DEFORMATION CONES OF TESLER POLYTOPES

YONGGYU LEE AND FU LIU

ABSTRACT. For a € RZ, the Tesler polytope Tes, (a) is the set of upper triangular matrices
with non-negative entries whose hook sum vector is a. We first give a different proof of the
known fact that for every fixed ag € RZ, all the Tesler polytopes Tes,(a) are deformations
of Tesy,(ag). We then calculate the deformation cone of Tes,(ag). In the process, we also
show that any deformation of Tes,(ag) is a translation of a Tesler polytope. Lastly, we
consider a larger family of polytopes called flow polytopes which contains the family of
Tesler polytopes and give a characterization on which flow polytopes are deformations of
Tes,(ag)-

1. INTRODUCTION

For a € RZ,, the Tesler polytope, denoted as Tes,(a), is defined as the set of upper
triangular matrices with non-negative entries whose “hook sum vector” is a. When a =
1:=(1,...,1) € R", elements of Tes,(a) with integer coordinates are called Tesler matrices.
Tesler matrices were initially introduced by Tesler in the context of Macdonald polynomials
and subsequently rediscovered by Haglund in his work on the diagonal Hilbert series [14].
As a result, Tesler matrices play a central role in the field of diagonal harmonics [1, 12, 13,
15, 25]. Motivated by this significance of Tesler matrices, Mészaros, Morales and Rhoades
[18] defined and studied the Tesler polytopes of hook sum a € ZZ,. Their research led to
several intriguing findings, including the observation that Tesler polytopes are unimodularly
equivalent to certain flow polytopes, which is a family of polytopes that have connection to
various areas of mathematics such as toric geometry, representation theory, special functions
and algebraic combinatorics, as detailed in [4] and its references. Please refer to [18] for more
background about Tesler polytopes.

Beyond their general link to flow polytopes, specific subfamilies of Tesler polytopes are
fascinating objects due to their own interesting combinatorial properties and their associ-
ation with other mathematics domains. We have already mentioned that the importance
of the Tesler matrix polytope Tes,(1) in the study of diagonal harmonics. Additionally,
it is known [8] that Tes,(1,0,...,0) is unimodularly equivalent to the Chan-Robbins-Yuen
(CRY) polytope, whose volume is the product of the first n — 2 Catalan numbers [7, 26]. As
of today, simple proofs for this surprising result are still undiscovered. Moreover, the CRY
polytope is a face of the Birkhoff polyope which is also a well-studied subject. In particular,
computing volumes of Birkhoff polytopes remains a challenging problem that has attracted
a lot of recent research attention [5, 10, 21].

Noticing that important features remain the same, in our prior work [16], we extend
the domain of Tesler polytopes Tes,(a) to RZ,, and study a conjecture regarding Ehrhart
positivity for both Tes,(1) and Tes,(1,0,...,0), originally posed by Morales [19]. In this
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paper, we will continue our study on this broader family of Tesler polytopes. However, our
primary focus will be directed towards investigating their deformation cones.

There are many ways of defining deformations of polytopes. The most commonly used one
is stated in terms of the normal cone: a polytope @) is a deformation of a polytope P if the
normal fan of P is a refinement of the normal fan of ). However, in this paper we use the
one introduced in [6] by Castillo and the second author; see Definition 2.1 for details. It was
shown in [6, Proposition 2.6] that Definition 2.1 is equivalent to the normal fan definition
of deformations. We parametrize each deformation @) of P by a “deformation vector” and
the collection of the deformation vectors forms the “deformation cone” of P. Notably, the
relative interior of the deformation cone is called the type cone [17], which contains the
deformation vectors of all the polytopes with the same normal fan as P. In the case when
P is a rational polytope, the type cone of P is related to the nef cone of the toric variety
associated to the normal fan of P [9, Section 6.3].

One of the most famous family of deformations is generalized permutohedra, which are
deformations of the regular permutohedron [11, 22, 23]. In the last decade, different directions
of research have been done on determining the deformation cones of polytopes that are
related to generalized permutohedra. In [6], Castillo and the second author define the nested
permutohedron whose normal fan refines that of the regular permutohedron (so the regular
permutohedron is a deformation of the nested permutohedron), and describe the deformation
cone of the nested permutohedron. On the other hand, Padrol, Pilaud and Poullot [20]
determine the deformation cones of nestohedra, which is a family of deformations of the
regular permutohedron.

In this paper, we first give a new proof of a known fact ([2, Remark 9]) that for any fixed
positive integer n and ag € RZ,, the Tesler polytope Tes,(a) is a deformation of Tes, (ay) for
all @ € RZ, (Theorem 3.1). Then we prove the following theorem - one of our main results
- which gives a description of a deformation cone of Tes,(ag). (Please refer to Section 2,
especially Definition 2.1 and Section 2.3.1, for necessary definitions and notations.)

Theorem 1.1. Let ay € RZY,. Then the deformation cone of Tes,(ag) with respect to
(Lp, —P,) is

(1.1) {(a,b) e R" x U(n) | mi(b) > —a; for all1 <i<n—1}

where a; 1s the i-th coordinate of a.
Moreover, any deformation of Tes,(aq) is a translation of a Tesler polytope.

It is worth mentioning that the above description of the deformation cone of Tes,(ay)
is clearly minimal, i.e., none of the inequalities is redundant. Therefore, each of the linear
inequality defines a facet of the deformation cone. Furthermore, the face structure of the
deformation cone of Tes,(ag) is extremely easy to understand. This will allow us to give
a complete characterization on which Tesler polytopes have the same normal fan (Theorem
3.9).

Recall that Mészaros et al [18] establish that Tesler polytopes is a subfamily of flow
polytopes. In the last part of this paper, we strengthen this connection by providing the
following characterization on which flow polytopes are deformations of Tes,,(1). (Please see
Definitions 5.1 and 5.4 for the definitions of flow polytopes and critical position.)
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Theorem 1.2. Let ag € RY, and let a = (ay, ..., a,) € R" such that Flow,,(a) is non-empty.
Suppose | is the critical position of a. Then the flow polytope Flow,(a) is a deformation of
Tes, (ap) if and only if l=mn ora; >0 foralll +2 <1i<n.

ORGANIZATION OF THE PAPER

In Section 2, we provide background on polyhedra theory, deformations of polytopes, and
Tesler polytopes. In Section 3, we give a different proof for the known fact that for every
fixed ag € RZ,, all Tesler polytopes Tes,(a) are deformations of Tes,(ay), as well as provide
a generalization of this fact in Theorem 3.9. In Section 4, we determine the deformation
cone of Tesler polytopes (Theorem 2.1), and then use it to prove Theorem 3.9. In Section
5, we discuss which flow polytopes on the complete graph are deformations of Tes,(ag) and
complete the proof of Theorem 1.2.
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2. PRELIMINARIES

In this section, we provide preliminaries and background for this paper. We start with
basic definitions for polytopes required for introducing the concepts of deformation cones.

2.1. Polytopes. A polyhedron P is a subset of R™ defined by finitely many linear inequalities
(2.1) CinT1+ -+ Cimtym < d;for 1 <i<s

where ¢; ; and d; ; are real numbers. We call (2.1) a tight inequality description for P if for
every 1 <1i < s, there exists a point (2;1,...,2; ) in P such that ¢;12;1+- - -+ ¢imTim = d;.
Note that (2.1) can also be written as (¢;, ) < d; where (-,-) is the dot product on R™.
If we let C' = (¢;;) and d be the column vector [dy,...,d]" then the above system can be
written in the following matrix form

Cx <d.

