Multiparty Private Set Intersection Cardinality and Its
Applications

Jiahui Gao Ni Trieu Avishay Yanai
Arizona State University Arizona State University VMware Research
jgao76@asu.edu nitrieu@asu.edu ay.yanay@gmail.com
ABSTRACT in the two-party setting [15, 18, 25]. This work considers a natural

We describe a new paradigm for multi-party private set intersec-
tion cardinality (PSI-CA) that allows n parties to compute the in-
tersection size of their datasets without revealing any additional
information. We explore a variety of instantiations of this paradigm.
By operating under the assumption that a particular subset of par-
ties refrains from collusion, our protocols avoid computationally
expensive public-key operations and are secure in the presence of
a semi-honest adversary.

We demonstrate the practicality of our PSI-CA with an imple-
mentation. For n = 16 parties with data-sets of 220 jtems each, our
server-aided variant takes 71 seconds. Interestingly, in the server-
less setting, the same task takes only 7 seconds. To the best of
our knowledge, this is the first ‘special purpose’ implementation
of a multi-party PSI-CA from symmetric-key techniques (i.e. an
implementation that does not rely on a generic underlying MPC).

We study two interesting applications — heatmap computation
and associated rule learning (ARL) - that can be computed securely
using a dot-product as a building block. We analyse the performance
of securely computing heatmap and ARL using our protocol and
compare that to the state-of-the-art.

KEYWORDS

multiparty, private set intersection cardinality, secure dot product,
heatmap computation, associated rule learning

1 INTRODUCTION

Secure multi-party computation (MPC) allows a set of parties to
jointly invoke a distributed computation while ensuring correctness,
privacy, and more. in this work, we study Private Set Intersection
Cardinality (PSI-CA), a special case of MPC, that allows multiple
parties to compute the intersection size of their private sets without
revealing additional information. PSI itself has been motivated by
many real-world applications such as contact discovery [26]. Over
the last several years PSI has become truly practical with extremely
fast cryptographically secure implementations [11, 22, 35, 38]. In
the setting of two parties, PSI with post-processing (a.k.a circuit-
based PSI), especially PSI-CA, has recently drawn more attention
with several applications, such as measuring the effectiveness of
online advertising [25], limiting the spread of Child Sexual Abuse
Material (CSAM) [7], and private contact tracing related to COVID-
19 [6, 15, 18]. However, the state-of-the-art PSI-CA is only efficient
tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(2), 7390

© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0041

This work is licensed under the Creative Commons Attribu-

73

generalization to the multi-party setting, which opens the oppor-
tunity for richer applications, like the two we showcase below.
The state-of-the-art protocol for PSI-CA in the multi-party setting
[10] relies on secret-shared computation [12], which might not
scale well for a large number of parties. In this work we present
a scalable protocol for PSI-CA in the multi-party setting with an
assumption that a particular subset of parties refrains from collusion.
This is an reasonable assumption for real-life applications especially
when performance is critical so that a weaker security guarantee
is applied as trade off. For example, in the Covid-19 heatmap com-
putation with multiple mobile network operators, a large cloud
computing company (e.g. Amazon AWS) can play the role of the
server, and the health service running by the government can play
the role of P;. Statutes and regulations imposed upon large com-
panies and governments reduce the likelihood of collusion among
these parties. In reality, such participants can be chosen to play
the role of server or leaders (i.e. P1, P2, or P, depending on the
protocol) when invoking the multi-party protocols we proposed.

Moreover, we present a new protocol, called DotProd, where
n parties may compute a sum of element-wise products of their
binary vectors without revealing any additional information. Math-
ematically, suppose party P; holds the m-element vector x;, then
the parties obtain Z;."zl [T, xi[j], where x;[j] is the jth element
of the vector x;. Note that in the two-party case, the computation
is exactly of the dot product x; - x2. We demonstrate the efficiency
of our protocols through two real-world applications: a COVID-
19 heatmap computation based on PSI-CA and an associated rule
learning (ARL) based on DotProd.

In the rest of this section, we will present the related work of
PSI-CA and its applications. Additionally, we will delve into the
technical overview and outcomes of our proposed protocols. To es-
tablish a foundation, Section 2 presents the necessary preliminaries.
Furthermore, we will introduce two novel cryptographic gadgets,
namely Server-Aided Shuffled OPRF and Server-Aided OPPRF, in
Section 3. We will discuss our PSI-CA protocols in Section 4 and
explore practical applications in Section 5. Lastly, in Section 6, we
will evaluate the performance of our PSI-CA protocols and provide
a comparison with existing approaches.

1.1 State-of-the-Art for PSI Cardinality

Private Set Intersection Cardinality (PSI-CA) is a variant of PSI in
which the parties learn the intersection size and nothing else. In
this work, we also focus on server-aided PSI-CA constructions. By
“server-aided", we refer to cases where the parties perform PSI-CA
computation with the help of a semi-honest cloud server(s). To the
best of our knowledge, this work proposes the first special-purpose

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0041

Proceedings on Privacy Enhancing Technologies 2024(2)

PSI-CA protocols from symmetric-key techniques that work in the
multi-party setting.

We start with discussing PSI-CA works in the two-party setting.
Clearly, one can use circuit-based PSI [36] to implement PSI-CA.
However, this generic solution is expensive due to the secure com-
putation inside the circuit. For the special-purpose two-party PSI-
CA constructions, the work [13, 25] extends the classic DH-based
PSI protocol [32] to support two-party PSI-CA by having a sender
shuffle the PRFs of their items before returning to the receiver.
Epione [43] also proposed a protocol that is suitable to the unbal-
anced, client-server setting, in which the server has a large database
of my items and the client has a small database of my items. The
protocol, however, requires O(mj + m2) expensive public-key op-
erations (group exponentiation). Delegated PSI-CA [18] improves
the efficiency of the two-party PSI-CA protocol on the client’s de-
vice, Catalic [18] proposes a delegated system in which the client
(i.e. PSI-CA receiver) can shift most of its PSI-CA computation
to multiple untrusted servers while preserving privacy. However,
Catalic system requires at least two non-colluding cloud servers
with a heavy computation/communication cost. Based on oblivi-
ous switching network (OSN), [21] proposes a two-party PSI-CA
(so-called OSN-based PSI-CA) which is better than circuit-based
PSI-CA protocol [36] in terms of communication cost and running
time in the WAN setting. However, it has both communication and
computation complexity O(mlog(m)) for a set size m due to the ex-
pensive OSN construction. Dittmer et al. [15] introduces a variant of
two-party PSI-CA (so-called weighted PSI-CA) in which each token
of the client has an associated secret weight. The weighted PSI-CA
is based on cheap Function Secret Sharing (FSS) constructions [8, 9],
thus it is efficient on both client’s and server’s sides. However, their
construction assumes that there exist two non-colluding servers,
each holding an identical input set. In Section 4, we show that the
more straightforward version of the server-aided PSI [27] yields a
fastest PSI-CA protocol in the two-party setting.

