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THE TROPICAL CRITICAL POINTS OF AN AFFINE MATROID
∗

FEDERICO ARDILA-MANTILLA†, CHRISTOPHER EUR‡, AND RAUL PENAGUIAO§

Abstract. We prove that the number of tropical critical points of an affine matroid (M,e) is
equal to the beta invariant of M . Motivated by the computation of maximum likelihood degrees,
this number is defined to be the degree of the intersection of the Bergman fan of (M,e) and the
inverted Bergman fan of N = (M/e)⊥, where e is an element of M that is neither a loop nor a
coloop. Equivalently, for a generic weight vector w on E − e, this is the number of ways to find
weights (0, x) on M and y on N with x + y = w such that, on each circuit of M (resp., N), the
minimum x-weight (resp., y-weight) occurs at least twice. This answers a question of Sturmfels.
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1. Introduction. During the Workshop on Nonlinear Algebra and Combina-
torics from Physics at the Center for the Mathematical Sciences and Applications at
Harvard University in April 2022, Bernd Sturmfels [Stu22] posed one of those com-
binatorial problems that is deceivingly simple to state, but whose answer requires a
deeper understanding of the objects at hand.

Conjecture 1.1 ([Stu22]). Let M be a matroid on E, and let e ∈ E be an
element that is neither a loop nor a coloop. Let M/e be the contraction of M by e,
and let N = (M/e)⊥ be its dual matroid.

1. (Combinatorial version) Given a vector w ∈ RE−e, we wish to find weight
vectors (0, x) ∈ RE on M (where e has weight 0) and y ∈ RE−e on N such
that,
• on each circuit of M , the minimum x-weight occurs at least twice;
• on each circuit of N = (M/e)⊥, the minimum y-weight occurs at least

twice; and
• w= x+ y.

For generic w, the number of solutions is the beta invariant β(M).
2. (Geometric version) The degree of the stable intersection of the Bergman fan

Σ(M,e) and the inverted Bergman fan −ΣN =−Σ(M/e)⊥ is

deg
(

Σ(M,e) · −Σ(M/e)⊥
)

= β(M) .

The goal of this paper is to prove this conjecture.

∗Received by the editors February 28, 2023; accepted for publication (in revised form) April 17,
2024; published electronically June 24, 2024.

https://doi.org/10.1137/23M1556174
Funding: The first author was supported by NSF grant DMS-2154279. The second author was

supported by NSF grant DMS-2001854. The third author was supported by SNF grant P2ZHP2
191301.

†San Francisco State University, San Francisco, CA 94132 USA, and Universidad de Los Andes,
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Fig. 1. A graph G, its contraction G/0, and its dual H = (G/0)⊥.

Theorem 1.2. Versions 1. and 2. of Conjecture 1.1 are true.

The affine matroid (M,e) is the matroid M with a special chosen element e.
The Bergman fan of (M,e) is the Bergman fan of M intersected with the hyperplane
xe = 0. The other relevant definitions are given in section 2.3. The combinatorial
and geometric formulations of Conjecture 1.1 are equivalent because, in the stable
intersection above, all intersection points have multiplicity 1 [ABF+23, Lemma 7.4].
In the proof of Theorem 1.2 we will follow closely the matroids in Figure 1 for sake
of example.

The results of this paper were motivated by the problem of computing maximum
likelihood degrees in algebraic statistics, pioneered by Catanese, Khetan, Hoşten, and
Sturmfels [CHKS06]. For linear models, Varchenko showed that the maximum likeli-
hood degree equals the beta invariant of the corresponding matroid; see [Var95, Zas75]
and [CHKS06, Theorem 13].

Agostini, Brysiewicz, Fevola, Kühne, Sturmfels, and Telen first encountered a
special case of Conjecture 1.1 in [ABF+23]. Using algebro-geometric results of Huh
and Sturmfels [HS14], which built on earlier work of Varchenko [Var95], they proved
Theorem 1.2 for matroids realizable over the real numbers [ABF+23, Theorem 7.1].
In a related setting of linear Gaussian models, the maximum likelihood degrees were
shown to be matroid invariants of the linear subspace [SU10, EFSS21].

We prove Theorem 1.2 for all matroids. Following the original motivation, we
call the solutions to Conjecture 1.1.1 the tropical critical points of the affine matroid;
our main result is that they are counted by Crapo’s beta invariant β(M). We do
something stronger. Agostini et al. write,

“we would like to describe the multivalued map that takes any tropi-
cal data vector w to the set of its critical points” [ABF+23, section 7].

We give an explicit formula for this map for all w that are rapidly increasing under
any order < on the ground set E.

In section 3, we prove Theorem 1.2.1 combinatorially, relying on the tropical
geometric fact that the number of solutions is the same for all generic1 w. We show
that, when the entries of w are rapidly increasing with respect to some order < on
E, the solutions to Conjecture 1.1.1 are naturally in bijection with the β-nbc-bases of
the matroid with respect to <. It is known that the number of such bases is the beta
invariant of the matroid, regardless of the order <.