A polytope is a bounded polyhedron. Equivalently, a polytope P C R™ may be defined as
the convex hull of finitely many points in R™. A polyhedron defined by homogeneous linear
inequalities is called a (polyhedral) cone. We assume that readers are familiar with the basic
concepts related to polytopes, such as face and dimension, presented in [3, 27]. There are
many ways to choose a linear system to define a polytope.

Let Py C R™ be a polytope. We will use the following form to describe Fy:

(2.2) Ex = o and Gz < S,

where Fx = o defines the affine span of F, and each inequality in Gz < 3, defines a
facet of Py. Any such a description is called a minimal linear inequality description for Py if
matrices E and GG are minimal in size, i.e, none of the equalities or inequalities are redundant.
Note that any minimal inequality description is tight. It is not hard to see that minimal
inequality descriptions for a non full dimensional polytope Fy are not unique. In particular,

there are different choices for the matrices £ and G in the expression (2.2). However, any
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choice of F and G must satisfy that the rows of F are m — d linearly independent vectors
and the rows of GG are in bijection with the facets of F,, where d is the dimension of F.

2.2. Deformations. In this part, we will start with the following definition of deformations
initially introduced in [6]. As we mentioned earlier, this definition is equivalent to the normal
fan definition of deformations given in the introduction. Another different but equivalent
definition of deformation will then be given in Lemma 2.4. We finish this part with a
discussion on the connection between deformation cones and type cones.

Definition 2.1. Let By C R™ be a d-dimensional polytope, and suppose (2.2) is a minimal
linear inequality description for Fy. Suppose G has k rows where g, is the i-th row vector of
G. For each i, let F; be the facet of P defined by (g;, ) = by; where by; is the i-th entry of
by.

A polytope Q C R™ is a deformation of Py, if there exists a € R™~% and b € R¥ such that
the following two conditions are satisfied :

(1) @ is defined by the system of linear inequalities:
(2.3) Fx =a and Gz < b,

which is tight (but not necessarily minimal).
(2) For any vertex v of Py, if F;,, F},, ..., F;, are the facets of Py where v lies on, then the
intersection:
Qﬂ{mGRm : <gi]~aw> :bijal S] S S}
where b;; is the i;-th component of b, is a vertex of @) denoted by v(q ).

We call (a,b) the deforming vector for @ with respect to (£,G). Furthermore, if v = v(qp)
gives a bijection from the vertex set of Py to the vertex set of @), we say @) is a weak
deformation of Py; otherwise, we say () is a strong deformation of F,.

The deformation cone of Py with respect to (E,G), denoted by Def (g ) (F), is the col-
lection of all the deforming vectors (a, b) with respect to (E,G).

Clearly, if we use a different minimal inequality description for Py with matrices (E', G'),
we will obtain a different deformation cone Def p ) (Fy). However, one can check that
Def (g ) (Fo) can be obtained from Def g )(Fp) via an invertible linear transformation. In
this paper, we will fix a minimal linear inequality description for the family of polytopes we
consider, and thus we will sometimes omit the subscript (£, G) and just write Def(F).

Remark 2.2. With a fixed minimal inequality description for F, the tightness requirement
of the description (2.3) for ) in Definition 2.1 guarantees the uniqueness of the deforming
vector (a,b) for any deformation ) of P, and establishes a one to one correspondence
between deformations () of Py and deforming vectors (a, b).

In particular, we want to emphasize that if () is a deformation of F, its corresponding
deforming vector is the unique vector (a,b) such that the description (2.3) is a tight linear
inequality description.

Remark 2.3. Recall that a polytope @)1 C R™ is a translation of another polytope Q2 C R™
if )1 = Q2+t for some t € R™. It is easy to see that if () is a deformation of P, then any
translation of () is a deformation of P.

The following lemma provides an alternative definition of deformations that will be used

in our proofs. We use Vert(P) to denote the set of vertices of a polytope P:
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Lemma 2.4. [24] Let Py and Q be two polytopes in R™. Then the following two statements
are equivalent:
(1) Q is a deformation of Py.
(2) There exists a surjective map ¢ from Vert(Py) to Vert(Q) satisfying that for any
adjacent vertices v and w of Py, there exists 1y € Rso such that ¢p(v) — ¢(w) =
Toaw(V — W).
Moreover, suppose (2) is true, then Q is a weak deformation of Py if all 1y s are positive
and () is a strong deformation of By if some of 144 'S are zero.

v
Recall that the direction of a non-zero vector v is ——. For any two adjacent vertices

V (v, 0)

v and w of a polytope, we call the vector w — v the edge vector from v to w, and the
direction of w — v the edge direction from v to w. It is not explicitly stated in the above
lemma, but when v and w are adjacent vertices of P, the vertices ¢(v) and ¢(w) of @) are
either the same or adjacent. Moreover, when ¢(v) and ¢(w) are adjacent, the edge direction
of ¢(v) and ¢(w) is the same as that of v and w.

In [6, Proposition 2.16], the authors gave connection between Definition 2.1 and the al-
ternative definition of deformations provided by Lemma 2.4 which we summarize in the
following lemma.

Lemma 2.5. [6, Section 2] Let Q be a deformation of Py with deforming vector (a,b). Then,
the map

¢ : Vert(Py) — Vert(Q),
defined by ¢(v) = vap) Where v(qp) is given as in Definition 2.1/(2) satisfies the condition
giwen in Lemma 2.4/(2).

Connection to type cones. It is straightforward to verify that @) is a weak deformation
of P, if and only if () has the same normal fan as Fy. Thus, in this case, we also say that )
and Py are normally equivalent. In [17], McMullen introduced the concept of type cones of
normally equivalent polytopes. We give its definition using the language developed in this

paper.

Definition 2.6. Assuming the hypothesis of P, given in Definition 2.1. The type cone of Fy
with respect to (E, G), denoted by TC g )(Fp), is the collection of all the deforming vectors
(a,b) for weak deformations of Py with respect to (E,G).

Therefore, the type cone of Fy containing the deformation vectors of all the polytopes that
are normally equivalent to Py. Even though McMullen [17] did not introduce the terminology
“deformation cone”, his analysis on type cones indicates the following connection between
these two families of cones.

Lemma 2.7. The relative interior of the deformation cone Def g ) (Fy) of Fy is exactly the
type cone TC(g,q)(F) of Fo.

Furthermore, suppose K is a face of the deformation cone Def(Fy) of Py, and Q is a
deformation of Py corresponding to a deforming vector in the relative interior of K. Then
K is exactly the deformation cone Def(Q) of @ and hence the relative interior of K is the

type cone TC(Q) of Q.

The following immediate consequence of the above lemma will be useful to us.
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Corollary 2.8. For i = 1,2, suppose Q; is a deformation of Py with the deforming vector
(a;, b;), and suppose K; is the (unique) face of Def (g ) (FPo) such that (a;, b;) is in the relative
interior of K;. Then Q1 is a deformation of Qo if and only if K1 is a face of Ky. Moreover,
Q1 is normally equivalent to Qs if and only if K1 = K.

2.3. Tesler polytopes. In this part, we formally introduce Tesler polytopes and provide
necessary setup and notations to study the deformation cones of Tesler polytopes. We start
by setting up the space that Tesler polytopes live in. Recall that the directed complete graph

K+ is the graph on the vertex set [n+1] = {1,2,...,n+ 1} in which there is an edge from
the vertex i to the vertex j for all 1 <7 < j < n -+ 1. For convenience, we use

Enpr={,j) |1<i<j<n+1}

to represent the edge set of l?nH. Let U(n) = RF»+1. We will represent the elements
m € U(n) as upper triangular matrices (m; ;) in the following way: we use m;; to denote
the coordinate of m corresponding to the edge (i,n + 1) for each 1 < i < n, and m;; to
denote the coordinate of m corresponding to the edge (i, 7j) for each pair 1 <i < j < n.
Then for any 1 < i < n, we define the i-th hook sum of m € U(n) to be

ni(m) = m;,; + E mi; — E My
1<J 1<t

and the hook sum vector of m to be n(m) = (m(m), ..., n,(m)).