A multi-party PSI-CA protocol was first proposed by Kissner and
Song [28]. The protocol of [28] is based on oblivious polynomial
evaluation which is implemented using additively homomorphic
encryption. The basic idea is to represent a dataset as a polynomial
whose roots are its elements, and send the homomorphic encryp-
tions of the coefficients to other parties so that they can evaluate
the encrypted polynomial on their inputs. The protocol of [28] has
a quadratic computation and communication complexity in both
the size of dataset and the number of parties.

Mohassel et al. [34] proposed a PSI-CA protocol, but on secret
shared data in the honest-majority three-party setting, which is
different than the setting in this paper, as we consider a setting
with any number of parties, in which the input does not have to be
in a secret-sharing form. However, one can extend the protocol of
[34] to support the multi-party PSI-CA where all the parties secret-
share their input to the three parties of [34] which then jointly
compute the final output. We discuss the extension and compare
the performance of our protocol and [34]’s in Section 6.2.

Chandran et al. [10] proposed an efficient PSI (not PSI-CA), which
can be extended to circuit-based PSI. Hence, one could combine
their extended protocol with a circuit that computes the size of the
intersection to obtain a protocol for PSI-CA. At the technical core,
[10] is built on n-party secret-sharing functionalities introduced

74

Jiahui Gao, Ni Trieu, and Avishay Yanai

by [12]. Their use of generic secure computation protocol for a
specific problem (of PSI-CA) makes their extended protocol less
attractive. In addition, [10] requires 10 interaction rounds while
our server-less multiparty PSI-CA protocol needs 4 rounds. We
compare the performance of our protocols and [10] in Section 6.2.

Very recently, Fenske et al. [19] proposed an efficient and mali-
cious multi-party PSI-CA procotol in the outsourcing setting. Their
approach makes use of K servers, with the assumption that at least
one of the servers is not colluding with other participants. When
K = 1, their protocol is comparable to our server-aided one, as both
require a non-colluding server. However, our protocol outperforms
theirs in this scenario, as we employ symmetric-key operations
while [19] heavily relies on the additively homomorphic encryp-
tion. For instance, in the case of n = 8 and m = 2%, our semi-honest
protocol can compute PSI-CA within 3 seconds. In contrast, the ma-
licious protocol [19] requires approximately 2 hours for n = 5 and
m = 30000, as indicated in their Figure 10. This demonstrates the ef-
ficiency and superiority of our approach in terms of computational
time. Note that the protocol [19] only works in the server-aided set-
ting, whereas in this work we also propose a way to work without
such an entity, which we call the “server-less" setting.

1.2 Secure Dot Product and Its Applications

Dot-product plays a key role in machine learning and data analysis
tasks. Its implementation in a privacy-preserving setting remains
expensive as it requires either generating Beaver triples [5] or using
fully homomorphic encryption (FHE). There is a long list of results
for secure computation of dot product or linear algebra in general
[1, 4, 14, 24, 42, 46, 47]. For the applications that we consider in
this paper, namely, Covid-heatmap and ARL, dot-product of sparse
vectors would be sufficient. Many algorithms for linear algebra op-
erations, like matrix multiplication, leverage an apriori knowledge
of the operands being sparse, and sometimes these algorithms can
even be computed securely, without degrading their asymptotic
complexity. None of the above works, however, address the problem
of dot product in a setting where the vectors are sparse. The most
relevant works to ours are [4, 16, 41, 44, 45].

To the best of our knowledge, Vaidya and Clifton [44] were
the first to study secure computation of scalar product of two m-
element vectors in the two-party setting and its application to
privacy-preserving association rule learning (ARL). Their dot prod-
uct protocol heavily relies on public-key operations, and requires
four communication rounds, communication complexity of O(m)
and computation complexity of O(m?).

Their follow-up work [45] is based on PSI, which makes the
complexity dependent only of ¢, where ¢ is the upper-bound on
the Hamming weight of the vectors. They also propose a protocol
for the multi-party setting, which requires a commutative one-way
hash function so that the input from each party can be encrypted
by a common set of keys. The resulting ciphertexts are the same if
the original values are the same. Although efficient, their protocol
introduces an undesirable leakage; specifically, it leaks the items in
the intersection (rather only their sum). Moreover, their protocol is
insecure when the input domain is relatively small (e.g. of size 23°)
as one party could easily perform a brute force attack [37]. To handle
the latter security issue, [16] studied a two-party ARL and proposed

Multiparty Private Set Intersection Cardinality and Its Applications

a solution via PSI that is built on the Goldwasser-Micali Encryption
[23] and Oblivious Bloom Intersection [17]. Their protocol still leaks
the items in the intersection, and became much more expensive
than the protocol we present in this paper. In addition, they did not
consider an extension to the multi-party case.

Recently, Bampoulidis et al. [4] studies COVID-19 heatmap com-
putation and proposes secure dot product based on homomorphic
encryption with several optimizations. However, the number of re-
quired HE operations is O(m) (regardless of the Hamming weight of
the vectors), which makes their protocol expensive. Schoppmann et
al. [41] presents efficient two-party protocols for several common
sparse linear algebra operations including sparse matrix-vector
multiplication. The main building block of their protocols is a new
functionality — Read-Only Oblivious Map (ROOM). Using ROOM,
the cost of the secure matrix-vector multiplication is dependent
only on the number of non-zero entries, instead of the operands’
size. However, in all three ROOM constructions the parties invoke
generic secure computation in order to obtain a secret-shared out-
put. We compare the performance of our protocol to a ROOM-based
dot-product in Section 6.1.

1.3 Our Results and Techniques

1.3.1 Our PSI-CA Approach: We present a new multi-party PSI-CA
protocol paradigm with an assumption that a subset of particular
parties does not collude. We offer two variants of our protocol. The
first protocol relies on a non-colluding semi-honest server that has
no input. It is optimized for the number of communication rounds
between parties; that is, the protocol leverages a star network topol-
ogy, where parties mostly communicate with the server. The second
protocol removes the need of a server by reducing the problem of
n-party PSI-CA to the problem of server-aided (n—1)-party PSI-CA
with use of a semi-honest party P, who may have an input. The
base case with n = 2 can be instantiated efficiently by two-party
server-aided PSI protocol of Kamara et al. [27]. However, [27] is
only for PSI itself (not PSI-CA)!. We simplify their PSI protocol and
present the server-aided two-party PSI-CA in Section 4.1.