In section 4, we sketch a proof of Theorem 1.2.2 that relies on the theory of
tautological classes of matroids of Berget, Eur, Spink, and Tseng [BEST23]. This

1We will say that a property holds for generic w ∈Rn if it holds for all w outside of a polyhedral
complex of dimension smaller than n.
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1932 F. ARDILA-MANTILLA, C. EUR, AND R. PENAGUIAO

proof is not combinatorial; it relies on computations in the equivariant Chow ring of
the permutahedral variety initiated in [BEST23] and extended here. We do not know
of a direct relationship between our two proofs. For a survey of the relationships and
differences between these proof techniques in a similar setting, see [AM24].

2. Notation and preliminaries.

2.1. The lattice of set partitions. A set partition λ of a set E is a collection
of subsets, called blocks, of E, say, λ = {λ1, . . . , λ`}, whose union is E and whose
pairwise intersections are empty. We write λ |= E. We let |λ| = ` be the number of
blocks of λ. If e∈E and λ |=E, we write λ(e) for the block of λ that contains e.

We define the linear space of a set partition λ= {λ1, . . . , λ`} |=E to be

L(λ) := span{eλ1
, . . . , eλ`

} ⊆RE

= {x∈RE |xi = xj whenever i, j are in the same block of λ},

where {ei : i ∈ E} is the standard basis of RE and eS =
∑

s∈S es for S ⊆ E. Notice
that dimL(λ) = |λ|. The map λ 7→ L(λ) is a bijection between the set partitions of E
and the flats of the braid arrangement, which is the hyperplane arrangement in RE

given by the hyperplanes xi = xj for i 6= j in E.
If e∈E, then we write L(λ)|xe=0 = {x∈R

E−e : (0, x)∈ L(λ)⊆RE}.

2.2. The intersection graph of two set partitions. We denote [a, b] :=
{a, a + 1, . . . , b − 1, b} and [n] := [1, n]. The following construction from [AE21] will
play an important role.

Definition 2.1. Let λ |= [0, n] and µ |= [n] be set partitions. The intersection
graph Γ = Γλ,µ is the bipartite graph with vertex set λ t µ and edge set [n], where
the edge labeled e connects the parts λ(e) of λ and µ(e) of µ containing e. The vertex
λ(0) is marked with a hollow point.

The intersection graph may have several parallel edges connecting the same pair
of vertices. Notice that the label of a vertex in Γ is just the set of labels of the edges
incident to it. Therefore, we can remove the vertex labels and simply think of Γ as a
bipartite multigraph on edge set [n]. This is illustrated in Figure 2.

Lemma 2.2. Let λ |= [0, n] and µ |= [n] be set partitions and Γλ,µ be their inter-
section graph.

1. If Γλ,µ has a cycle, then L(λ)|x0=0 ∩ (w− L(µ)) = ∅ for generic w ∈Rn.
2. If Γλ,µ is disconnected, then L(λ)|x0=0 ∩ (w − L(µ)) is not a point for any

w ∈Rn.
3. If Γλ,µ is a tree, then L(λ)|x0=0 ∩ (w− L(µ)) is a point for any w ∈Rn.

Proof. Let x ∈ L(λ) and y ∈ L(µ) such that x + y = w. Write xλ(i) := xi and
yµ(i) := yi for i∈ [n]. The subspace L(λ)|x0=0 ∩ (w− L(µ)) can be naturally regarded
as living in Rλtµ, where it is cut out by the equalities

xλ(i) + yµ(i) =wi for i∈ [n],

xλ(0) = 0.

This system has n+1 equations and |λ|+ |µ| independent unknowns. The linear
dependences among these equations are controlled by the cycles of the graph Γλ,µ.
More precisely, the first n linear functionals {xλ(i) + yµ(i) : i ∈ [n]} on Rλtµ give
a realization of the graphical matroid of Γλ,µ. The last equation is clearly linearly
independent from the others.
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6 2 01347859

9 8 7 46 3 125

9 8 7 6 4 3 5 2 1

Fig. 2. The intersection graph of λ= {6,59,2,013478} |= [0,9] and µ= {9,8,7,46,3,125} |= [9].
We omit brackets for legibility. Left: The vertices are labeled by the blocks of the set partitions.

Right: The edges are labeled by the elements of [9].

If Γλ,µ has a cycle with edges i1, i2, . . . , i2k in that order, then the above equalities
imply that wi1−wi2 +wi3−· · ·−wi2k = 0. For generic w, this equation does not hold,
so we have L(λ)|x0=0 ∩ (w− L(µ)) = ∅.

If Γλ,µ is disconnected, let A be the set of edges in a connected component not
containing the vertex λ(0). If x∈ L(λ) and y ∈ L(µ) satisfy x+ y=w and x0 = 0, then
x+ reA ∈ L(λ) and y− reA ∈ L(µ) also satisfy those equations for any real number r.
Therefore, L(λ)|x0=0 ∩ (w− L(µ)) is not a point.