1 2 3
Example 2.9. Let m = 4 150 . The second hook sum of m is ny(m) = 4 + 5 — 2=7.

One can see that the elements involved in 7y(m) forms a hook in m. We can similarly
compute the other two hook sums of m and the hook sum vector of m is n(m) = (6,7,2)

For any a € R%,, we define the Tesler polytope of hook sum a to be

) ‘ n(m) =a, }

m;; > 0for1 <i<j<n )
One sees that the condition m,,, > 0 is implied by the conditions that m,, > 0 for each
1 <47 <n—1 and that the n-th hook sum a,, is non-negative. Hence, the inequality m,,,, > 0
is redundant in the above description. Therefore, we use the following inequality description
as the definition of Tes, (a):

(2.4) Tes,(a) := {m e U(n

(2.5) Tes,(a) = {m — (mi;) € U(n) n(m) = a. }

m;; > 0 for 1 <i < j <n where (i,7) # (n,n)

2.3.1. Notations for Theorem 1.1. In order to describe deformation cones of Tesler polytopes
(in Theorem 1.1), we need to express Tesler polytopes in the form of (2.2). Note that
m — n(m) is a linear transformation from U(n) to R™. Let L, be the matrix associated
with this linear transformation. More precisely, we can describe L,, in the following way: L,
can be obtained from removing the last row of the incidence matrix! of Knﬂ. The columns
of L, are indexed by E, ;. Hence, the row vectors of L, can be considered to be in U(n).

ncidence matriz of a directed graph on n -+ 1 nodes {1, 2, ..., n+1} is a matrix B= (b; ) where b; . = 1
if the vertex 4 is the initial vertex of the edge e, b; . = —1 if the vertex 7 is the terminal vertex, and b; . = 0
otherwise.
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For any m € U(n), we consider L,m to be the vector whose i-th entry is the dot product of
the i-th row of L,, and m. With this notation, one can check that n(m) = L,m. Similarly,
let ¢ be the projection that deletes m,,, for all m = (m;;) € U(n) and let P, be the
matrix associated with the map . Then the inequality description in (2.5) can be written
as ¥(m) > 0 or equivalently, —P,m < 0. Combining these together, we obtain a matrix
description for Tes,(a):

Tes,(a) = {m € U(n) | Lym = a and — P,m < 0},

It was shown in [16, Lemma 4.2] that for all @ = (a4,...,a,) € R%, with a; > 0, we have
that Tes,(a) is a full dimensional polytope in the subspace of U(n) defined by L,m = a.
Furthermore, by [16, Corollary 4.6] that for all @ € R%,, we have that each inequality in
—P,m < 0 defines a facet of Tes,(a). Therefore, for ag € RZ,, the matrix description

(2.6) L,m=agand — P,m <0

is a minimal linear inequality description for Tes,(aq). Hence, The deformation cone of
Tes,, (ag) studied in this paper and described in Theorem 1.1 is Wlth respect to (L, —P,).

Clearly, each deforming vector (a, b) lives in R™ x U(n), where U(n) is the image of U(n)
under the projection 1. One sees that the concept of i-th hook sum of a matrix in U(n) still
makes sense as long as i # n. Therefore, by abusing the notation, for any 1 <i <n —1, we
define the i-th hook sum of b= (b; ;) € U(n) to be

b) = Z;i,i —|— Zgi’j — Zgj’i'

1<j 7<i

2.4. Prior work on Tesler polytopes. In this part, we review definitions and results
related to Tesler polytopes given in [18] and [16] that are relevant to this paper. Because
we treat m € U(n) as an upper triangular matrix, we will talk about the i-th row or i-th
column of m.

For any positive integer n and a € ZZ%,, Mészaros, Morales and Rhoades [18] gave the
characterization for the face poset of Tes,(a) using the concept of support. Their character-
ization can be easily generalized to any a € R%; by the same proof.

Definition 2.10. For any matrix m in U(n), define the support of m, denoted by supp(m),
to be the matrix (s; ;) € U(n),

h 1, if the (4, j)-th entry of m is not zero,
where s; ; = ,
! 0, otherwise.

Let m and m’ be two matrices in U(n). We write supp(m) < supp(m’), if supp(m) = (a; ;)
and supp(m’) = (b; ;) satistying a;; < b; j for any 1 <i < j <n.

For 1 <i < j < n,let H; be the hyperplane consisting of m € U(n) whose (i, j)-th entry
is 0, that is,

(2.7) Hfj ={m = (my) € Un) | m;; = 0}.
We say the intersection H} =N HZ’; . does not make any zero rows if the intersection
is not contained in H" N H@ i1 ﬂ H’f for any 1 <i <n.
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Theorem 2.11. [18, Lemma 2.4] Suppose a € R%, and let v € Tes,(a). Then v is a
vertezr of Tes,(a) if and only if supp(v) has at most one 1 on each row. In particular, when
a € R%, we have that v is a vertex in Tes,(a) if and only if each row of supp(v) has ezxactly
one 1.

Lemma 2.12. [18, Lemmas 2.1 and 2.4] Let a € RY,, and v be a vertex of Tes,(a). If
u € Tes,(a) satisfying supp(u) < supp(v), then u = v.

Recall that two vertices of a polytope are said to be adjacent if they are connected by an
edge. The last two results of [18] we include here are a characterization for adjacent vertices
of Tes,(a) and a characterization for a specific type of vertex.

Lemma 2.13. [18, Theorem 2.7] Let a € RY,. Two vertices v and w of Tes,(a) are adjacent
if and only if for every 1 < k < n, the k-th row of supp(w) can be obtained from the k-th
row of supp(v) by exactly one of the following operations:

(O1) Leaving the k-th row of supp(v) unchanged.

(02) Changing the unique 1 in k-th row of supp(v) to 0.

(O3) Changing a single 0 in the k-th row to a 1.

(O4) Moving the unique 1 in the k-th row of supp(v) to a different position in the k-th row
(this operation must take place in precisely one row of supp(v)).

In particular, when a € RY,, two vertices v,w are adjacent if and only if there exists a
unique k : 1 < k < n such that supp(w) is obtained from supp(v) by moving 1 on the k-th
row to a different place on the same row.

Lemma 2.14. [18, Lemma 2.4] Let a = (a1,...,a,) € R%,. The k-th row of a verter v of
Tes,(a) is a zero row if and only if ax = 0 and the entries of k-th column of v above the
diagonal (excluding the diagonal entry) are all zero.

Example 2.15. Let a = (2,2,3,4), and

0200 0020

[ 00 4 [ 00 2

v = 3 o and w= 5 0

8 6

Then

0100 0010
0 01 0 01
supp(v) = 1 o| and supp(w) = 10
1 1

Using Theorem 2.11, one can easily check that v and w are vertices of Tesy(2,2,3,4). Also,
they are adjacent vertices, because supp(w) can be obtained by moving 1 on the first row of
supp(v) to the right.

3. ALL TESLER POLYTOPES ARE DEFORMATIONS OF Tes, (1)
The main goal of this section is to prove the following theorem:

Theorem 3.1. Let ag € RY,. Then for any a = (a1,...,a,) € R, the Tesler polytope
Tes,(a) is a deformation of Tes,(ag). More precisely, Tes,(a) is a weak deformation of
Tes,(ag) (equivalently, is normally equivalent to Tes,(ay)) if a € R%;" x Rsg, and is a
strong deformation of Tes,(ag) if a; =0 for some 1 < i <n— 1.
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In particular, all Tesler polytopes Tes,(a) (for a € RY,) are deformations of the Tesler
polytope Tes,(1).