The main building blocks of our multiparty PSI-CA protocols
are oblivious key-value store (OKVS) data structure [22], and/or
Oblivious Programmable PRF (OPPRF) [30]. To this end, we propose
a very simple and efficient protocol for server-aided OPPRF, which
we believe to be of independent interest. Our server-aided OPPRF
is based on a two-party server-aided shuffled OPRF, a functionality
we formally define in Section 3.1.

We provide an implementation of server-aided and server-less
variants of our PSI-CA approach for n > 2. To the best of our
knowledge, this is the first ‘special-purpose’ implementation of
multi-party PSI-CA from symmetric-key techniques that does not
rely on generic secure computation. We find that multi-party PSI-
CA is practical, by evaluating our protocols over settings with mil-
lion items sets and 16 parties. The main reason for the efficiency of
our protocol is its reliance on fast symmetric-key primitives. This is
in contrast with prior multi-party PSI-CA protocols, which require
expensive public-key operations for each item [28] or computation
on secret-shared data [10].

!Note that [27] has a protocol for multiparty PSI, but it reveals intersection items of
each pair-wise parties sets to the server and is non-trivial to support PSI-CA.

75

Proceedings on Privacy Enhancing Technologies 2024(2)

Interestingly, the server-less PSI-CA variant is about 10x faster
than the server-aided one. We consider colluding model in the semi-
honest setting which is introduced in detail in Section 2.1. The two
variants, however, offer different security guarantees. Specifically,
the former is secure in the presence of an adversary who may
passively corrupt any subset from {Ps, ..., P,} or one of P1,P; or
P, (i.e. P1, Py and P, are non-colluding). The latter (server-aided
PSI-CA) is secure in the presence of an adversary who may passively
corrupt any strict subset of {Py, P3,..., Py} or {P, P3,..., Py} (ie.
P; and P do not collude) or passively corrupt the cloud server C.
In some sense, one may look at the server-less variant as a multi-
server-aided PSI-CA but the servers have their private input. Hence,
we can use our efficient server-aided OPPRF (instead of the two-
party OPPRF [30]) in the server-less PSI-CA protocol, which may
explain why it is possible to get a better performance in this case.
In the server-less variant, we assign the non-colluding party P; the
role of a server in the server-aided OPPRF protocol.

The security model employed in this work deviates from the
commonly known concept of “threshold security”. Rather, we adopt
a specific but sufficiently general access structure, in which a desig-
nated subset of parties does not collude. Although this approach
differs from the conventional notion of threshold security, we do be-
lieve our approach can be used as a stepping stone toward achieving
security in the ‘standard’ threshold access structure.

Note that in practice, a server-aided model can be reasonable.
Performance is critical and often it makes sense given that the
alternative has a weaker security guarantee. For example, in the
federated learning setting, there is a server and many clients where
the server helps training a machine learning model for the benefit
of the clients. In this work, we motivate our protocols with two real-
world applications in which using a non-colluding, but semi-honest
server, makes complete sense. For example, in the Covid-19 heatmap
computation, an established company (e.g. Google or Apple) can
play the role of the server.

1.3.2 Our Multi-party Dot-Product of Binary Vectors (DotProd):
We propose a new protocol for computing the sum of element-
wise products of n sparse binary vectors (so-called multiple dot
product, DotProd). Let us begin with the simpler case, where n = 2,
known as secure dot product. One would expect a solution for a dot
product of m-elements vectors to incur communication overhead
of at least O(m), for the very fact that the parties need to first input
those elements (which usually involves some sort of encryption or
secret sharing on each element). In this work, we show that the
communication and computation complexity is independent of m
and can be reduced to O(t), where t is the upper bound on the
Hamming weight of the vectors. This improvement is significant
when the vectors are sparse (i.e. t = o(m)).

For an m-element binary vector x we define idx(x) = {i € [m] |
x[i] = 1} to be the set of non-zero indices in x. Suppose the receiver
Py and the sender P; hold an m-element binary sparse vector x
and x1, respectively. The vectors are sparse and have the number
of non-empty elements bounded by t = o(m). As a very simple
warm-up, we consider a non-secure dot product computation with
the communication complexity cost of O(¢). Given the input vector
X0, the receiver computes Ay = idx(xp) and the sender computes
A1 = idx(x1). The sender then sends A; to the receiver, who is

Proceedings on Privacy Enhancing Technologies 2024(2)

able to compute the dot product x - y by computing the intersection
Ap N A; and outputting its cardinality |[Ag N A1].

The main advantage of the above solution is to reduce depen-
dency on the length of the vectors, especially when the input vectors
are sparse. To compute xo - x1 securely, the parties run a private
set intersection cardinality protocol (PSI-CA) where Py inputs Ay
and P inputs A;. This idea, however, has received little attention
due to the large overhead required to compute PSI-CA. We then
extend DotProd to the multi-party case. Given an input vector x;,
party P; computes A; = idx(x;). It is easy to see that the sum of
element-wise products of the vectors is equal to the size of their
intersection, namely, Z}":l [Th, xi[j] = 1N, Ail. We implement
the multi-party DotProd using our multi-party PSI-CA.

1.3.3 Application to PSI-CA and DotProd: We show that our PSI-
CA and DotProd techniques can be used to implement and improve
the performance of several privacy-preserving applications. More
specifically, we consider two running examples: COVID-19 heatmap
computation and associated rule learning (ARL).

In the COVID-19 heatmap problem, we consider a scenario where
the Department of Health and Human Services (HHS) wants to
learn areas with a higher chance of getting infected with the dis-
ease without knowing the travel route of infected individuals. The
heatmap can be implemented by computing the vector-matrix mul-
tiplication as xTY, where x and Y are as follows: x is a binary
vector of size N, held by the HHS, such that x[i] = 1 if the ith
user has tested positive to COVID-19 and x[i] = 0 otherwise; and
Y=(y1,....Ym) € Zé\]xm is a user-location matrix, held by a net-
work operator, such that the ith element of the column vector y;
indicates whether the ith user has recently visited the jth location.
In that case y;[i] = 1 and otherwise y;[i] = 0. Clearly, z = x'Yis
an m-element vector where the ith element is equal to the number
of users who have tested positive and recently visited the ith lo-
cation. [4] proposes different optimizations on HE to implement a
secure dot product, which still requires O(Nm) independent mul-
tiplications (regardless of the Hamming weight of the vectors). In
the heatmap example above, we observe that the vector x is sparse
because the proportion of diagnosed individuals per day among
all N subscribed individuals is small (e.g, 0.01-1% would be a large
percentage [2]). Similarly, the matrix Y is also sparse due to people’s
localized travel habits. In Section 5.2, we apply our DotProd proto-
col to compute COVID-19 heatmap. In addition, [4] only supports a
two-party computation between the HHS and a network provider.
In real-world scenarios, there are many network providers. We
modify the two-party PSI-CA protocol [27] to support heatmap
computation between the HHS and multiple network providers
without revealing additional information.

