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We prove that the tropical surface of the root system An−1 has degree 1
2
n(n − 1)(n − 2).

1. Introduction

Tropical geometry was developed to answer questions in classical algebraic geometry combinatorially.

Tropicalization converts a projective variety V into a polyhedral complex trop(V ) that, roughly speaking,

records the behavior of V at infinity. The tropical variety trop(V ) retains a surprising amount of information

about V, such as its dimension and degree. Many important invariants of trop(V ) can be computed using

combinatorics and discrete geometry, thus giving computations of algebro-geometric invariants of V. For

detailed introductions to tropical geometry, see [Brugallé and Shaw 2014; Maclagan and Sturmfels 2015;

Mikhalkin and Rau 2010].

Initially, tropical geometry was most interested in studying tropicalizations of algebraic varieties of

importance. However, a more robust theory arises when one considers abstract tropical varieties, most

of which do not arise via tropicalization. This is analogous to the situation in matroid theory, where a

linear subspace V of a vector space gives rise to a matroid MV , but a more robust theory arises when one

considers all matroids, most of which do not arise from a linear subspace. (This is not just an analogy:

matroids may be understood as the tropical fans of degree 1 [Ardila and Klivans 2006; Fink 2013].)

Tropical geometry is then a rich source of well motivated combinatorial problems of significance within

and beyond combinatorics. A good theory needs good examples, and combinatorics is a rich source of

tropical varieties. In this spirit, Ardila, Kato, McMillon, Perez, and Schindler construct tropical surfaces

associated in a natural way to the classical root systems.

The geometric protagonist of this paper is the tropical surface S(An−1) associated to the root system

An−1 of the special linear Lie algebra sln . Our main result is that this surface has degree 1
2
n(n −1)(n −2).

2. Background

Let n be a positive integer and write [n] = {1, 2, . . . , n}. Let e1, . . . , en be the standard basis of R
n , and

write eS =
∑

s∈S es for each subset S ¦ [n].
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2.1. Root systems. Let us begin by defining root systems and root polytopes.

Definition 1 [Bourbaki 1968]. A crystallographic root system 8 is a set of vectors in R
n satisfying:

• For every root ´ ∈ 8, the set 8 is closed under reflection across the hyperplane perpendicular to ´.

• For any two roots ³, ´ ∈ 8, the quantity 2ï³, ´ð/ï³, ³ð is an integer, where ï−, −ð is the standard

inner product in R
n .

• If ´, c´ ∈ 8 for c ∈ R, then c = 1 or c = −1.

Definition 2 [Bourbaki 1968]. An irreducible root system is one that cannot be partitioned into the union

of two proper subsets 1 = 11 ∪ 12, such that ï³, ´ð = 0 for all ³ ∈ 11 and ´ ∈ 12.

Root systems play a fundamental role in many areas of mathematics; for example, they are key to

the classification of semisimple Lie algebras [Bourbaki 1968]. The irreducible root systems have been

classified into four infinite classical families and five exceptional root systems. In this paper we focus on

the most classical family,

An−1 = {ei − e j : i, j ∈ [n], i ̸= j}.

This is the root system of the special linear Lie algebra sln .

Definition 3. The root polytope P(8) of a root system 8 is the convex hull of 8.

2.2. Tropical geometry. To define the root surfaces S(An−1) that interest us, we first introduce some

basic definitions from tropical geometry. Let NZ
∼= Z

r be a lattice and let N = NZ ¹ R ∼= R
r be the

corresponding vector space. A cone is a set of the form

cone(v1, . . . , vn) = {¼1v1 + · · · + ¼nvn : ¼1, ¼2, . . . , ¼n g 0}

for vectors v1, . . . , vn in N . The cone is rational if it is generated by lattice vectors. A (rational) polyhedral

fan is a nonempty finite collection 6 of (rational) cones in N such that every face of a cone in 6 is also

in 6, and the intersection of any two cones in 6 is a face of both of them. A fan is pure of dimension d

if all maximal faces are d-dimensional. We let 6i denote the set of cones of 6 of dimension i . Tropical

fans are those that meet the following balancing condition.

Definition 4 [Maclagan and Sturmfels 2015]. Let 6 ¦ N be a rational polyhedral fan, pure of dimension d ,

with a choice of weight w(Ã) ∈ N for each maximal cone Ã ∈ 6d .