Throughout this section, we use the alternative definition of deformations introduced in
Lemma 2.4. We will utilize a machinery that was used in the proof of Lemma 2.4 in [18].
Definition 3.2. Let a € R%; and v = (v;;) be a vertex of Tes,(a).

(1) Define j, : {0,1,2,...,n} — {0,1,2,...,n} by
(k) = 0 if £k =0 or the k-th row of v is a zero row,
Jol = [ it k # 0 and v, is the unique nonzero entry on the k-th row.
(This is well-defined by Theorem 2.11).
(2) Since v is upper triangular, the sequence {k, j,(k), j2(k),...} is strictly increasing

until it stabilizes. Assume that g is the smallest integer such that j47'(k) = ji(k).
Define

Dep, (k) = {(k, ju(K)), (Gu(k), jo(K)), - -, (G5~ (k). 74(K))}-
(3) Let Dy(k) € U(n) be the upper triangular {0, 1}-matrix recording the positions
appearing in Dep, (k). More precisely,

1, if (i,7) € Dep,(k),
0, if (4,7) ¢ Dep, (k) -

The purpose of this definition is to describe the edge vector from a vertex of Tes,(a) to
one of its adjacent vertices.

Dy (k) := (m; ;) where m; ; = {

Proposition 3.3. Let a = (a1,...,a,) € R%,. Suppose v = (v;;) and w = (w; ;) are
adjacent vertices of Tes,(a), and suppose the first row that supp(v) and supp(w) differ is
the k-th row. Then

w — v = c(Dy(k) — Dy(k))

where ¢ € Ryq is the unique non-zero entry in the k-th row of v (or that of w).

Example 3.4. Let v and w be as in Example 2.15. The supports of w and v differ at the
st row already. Hence k = 1. We now compute D, (k) — Dy(k) = Dy(1) — Dy(1):

0010 0100 0 -1 1 0
0 00 0 0 1 0 0 -1
Diy(1) — Dy(1) = 1 0]~ 00]= 1 0
0 1 -1
Next, we compute the edge vector from v to w directly:
0020 0200 0 -1 1 0
B 00 2 0 0 4) _ 9 0 0 -1
w=v= 5 0] 3 0|7 1 0 |-
6 8 -1

which is 2(D (1) — D,(1)), agreeing with the assertion of Proposition 3.3.
We need two preliminary lemmas before proving Proposition 3.3.

Lemma 3.5. Let a € RY; and v = (v; ;) € Vert(Tes,(a)). Suppose the k-th row of v is a
non-zero row, and c is the non-zero entry in the k-th row.

Then Dy (k) has the following properties:
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(1) n(Dy(k)) = e where ey is the k-th standard basis vector of R".
(2) The entries of v — cD, (k) are all non-negative.

Proof. For convenince, we use d; j to denote the (7, j)-th entry of D, (k).
By convention, we let jO(k) = k. Then it follows from the definition of Dep, (k) that for
some integer q

1< jo(k) < ju(k) < jolk) < - < ji72(k) < 33 (k) = ji(k) < n.
Therefore, d;; is 1 if (i,5) = (j51(k), jL(k)) for some | = 1,2,...,q, and is 0 otherwise.

Clearly, if i # j! (k) for some [ = 0,1,...,q — 1, then n;(D,(k)) = 0. If i = j.(k) for some
l:1,2,...,q—1 then

= D> dyws— D baw = dywarm ~ Gwam =1 1=0.

3234 (k) 3<3L (k)

If i = k = j2(k), then
0i(Dy(k)) = mie(D dea Zdﬂf = dy i) =

7>k i<k

Thus, n(Dy(k)) = ey, i.e. Property (1) follows.
For Property (2), we first show that

Since v € Tes,(a), by the definition of Tes,(a), we have that all the entries in v are non-
negative, and 7;: ) (v), the jﬁ,(k)—th hook sum of v is non-negative. However,

Z - Z Vi ik, (k)

323y (k) i<jy (k)
Hence, (3.1) follows from the fact that vy ;, ji+14, is the only positive element in the 4L (k)-th
row of v. Given (3.1), we immediately have that

C = Ukyjo(k) < Vgt () 15 (k) forany [ =1,2,...,q— 1.
Thus, Property (2) follows. O

Lemma 3.6. Let a € R%,. Suppose v and w of Tes,(a) are adjacent vertices of Tes,(a),
and suppose that the first row in which supp(v) and supp(w) differ is the k-th row. Then
the followings are true.

(1) The first k — 1 rows of v and w are the same.

(2) The k-th row is the (unique) row of supp(w) that is obtained from that of supp(v)
by operation (0O4) of Lemma 2.153. Furthermore, the unique non-zero entries in the
k-th rows of v and w are equal to one another.

(3) Let c be the non-zero entry in the k-th row of w. For any k <1 < j <mn, ifw,;; # 0 (or
equivalently w; ; > 0) but v; ; = 0, then we have that (i, j) € Dep,, (k) and w; ; = c.

Proof. By Theorem 2.11, each row of v has at most one non-negative entry. This implies
that for any 4, the first ¢ rows of supp(v), together with the hook sum condition n(v) = a,
determine the first ¢ rows of v. The same thing holds for w. Therefore, since supp(v) and

supp(w) agree at the first k — 1 rows, we conclude that (1) is true.
10



Then using the fact that n,(w) = ar = nr(v), we see that

(32) ka’j = Zwkyj.
j=k j=k

Since supp(v) and supp(w) differ at the k-th row, equation (3.2) implies that the only
operation (among the four operations) listed in Lemma 2.13 that can be applied to the k-
th row of supp(v) to obtain that of supp(w) is operation (O4). Thus, v and w each has
exactly one non-zero entry in their k-th row, but in different places. This together with (3.2)
completes our proof for (2).

Finally, we prove (3) by induction on i. Clearly, it holds when ¢ = k. Assume (3) holds for
any 1 : k <1 < 1o for some 7y < n, and we consider the cases when ¢ = i5. One observes that
the i-th row of supp(w) must be obtained from supp(v) by operation (O3) of Lemma 2.13.
Hence, the i-th row of v is a zero row, and w;; is the unique non-zero entry in the i-th row
of w. Applying Lemma 2.14 to v, we have that

a; = 0 and Vi = V2 =+ = Vj—14 = 0.

Thus, 7;(w) = a; = 0, which implies that w; ; = Z;;i wy ;. Since we have already shown (1)
holds, we can rewrite this equality as

Let L ={k <1<i—1|w,# 0}. Because w;; # 0, we have that L # (). For any [ € L,
we have w;; # 0 and v;; = 0, and thus by the induction hypothesis (I,7) € Dep,,(k) and
wy,; = c. However, it follows from the definition of Dep,, (k) that no two pairs in Dep,, (k)
share the same second coordinates unless one of the pair is in the form of (z,z). But [ < i
for any [ € L. We conclude that L contains a unique element, say ly. Then clearly we have
that w; ; = wy, ; = ¢. Furthermore, since (ly,7) € Dep,,(k), one verifies that (i, 7) € Dep,,(k),
completing our inductive proof. 0

Proof of Proposition 3.3. By Lemma 3.6/(2), we must have that the two non-zero entries in
the k-th rows of v and w agree, i.e., vy j, (k) = Wi jo, k) Let

C 1= Uk jy (k) = Wk, jo(k)-
Then it follows from Lemma 3.5/(1) that ¢n(Dy(k)) = cn(Dy(k)) = cey. Thus, if we let
u = w + cDy(k) — cDy(k),

then n(u) = np(w) = a. Also, by Lemma 3.5/(2), the entries of w — ¢D,, (k) are non-
negative which implies that the entries of u = (w — ¢D,,(k)) + ¢D,(k) are non-negative as
well. Therefore, we conclude that w € Tes,(a). It is left to show that uw = v, which by
Lemma 2.12 can be reduced to showing supp(u) < supp(v). Since D, (k) and w — cD,, (k)
have non-negative entries, one sees that showing supp(u) < supp(v) is equivalent to showing
the following two statements:

(i) supp(cDy(k)) < supp(v), and

(ii) supp(w — c¢Dy(k)) < supp(v). .