Finally, if Γλ,µ is a tree, then its number of vertices is one more than the number
of edges (that is, n + 1 = |λ| + |µ|), so the system of equations has equally many
equations and unknowns. Also, these equations are linearly independent since Γλ,µ

is a tree. It follows that the system has a unique solution.

When Γλ,µ is a tree, we call λ and µ an arboreal pair.

Lemma 2.3. Let λ |= [0, n] and µ |= [n] be an arboreal pair of set partitions, and
let Γλ,µ be their intersection tree. Let w ∈ Rn. The unique vectors x ∈ L(λ) and
y ∈ L(µ) such that x+ y=w and x0 = 0 are given by

xλi
=we1 −we2 + · · · ±wek , where e1e2 . . . ek is the unique path from λi to λ(0),

yµj
=wf1 −wf2 + · · · ±wfl , where f1f2 . . . fl is the unique path from µj to λ(0)

for any i and j.

Proof. This follows readily from the fact that, for each 1 ≤ i ≤ k, the values of
xλ(ei) and yµ(ei) on the vertices incident to edge i have to add up to wei .

Example 2.4. Let λ = {6,59,2,013478} |= [0,9] and µ = {9,8,7,46,3,125} |= [9].
These set partitions form an arboreal pair, as evidenced by their intersection tree,
shown in Figure 2. We have, for example, y9 = w9 − w5 + w1 because the path
from µ(9) = {9} to λ(0) = {013478} uses edges 9,5,1 in that order. The remaining
values are

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1934 F. ARDILA-MANTILLA, C. EUR, AND R. PENAGUIAO

x6 =w6 −w4, x59 =w5 −w1, x2 =w2 −w1, x013478 = 0,

y9 =w9 −w5 +w1, y8 =w8, y7 =w7, y46 =w4, y3 =w3, y125 =w1.

The tropical critical points of a matroid are better behaved for the following
family of vectors.

Definition 2.5. A vector w ∈ Rn is rapidly increasing if wi+1 > 3wi > 0 for
1≤ i≤ n− 1.

The next lemma is readily verified.

Lemma 2.6. Let w be rapidly increasing. For any 1 ≤ a < b ≤ n and any choice
of εis and δis in {−1,0,1}, we have wa +

∑a−1
i=1 εiwi <wb +

∑b−1
j=1 δjwj .

Definition 2.7. Given a rapidly increasing vector w ∈Rn and a real number x,
we will say x is near wi and write x≈ wi if wi − (w1 + · · ·+wi−1)≤ x≤ wi + (w1 +
· · ·+wi−1) for i= 1, . . . , n. By Lemma 2.6, if x≈wi and y≈wj for i < j, then x< y.

2.3. Matroids, Bergman fans, and tropical geometry. In what follows,
we will assume familiarity with basic notions in matroid theory; for definitions and
proofs, see [Oxl06, Wel76]. We also state here some facts from tropical geometry that
we will need; see [MS15, MR10] for a thorough introduction.

Let M be a matroid on E of rank r+1. The dual matroid M⊥ is the matroid on
E whose set of bases is {B⊥ |B is a basis of M}, where B⊥ :=E −B. The following
lemma is useful to see how M and M⊥ interact; see [ADH22, Lemma 3.14] and [Oxl06,
Proposition 2.1.11] for proofs.

Lemma 2.8. If F is a flat of M and G is a flat of M⊥, then |F ∪G| 6= |E| − 1.

Definition 2.9 ([Cra67]). The beta invariant of M is defined to be β(M) :=

(−1)r dχM (t)
dt

∣

∣

∣

t=1
, where χM (t) is the characteristic polynomial of M :

χM (t) :=
∑

X⊆E

(−1)|X|tr(M)−r(X).

Definition 2.10. Fix a linear order < on M . A broken circuit is a set of the
form C −min<C where C is a circuit of M . An nbc-basis of M is a basis of M that
contains no broken circuits. A β-nbc-basis of M is an nbc-basis B such that B⊥∪0\1
is an nbc-basis of M⊥.

Theorem 2.11 ([Zie92]). For any linear order < on E, the number of β-nbc-bases
of M is equal to the beta invariant β(M).

The closure of a set A⊆E, denoted by clM (A), is the smallest flat F containing
A. For each basis B = {b1 > . . . > br > br+1} of the matroid M , we define the complete
flag of flats

FM (B) := {∅( clM{b1}( clM{b1, b2}( · · ·( clM{b1, . . . , br}(E}.

The following characterization of nbc-bases will be useful.

Lemma 2.12 ([Bjö92, (7.30), (7.31)]). Let M be a matroid of size n+1 and rank
r+1, and let B a basis of M . Then, B is an nbc-basis of M if and only if bi =minFi

for i= 1, . . . , r+ 1.

An affine matroid (M,e) on E is a matroid M on E with a chosen element e∈E
[Zie92]. The set E is also called the ground set of (M,e).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE TROPICAL CRITICAL POINTS OF AN AFFINE MATROID 1935

Definition 2.13 ([Stu02]). The Bergman fan of a matroid M on E is

ΣM = {x∈RE | min
c∈C

xc is attained at least twice for any circuit C of M} .