Second, we study associated rule learning (ARL) as an application
of DotProd. ARL is a rule-based machine learning method that is
used to discover rules/relations of the type (X = Y) between vari-
ables X, Y in databases. As a typical example in the sales database of
a supermarket, a rule/relation {onions, potatoes = burger} indi-
cates that if a customer buys onions and potatoes together, they are
likely to also buy hamburger meat. In market design, such informa-
tion can be used as the basis for decisions about product placements,
promotional pricing, and more. However, the ARL training process
requires a large transaction database, which may be collected from

76

Jiahui Gao, Ni Trieu, and Avishay Yanai

different sources. Thus, it is highly desirable to maintain the privacy
of each source. We study a common ARL training algorithm, called
Apriori [3, 40], and adapt it to the privacy-preserving setting. Most
steps in Apriori can be computed locally except a step in which
the parties want to compute a confidence score of how many trans-
actions across a joint database that contains all attributes/items
in both X and Y. This step can be implemented by computing a
sum of bit-wise products of multiple binary vectors. We first apply
multi-party DotProd for ARL and make its learning process in a
privacy-preserving manner.

2 PRELIMINARIES

Computational and statistical security parameters are denoted by
K, A, respectively. We use [x] to denote the set {1,2,...,x} and
[x,y] to denote the set {x,x + 1,...,y}. A set is a collection of
distinct elements. We denote the concatenation of two bit strings x
and y by x||y. For a pseudorandom function (PRF) F, a key k and
a set A, we define F(k, A) = {F(k,a) | a € A}. For an m-element
binary vector x, we define idx(x) = {i € [m] | x[i] = 1}.

2.1 Security Model

Secure computation allows mutually untrusted parties to jointly
compute a function on their private inputs without revealing any
additional information. There are two classical security models:
colluding model is modeled by considering a single monolithic
adversary that captures the possibility of collusion between the
dishonest participants; and non-colluding model is modeled by
considering independent adversaries, each captures the view of
each independent dishonest party. There are also two adversarial
models, which are usually considered. In the semi-honest (passive)
model, the adversary is assumed to follow the protocol, but may try
to learn information from the protocol transcript. In the malicious
(active) model, the adversary follows an arbitrary polynomial-time
strategy to learn additional information. This paper introduces two
variations of PSI-CA in the semi-honest model, each providing
distinct security guarantees. Firstly, the server-aided variant of
PSI-CA ensures security in the presence of an adversary who may
passively corrupt any subset of {Py, P3,..., Py} or {P2,P3,...,Pp}
(i.e. P; and P, do not collude) or passively corrupt the server C.
The “server-less" protocol guarantees security in the presence of an
adversary who may passively corrupt any subset from {Ps, ..., Py}
or passively corrupt one of Py, Py, or Py.

2.2 Oblivious Key-Value Store (OKVS)

A Key Value Store (KVS) consists of two algorithms: i) Encode takes
as input a set of (k;, ;) key-value pairs from the key-value domain,
K XV, and outputs an object S (or, with negligible probability, an
error indicator L); ii) Decode takes as input an object S, a key x
and outputs a value y.

EXPERIMENT 2.2.1. (Exp™ (K = (k1,...,km)))
(1) for i € [m]: choose uniform v; « V
(2) return A(Encode({(k1,v1),... (km.vm)}))

A KVS is correct if, for all A € K x V with distinct keys: i)
Pr[Encode(A) = L] is negligible, and ii) if Encode(A) = S # L and
(k,v) € A then Decode(S, k) = v.

Multiparty Private Set Intersection Cardinality and Its Applications

We say that a KVS is oblivious if for all K7, K> of size m and all
PPT adversaries A: |Pr[Exp“7{ (K1) = 1] - Pr[Exp? (%G) = l]l =
% + ¢ where ¢ < negl(x). In other words, if the values v; are chosen
uniformly then the output of Encode hides the choice of the keys k;.
Oblivious Key-Value Store (OKVS)[22] is given in Experiment 2.2.1,
where A is an arbitrary PPT algorithm.

2.3 Oblivious PRF (OPRF) and Programmable
PRF (OPPRF)

An oblivious PRF (OPRF) [20] is a 2-party protocol in which the
sender learns a PRF key k and the receiver learns the PRF values
F(k,q1),...,F(k,qm). Here, F is a PRF and (q1, . . ., qm) are inputs
chosen by the receiver. Functionality 1 presents a variant of OPRF
where the receiver obtains outputs of multiple statically chosen
queries.

FUNCTIONALITY 1. (Oblivious PRF - ﬂgrf)

Parameters: A PRF F, and a bound m on the number of
queries.

Behavior: Wait for distinct queries (qy, . . ., ¢m) from the receiver
where g; € {0,1}*. Sample a random PRF key k and give it to the

sender. Give {F(k,q1), ..., F(k,qm) } to the receiver.

An oblivious programmable PRF (OPPRF) functionality is intro-
duced by [30]. It is similar to the plain OPRF functionality except
that it allows the sender to initially provide a set of points # which
will be programmed into the PRF. Functionality 2 presents a simple
version of OPPRF defined in [30]. For a comprehensive and in-depth
understanding of OPPRF, we refer the reader [30, 35].

FUNCTIONALITY 2. (Oblivious Programmable PRF - /1)

Parameters: A PRF F, an upper bound m; on the number of points
to be programmed, and a bound m; on the number of queries.
Behavior: Wait for points = {(ay, t1), ..., (@m,, tm,) }, with dis-
tinct keys a;’s, from the sender S, and distinct queries (g1, - . ., gm,)
from the receiver R. Run k « KeyGen(k,). Give k to S and
(F(k,q1),...,F(k,qm,)) to R.

2.4 Unconditional Zero Sharing

Unconditional zero sharing provides the parties with a sharing
function S : {0,1}* x {0,1}¥ — {0,1}* and a key K; for party
P;, such that for every x € {0,1}¢, we have that s; = S(K;, x)
is P;’s random share, and @;’:l s; = 0. The functionality and its
construction from [30] are given in Functionality 3 and Protocol 17.