We see that (i) follows directly from the definition of D, (k).

By Lemma 3.6/(1) and the definition of D,,(k), one sees that the first & — 1 rows of
w — cDy, (k) are the same as that of v, and the k-th row of w — ¢D,, (k) is a zero row. One
sees that in order to finish proving (ii), it is sufficient to show that for any k£ < i < j < n, if
w; j # 0, then either v; ; # 0 or the (4, j)-th entry of w — c¢D,,(k) is 0. However, if w; ; # 0
and v;; = 0, it follows from Lemma 3.6/(3) that w;; = ¢, and thus the (7, j)-th entry of
w — cD,, (k) is 0, completing the proof. d

We need one more lemma before proving the result of this section.

Lemma 3.7. Let ag € R, and a € RY,. Then for any v € Vert(Tes,(ao)), there exists a
unique v' € Tes,(a) such that supp(v’) < supp(v). Furthermore, this unique v’ is a vertex

of Tes,(a).

Proof. Because ag € RZ;, by Theorem 2.11, each row of supp(v) has exactly one 1. Let
S :={(i,7:) | 1 <1< n} be the set of indices of the entries in supp(v) that are 1. It is easy
to see that there exists a unique solution v’ = (v; ;) € U(n) satisfying

7

n(,v/) —a and 'U/',j =0 for every (7/;]) g S.

Note that the condition v; ; = 0 for every (7, j) € S is equivalent to the condition supp(v’) <
supp(v). Hence, the first assertion of the lemma follows.

Since supp(v’) < supp(wv) implies that there is at most one non-zero entry in each row of
v’, by Theorem 2.11, v’ has to be a vertex of Tes,(a). O

Now, we are ready to prove our main result of this section.

Proof of Theorem 3.1. We prove the theorem using Lemma 2.4. For any vertex v of Tes,(ay),
we let ¢(v) be the unique point/vertex v’ in Tes,(a) satisfying supp(v’) < supp(v) asserted
by Lemma 3.7. Hence, ¢ is a well-defined map from Vert(Tes,(aq)) to Vert(Tes,(a)).

For any vertex v’ of Tes,(a), it follows from Theorem 2.11 that there exists a {0,1}-
matrix m € U(n) such that each row of m has exactly one 1 and supp(v’) < m. Applying
Theorem 2.11 again, there exists a vertex v of Tes,(ag) such that supp(v) = m. Therefore,
the surjectivity of ¢ follows.

Assume that v and w are adjacent vertices of Tes,(ag) where their support only differ in
the k-th row. Let v = ¢(v) and w’ = ¢(w). In order to apply Lemma 2.4, we need to show
that there exists 7, ., € R>o such that

w — v =71y (w —v).
We consider two cases below.

Case 1 Suppose the k-th row of supp(v’) or that of supp(w’) is a zero row. Without loss of
generality, assume that the k-th row of supp(v’) is a zero row. Then since supp(v)
and supp(w) only differs in the k-th row, supp(v’) < supp(w). Thus, it follows from
Lemma 3.7 and the constrution of ¢ that v' = w’. Therefore, we can choose 144, = 0.

Case 2 Suppose neither the k-th row of supp(v’) nor that of supp(w’) is a zero row.

Let v" = (v;;), and v}, be the (unique) non-zero entry in the k-th row of supp(v’).
Because supp(v’) < supp(v), clearly we have j,(k) = | = j, (k). Next, because
v, 7# 0, it follows from Lemma 2.14 that the [-th row of v’ is a non-zero row. Using
the same argument as above, we get j,(I) = j(1), or equivalently, j2 (k) = jZ(k).

12



By iterating this process, we obtain j (k) = ji(k) for any integer s > 0. Therefore,
Dep,, (k) = Dep,, (k) or equivalently, D, (k) = D, (k).
Similarly, we obtain D,y (k) = D, (k). By Proposition 3.3,

w — v = c(Dy(k) — Dy(k)) and w' — v = d(Dy (k) — Dy (k))
where ¢ and d are the unique non-zero (positive) entries of v and v’ respectively.

Therefore, we can take 1y, = —.
c

In particular, when a € ]RZBI X R>g, Twe 1s always positive because Case 1 does not
happen. However, when some of a; where 1 < ¢ < n — 1 are zero, one can easily see that
Case 1 does happen which means the corresponding 7, ,’s are zero. This completes our
proof. O

We have proved Theorem 3.1 using the alternative definition of deformations given in
Lemma 2.4. Below we will make a connection to the language used in Definition 2.1, i.e.,
the original definition of deformations we introduced. Recall that for ay, € RZ;, the matrix
description (2.6) is a minimal linear description for Tes, (ag). Therefore, it is natural to ask
for a € RY,, what the deforming vector for Tes,(a) is.

Lemma 3.8. Suppose ag € RY, and a € RY. Then the system of linear inequalities
(3.3) Lom=a and — P,m <0
is a tight linear inequality description for the non-empty Tesler polytope Tes,(a). Hence,

Tes,(a) is a deformation of Tes,(ay) with deforming vector (a,0) with respect to (L, —P,).

Proof. We already know that the system of linear equalities (3.3) defines the non-empty
polytope Tes, (a). Hence, we only need to show the tightness part of the first assertion of
the lemma. Note that —P,m < 0 is the same as

m;; > 0 for 1 <i < j <n where (i,5) # (n,n).

So we need to show that for every 1 < i < j < n with (¢,7) # (n,n), there exists a point
m € Tes,(a) such that m;; = 0. We construct two points m' = (m;;) and m? = (m7,)
where '

S, ifj=i+1,

1 As, 1f7, = j7 9 I : -
my. = and mi,. = ' ay, if (i,§) = (n.n),
" {0, otherwise; vJ ?l—l ! t]fl J)' (n,n)
otherwise.

It is straightforward to verify that m!' m? € Tes,(a). By definition, mil,j = 0 for all

1<i<j<nand mfl =0 for all 1 <7 <n — 1. Therefore, the first assertion follows.
Finally, by Theorem 3.1, we already know that Tes,(a) is a deformation of Tes,(ay). Thus,

the second assertion follows from the first assertion and Remark 2.2. U

We finish this section by stating a generalization of Theorem 3.1, in response to a question
asked by an anonymous referee. For each a € RZ, we define Z(a) = {i € [n — 1] | a; > 0}
to be the set of indices in [n — 1] such that a; is nonzero. Note that we do not care about
whether a,, is zero or not.

Theorem 3.9. Let a,b € RY,. Then Tes,(a) is a deformation of Tes,(b) if Z(a) C Z(b).
Moreover, Tes,(a) is normally equivalent to Tes,(b) if Z(a) = Z(b).
13



One sees that Theorem 3.1 is a special case of Theorem 3.9 when taking b € RZ,. It is
possible to revise our proof for Theorem 3.1 to give a proof for Theorem 3.9. However, the
arguments will be much more complicated. Instead, we will prove Theorem 3.9 in the next
section as a consequence of Theorem 1.1 and Corollary 2.8.