The Bergman fan of an affine matroid (M,e) on E is

Σ(M,e) = {x∈R
E−e | (0, x)∈ΣM}=ΣM |xe=0.

Remark 2.14. The Bergman fan contains the lineality space 1R. Taking the
quotient by this space or intersecting with a coordinate linear hyperplane will give
the same result, and typically, the (projective) Bergman fan is defined in the quotient
vector space RE/1R in the literature.

The motivation for this definition comes from tropical geometry. A subspace
V ⊂ RE determines a matroid MV on E, and the tropicalization of V is precisely
the Bergman fan of MV . Similarly, an affine subspace W ⊂ RE−e determines an
affine matroid (MW , e) on E, where e represents the hyperplane at infinity. The
tropicalization of W is the Bergman fan Σ(MW ,e).

Theorem 2.15 ([AK06]). The Bergman fan of a matroid M is equal to the union
of the cones

σF = cone(eF1
, . . . , eFr+1

) +R1

= {x∈RE |xa ≥ xb whenever a∈ Fi and b∈ Fj for some 1≤ i≤ j ≤ r+ 1}

for the complete flags F = {∅= F0 ( F1 ( · · ·( Fr ( Fr+1 =E} of flats of M . It is a
tropical fan with weights w(F) = 1 for all F .

If Σ1 and Σ2 are tropical fans of complementary dimensions, then Σ1 and v+Σ2

intersect transversally at a finite set of points for any sufficiently generic vector v ∈
Rn. Furthermore, each intersection point p is equipped with a multiplicity w(p) that
depends on the respective intersecting cones in such a way that the quantity

deg(Σ1 ·Σ2) :=
∑

p∈Σ1∩(v+Σ2)

w(p)

is constant for generic v [MR10, Proposition 4.3.3, 4.3.6]; this is called the degree of
the intersection.

In all the tropical intersections that arise in this paper, it was verified in [ABF+23,
Lemma 7.4] that the multiplicity index w(p) is 1. This also follows readily from the
fact that every such intersection comes from an arboreal pair λ, µ by Lemma 2.2, as
explained in the next section. Therefore, the degree of the intersection will be simply
the number of intersection points

deg(Σ(M,e) · −Σ(M/e)⊥) = |Σ(M,e) ∩ (v−Σ(M/e)⊥)|

for generic v ∈RE−e. This explains the equivalence of the two versions of Conjecture
1.1 and Theorem 1.2.

3. Proof of the main theorem via basis activities. Let M be a matroid on
[0, n] of rank r+1 such that 0 is not a loop nor a coloop. Then, M/0 has rank r, and
N = (M/0)⊥ has rank n− r. For any basis B of M containing 0, B⊥ = [0, n]−B is
a basis of N = (M/0)⊥. Conversely, every basis of N equals B⊥ for a basis B of M
containing 0.

Let us construct an intersection point in Σ(M,0) ∩ (w−ΣN ) for each β-nbc-basis
of M .
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1936 F. ARDILA-MANTILLA, C. EUR, AND R. PENAGUIAO

Lemma 3.1. Let M be a matroid on E = [0, n] of rank r+ 1 such that 0 is not a
coloop, and let N = (M/0)⊥. Let w ∈Rn be rapidly increasing. For any β-nbc-basis B
of M , there exist unique vectors (0, x)∈ σFM (B) and y ∈ σFN (B⊥) such that x+ y=w.

Proof. A flag {∅( F1 ( · · ·( Fk (E} of subsets of E gives rise to a set partition
{F1, F2 − F1, . . . ,E − Fk} of E. First, we show that the set partitions π and π⊥

corresponding to the flags F = FM (B) and F⊥ = FN (B⊥) form an arboreal pair.
Since they have sizes |B| = r + 1 and |B⊥| = n − r, respectively, their intersection
graph has n + 1 vertices and n edges. Therefore, it is sufficient to prove that the
intersection graph Γπ,π⊥ is connected; this implies that it is a tree.

Assume contrariwise, and let A be a connected component not containing the
edge 1. Let a > 1 be the smallest edge in A. Then, a is the smallest element of its
part π(a) in π, and, since B is nbc-basis in M , this implies a ∈ B. Similarly, since
B⊥ is nbc-basis in N , this also implies a∈B⊥. This contradicts Lemma 2.12.

It follows from Lemma 2.2 that there exist unique (0, x) ∈ L(π) and y ∈ L(π⊥)
such that x+ y=w. It remains to show that (0, x)∈ σF and y ∈ σF⊥ .

Lemma 2.3 provides formulas for x and y in terms of the paths from the various
vertices of the tree of Γπ,π⊥ to π(0). To understand those paths, let us give each edge
e an orientation as follows:

π(e)−→ π⊥(e) if minπ(e)>minπ⊥(e),

π(e)←− π⊥(e) if minπ(e)<minπ⊥(e).

We never have minπ(e) = minπ⊥(e) because, as above, that would imply that e ∈
B ∩B⊥.