FUNCTIONALITY 3. (Zero-Sharing - ¥zs)

Parameters: n parties. The dictionary store is initialized to 0.
Behavior: P; obtains a zero-sharing key K; for a sharing function S.
Upon an input x from P;, if store, does not exist, generate random
values si,...,s, where s; = S(Kj, x) s.t. @;;1 s; = 0 and store
storey ; = s; for i € [n]. Output Kj, storey ; to P;.

2.5 Private Set Intersection Cardinality

Private set intersection cardinality (PSI-CA) allows n parties, each
holding a set of m items, to learn the intersection size of their private
sets without revealing anything else. In the server-aided PSI-CA,
we assume there is a distrusted server that has no input and does
not collude with the parties. The server is involved in the PSI-CA
protocol while learning nothing. PSI-CA and server-aided PSI-CA

77

Proceedings on Privacy Enhancing Technologies 2024(2)

are formally presented in Functionality 4. The highlighted text is
required for the server-aided case.

FUNCTIONALITY 4. (PSI Cardinality - Fpsi—ca)
Parameters: n parties Py, . ..
size m.

Behavior:

e Wait for input set X; of m distinct items from P;.
e Give the server C nothing.

e Give P; an intersection set size | (= X;|.

, P,,; an untrusted server C; the set

2.6 Secure Dot Product of Binary Vectors

Secure dot product functionality allows n parties, each holding an
m-element binary vector, to learn the dot product of their private
vectors without revealing any additional information. In this work,
we consider the problem of the secure dot product of n binary
vectors, in a server-aided setting, in which we make use of a non-
colluding distrusted server. Our protocols are extremely efficient
when the upper bound on the Hamming weight of the vectors,
denoted ¢, is in o(m). The dot product of n vectors x1, . .., x,, each
with m elements, is defined by Z;”:l ", xi[j] and is called Dot-
Prod. DotProd is presented in Functionality 5. The highlighted text
is required for the server-aided case.

FUNCTIONALITY 5. (Secure Dot Product - Fpotproduct)
Parameters: n parties: Pjc[,]; an untrusted server C; an upper-
bound ¢.

Behavior:

o Wait for input m-element binary vector x; from P;.

e Give the server C nothing.

e Give to Z;-":l [T, x;:[j] the party P;.

3 SERVER-AIDED OPRF AND OPPRF

In this section, we introduce new OPRF and OPPRF constructions
which make use of a semi-honest non-colluding cloud server.

3.1 Server-Aided Shuffled OPRF

The server-aided OPRF functionality involves a sender S, a receiver
R and a server C. It is defined as follows: S has a key-pair k =
(k1, k2) where k; € {0,1}¥, R has a set of queries {yi};e[m] and
the server C has no input. S does not receive an output whereas R
obtains {y;(l), .. .,y}’r(m)}where y; = F'(k,y;)and 7 : [m] — [m]
is a random permutation. The output of C is the permutation x .
Clearly, R cannot associate the response y; with the query y; as all
responses are pseudorandom. Figure 6 formally presents the ideal

. . (m)
functionality of ﬁoprf.

FUNCTIONALITY 6. (Server-Aided Shuffled OPRF - 7‘5(0';){)

Parameters: S, R and C, the set size m, a pseudorandom func-
tion (PRF) F’ : {0,1}%% x {0,1}¢ — {0, 1}* where F’ (ky, k2, x) =
F(ks, (F(k1,x)) where F is a PRF.

Behavior:

o Wait key k = (kq, kz) from S.

e Wait distinct queries {y; }ic[m) from R.

e Send a random permutation 7 : [m] — [m] to C.

e Send {y;[(l), el y;r(m) } to R where y; = F'(k, y;).

We first define F’((ky, k), x) = F(kz, F(k1,x)) where F is a PRF.
It is easy to see that F’ is a PRF. In protocol Hi:rl’)rf, the S has the

Proceedings on Privacy Enhancing Technologies 2024(2)

key k = (ki,k2), so it can send k1 to R and k3 to C. We assume
that the receiver and helper do not collude, thus they are unable to
compute the sender’s key k. Having k1, R computes Y’ = F(ky,Y)
and sends Y’ to C. The server C then computes Y’ = F(ky, Y’), and
applies a random permutation 7 on Y”’. This one-round protocol
takes into account the presence of a semi-honest sender/receiver.

THEOREM 1. Protocol H(m)
soprf

ng:r)f in the presence of an adversary who may passively corrupt

either S, R, or C.

securely implements the functionality

The formal proof of Theorem 1 is present in Appendix A.1.

PROTOCOL 7. (Server-Aided Shuffled OPRF-TI{"™).)
pr

Parameters:

e Set size m;aPRF F.

e A sender S, areceiver R, a non-colluding semi-honest server C
Inputs:

e Sender S has input k = (ky, k2)

e Receiver R has input a set of m items Y = {yy, ...
e Cloud server C has no input.

’ym}

Protocol:

(1) S sends k; to R and k3 to C.

(2) R computes Y’ = F(k;,Y) and sends Y’ to C.

(3) C chooses a random permutation 7 : [m] — [m]. C computes
Y” = F(kj,Y’) and sends a random permutation 7 of Y” to R.

3.2 Server-Aided OPPRF

The server-aided OPRF functionality involves a sender S, a receiver
R, and a non colluding server C. It is defined as follows: S has a set
of my points P = {(xi,0i)}ie[m,] With (pseudo)randomv; € {0, 1},
and R has a set Y = {y;};c[m,]- C has no input. Denote the set of
first (resp. second) entries of the pairs in by X (resp. V). S and C
do not have an output whereas R, for every y;, obtains v; iff y; € X,
and some other pseudorandom value otherwise. This is denoted by

ﬁopprf and formally described in Functionality 8.

FUNCTIONALITY 8. (Server-Aided OPPRF - Fm:"))

Parameters: S, R and C, m; the size of £ and m, the number of
queries.

Behavior:

e Wait for a set of m; points £ = {(x;, 0;) }ie[m,] With distincts
x;’s and (pseudo)random v; € {0, 1}*, from S.

Wait for a set Y = {y; }ic[m,] from R.

For every i € [m;] set v} = vj if y; = x;j for some j € [m;] and
otherwise assign a random value to v}. Let V' = {0} } je[sm,]-

e Send V' to R.