4. THE DEFORMATION CONE OF TESLER POLYTOPES

In this section, we give a proof for Theorem 1.1, which describes the deformation cone

of Tes,(ag) for ag € RZ, and then prove Theorem 3.9 by applying Corollary 2.8. In order

to prove Theorem 1.1, we need the following preliminary lemma. Recall that I[j(n) is the
image of U(n) under the projection which deletes the (n,n)-th entry. For convenience, for

any (a,b) € R* x U(n), where a = (a4, ..., a,) and b = (b;;), let
(4.1) Q(a,b) :={m e U(n) | Lym = a and — P,m < b}.

Note that for arbitrary choices of (a, B), the above linear inequality description might not
be tight.

Lemma 4.1. Let ay € RZ. Suppose Q is a deformation of Tes,(ay) with deforming vector
(a,b). (Thus, Q@ = Q(a,b) and (a,b) € Def(Tes,(ay)).) Then the following statements are
true:
(1) For any v € Vert(Tes,(ao)), there exists a unique v' = (v;;) € Vert(~Q(a,l~))) such
that for all 1 <i < j < n where (i,j) # (n,n) if v;; =0 then v; ; = —b;; .
(2) Let ¢ be a map from Vert(Tes,(ay)) to Vert(Q(a,b)) defined by ¢(v) = v’ where
v’ is the unique vertex assumed by part (1) above. Then for any pair of adjacent

vertices v1 and vy of Tes,(ay), there exists a non-negative real number r such that
d(v1) — p(v2) = r(v1 —v2), i.e, ¢ salisfies the condition described in Lemma 2.4/(2).

Proof. Let v be a vertex of Tes,(ay). Recall that (2.6) is a minimal linear inequality descrip-
tion for Tes,(ag) which means that each inequality in —P,m < 0 is facet-defining. Hence,
the set of facets of Tes,(ag) containing v is

{HZJ N Tesn(ao) | Vi = O}

By Definition 2.1/(2), the vertex v, ;) of Q(a, b) is the unique point v’ satisfying the desired
condition in (1). Then, the second part follows from Lemma 2.5. O

We describe a procedure of obtaining v’ = ¢(v) from v in the following example.
Example 4.2. Let ap = (1,1,1,1), a = (8,7,8,1), and
. -1 2 -3 —4
b= -5 6 7.
-8 9

By using Theorem 1.1, one can check that Q) = Q(a, b) is a deformation of Tes,(1) with

deforming vector (a,b). Let

0 1
0

wWwrn O
—OoooO
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which is a vertex of Tes,(1). By the proof of Lemma 4.1, we know that v’ = ¢(v) is defined
to be V(- Hence, we can find " in the following way: We first change zero entries in

v to corresponding —b; ;’s and change the four non-zero entries to undetermined variables
w, T, Y, 2

0100 1 w 3 4
- 020 ;o 5 x —7
V= 3 0 — v = y -9
1 z
We then use the hook sum conditions for ) to determine w, x,y, 2:
N __ _ —
nl(vl)—;+w+3ﬂ;4—8 i w—;) 10 3 4
nz('v/>— trt+ (=7 —w= . )r= — v=| 5
n(v)=y+(-9) —(x+3)=8 y =29 11
mv)=z—((-9)+(-7)+4) =1 z=-11

Proof of Theorem 1.1. Thanks to Theorem 3.1, without loss of generality, we can assume
that ag = 1. Let

A={(a,b) e R" x U(n)) | mi(b) > —a; forall 1 <i <n-—1}.
We will show that Def(Tes,(1)) = A by showing two-sided inclusion.
We first show that Def(Tes, (1)) C A. Suppose (a,b) € Def(Tes,(1)). Let I be the n x n
identity matrix and ¢ be the map described in Lemma 4.1. It is clear that [ is a vertex of

Tes,(1) by Theorem 2.11. Let w = ¢(I) be the vertex of Q(a, b) corresponding to I. Then,
by Lemma 4.1, we have that

w;; =—b;;, forall<i<j<n,
and w;;’s can be determined using hook sum conditions:
wi,1 — 51,2 — i)l,n = aq,
(wivi - 6i7i+1 - an) - (—Bl,z‘ — = Bi—l,i) =a;, 2<1<n.
From the above equations, we obtain
Wi = 77@(5) — BH +a; foralll<i<n.

Since w € Q(a, l~)), we have inequalities w;,; > —5” for all 1 <1i < n — 1 which implies that
n;(b) > —a; for all 1 < i < n — 1. Therefore, (a,b) € A.

Next we show that A C Def(Tes,(1)). Assume that (a,b) € A and let Q := Q(a,b). We
will show that @ is a deformation of Tes, (1) with deforming vector (a, b). Since (a, b) € A,

we have (n1(b) +a1,...,M-1(b) +a,_1,0) € RL;. Therefore, it follows from Lemma 3.8 that

L,m = (n:(b o o1 (b _
(4.2) T:= {meU(n) w1 = (m(b) + a1, ..., Mu1(b) + an_1,0) }
—-Pm<0
is a non-empty Tesler polytope and the linear inequality description above is tight. Let
n—1

b € U(n) be the upper triangular matrix obtained from b by appending Z Z~)m — a, as its
i=1
(n,n)th-entry. Then

L,b=mn(b) = (m(b),...,nn-1(b),—a,) and — P,b = —b.
15



It immediately follows that () = T'—b, is a translation of the Tesler polytope T. By Theorem
3.1, the polytope T is a deformation of Tes, (1), thus so is ) by Remark 2.3. Moreover, one
sees that the linear inequality description (4.1) for @ is precisely obtained from the linear
inequality description (4.2) for T" by translating m to m — b. Therefore, the tightness of
(4.1) follows from the tightness of (4.2). Hence, we conclude that (a,b) € Def(Tes, (1)),
completing the proof of the first assertion of the theorem.

Finally, as we have shown above, for any (a, B) € A, the polytope Q(a, B) is a translation
of a Tesler polytope. Hence, the second statement of the theorem follows. O

We now proceed to prove Theorem 3.9. For all the discussion in the rest of this section,
we assume ag € RZ,. As we mentioned in the introduction each inequality in the description
(1.1) for Def(Tes,(ap)) defines a facet, but we have more than that:

Lemma 4.3. For each I C [n — 1], let

._ 7 n o 77 n:(b) > —a; for allie I
Fri= {(a,b) €R"xU(n) 771(6) = —a; foralli e n—1\1 }

be a face of Def(Tes,(ag)). Then I — Fy is an inclusion-preserving bijection from subsets I
of [n — 1] and faces of Def(Tes,(ay)).

Furthermore, for any a € RZ,, we have that Z(a) = I if and only if (a,0) is in the relative
interior of Fr. -

Proof. Tt follows from the definition of F; that I C J if and only if F; C Fj. It is also
clearly, every face of Def(Tes, (ay)) arises as an Fy for some I. So in order to prove the first
conclusion, it is left to show that if 7 C J, then F; # F;. However, notice that if Z(a) = I,
then (a,0) belongs to the set

(4.3) {(a, b) € R" x U(n) . ni(b) > —a; for all i € I } ’

n;(b) = —a; for all t € [n — 1]\ [
which is a subset of F; but clearly has no intersection with F; if I C J. Therefore, we
conclude that I — Fj is indeed an inclusion-preserving bijection from subsets I of [n — 1]
and faces of Def(Tes,(ay)).