For each (d−1)-cone Ä ∈ 6d−1, consider the (d−1)-subspace LÄ ¦ N spanned by Ä , the induced

(d−1)-lattice LÄ,Z = LÄ ∩ NZ, and the quotient (n−d+1)-lattice N (Ä ) = NZ/LÄ,Z. Each d-cone Ã ∈ 6d

with Ã £ Ä determines a ray (Ã + LÄ )/LÄ in N/LÄ . This ray is rational with respect to the lattice N (Ä );

let uÃ/Ä be the first lattice point on this ray. The fan 6 is balanced at Ä if
∑

Ã∈6d : Ã£Ä

w(Ã)uÃ/Ä = 0 in N/LÄ .

The fan 6 is a tropical fan if it is balanced at all faces of dimension d − 1.1

1Notice that the balancing condition for 6 at Ä only depends on the fan Star6(Ä ), with weights inherited from 6.
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Figure 1. The root polytope P(A3) and the tropical root surface S(A3).

Tropical varieties are more general than tropical fans; see [Mikhalkin and Rau 2010] for a definition.

Tropical surfaces are tropical varieties that are pure of dimension 2. In particular, 2-dimensional tropical

fans are tropical surfaces.

Definition 5. The tropical root surface S(8) of a root system 8 is the cone over the 1-skeleton of P(8)

with unit weights on all facets. It consists of:

• Rays: cone(r) for each r ∈ 8.

• Facets: cone(r, s) for each r, s ∈ 8 such that rs is an edge of the root polytope P(8).

• Weights: w(Ã) = 1 for every facet Ã .

Since the root system An−1 is (n−1)-dimensional, we regard S(An−1) as a tropical root surface in the

lattice NZ = Z
n/Z with N = R

n/R.

Tropical root surfaces were introduced in [Perez 2019; Schindler 2017; Ardila et al. g 2025] by

Federico Ardila, Chiemi Kato, Jewell McMillon, Maria Isabel Perez, and Anna Schindler. Figure 1 shows

the root polytope and the tropical surface of the root system A3, with its cones truncated for visibility.

In classical algebraic geometry, the degree of an irreducible projective variety of dimension d is

obtained by counting its intersection points with a generic linear space of codimension d. In tropical

geometry, degree is defined similarly. The analog of a generic linear space is the standard tropical linear

space of codimension d, which we now define. Let us write e1, . . . , en for the image of the unit vectors

of R
n in R

n/R.

Definition 6 [Ardila and Klivans 2006; Maclagan and Sturmfels 2015]. The standard tropical linear

space 6n,n−d is the tropical fan in R
n/R whose facets are the (n−1−d)-dimensional cones

C I := {x ∈ R
n/R : min

1f jfn
x j = xi for all i ∈ I } = cone{ei : i /∈ I }

for each choice of a (d+1)-subset I ¦ [n], where every facet has weight 1. Its support (i.e., the union of

all of its cones) is

|6n,n−d | = {x ∈ R
n : the smallest d + 1 entries of x are equal to each other}. (1)
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The fan 6n,n−d is the coarse subdivision of the Bergman fan of the uniform matroid Un,n−d ; it is the

tropicalization of any sufficiently generic (n−d)-dimensional linear space in n-space, as shown in [Ardila

and Klivans 2006]. We remark that we are using the min convention of tropical geometry, although the

max convention would give the same results, since tropical root surfaces are symmetric across the origin.

Definition 7. Consider two tropical fans 61 and 62 of complementary dimensions d1 and d2 in a vector

space N ; that is, d1 + d2 = dim N . We say 61 and 62 intersect transversally if 61 ∩ 62 is a finite union

of points, and each such point p can be written uniquely as p = Ã1 ∩ Ã2 for facets Ã1, Ã2 of 61, 62,

respectively. The weight of each intersection point p is

w(p) := w(Ã1)w(Ã2) [NZ : LÃ1,Z + LÃ2,Z].

We call index(p) := [NZ : LÃ1,Z + LÃ2,Z] the index of p. The degree of the transversal intersection at p is

61 · 62 :=
∑

p∈61∩62

w(p).

If 61 and 62 are balanced but do not necessarily intersect transversally, then 61 and 62 +v do intersect

transversally for generic vectors v ∈ N , and the balancing condition implies that the degree of their

transversal intersection does not depend on v [Mikhalkin and Rau 2010, Propositions 4.3.3, 4.3.6]. Thus

we define the degree of the intersection to be

61 · 62 := (v + 61) · 62

for generic v.

Definition 8. The degree of a tropical fan 6 in N = R
n/R of dimension d is the degree of its intersection

with the standard tropical linear space of codimension d:

deg 6 := 6 · 6n,n−d .

In practice, to find the degree of a tropical fan 6, one chooses a convenient generic vector v ∈ R
n/R

and performs the following steps.

(1) Find the intersections of v + 6 with 6n,n−d .