We claim that every vertex other than π(0) has an outgoing edge under this
orientation. Consider a part πi 6= π(0) of π; let minπi = b. Edge b connects πi = π(b)
to π⊥(b) 3 b, and we cannot have minπ⊥(b) > b = minπ(b), so we must have πi →
π⊥(b). The same argument works for any part π⊥

j of π⊥.
Now, since B is an nbc-basis of M , every element b ∈ B is minimum in π(b), so

there is a directed path that starts at π(b) and can only end at π(0), and its first edge
is b. Furthermore, by the definition of the orientation, the labels of the edges decrease
along this path. Thus, in the alternating sum xb =wb ± · · · given by Lemma 2.3, the
first term dominates, and xb ≈ wb for b ∈ B \ 0, whereas x0 = 0. Similarly, since B⊥

is an nbc-basis of N , yc ≈wc for all c∈B⊥.
Therefore, if we write B = {b1 > . . . > br > br+1 = 0}, since w is rapidly increasing,

it follows that xb1 > xb2 > · · · > xbr > xbr+1
= 0; so, from Theorem 2.15, we have

(0, x) ∈ σF . Similarly, if we write B⊥ = E − B = {c1 > . . . > cn−r = 1}, then
yc1 > yc2 > · · ·> ycn−r

, so y ∈ σF⊥ . The desired result follows.

Example 3.2. The graphical matroid M of the graph G in Figure 1 has six
β-nbc-bases: 0256, 0257, 0259, 0368, 0378, 0379. Let us compute the intersection
point in Σ(M,0) ∩ (w − ΣN ) associated to 0257 for the rapidly increasing vector w =
(100,101, . . . ,108)∈R9.

For B = 0257, we have B⊥ = 134689. The flags they generate in M and N are

FM (B) = {∅( 7( 57( 2457( 0123456789},

FN (B⊥) = {∅( 9( 89( 689( 46789( 346789( 123456789},

which give rise to the corresponding set partitions

π= 7|5|24|013689, π⊥ = 9|8|6|47|3|125.

This is indeed an arboreal pair, as evidenced by their intersection graph in Figure 3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
7
/1

5
/2

4
 t

o
 1

3
0
.2

1
2
.1

3
9
.7

4
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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9 8 6 7 4 3 5 2 1

Fig. 3. The intersection graph of π= 7|5|24|13689 and π⊥ = 9|8|6|47|3|125.

Lemma 3.1 gives us the unique points (0, x)∈Fπ and y ∈Fτ such that x+ y=w;
they are given by the paths to the special vertex π(0) in the intersection tree Γπ,π⊥ .
For example x7 = 106 − 103 + 101 − 100 = 999009 and y4 = 103 − 101 + 100 = 991 are
given by the paths 7421 and 421 from π(7) = π1 and π⊥(7) = π⊥

4 to π(0), respectively.
In this way, we obtain

x= 0 9 0 9 9999 0 999009 0 0,
y= 1 1 100 991 1 100000 991 10000000 100000000,
w= 1 10 100 1000 10000 100000 1000000 10000000 100000000,

and x∈Σ(M,0) ∩ (w−ΣN ). We invite the reader to record the weights (0, x) and y in
the graphs G and H of Figure 1 and verify that, in each cycle, the minimum weight
appears at least twice.

Conversely, the following lemma shows that any intersection point between Σ(E,e)

and v−ΣN is of the form constructed in Lemma 3.1; that is, it comes from a β-nbc-
basis.

Lemma 3.3. Let M be a matroid on E = [0, n] of rank r+ 1 such that 0 is not a
loop or a coloop and N = (M/0)⊥. Let w ∈Rn be generic and rapidly increasing. Let

F = {∅= F0 ( F1 ( · · ·( Fr ( Fr+1 =E},

G = {∅=G0 (G1 ( · · ·(Gn−r−1 (Gn−r =E − 0}

be complete flags of the matroids M and N , respectively, such that Σ(M,0) and w−ΣN

intersect at σF and w − σG. Then, there exists a β-nbc-basis B of M such that
F =FM (B) and G =FN (B⊥).

Proof. If σF and w − σG intersected at more than one point, their intersection
would contain a line segment, so Σ(M,0) ∩ (w − ΣN ) would be infinite. Since Σ(M,0)

and −ΣN have complementary dimensions, this would contradict the genericity of w.
Therefore, σF ∩(w−σG) is a point, and Lemma 2.2 implies that the set partitions

π and τ of F and G form an arboreal pair; that is, Γπ,τ is a tree. In particular,
πa∩ τb = (Fa−Fa−1)∩ (Gb−Gb−1) cannot have more than one element for any a and
b. We proceed in several steps.

1. Our first step will be to show that, in the intersection tree Γπ,τ , the top right
vertex πr+1 contains 0 and 1, the bottom right vertex τn−r contains 1, and thus, the
edge 1 connects these two rightmost vertices.