In the protocol, S, R and C invoke a non-shuffled version of
OPREF, where S inputs the key k = (k1, k2), R inputs Y, and a sets
Y ={y],...,Ym,} as a part of the output with y; = F’(k, y;). Then,
S constructs an OKVS T « Encode({(x;, F'(k,X;) ® vi}ic[m,])
and sends T to R, which outputs w; = yj’. ® Decode(T, y;) for
j € [m2]. In terms of the correctness, R obtains o} =F'(k,yj)) &
Decode(T,y;) for all y; € Y.If y; = x;, then Decode(T,y;) =
F'(k,x;) & vj, thus, v;. = v;. Otherwise, Decode(T, y;) gives R a
pseudorandom value which makes v;. pseudorandom as well. Since
the sender can combine messages of OKVS and OPRF executions

78

Jiahui Gao, Ni Trieu, and Avishay Yanai

before sending them to the receiver, thus, this server-aded OPRF
protocol is one-round.

II(rnl’n12)

THEOREM 2. Protocol
sopprf

securely computes the function-

ality 7‘"55;:;;;”2) in the T;E)’:r)f-hybrid model, in the presence of an
adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 2 is present in Appendix A.2.

PROTOCOL 9. (Server-Aided OPPRF - IL"™))
soppr

Parameters:

e Parties are sender S, receiver R, and a server C. Set sizes my, m.
APRF F : {0,1}?¢ x {0,1}f — {0,1}* where F’(ky,kz,x) =
F(ky(F(k1,x)) where F is a PRF.

Inputs:

o Shas P = {(xi,9i) }ic[m,] With (pseudo)random v;’s.
o Rhastheset Y = {y; }ic[m,]-

e C has no input.

Protocol:

(1) 8, R, and C jointly invoke fs(o';lrzf) where S inputs a random key
k = (ki kz) < {0,1}%%, by which C obtains k; and R obtains
k1. Then R inputs Y, and obtains Y" = {y],..., y;nz } as output,
where y; = F' (k, y;). Note that we use a non-shuffled version of
OPRF.

(2) S constructs an OKVS over T « Encode({(x;, F' (k,x;) &
i }ie[m,]) and sends T to R.

(3) Forevery j € [m2], R outputs v} = y} ® Decode(T, y;).

4 PSI CARDINALITY PROTOCOL

In this section we present three protocols:

e In Section 4.1, we simplify the server-aided PSI protocol of [27]
and formally present their server-aided two-party PSI-CA pro-
tocol. Unlike previous “server-less” protocols (see Section 1.1)
that are based on oblivious transfer [18] or on the Diffie Hellman
proble [25, 43], which in turn are based on public-key primitives,
the two-party PSI-CA protocol [27] uses only symmetric-key
operations. This is possible, among other improvements, due to
the replacement of their OPRF constructions with a server-aided
version, which is much simpler and more efficient.

o In Section 4.2, we show an extension of the protocol to the multi-
party case, where the adversary may passively corrupt (almost)
any strict subset of the parties or passively corrupt the server. To
the best of our knowledge, this is the first ‘special-purpose’ proto-
col for privately computing the intersection cardinality of more
than two parties, for which we present interesting applications
(see Section 5).

e In Section 4.3, we show that a server is not necessary when some
parties are assumed to be semi-honest and non-colluding.

4.1 Server-Aided Two-Party PSI-CA [27]

We consider sender S and receiver R who want to compute the
intersection size of their private sets X = {x1,...,x,} and Y =
{y1, ..., ym, }, respectively. To do so, they use a non-colluding, semi-
honest cloud server C. The formal description is given in Proto-
col 10. The protocol is inspired by the size-hiding server-aided PSI
of Kamara et al. [27]. For completeness, a description of their PSI
protocol is given in Appendix E.

Multiparty Private Set Intersection Cardinality and Its Applications

For correctness, notice that for a value z € X N Y, the value
F(k, z) appears in both X” and Y’. On the other hand, if z ¢ X then
F(k,z) ¢ X’;andif z ¢ Y then F(k,z) ¢ Y'.

Length of OPRF outputs. The length of OPRF output influences
the probability of a collision within the protocol. Similar to previous
work [29], it is sufficeint to have the output length of A+log(mmy)
to bound the probability of any spurious collision to 2%.

The protocol is one-round and extremely efficient because of the
efficiency of the shuffled ?;oprf' In terms of communication cost, it

only requires S to send m; values to R. The construction for '?;oprf,

in turn, requires only my messages from R to C and my messages
back from C to R. We prove the following:

PROTOCOL 10. (Server-Aided Two-party PSI-CA)

Parameters:

e The protocol runs between a sender S, a receiver R, and a server
C. S and R have input size of m; and my, resp. A PRF F' :
{0,1}2% x {0,1}f — {0,1}~.

Inputs:

e Sender S has input X = {x1,...,xm, }

e Receiver R hasinput Y = {y1,..., ym, }

o Cloud server C has no input.

Protocol:

(1) S, R, and C jointly invoke Ts(o’:ff) as follows: S inputs a random
key k = (ki, k2) € {0, 1}2%, upon which R obtains k; and C ob-
tains ky and 7 (recall that 7z : [my] — [m2] is a random permu-
tation). Then R inputs Y and obtains Y’ = {y
where y;r(i) =F'(k, y;).

(2) S sends a random permutation of X’ = F' (k, X) to R.

(3) R outputs [X' NY’|.

) Yoe(my) b

THEOREM 3. Protocol 10 securely implements the Functionality 4
(Fpsi—ca) withn = 2 in the ﬁoprf—hybrid model, in the presence of
an adversary who may passively corrupt either S, R, or C.

The formal proof of Theorem 3 is present in Appendix A.3.

4.2 Server-Aided Multi-Party PSI-CA

In this section, we assume that all parties have the same set size
m. Protocol 11 may be seen as if we have one receiver, who is P,
and multiple senders, who are Py, ..., Py. The role of the server
is to shuffle PRF results from the senders before delivering them
to the receiver. As a simplification to Protocol 11, suppose that
we want the receiver to obtain n — 1 shares of zero for each of
its items that is in the intersection. This can be done by querying
the senders on each of their items and collecting the results. Each
sender programs the responses such that if the query is on one of
its items, then it responds with its (pseudorandom) share of zero,
otherwise, it responds with some other pseudorandom value. Given
the senders’ responses on a query, if they sum up to zero then the
receiver knows that its query is in the intersection. Since the server
shuffles the responses to the queries, the receiver does not know,
for a given set of responses which are shares of zero, to which query
it is associated, thus, the output leaks nothing but the intersection
size. Formally,
(1) Py,..., Py, (the senders) generate keys for a zero sharing func-
tion S, so P; obtains K; such that for every x it holds that

P, S(Ki, x) = 0.

79

Proceedings on Privacy Enhancing Technologies 2024(2)

(2) P (the receiver) sends to the server its queries Xj.

(3) The server runs an OPPRF instance with every sender, using
the queries Xj. A sender P; (i € [2, n]) programs the responses
such that on query x € X; the response is S(Kj, x) whereas on
any other query the response is another pseudorandom value.