Next, we observe that the above discussion implies that (4.3) actually is the relataive
interior of F;. Then the second conslusion follows. O

Proof of Theorem 3.9. By Lemma 3.8, the Tesler polytope Tes, (a) is a deformation of Tes, (ay)
with deforming vector (a,0). Hence, the conclusion follows from Lemma 4.3 and Corollary
2.8. O

5. FLOW POLYTOPES THAT ARE DEFORMATIONS OF TESLER POLYTOPES

The goal of this subsection is to prove Theorem 1.2 which is a result about flow polytopes.
We start by giving a formal definition of flow polytopes on the directed complete graph
[?nﬂ. Recall that [?nﬂ is the directed complete graph on the set of vertices [n + 1] with
edge set E,1. A flow on I?nﬂ is a function f : E,+; — R that assigns a non-negative
real number to each edge of [?nﬂ. Given a flow f, the net flow of f on vertex i is defined
to be

Fr=>f65) = f(), forall 1 <i<n+1.
7> 1<t
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Note that f**' = —3" _._ f Therefore, we often neglect the net flow on the vertex n+1,
and only discuss net flows on other vertices.

Definition 5.1. For a = (a4, ...,a,) € R", the flow polytope on I?nﬂ with net flow a is
defined to be

Flow,(a) = {f : Eny1 — Rsq | f' =a; for all 1 <i < n}.

Since U(n) = REZ+, any flow f on K, can be considered as an element in U(n).
Therefore, we have a natural correspondence between elements in U(n) and flows on K.

Example 5.2. Let m € U(3) be the same upper triangular matrix as in Example 2.9. The

picture below shows m together with its corresponding flow f on K. Note that on the right,
the number on each edge e is the number f(e) assigned to e, and the number below each
vertex 7 is the net flow f% of f on i.

1 2 3
m = 4 5 —
0

—_

®© @© @ @

As discussed in Example 2.9, we have n(m) = (6,7,2). Thus, we have f* = n;(m) for
i=1,2,3.

It is not hard to see that in general if m € U(n) is corresponding to the flow f on [?nﬂ,
then f* = n;(m) for 1 < i < n. Therefore, in the matrix notation, we can write the flow
polytope with net flow a as:

(5.1) Flow,(a) ={m € U(n) | L,m = a and —m < 0}.

In order to be consistent with the bold fonts we have been using for elements in U(n),
below we will use f instead of f to denote a flow in Flow,(a).

One sees that if a € R, then Tes,(a) = Flow,(a). However, since for flow polytopes,
we are allowed to use @ with negative entries, the family of flow polytopes contains more
polytopes than the family of Tesler polytopes. For convenience, for the rest of the paper,
we fix @ as an arbitrary element in RZ? ;. By Theorem 1.1, any deformation of Tes,(ay) is a
Tesler polytope up to a translation. Therefore, it is meaningful to ask when a flow polytope
is a deformation of Tes,(ag). Theorem 1.2 provides an answer to this question.

Remark 5.3. Description (5.1) is different from
(5.2) {m € U(n) | Lym =a and — P,m < 0}.,

because (5.1) has one additional inequality m,, , > 0. Only when this inequality is redundant
in the description (5.1) for Flow,(a), we can describe Flow,(a) by (5.2), and then it is pos-
sible for Flow,,(a) to be a deformation of Tes, (ay). If m,,, > 0 is not a redundant inequality
in (5.1), then Flow,(a) cannot be described by (5.2), and thus cannot be a deformation of
Tes, (agp).
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Before we can prove Theorem 1.2, we need to clarify and define conditions given in the
statement of the theorem. First, one observes that
k
Flow,(a) is non-empty if and only if Z a; >0forall 1 <k <n.
i=1
For convenience, we let A,, be the set of all @ € R™ that satisfies the above condition.

Definition 5.4. Let a = (a1,...,a,) € A,. Foreach 1 < i < n—1, if q; > 0 and
a; + a;+1 = 0, we say the positive entry a; is voided.

We say | (1 <1 <n—1)is the critical position of a if a; is the first positive entry in a
that is not voided. If such a positive entry does not exist, we say [ = n is the critical position
of a.

The following lemma gives a characterization for the entries that appear before the critical
position of a point a € A,,.

Lemma 5.5. Let a = (a1,...,a,) € A,. Suppose l is the critical position of a. Then for
each 1 < i <, exactly one of the following three situations happens:
(2) a; is a voided positive entry.
(8) a; < 0 and a;_y is a voided positive entry.
-1
Moreover, if 1 <1 <n—1, then Z a; =0, and hence a; + a;41 > 0.
i=1
Proof. The first part (which charaterizes entries a; for i < [) follows directly from the defi-
nition of the critical position, and the second conclusion follows immediately from the first

part. [
Lemma 5.6. Let a = (ay,...,a,) € A, where | is the critical position of a and let
iy s Qs - - -, ay, be all the voided positive entries before the critical position where 1 < 17 <

Qg < -+ <y <. Then all flows f = (fi;) € Flow,(a) have fixed entries in their first | —1
rows as described below:

(1) For each 1 < p < m, the (ip, i, + 1)-th entry f; i +1 of f is always a;,.
(2) The remaining entries in the first | — 1 rows of f are zeros.

Proof. Using Lemma 5.5 together with the hypothesis of this lemma, we obtain that

—a;+1, if 2 =1, for some 1 <p < m;
a; = . . . . .
0, ifl<i<landi#i,ori,+1forall<p<m.

Since the first 7; — 1 entries of a are zeros and all the entries in f are non-negative, we
conclude that the first 7; — 1 rows of f have to be zero rows. In particular,

fisn =0, foralll<i<i —1
Hence, the i;-th and the (i; + 1)-st hook sums of f are

(53) 77@1(f) = fil,il +oe 4+ fil,n - (fl,h + o+ fi1*17i1) = fi1,i1 + o+ fil,n = Gy,
(54)  niy(f) = forrae T+ foavin — (frasr + -+ fiia+1)
= furriar+ o F fivin — finin = G = —ai,.
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Using the fact that f has non-negative entries again, one sees that (5.3) implies f;, ;,+1 < a;,
and (5.4) implies f;, ;,+1 > ai,. Thus, fi, ;;+1 = a;,. This forces the remaining entries in the
i1-th and (i; + 1)-st rows are zeros. We have shown that the first 4y + 1 rows of f are given
as described by the lemma. By iterating similar arguments, one can deduce that all the first
[ — 1 rows are as described. 0J

The following two propositions are the key results that will be used in our proof for
Theorem 1.2.

Proposition 5.7. Let a = (aq,...,a,) € A, and suppose | is the critical position of a.
(1) If 1 <1 < n, then there exists a = (ay,...,a,) € A, satisfying
CAL1:CAL22"‘:CALI,1:O, dl>O, dl+1 ZO, anddlzazforl+2§z§n

such that Flow,(a) is a translation of Flow,(a).
(2) If | = n, then Flow,(a) is a point.

Proposition 5.8. Let n > 3 and a = (aj,as, -+ ,a,) € A,. Suppose for some integer
1<i<n-—1, we have ay = ag = -+ = a;_1 = 0, a; > 0, and a;41 > 0. (Note that this
implies that 1 is the critical position of a.) Assume further that a,, is the first negative entry
of a, where I +2 < m < n. Then Flow,(a) is not a deformation of Tes,(ay).

Before we prove each of these two propositions, we need a preliminary lemma. Recall that
e is the k-th standard basis vector of R™. For convenience, for every 1 < i < j < n, we
denote by e;; to be the unique upper triangular matrix in U(n) whose (7, j)-th entry is its
only nonzero entry and has value 1. So {e; ;} is the standard basis for U(n).