The matroid N = (M/0)⊥ =M⊥ − 0 can be obtained by deleting the element 0
from the matroid M⊥. Each Gi is a flat of N , so G•

i := clM⊥(Gi) ∈ {Gi,Gi ∪ 0} is a
flat of M⊥. Consider the flag of flats of M⊥

G• := {∅=G•
0 (G•

1 ( · · ·(G•
n−r−1 (G•

n−r =E},
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1938 F. ARDILA-MANTILLA, C. EUR, AND R. PENAGUIAO

where G•
n−r =E because 0 is not a coloop of M⊥ and G•

0 = ∅ because 0 is not a loop
of M⊥. Let m be the minimal index such that 0∈G•

m, so

G• := {∅=G0 (G1 ( · · ·(Gm−1 (Gm ∪ 0( · · ·(Gn−r−1 ∪ 0(Gn−r ∪ 0 =E}.

Consider the unions of the flat Fr with the coflats in G•; let j be the index such
that

Fr ∪G
•
j−1 6=E, Fr ∪G

•
j =E.

The former cannot have size |E| − 1 because it is the union of a flat and a coflat.
Therefore,

(Fr ∪G
•
j )− (Fr ∪G

•
j−1) = (E − Fr)∩ (G

•
j −G•

j−1) has size at least 2.(1)

But F and G are arboreal, so

πr+1 ∩ τj = (E − Fr)∩ (Gj −Gj−1) has size at most 1.(2)

Now, observe that G•
j −G•

j−1 and Gj −Gj−1 can only differ by {0}, so (1) and (2)
imply that they must differ by {0}; furthermore, the differing element 0 must be in
E − Fr. We conclude the following:

a) G•
j =Gj ∪ 0 and G•

j−1 =Gj−1; that is, j =m.
b) 0∈E − Fr = πr+1.
Similarly, consider the union of the coflat G•

n−r−1 with the flats in F ; let i be the
unique index such that

Fi−1 ∪G
•
n−r−1 6=E, Fi ∪G

•
n−r−1 =E.

An analogous argument shows that (Fi − Fi−1) ∩ (E −G•
n−r−1) has size at least 2,

whereas πi∩ τn−r = (Fi−Fi−1)∩ (E−0−Gn−r−1) has size at most 1. This has three
consequences:

c) G•
n−r−1 =Gn−r−1; that is, m= n− r.

d) 0∈ Fi − Fi−1, which, in light of b), implies that i= r+ 1.
e) (Fi−Fi−1)∩ (E−0−Gn−r−1) = πr+1∩ τn−r = {e} for some element e∈E−0.

But e ∈ πr+1 means that xe = 0 is minimum among all xis for any (0, x) ∈ σF , and
e ∈ τn−r means that ye is minimum among all yis for any y ∈ σG by Theorem 2.15.
Since w = x+ y for some such x and y, we = xe + ye is minimum among all wis, and
since w is rapidly increasing, e= 1.

It follows that, in the intersection tree Γπ,τ , the top right vertex πr+1 contains
0 and 1 by d) and e), the bottom right vertex τn−r contains 1 by e), and thus, 1
connects them.

2. Next, we claim that, for any path in the tree Γπ,τ directed towards and ending
at edge 1, the first edge has the largest label.2 Assume contrariwise, and consider
a containment-minimal path P that does not satisfy this property; its edges must
have labels satisfying e < f > f2 > · · · > fk sequentially. If edge e goes from π(e)
to τ(e), Lemma 2.3 gives xe = we − wf ± (terms smaller than wf ) ≈ −wf < 0 = x1,
contradicting that (0, x) ∈ σF . If e goes from τ(e) to π(e), we get ye = we − wf ±
(terms smaller than wf )≈−wf <w1 = y1, contradicting that y ∈ σG .

2This implies that the edge labels decrease along any such path, but we will not use this in the
proof.
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THE TROPICAL CRITICAL POINTS OF AN AFFINE MATROID 1939

3. Now, define

bi :=min(Fi − Fi−1) for i= 1, . . . , r+ 1,

cj :=min(Gj −Gj−1) for j = 1, . . . , n− r.

Then, B := {b1, . . . , br+1} and C := {c1, . . . , cn−r} are bases of M and N , and F =
FM (B) and G =FN (C). We will show that B is an β-nbc-basis and C =B⊥.

To do so, we first notice that the path from vertex πi = Fi − Fi−1 (resp., τj =
Gj −Gj−1) to edge 1 must start with edge bi (resp., cj). Indeed, if it started with
some other (necessarily larger) edge b′ ∈ Fi−Fi−1, then the path from edge bi to edge
1 would include edge b′ and hence would not start with the largest edge, contradicting
2. This has two consequences.

f) The sets B and C are disjoint. If we had bi = cj = e, then edge e, which
connects vertices πi = Fi − Fi−1 and τj =Gj −Gj−1, would have to be the first edge
in the paths from both of these vertices to edge 1; this is impossible in a tree. We
conclude that B and C are disjoint. Since |B| = r + 1 and |C| = n − r, we have
C =B⊥.

g) For each i, we have xbi ≈ wbi because the path from τi to vertex 0—which
is the path from τi to edge 1, with edge 1 possibly removed—starts with the largest
edge bi, so Lemma 2.3 gives xbi = wbi ± (smaller terms) ≈ wbi . Similarly, yci ≈ wci .
Now, (0, x) ∈ σF gives xb1 > · · · > xbr+1

, which implies wb1 > · · · > wbr+1
, which, in

turn, gives

b1 > · · ·> br > br+1 and, analogously, c1 > · · ·> cn−r−1 > cn−r = 1.

