our D-town case. The GRU
model outperforms all other models in the D-town case, achieving the
highest prediction accuracy across all four metrics used. In short,
determining which model will provide optimal performance across all
existing combined sewer systems is challenging. However, based on this
study, it is advisable to begin with a recurrent-based model or a Seq2Seq
with attention model, as they have demonstrated better performance.

Fig. 9 presents the violin plots representing the error density distri-
bution for the D-town model’s output. Compared to the previous case,
all models exhibit significantly reduced peak errors in our D-town case.
The GRU, Xgboost, and Seq2Seq models emerge as the top three per-
formers in terms of prediction error distribution. However, it appears
that the Seq2Seq model has a tendency to slightly overestimate the re-
sults. Surprisingly, despite being the most lightweight model, Xgboost
outperforms several training-heavy models in our D-town scenario, such
as LSTM and ResNet.

Based on all the aforementioned tests and metrics, we can conclude
that all of our machine learning models are capable of predicting the
total CSO volume throughout the entire events based on the provided
boundary and initial conditions. However, when evaluating their per-
formance in C-town and D-town cases, we recommend considering the
GRU, LSTM, or Seq2Seq models for higher accuracy. Additionally, the
Xgboost model, as our lightweight and fastest, can also provide reliable
results in some cases. However, the Xgboost model can only perform the
CSO volume prediction because it does not support the time series type
of outputs. Despite ResNet model’s success in other time series fore-
casting problems (Chen and Cong, 2022; Yu et al., 2022; Silva et al.,
2023), its performance in our two test cases is not ideal.

3.2. Total CSOs volume VS time series CSOs rates prediction

There has been a limited amount of research on predicting CSO
problems. Among this limited research, the majority has been dedicated
to the prediction of time series CSO rates (Maltbie et al., 2021; Rosin
et al., 2021; Yin et al., 2022). However, predicting CSO rates has two
significant reasons compared to predicting the total volume, as done in
this paper.

The first major reason is related to accuracy. We experimented and
tested all of our proposed models, except Xgboost, for time series CSO
rate prediction by using the C-town case. The results, presented in
Table 3, demonstrate that most models perform better in predicting CSO
volume. This outcome is reasonable because predicting CSO rates in-
volves an additional dimension compared to CSO volume prediction.
Furthermore, the nature of CSO rates, being more like spikes or sudden
bursts instead of continuous patterns like many other time series prob-
lems, adds complexity to the prediction task. As a result, the accuracy of
time series CSO rate prediction is lower than that of total CSO volume
prediction. The Seq2Seq model stands out as the top performer in time
series CSO rate prediction due to its unique outcome method. This
approach involves predicting the next output based on the input and the
previous output, allowing it to make predictions one element at a time.
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Fig. 8. CSO volume prediction for D-town case: (a) location of CSO weir 415; (b) location of CSO weir 404; (c) location of CSO weir 654; (d) location of CSO

weir 411.

In contrast, other models provide all results in one go, contributing to
the high dimensionality problem. The Seq2Seq model’s ability to handle
predictions step-by-step partially addresses this challenge.

The second reason is that higher dimensionality output is not ad-
vantageous for most popular genetic algorithms, including genetic al-
gorithm, pattern search, and reinforcement learning. While time series
CSO rates can offer additional information to human observers, such as
identifying peak flow occurrences, it does not provide the same level of
intuitiveness to optimization algorithms. All these popular optimization
algorithms are typically designed to maximize or minimize a single
value derived from specific loss, objective, or reward functions. Using
CSO volume values instead of CSO rate arrays barely has an impact on
the accuracy during the optimization stage. However, using total CSO
volumes as the output significantly enhances the computational

10

efficiency of the entire optimization loop. This improvement occurs
because providing CSO volumes as output allows the computer to avoid
handling the complexities of time series arrays within the user-defined
loss, objective, or reward functions.