(4) The server obtains the set Yi’e[z,n]’ of n — 1 OPPREF responses,
on every query x; € Xj. It chooses a random permutation
m: [m] — [m] and sends to Py the set {Y;r(l), e Yj’z(m)},

(5) P1 checks for every response set Y; whether its values are valid
shares of zero. If so, it adds 1 to the cardinality.

In the above simplification, there are several security issues:
first, the server learns P;’s queries in the clear; second, the server
mediates all PRF responses and therefore it learns whenever there is
a set of responses that are valid shares of zero, thus it can learn the
intersection size as well; third, if the receiver colludes with one of
the senders, together they can reverse the server’s permutation on
items that are in the intersection and by that leak the intersection
itself (rather than only its size).

PROTOCOL 11. (Server-Aided Multi-Party PSI-CA)

Parameters:

o The protocol runs between parties Py, ..., P, forn > 2, and a
cloud server C. APRF F : {0,1}* x {0,1} — {0,1}*. A PRG
G:{0,1}* — {0,1}*.

Inputs:

L4 Pi has Xi = {xixl, e Xim }

e Cloud server C has no input.

Protocol:

(1) Parties P, ..., Py, invoke Fzs (Functionality 3 with no input)
and each party P; obtains the key K; for a sharing function S.

(2) P; chooses a random PRG seed yy < {0, 1}* and sends it to P;.
Both P; and P, generate m values I’ = (y1,...,ym) < G(y0)
where y; € {0,1}*.

(3) Pi chooses a random PRF key k and sends it to Py, . . ., Pp,.

(4) Party P; for i € [2,n] computes the set of points P; where:

e Fori =2, P, = {(F(k,xZVj),S(Kz,xzyj) @ Yﬂ'(j))}je[m]
where 7 : [m] — [m] is a random permutation chosen
byPg.

e Fori e [3, n], Pi = {(F(k, xi,j),S(Ki,xi,j))}je[m]‘

(5) Py sends X| = F(k,X1) = {F(k,x1,;) } je[m] to C.

(6) C and P; (for every i € [2,n]) invoke Foppif, where P; acts as a
sender with input #; and C acts as a receiver with input X7. C
obtains the result y; ; on the query xj ;.

(7) For every j € [m], C computes w; = @?:2 y;,j and sets W to
be a random permutation of {wy, ..., wp, }. C sends W to P;.

(8) Py outputs [W NT.

The first issue is easily solved by having all parties Py, ..., Py
agree on a PRF key k, so instead of computing |}, X;| their
objective is to compute | (L, F(k, X;)|. This way, the server does
not know P;’s set. Hiding the intersection size from the server (the
second issue above) is trickier. We solve it by having P; and P,
agree on a set of random values ' = {y1, ..., ym} so that instead of
programming the responses with the ‘zero shares’, on a value x €
Xy, Py programs the response S(Kz, x) @ y for some y € T'. Now, for
items that are in the intersection, the server C sees a set of responses
that constitutes a valid share of some y € T, but since the C does not
know T, this looks random indistinguishable from the responses on
values that are not in the intersection. Finally, we propose a protocol

Proceedings on Privacy Enhancing Technologies 2024(2)

under a relaxed setting, that solves the third issue above. Concretely,
the protocol is secure as long as P; and P, do not collude. This is
done by adding one step to the above description: before the server
forwards the responses set W to Py, it sums its items and forwards
only the sum to P;. This means that now P; (i > 3) could not trace
back and learn the intersection itself. This is formally presented
in Protocol 11. The initial five steps of the protocol need only one
round of communication as the involved parties can consolidate
their messages prior to transmission. The OPPRF [30] demands two
rounds. Step 7 involves a single round. Consequently, this server-aid
protocol requires a total of four rounds in entirety.

THEOREM 4. Protocol 11 securely implements the Functionality 4
(Fpsi—ca) for arbitrary n, in the (7:opprf’ Fzs)-hybrid model, in the
presence of an adversary who may passively corrupt any subset of
{P1,P3,...,Pp} or{P2, P3,...,Pp}, or passively corrupt the server C.

We note that, in our protocol, parties use zero shares to mask
their actual input. This step is similar to the one in [22]. The formal
proof of the Theorem 4 is present in Appendix A.4.

PROTOCOL 12. (Multi-Party PSI-CA)

Parameters:

e The protocol runs between parties Py,...,P, forn > 2,and a
cloud server C. APRF F : {0,1}¥ x {0,1}f — {0,1}*.

Inputs: P; has X; = {xj1,....Xim}.

Protocol:
(1) Parties Py, ..., P, invoke ¥zs (Functionality 3) and each party
P; obtains the key K; for a sharing function S.
(2) P; chooses arandom s «— {0,1}* and sends it to Py.
(3) P, chooses a random k < {0, 1}* and sends it to Ps, ..., Py.
(4) Party P; for i € [2,n — 1] computes the set of points P; where:
o Py = {(F(k, xz,j),S(Kg,xz,j) @ F(s, xg,j))}je[m].
e Forie [3,n—1],P; = {(F(k,xi,j),S(Ki,xi,j))}je[m].
(5) Py, and P; (for every i € [2,n — 1]) invoke an instance of the
server-aided OPPRF ’7:5((::[;:';) where:
e P; acts as a sender with input P;,
e P; acts as a cloud server with no input.
e P, acts as a receiver with input X;, = F(k, Xp,). P, obtains
the result y; j on the query x, ;.

—~
=)
~

For every j € [m], P, computes w; = @::21 Yi,j ©S(Kn, Xn,j).

Then, P,, sets W to be {wy, ..., w, }.

P; and P, invoke the server-aided #psi-ca functionality with

P, as a server, where

e P, acts as a sender with input W

e P, acts as a cloud server with no input

e P; acts as a receiver with input V = F(s, X;), and obtains
wnv|.

—~
~
~

4.3 Multi-party PSI-CA

We now describe our “server-less” multi-party PSI-CA protocol.
The main idea is to convert the problem of n-party server-aided
PSI-CA to the problem of (n — 1)-party with the use of an untrusted
party P, who, however, has a private input set X,;. Recall that in the
server-aided PSI-CA protocol, the cloud server C has no input, but
obtains from P; the PRF values F(k, X1) which are used to invoke
an OPPRF with parties Pjc[2 5] In the problem of (n — 1)-parties,
however, party P, (who plays the role of C) does have input Xp,.