The former implies that B is nbc-basis in M by Lemma 2.12. The latter, combined
with c), implies that c1 > · · ·> cn−r−1 > 0, respectively, are the minimum elements of
G•

1, . . . ,G
•
n−r−1,G

•
n−r =E that they sequentially generate, so C ∪ 0 \ 1 =B⊥ ∪ 0 \ 1 is

nbc-basis in M⊥. It follows that B is β-nbc-basis in M .
We conclude that B is β-nbc-basis in M , F = FM (B), and G = FN (B⊥), as

desired.

Proof of Theorem 1.2.1. This follows by combining the previous two lemmas.

4. Proof of the main theorem via torus-equivariant geometry. In this
section, we give a proof of Theorem 1.2.2 using the framework of tautological classes
of matroids of Berget, Eur, Spink, and Tseng. See [BEST23] for details on what
follows. Recall that M is a matroid on E of rank r+ 1.

In this framework, one works with the Chow ring of the permutohedral fan ΣE ,
which is the Bergman fan of the Boolean matroid on E whose only basis is E. Its
lattice of flats is the poset of subsets of E, and its set of maximal cones is in bijection
with the set SE of permutations of E. Let S = Z[ti : i ∈ E]; we can think of it as
the ring of polynomials on RE with integer coefficients. Then, SSE is the ring of
|E|!-tuples of polynomials in S, one polynomial fσ for each permutation σ of E, or
equivalently, one polynomial fσ for each chamber σ of ΣE .

3 We are interested in the
|E|!-tuples for which the function f : RE → R given by f(x) = fσ(x) for x ∈ σ is
well-defined.

The Chow ring A•(ΣE) of ΣE has the following description.

3We caution that SSE does not denote the ring of SE-invariants of S, despite notational simi-
larity.
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1940 F. ARDILA-MANTILLA, C. EUR, AND R. PENAGUIAO

Definition 4.1. Let A•
T (ΣE) be the subring of SSE defined by

A•
T (ΣE) ={continuous piecewise polynomials with integer coefficients supported onΣE}

=

{

(fσ)σ∈SE
∈ SSE

∣

∣

∣

∣

for any σ,σ′ ∈SE , the polynomials fσ and fσ′

agree as functions on σ ∩ σ′ ⊆RE

}

.

Let I be the ideal of A•
T (ΣE) generated by the global linear functions. Then,

A•(ΣE) =A•
T (ΣE)/I.

One can associate to the fans Σ(M,e) and −Σ(M/e)⊥ certain elements [Σ(M,e)]
and [−Σ(M/e)⊥ ] of A

•(ΣE) as follows. First, per Remark 2.14, the fan ΣE in RE

contains the linear space 1R, and the quotient fan ΣE/1R has a natural unimodular
isomorphirm to the affine braid fan ΣE,e = ΣE |xe=0 in RE−e, whose |E|! chambers
correspond to the possible orders of {xf : f ∈E−e}∪{0}. This is the affine Bergman
fan of the Boolean matroid with special element e.

Then, the fans Σ(M,e) and −Σ(M/e)⊥ are subfans of ΣE,e, and they are tropical
fans in the sense that they satisfy the balancing condition (see, for instance, [AHK18,
Definition 5.1]). Via the theory of Minkowski weights [FS97], they consequently define
elements [Σ(M,e)] and [−Σ(M/e)⊥ ] of the Chow ring A•(ΣE,e) ∼= A•(ΣE). Moreover,
the ring A•(ΣE) is equipped with a degree map deg :A•(ΣE)→Z, which agrees with
the map deg in Theorem 1.2 in the sense that

deg(Σ(M,e) ∩−Σ(M/e)⊥) = degΣE
([Σ(M,e)] · [−Σ(M/e)⊥ ]).(3)

For a survey of these facts, see [Huh18, section 4], [AHK18, section 5], or [BEST23,
section 7.1].

We now describe how [BEST23] provided a distinguished representative inA•
T (ΣE)

of the class [Σ(M,e)] ∈ A•(ΣE) = A•
T (ΣE)/I, and similarly for the class [−Σ(M/e)⊥ ].

For a matroid M on E, consider the following elements of the rings A•
T (ΣE) and

A•(ΣE), modeled after the geometry of torus-equivariant vector bundles from real-
izable matroids. For each permutation σ ∈ SE , let Bσ(M) be the lexicographically
first basis of M with respect to the ordering σ(1)< · · ·<σ(n) of the ground set.