(2) For each intersection point p identify the cones v + Ã1 of v +6 and Ã2 of 6n,n−d containing it, and

find the weight of that intersection.

(3) Find the degree of 6 by adding the weights of the intersection points above.

Step (2) can be carried out by choosing lattice bases {³i } and {´i } for LÃ1,Z and LÃ2,Z, so that

LÃ1,Z = Zï³1, . . . , ³d1
ð and LÃ2,Z = Zï´1, . . . , ´d2

ð. Then the index of the intersection p can be computed

as

index(p) = |det(³1, . . . , ³d1
, ´1, . . . , ´d2

)|.
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3. The tropical root surface of type A and its degree

The following result first appeared in [Schindler 2017], in a slightly different form. We include a proof

for completeness.

Proposition 9. The tropical root surface S(An−1) is a tropical surface.

Proof. We verify the balancing condition for an arbitrary ray r = cone(ei − ek). The maximal cones of

S(An−1) containing r are the cones over the edges of the root polytope P(An−1) containing the vertex

ei − ek ; these are known [Ardila et al. 2011; Cellini and Marietti 2015] to be

Ai, jk = cone(ei − e j , ei − ek), Ai j,k = cone(ei − ek, e j − ek), for j ̸= i, k. (2)

The primitive vectors in these cones with respect to r are ei − e j and e j − ek in N/Z(ei −ek), respectively.

Then the balancing condition for r says

∑

Ã∈62 : Ã£r

w(Ã)uÃ/r =
∑

j ̸=i,k

(ei − e j ) +
∑

j ̸=i,k

(e j − ek) = (n − 2)(ei − ek) = 0,

as desired. It follows that S(An−1) is indeed a tropical surface. □

We can now state and prove our main result.

Theorem 10. The degree of the tropical root surface S(An−1) is 1
2
n(n − 1)(n − 2).

Proof. We follow the approach outlined at the end of Section 2.2, studying the intersection of v+ S(An−1)

with 6n,n−2, where v is the superincreasing translation vector

v = (0, 1, 10, 100, 1000, . . .).

It can be verified that this vector is generic by adding a small vector ϵ to it, and verifying that the

intersection of v + S(An−1) with 6n,n−2, described below, has the same combinatorial structure as the

intersection of (v + ϵ) + S(An−1) with 6n,n−2.

(A) First we find the intersection points of v + S(An−1) and 6n,n−2.

For each 2-cone Ã ∈ S(An−1) we need to find the points v + s for s ∈ Ã whose three smallest entries I

are equal, so that v + s ∈ C I ¦ 6n,n−2 by (1). The maximal cones of S(An−1) are of the form Ai, jk and

Ai j,k for i, j, k pairwise distinct, as defined in (2). We consider these two types of cones separately.

(A1) Let us find the intersection points of v +Ai, jk and 6n,n−2 for i, j, k pairwise distinct.

Let s = a(ei − e j )+b(ei − ek) = (a +b)ei −ae j −bek ∈Ai, jk for a, b g 0. To make the three smallest

entries of v + s equal, we need to choose one entry i of v = (0, 1, 10, 100, . . .) to add (a +b) to, and two

entries j and k to subtract a and b from, respectively. Let m = min1fifn(v + s)i be the smallest entry of

v + s, which appears at least three times. This places constraints on a and b, as well as i, j, and k, as we

now explain in detail. Consider the following cases.
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Case 1.1. m < 0. To achieve this minimum we would have to subtract from at least 3 entries of v. Since

we can only subtract from 2 entries, this case does not contribute any intersection points.

Case 1.2. m = 0. To achieve m = 0, we must leave entry v1 = 0 unchanged, subtract from any two other

entries j, k > 1 (necessarily subtracting a = v j = 10 j−2 and b = vk = 10k−2), and add (necessarily a +b)

to any of the remaining entries i ̸= 1, j, k. The set of minimal coordinates is I = {1, j, k}. There are(
n−1

2

)
(n − 3) possible intersection points in this case.

Case 1.3. 0 < m < 1. To achieve such a value of m, we would have to add a + b = m to v1 and subtract

a = 10 j−2−m and b = 10k−2−m to two other entries j, k > 1. This would imply that 10 j−2+10k−2 = 3m,

which is impossible because the left hand side is at least 11 and the right hand side is less than 3. Thus

this case does not contribute any intersection points.

Case 1.4. m = 1. In this case we must add at least 1 to entry v1 = 0, leave entry v2 = 1 unchanged, and

subtract from two other entries j, k > 2. At least one of those two entries, say j , must lead to a minimum

coordinate (v + s) j = 1, so a = 10 j−2 − 1. This means that (v + s)1 = a + b > 1 is not a minimum

coordinate, so (v+s)k = 1 must be the other minimum coordinate, and b = 10k−2 −1. The set of minimal

coordinates is I = {2, j, k}. There are
(

n−2
2

)
possible intersection points in this case.