3.3. Comparison with conventional optimization framework and
verification for inversion

Applying the inversion that is introduced in section 2.6, we can
obtain the optimal series of gate positions and corresponding optimal
CSO results at potential CSO locations. In every test conducted, we
consistently assigned a weight of 10 to total flooding and a weight of 1 to
each CSO location. This decision was made because the potential for
untreated water flowing through the nodes (manholes) may cause more
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Fig. 8. (continued).

significant damage. As a result, we aimed to avoid this nodal flooding

Table.e 2 scenario during the optimization stage.
Metrics for the D-town Case. . . .
Some researchers and engineers might not trust the results since all
MAE [m’] RMSE [m”] R? MAPE the computation process is completed in a single neural network. Thus,
Xgboost 116.52 196.18 0.941258 1.90 % we have employed the most conservative verification method to confirm
MLP 192.35 310.54 0.840966 3.55% the effectiveness of our inversion approach. The optimal series of gate
f;lfw 1‘3’:;"22 ;Zi‘z g';"z‘gg;: ;gf://“ positions obtained through the inversion method were utilized as gate
. 3 . . ( . . .
CNN 134.07 229,86 0922002 5.9 % inputs in the SWMM model. By em})loy1ng the SWMM model, we were
ResNet 161.70 265.02 0.899441 2.84 % able to calculate the corresponding CSO output at each location.
Seq2Seq 110.97 198.98 0.940232 1.98 % Furthermore, we established a baseline case for comparison purposes. In
this case, we employed the widely-used traditional optimization algo-
rithm, genetic algorithm, and integrated it with the SWMM model as the
optimization environment. This allowed us to assess the performance of
Prediction Errors Distribution on the 06-18-21 event Prediction Errors Distribution on the 11-04-17 event
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Fig. 9. Prediction error density distribution for D-town: (a) rainfall event starts on 06-18-21; (b) rainfall event starts on 11-04-17.
Table 3

Comparison of total CSOs volume prediction and time series CSOs rates prediction.

MAE of CSO Volume Prediction MAE of CSO rate Prediction Difference  RMSE of CSO Volume Prediction RMSE of CSO rate Prediction Difference

[m?] [m?] [m?] [m?]
MLP 411.30 443.48 +7.82 % 1138.87 1162.45 +2.07 %
GRU 256.14 265.32 +3.58 % 756.66 830.89 +9.81 %
LSTM 251.79 278.11 +10.45 % 791.11 841.56 +6.38 %
CNN 419.08 443.65 +5.86 % 1034.06 1043.16 +0.88 %
ResNet 457.44 649.88 +42.07 % 1120.32 1506.35 +34.45 %
Seq2Seq 242.41 259.84 +7.19 % 761.96 744.87 —2.24%

11



Z. Yin et al.

12950 1000000
Total CSO Volume
129001 Running Time
o i
g 12850 100000
g 12800 >
S 127504 g
Q 10000 :3
P 12700 - =
@) =
8 12650 | g
=
S 12600 - 1000 o4
2
f— 12550
12500 . . . . 100
1 2 3 4 5 6
Test Case

Fig. 10. Convergence test for genetic algorithm.

our inversion method against the conventional approach.

The performance of the genetic algorithm is influenced by its
hyperparameters. To evaluate this impact, we conducted a hyper-
parameter convergence test as shown in Fig. 10. The convergence test
was carried out on the C-town case at August 7th, 2019 event. The
number of generations are set as 100, 200, 400, 800, 1500, 2000, in the
test case 1 to 6, respectively. The number of parents mating are set as 4,
4, 8, 8, 16, 32, and the number of solution are set as 8, 16, 32, 32, 64,
128, in the test case 1 to 6, respectively. By examining the convergence
behavior under these different settings, we found that the settings in test
case 4 is a good choice in terms of both accuracy and computation
efficiency.

The comparison of conventional optimization (GA + SWMM) and
inversion of neural network on the C-town case at August 7th, 2019
event is shown in Table 4. As illustrated in Fig. 10, the rainfall event on
August 7th, 2019, was moderately heavy in comparison to the event on
September 12th, 2018. Consequently, all the methods listed in Table 4
were successful in minimizing total CSO to zero during the event.
However, the notable distinction lies in the computation time, where the
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inversion method significantly outperforms the conventional optimiza-
tion framework. The computation time for the inversion method ranged
from 0.65 to 61.53 s, making real-time optimization control feasible.
This enables the optimal gate positions to be promptly updated based on
the latest weather forecast in real-time scenarios.