Definition 4.2 ([BEST23, Definition 3.9]). Let M be a matroid of rank r+1 on
a ground set E of size n+ 1. Its torus-equivariant tautological Chern classes are the
elements {cTi (S

∨
M )}i=0,...,r+1 and {cTj (QM )}j=0,...,n−r in A•

T (ΣE) defined by

cTi (S
∨
M )σ = the ith elementary symmetric polynomial in {tk : k ∈Bσ(M)} and

cTj (QM )σ = the jth elementary symmetric polynomial in {−t` : `∈E \Bσ(M)}

for any permutation σ ∈SE. Their images in the quotient A•(ΣE), denoted ci(S
∨
M )

and cj(QM ), are called the tautological Chern classes of M .

[BEST23, Proposition 3.8] shows that these elements are well-defined. The results
of [BEST23] yield the following representatives in A•

T (ΣE) of the elements [Σ(M,e)]
and [−Σ(M/e)⊥ ] ∈A•(ΣE). Let M/e⊕U0,e be the matroid on E obtained from M/e
by adding back the element e as a loop. This matroid has rank r.

Lemma 4.3. Let M be a matroid of rank r + 1 on a ground set E of size n+ 1.
Define elements [Σ(M,e)]

T and [−Σ(M/e)⊥ ]
T in A•

T (ΣE) by [Σ(M,e)]
T = cTn−r(QM ) and

[−Σ(M/e)⊥ ]
T = cTr (S

∨
M/e⊕U0,e

), or explicitly,

[Σ(M,e)]
T
σ =

∏

i∈E\Bσ(M)

(−ti) and [−Σ(M/e)⊥ ]
T
σ =

∏

i∈Bσ(M/e⊕U0,e)

ti for all σ ∈SE .
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Then, their images in the quotient A•(ΣE) are exactly [Σ(M,e)] and [−Σ(M/e)⊥ ], re-
spectively.

Proof. The first equality is a restatement of [BEST23, Theorem 7.6] when one
notes that the choice of e ∈ E induces an isomorphism RE/R(1, . . . ,1) ' RE−e. The
second statement also follows from that theorem when one combines it with [BEST23,
Propositions 5.11, 5.13], which describe how tautological Chern classes behave with
respect to matroid duality and direct sums, respectively.

Proof of Theorem 1.2.2. We begin with [BEST23, Theorem 6.2], which states
that

degΣE

(

[Σ(M,e)] · cr(S
∨
M )

)

= β(M).

In light of (3), the desired statement deg(Σ(M,e)∩−Σ(M/e)⊥) = β(M) will follow once
we show that [Σ(M,e)] ·

(

cr(S
∨
M )− [−Σ(M/e)⊥ ]

)

=0 in A•(ΣE).
Towards this end, we look at the distinguished representative of this product in

A•
T (ΣE) and show that the variable te divides [Σ(M,e)]

T
σ ·

(

cTr (S
∨
M )σ − [−Σ(M/e)⊥ ]

T
σ

)

for any σ ∈SE , as follows.
• If e /∈Bσ(M), then [Σ(M,e)]

T
σ =

∏

i∈E\Bσ(M)(−ti) is divisible by te.
• If e∈Bσ(M), then Bσ(M/e⊕U0,e) =Bσ(M) \ e, and hence,

cTr (S
∨
M )σ − [−Σ(M/e)⊥ ]

T
σ =Elemr({tk : k ∈Bσ(M))−

∏

j∈Bσ(M)\e

tj

=
∑

i∈Bσ(M)





∏

j∈Bσ(M)\i

tj



−
∏

j∈Bσ(M)\e

tj

=
∑

i∈Bσ(M)\e





∏

j∈Bσ(M)\i

tj





is divisible by te.
This means that [Σ(M,e)]

T ·
(

cTr (S
∨
M )− [−Σ(M/e)⊥ ]

T
)

is a multiple of the global
polynomial te and hence is in the ideal I of Definition 4.1. Therefore, [Σ(M,e)] ·
(

cr(S
∨
M )− [−Σ(M/e)⊥ ]

)

= 0 in the quotient A•(ΣE), as desired.

Remark 4.4. Since Theorem 1.2.2 was established for matroids realizable over R
in [ABF+23], one may attempt to give yet another proof of Theorem 1.2.2 via the
following property of matroid valuations [DF10]: If two functions f(M) and g(M)
coincide for all matroids M that are realizable over R, and if the functions f and
g are valuative under matroid subdivisions [AFR10, Definition 3.10], then f(M) and
g(M) coincide for general, not necessarily realizable, matroidsM . The right-hand side
of Theorem 1.2.2, the beta invariant β(M), is valuative [AFR10]. For the left-hand
side, however, while the maps M 7→ Σ(M,e) and M 7→ −Σ(M/e)⊥ are each valuative,
products of valuative functions are in general not valuative. Thus, it is a priori
unclear why the map f :M 7→ deg(Σ(M,e) · −Σ(M/e)⊥) is valuative. We do not know
any argument that establishes the valuativity of the left-hand side of Theorem 1.2.2
independently of the theorem.

Acknowledgments. We thank Bernd Sturmfels and Lauren Williams for orga-
nizing the Workshop on Nonlinear Algebra and Combinatorics from Physics in April
2022 at the Harvard University Center for the Mathematical Sciences and Applica-
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