Case 1.5. m > 1. In this case we would have to add to the entries v1 = 0 and v2 = 1 to make them greater

than or equal to m. Since we can only add to one entry, this case does not contribute any intersection points.

(A2) Now let us find the intersection points of v +Ai j,k and 6n,n−2 for i, j, k pairwise distinct.

Let s = a(ei − ek)+b(e j − ek) = aei +be j − (a +b)ek ∈Ai j,k for a, b g 0. To make the three smallest

entries of v + s equal to each other, we need to choose two entries i and j of v = (0, 1, 10, 100, . . .) to

add a and b to, respectively, and one entry k to subtract (a + b) from. Let m = min1fifn(v + s)i be the

smallest coordinate of v + s, which appears at least three times. Consider the following cases:

Case 2.1. m < 1. To achieve this value of m we would need to subtract from two of the original entries

of v, which is impossible. Thus, this case does not contribute any intersection points.

Case 2.2. m = 1. A value of m = 1 can only be achieved in entries 1, 2, k of v + s for some k > 2. We

must add a = 1 to v1, leave v2 unchanged, subtract a+b = 10k−2−1 from vk , and hence add b = 10k−2−2

to some other entry j ̸= 1, 2, k. The set of minimal coordinates is I = {1, 2, k}. This case contributes

(n − 2)(n − 3) intersection points.

Case 2.3. 1 < m < 10. Again, such a value of m can only be achieved in entries 1, 2, k of v+ s for some

k > 2. Now, for these three new entries to equal m, we must add a = m to v1, add b = m − 1 to v2, and

subtract a +b = 10k−2 −m from vk . This forces m +(m −1) = 10k−2 −m, which gives m = 1
3
(10k−2 +1).

Since 1 < m < 10, we must have k = 3. Thus, the set of minimal coordinates is I = {1, 2, 3}, and this

case contributes a single intersection point.

Case 2.4. m = 10. In order to make the three smallest entries of v + s equal to 10, we have the following

three options. (1) Add a = 10 to v1, add b = 9 to v2, leave v3 untouched, and subtract 19 from any of
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the remaining entries k > 3. Here I = {1, 2, k}. (2) Add a = 10 to v1, subtract a + b = 10k−1 − 10

from vk with k > 3, and add b = 10k−1 − 20 to v2. Here I = {1, 3, k}. (3) Add a = 9 to v2, subtract

a + b = 10k−1 − 10 from vk with k > 3, and add b = 10k−1 − 19 to v1. Here I = {2, 3, k}. In each of

these options k can be any number between 4 and n. This case contributes 3(n − 3) intersection points.

Case 2.5. m > 10. To achieve this value of m, we would need to add to the three smallest entries of v,

which is impossible. Thus, this case does not contribute any intersection points.

(B) We now find the multiplicity of each of the intersection points p that we found in (A).

In each case we have identified the cones of v + S(An−1) and 6n,n−2 that the intersection p = v + s

belongs to. We now compute the multiplicity as the absolute value of the determinant of the matrix whose

columns are lattice bases for the planes generated by these cones.

Suppose that p is the intersection point of cone v +Ai, jk (or v +Ai j,k) of v + S(An−1) and cone C I

of 6n,n−2, where I = {in−2, in−1, in} and [n] − I = {i1, . . . , in−3}, as described in (2) and Definition 6.

Then the index of that intersection is

index(p) = |det(ei1
, ei2

, ei3
. . . , ein−3

, ei − e j , ei − ek, e[n])|

= |det(ei1
, ei2

, ei3
. . . , ein−3

, ein−2
+ ein−1

+ ein
, ei − e j , ei − ek)|.

The analogous result holds for the cones of the form v +Ai j,k .2

(B1) Case 1.2. In this case we have I = {1, j, k} so

index(p) = |det(ê1, e2, e3, . . . , ei , . . . , ê j , . . . , êk, . . . , en, e1 + e j + ek, ei − e j , ei − ek)|

= |det(ê1, e2, e3, . . . , ei , . . . , ê j , . . . , êk, . . . , en, e1 + e j + ek, e j , ek)|

= |det(ê1, e2, e3, . . . , ei , . . . , ê j , . . . , êk, . . . , en, e1, e j , ek)|

= 1,

where in the first step we subtract column ei from columns ei − e j and ei − ek and change their signs,

and in the second step we subtract e j and ek from e1 + e j + ek . Thus all intersections in this case have

multiplicity 1.