Table 5 presents a comparison between the conventional optimiza-
tion (GA + SWMM) and the neural network inversion approach applied
to the D-town case on November 4th, 2017. In this scenario, D-town has
a much larger catchment than C-town and comprises 16 potential CSO
outlets directly discharging into the Ohio River. By using the conven-
tional optimization framework, the total CSO volume in the entire sys-
tem was minimized to 135,306 m>. The optimization also significantly
minimized CSO volumes at each location, compared to the visualization
shown in Fig. 6. Alternatively, the inversion methods achieved a total
CSO volume within the range of 131,226 to 140,520 m?, which shows a
similar performance to the conventional approach. However, it’s
important to note that the computation time required by the conven-
tional optimization framework was exceedingly long, which takes up to
13.8 days. Such a long processing time makes the entire optimization
framework meaningless in the real-world applications. The slowness
was mainly attributed to the numerical model’s time-consuming re-
sponses, as it needed to run thousands of times to compute numerous
gate position setups and to update CSO states. The numerical model
needs to take around four to five minutes to compute this complex D-
town cases, making it is unfeasible for practical optimization usage. In
contrast, our inversion method successfully addressed this problem,
completing the entire optimization process with a much short time. The
computation time ranged from 3.24 s to 794.27 s, depending on the
complexity of machine learning models. Such a significant improvement
in computation time even makes real-time optimal control feasible, as
the inversion method can continuously update the best solution based
on weather forecast updates.

4. Conclusion

In conclusion, we developed and evaluated seven mainstream ma-
chine learning models for rainfall induced CSOs prediction in two

Table 4
Comparison of conventional optimization and inversion of neural network on the C-town case at August 7th, 2019 event.
GA MLP GRU LSTM CNN ResNet Seq2Seq
CSOs on W35391 [m3] 0 0 0 0 0 0 0
CSOs on W35444 [m°] 0 0 0 0 0 0 0
Total CSOs Volume [m®] 0 0 0 0 0 0 0
Time [s] 12628.61 0.65 19.41 40.87 0.71 2.28 61.53

Table 5
Comparison of conventional optimization and inversion of neural network on the D-town case at November 4th, 2017 event.
GA MLP GRU LSTM CNN ResNet Seq2Seq

CSO on 412 [m3] 6592 3905. 4269 8060 2894 2436 3758
CSO on 415 [m?] 4042 3463 3957 2698 6034 6235 3246
CSO on 404 [m>] 10,970 8726 10,420 8932 8437 9874 8251
CSO on 403 [m3] 755 792 936 214 832 135 642
CSO on 402 [m®] 2052 600 2481 490 5327 627 3028
CSO on 406 [m>] 7545 6353 8851 8075 6748 9112 8907
CSO on 654 [m3] 7919 7906 7796 8487 8812 9322 9584
CSO on 408 [m®] 21,190 23,742 24,286 21,540 23,069 20,411 24,172
CSO on 541 [m®] 1700 1463 1721 1286 2565 1425 1503
CSO on 223 [m®] 10,593 8996 8611 9327 7930 10,621 8187
CSO on 411 [ms] 28,613 32,116 31,328 28,022 32,560 33,198 27,443
CSO on 414 [m®] 1814 1768 2004 2197 1854 1714 2021
CSO on 415B [m®] 13,325 12,163 13,745 11,697 13,840 17,676 15,654
CSO on 413 [ms] 2215 1976 1738 1826 2810 2698 1993
CSO on 416 [m®] 15,973 17,249 16,460 18,572 16,807 13,926 14,972
Total CSOs Volume [m>] 135,306 131,226 138,605 131,423 140,520 139,411 133,361
Time [s] 1,196,444 74.77 392.32 559.91 3.24 5.17 794.27
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existing combined sewer systems. All the models have demonstrated
high accuracy when evaluated on our test set. Additionally, we intro-
duced and successfully implemented the inversion of neural networks
method to minimize the CSO. The key findings can be summarized as
follows:

e Our machine learning models demonstrated consistently high accu-
racy in predicting CSOs. The mean absolute percentage error ranged
from 1.77 % to 3.64 % for Puritan Fenkell/Seven-Mile Collection
System and from 1.86 % to 2.84 % for Metropolitan Sewer District of
Greater Cincinnati.

The study revealed that the prediction of total CSOs volume is more
accurate than the prediction of time series CSO rates across all tested
machine learning models. Moreover, the total CSOs volume predic-
tion exhibited a better fit in the optimization process, making it a
more suitable choice for optimization purposes.

The introduced inversion of neural networks method approach can
provide the high-quality optimal results comparable to the conven-
tional GA optimization method. Furthermore, the inversion process
using neural networks exhibited a substantial performance advan-
tage over the traditional GA optimization framework in terms of
speed. The completion times for the entire optimization process
ranged from as little as 3.24 s to a maximum of 794.27 s, whereas the
GA approach required a lengthy 13.5 days to complete. This
remarkable speed makes real-time optimal control feasible, as the
inversion method can continuously update the best solution based on
weather forecast updates.
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