Lemma 5.9. Let a = (a1,...,a,) € A, and ¢ > 0. Suppose for a fized pair of indices
1 <i < j <mn, we have that every flow f = (fi;) € Flow,(a) satisfies f; ; > c. Then

Pl a) e, = { oo e

Flow,(a — ce;), ifi=7.
Proof. We only prove the case when ¢ < 7, as the case when ¢ = j can be proved similarly.
Let f € U(n) and g = f — ce;;. First, since n(e; ;) = e; — e;, we have that n(f) = a if
and only only if n(g) = a — ce; + ce;. Next, if f € Flow,(a), because f; ; > ¢, we see that
all entries of g are non-negative. Conversely, if g € Flow,(a — ce; + ce;), since ¢ > 0, we
must have that all entries of f = g + ce; ; are non-negative. Therefore, we conclude that
f € Flow,(a) if and only if g € Flow,(a — ce; + ce;). Then the conclusion of the lemma
follows. 0

Proof of Proposition 5.7. Suppose | = n. Then by Lemma 5.6, the first n — 1 rows of all the
flows in Flow, (a) are fixed. However, the n-th hook sum condition makes the only entry in
the n-th row to be fixed as well. Hence, (2) follows.

Suppose 1 < [ < n — 1 and assume a;,,a;,,...,a;, are all the voided positive entries
before the critical position where 1 < i < iy < - -+ < 4, < [. It follows from Lemma 5.6 and
Lemma 5.9 that

m

Flow,(a) — Z i, €i,i,+1 = Flow,(0,...,0,a;, 441, ..., ap).
p=1
If a;41 > 0, then we see that a’ := (0,...,0,a;,a;41,...,a,) is a desired choice for a.
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Suppose a1 < 0. We now consider the flow polytope Flow,(a’). Clearly, [ is still the
critical position of the vector a’. Let g € Flow,(a’). It is clear (or follows from Lemma 5.6)
that the first [ — 1 rows of g are zero rows. Thus, the (I + 1)-th hook sum of g = (g; ;) is:

77l+1(9) = Ji+1,1+1 + - Gi+1,n — gli+1 = Al41

Since giy1,41,° " , gi+1,n are all non-negative, we get that ¢;;11 > —a;41 > 0. Now applying
Lemma 5.9 with ¢ = —a;41, we get

Flow,(a’) — ce; 11 = Flow,(a’ — ce; + cejy1).

where
/
a —ce +ce1=(0,....0,a,+ ar11,0, 49, ..., an).

However, by the last conclusion of Lemma 5.5, we have a; + a;.1 > 0. Hence, a’ — ce; + ce;yq
is a desired choice for a for this case. Therefore, (1) holds. 0

The next lemma shows the existence of a certain flow which will be used in the proof of
Proposition 5.8.

Lemma 5.10. Assume the hypothesis of Proposition 5.8. If m # n, i.e., | +2 < m < n,
then there ezists a flow f = (f; ;) in Flow,(a) satisfying the following conditions:

(Z) fl,m > 0.

(”) fl,m + fl+1,m + -+ fm—l,m = —Qp-
(11i) The mth row of f is a zero row.

(iv) The first | — 1 rows of f are zero rows.

Proof. We prove the lemma by constructing such a flow f. Because the first [ — 1 entries of
a are all zero and a,, is the first negative entry, we have that

-1 l I+1 m—1
a, =0, g p, g Ap, .- -y ap
p=1 p=1 p=1 p=1

is a weakly increasing sequence. Since a € A,, one sees that the last entry in the above
sequence is at least —a,,, which is strictly greater than the first entry in the sequence.
Therefore, there exists (a unique) k € {l,{+1,...,m — 1} such that

k—1 k
E Qp < =0y < E Qp.
p=1 p=1

Let
a;, Hfl<i<k-1
ci = —am—zlg;i a,, ifi==k ,
0, ifEk+1<i<m-—1.

and then let
di=a;— ¢, forl <i<m—1.

One can verify that all ¢;’s and d;’s are non-negative, and moreover,

(55) @] > 0 and C + Cl+1 —|— e Cpe1l = — Q-
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Now we are ready to construct a desired flow f. We define f = (f;;) € U(n) as

(¢, ifi<i<m-—1landj=m

d;, ifl<i<m-landj=m+1
Jij = Z;Zlap, itm+1<i<n—1landj=i+1

Z;L:lap, ifi=7=n

L0, otherwise.

It is straightforward to check that f € Flow,(a) and the desired properties of f follow from
the definition of f and (5.5). O

Proof of Proposition 5.8. Suppose m = n. Then ay,as,...,a,-1 > 0 and a, < 0. Consider
g = (9ij) € U(n) defined by g¢,; = a; for each i and g, ; = 0 for each 1 <1i < j < n. Clearly
g ¢ Flow,(a) as g,, = a, < 0. However, g is a point in the polytope defined by (5.2).
This means if we remove the inequality m,,, > 0 from the inequality description (5.1) for
Flow,(a), we obtain a different polytope. Hence, the inequality m,,, > 0 is not redundant
in (5.1). Hence, by Remark 5.3, we conclude that Flow,(a) is not a deformation of Tes, (ay).

Suppose m # n. By Remark 5.3, we only need to consider the situation when (5.2) is a
linear inequality description for Flow, (a). Note that the description is not necessarily tight.

However, it is clear that there exists b = (b;;) € U(n) such that
(5.6) Flow,(a) = Q(a,b) = {m € U(n) | Lym = a and — P,m < b}.

is a tight linear inequality description for Flow,(a). By Remark 2.2, one sees that it is
enough to show that (a,b) is not in the deformation cone of Tes, (@), which by Theorem
1.1 is equivalent to that 771(5) < —a; for some 1 < 7 < n—1. We will show that nm(i)) < —Qpy.
Note that by the definition of tightness and the assumption that Flow, (a) is defined by (5.2),
the entries in b satisfy:

5.7 0< —b,; = i i
( ) - " me%vgln(a)m 7

Let f = (fi;) be the flow in Flow,(a) assumed by Lemma 5.10. Then condition (5.7)
implies that

_I;i,m S fi,m fOl"lSZSm—l

Using condition (5.7) together with Lemma 5.10/(iii)(iv), we conclude that

bm,m = Bm,m—‘rl == Bm,n =0 and Bl,m = EQ,m == Bl—l,m = 0.

Next, by Lemma 5.10/(i), we may choose a number € such that 0 < ¢ < f;,,,. Then we
construct g = (g;;) € U(n) from f by letting

Gim = fim — € Gix1m = firrm + € Guir1 = fri +¢€

and keeping all the other entries. One can check that g is another flow in Flow, (a). Applying
(5.7) again for (4,j) = (I, m), we get

_bl,m < gim = fl,m — €.
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Therefore,

n -1 m— m—1
77m<l~)) = I;m,j — l;i,m = Em,j Z Z =0—-0-— Z Ei,m
j=m i=1 = 1=l

<(fim =+ firrm+ -+ fnotm < fim + f2,m ot frtm = — G,

where the last equality follows from Lemma 5.10/(ii). This completes our proof. O

Proof of Theorem 1.2. By Proposition 5.7/(2), if | = n, then Flow,(a) is a point, which
clearly is a deformation of Tes,(ag). Therefore, it is left to prove that if 1 <1 <n —1, then

(5.8) Flow,(a) is a deformation of Tes, (1) <=  aj1o2,a143,...,a, > 0.

However, by Proposition 5.7 and Remark 2.3, one sees that it is enough to prove (5.8) with
the assumption that a@ = (ay, ..., a,) satisfies

ap=ay=---=a_1=0, ag >0, and a;;1 > 0.
Then the forward direction of (5.8) immediately follows Proposition 5.8. If a0, aji3, ..., a, >
0, then a € R, and Flow, (a) = Tes,(a), which by Theorem 3.1 is a deformation of Tesn( ).
Hence, the backward direction of (5.8) holds. O
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