Case 1.4. Here I = {2, j, k} and i = 1 so

index(p) = |det(e1, ê2, e3, . . . , ê j , . . . , êk, . . . , en, e2 + e j + ek, e1 − e j , e1 − ek)|

= |det(e1, ê2, e3, . . . , ê j , . . . , êk, . . . , en, e2 + e j + ek, e j , ek)|

= |det(e1, ê2, e3, . . . , ê j , . . . , êk, . . . , en, e2, e j , ek)|

= 1.

It follows that each intersection in case 1.4 has multiplicity 1.

2We need the additional n-th entry e[n] in these formulas because the n − 1 generating vectors live in R
n/Re[n], and we wish

to regard them as vectors in R
n in order to compute their determinant.
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(B2) Case 2.2. Here I = {1, 2, k} and i = 1 so

index(p) = |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1 − ek, e j − ek)|

= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1 − ek, ek)|

= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e1 + e2 + ek, e1, ek)|

= |det(ê1, ê2, e3, e4, . . . , êk, . . . , en, e2, e1, ek)|

= 1,

where we first subtract e j from e j − ek and change the sign to ek , then we add ek to e1 − ek , and then we

subtract e1 and ek from e1+e2+ek . Again, it follows that each one of these intersections has multiplicity 1.

Case 2.3. In this case I = {1, 2, 3} and i = 1, j = 2, k = 3, so

index(p) = |det(ê1, ê2, ê3, e4, . . . , en, e1 + e2 + e3, e1 − e3, e2 − e3)|

= |det(ê1, ê2, ê3, e4, . . . , en, 3e3, e1 − e3, e2 − e3)|

= |det(ê1, ê2, ê3, e4, . . . , en, 3e3, e1, e2)|

= 3,

where we first subtract e1 − e3 and e2 − e3 from e1 + e2 + e3, and then we add one third of 3e3 to e1 − e3

and e2 − e3. Thus this intersection has multiplicity 3.

Case 2.4. Here we had three options: In option 1 we had I = {1, 2, 3} and i = 1, j = 2, so

index(p) = |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e1 + e2 + e3, e1 − ek, e2 − ek)|

= |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e1 + e2 + e3, e1, e2)|

= |det(ê1, ê2, ê3, e4, . . . , ek, . . . , en, e3, e1, e2)|

= 1,

where we first add ek to e1 − ek and e2 − ek , and then subtract e1 and e2 from e1 + e2 + e3. These

intersections then have multiplicity 1.

In option 2 we had I = {1, 3, k} and i = 1, j = 2, so

index(p) = |det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1 − ek, e2 − ek)|

= |det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1 − ek, ek)|

= |det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e1 + e3 + ek, e1, ek)|

= |det(ê1, e2, ê3, e4, . . . , êk, . . . , en, e3, e1, ek)|

= 1,

where we first subtract e2 from e2 − ek and change the sign of the result, then add ek to e1 − ek , and finally

subtract e1 and ek from e1 + e3 + ek . These intersections then have multiplicity 1.

Option 3 is analogous to option 2, reversing the roles of 1 and 2, so these intersections have multiplicity

1 as well.
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case number of intersections intersection multiplicity contribution to degree

1.1 0 — 0

1.2
(

n−1
2

)
(n − 3) 1 1

2
(n − 1)(n − 2)(n − 3)

1.3 0 — 0

1.4
(

n−2
2

)
1 1

2
(n − 2)(n − 3)

1.5 0 — 0

2.1 0 — 0

2.2 (n − 2)(n − 3) 1 (n − 2)(n − 3)

2.3 1 3 3

2.4 3(n − 3) 1 3(n − 3)

2.5 0 — 0

Table 1. Intersection points of v + S(An−1) and 6n,n−2 with their multiplicities.

(C) Finally, we collect in Table 1 all the intersections points and their multiplicities, as computed in (A)

and (B). Putting them together, we conclude that the degree of the tropical root surface of type An−1 is

deg S(An−1) =
(

n−1

2

)
(n − 3) +

(
n−2

2

)
+ (n − 2)(n − 3) + 3 + 3(n − 3) = 1

2
n(n − 1)(n − 2),

as desired. □

4. Remarks and future work

Nayeong Kim computed the degrees of the tropical surfaces of the remaining classical root systems [Kim

2023]. It is natural to ask whether these tropical surfaces can be obtained as tropicalizations of classical

varieties. This is a subtle question: the surface S(An−1) is a tropicalization of a projective variety, but we

do not know whether that is the case for any root system. This will be explained in a future paper.
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