80

Jiahui Gao, Ni Trieu, and Avishay Yanai

Thus, P, can compute its PRF values F(k, X,;) on its own since
it knows k. Similar to the server-aided version, P, computes the
exclusive-or of the OPPRF results and its zero share S(Kp, xn,j),
with the j-th result denoted by w;. Note that w; is equal to y; if all
parties Pjc[2] has xp,j, otherwise, w; is random. At this point, if
Pp, sends all values w; to Py, P1 can only compute the intersection
size of n — 1 sets ([, X; since there was nothing to do with the
input set Xj.

Instead, to have Py output | ., X;|, we propose the following
steps. Instead of using a random set T" in Step (2) of Protocol 11, P,
uses PRF to compute y; < F(s, x2 j) where s is known by only P,
and P;. We observe that if x; ; is an intersection item, the corre-
sponding PRF value F(s, x1,j) should be equal to a value wy hold
by Py, because of wi = yx = F(s,x5%) = F(s,x1,j). Therefore, the
intersection size | (7, X;| can be computed by counting how many
PRF values F(s,x1,j) are in the set W = {wy,...,wp}. Py and P,
can do this by invoking a two-party PSI-CA, where P; acts as a
receiver with an input set {F(s, X1)} and Py, acts as a sender with
an input set W.

We implement the two-party PSI-CA using our server-aid pro-
tocol described in Protocol 10 in which any party Pjc[3 1] (say
P;) can play the role of the cloud server. The two party PSI-CA
Protocol 10 requires that both sender and receiver do not collude
with the semi-honest server. Thus, in our multi-party protocol, we
assume that P, is semi-honest and non-colluding with both P; and
Py, In addition, given this assumption, we can improve the perfor-
mance of our multi-party OPPRF. Particularly, unlike Protocol 11
in the above section, we use our server-aided OPPRF construction
described in Section 3.2 to execute an OPPRF instance between Py,
and each Pjc[y 1], where Py plays the role of the OPPRF server
(thus, P; is non-colluding). We formally present our server-less
multi-party PSI-CA in Protocol 12, and its security statement below
(see the formal proof in Appendix A.5). Similar to our server-aided
PSI-CA, this server-less protocol is 4-round.

THEOREM 5. Protocol 12 securely implements the Functionality 4
(Fpsi—ca) for arbitrary n, in the (7:sopprf’ Fzs, Fpsi—Ca, server-aided
two-party PSI-CA)-hybrid model, in the presence of an adversary
who may passively corrupt any subset from {Ps, ..., P,} or passively
corrupt Py or Py (i.e. P1 and Py are non-colluding).

5 APPLICATIONS

We demonstrate that our PSI-CA can be used for several privacy-
preserving applications by implementing two running example
applications which are built on the two-party PSI-CA protocol [27]
and multi-party PSI-CA protocols, respectively.

5.1 Secure Dot Product Construction

Given a secure protocol for computing the cardinality of the inter-
section of the parties’ sets, the protocol for dot product is simple. Let
x; be an m-element binary vector of party P;, and let A; = idx(x;). It
is easy to see that the dot product of the x;’s is exactly the cardinality
of the intersection of the A;’s, that is, Z;'n=1 [T, xi] = 1NE, Ail.
Thus, to securely compute the dot product, we can use the PSI-
CA functionality described in the previous section. Note that even
though the input size is O(m), the communication complexity of
the protocol is only O(t), which makes it extremely efficient when

Multiparty Private Set Intersection Cardinality and Its Applications

t = o(m), where t is the upper bound on the Hamming weight of
the vectors.

One subtle issue is that in the PSI-CA protocols the parties know
the number of elements in each other’s set, which leaks more infor-
mation than required. Here, we assume that there is a known upper
bound, ¢, on the Hamming weight of the vectors X;’s, and require
that the parties’ input to the PSI-CA contains exactly ¢ items. That
is, if the Hamming weight of X; is ¢’ < t then P; adds random
“dummy" items to its input to the PSI-CA. Formally, for a given up-
per bound ¢, P; inputs A; to the PSI-CA where A; « idx’(Xj, t) and
idx’ (X, t) is defined as follows: let ¢’ be the Hamming weight of X,
set A = idx(X), pick ¢ — ¢’ random values D = {dy, ..., d;_y } from
the domain © = {m+1,..., oA+log(r) m} and output A= AU D.
The choice of the domain 9D allows the collision probability of
dummy items to be negligible and equals to 274,

The formal description is given in Protocol 15 in Appendix D.
Note that it is possible to compute dot product DotProd with or
without the help of a cloud server C, so both variants are presented.
The protocol’s correctness, complexity and security follow directly
from the underlying PSI-CA protocol presented in Section 4 with
different corruption structures.

THEOREM 4. Protocol 15 securely implements the Functionality 5
(FDotProduct) in the (Fpsi—ca)-hybrid model. In particular, if 7 is a
protocol that securely computes Fpsi_ca in the presence of an adver-
sary A then, when instantiated with m, Protocol 15 is secure in the
presence of adversary A as well.

5.2 Heatmap Computation

As stated in [4], the heatmap can be considered as a two-party com-
putation between HHS and a mobile network operator (MNO). HHS
has a list of individuals who have reported positive for the disease.
MNO knows an approximated location data of their subscribers as
the subscriber connects to a certain cell tower when traveling (un-
less the user does not have a phone or disconnects to their network
provider). Mathematically, HHS generates a binary vector x € ZJZV
which indicates whether the user i € [1, N] amongst N subscribed
individuals has tested positive (x[i] = 1) or not (x[i] = 0). For each
cell tower j € [1,m], the MNO initializes a vector y; of n elements,
where y;[i] corresponds to the i-th subscriber (say that HHS and
MNO agree on the subscribers’ identifier and on their positions in
the vectors). If the i-th subscriber connects to a cell tower j within
some period of time, then y;[i] = 1, and y;[i] = 0 otherwise. To
learn how many positive individuals visit a certain area (e.g. the
area covered by the j-th cell tower, HHS and MNO run a secure
dot product protocol to obtain x - ;.

The solution proposed in [4] relies on HE to implement the
secure dot product for the heatmap problem. Even with the HE op-
timizations, [4] requires O(N) independent secure multiplications
to compute x - y; for each cell tower. Therefore, their protocol costs
O(mN) HE multiplications to compute secure vector-matrix mul-
tiplications x - Y, where Y consists of m columns yj, ..., ym. Each
element of x - Y corresponds to how many diagnosed subscribers
visited a cell town.

In this work, we observe that the proportion of diagnosed in-
dividuals among all N subscribed individuals is usually small (e.g.
0.01 — 0.1% new positive cases per day [2]), thus, the vector x is

81

Proceedings on Privacy Enhancing Technologies 2024(2)

sparse. In addition, the vector y; is also sparse due to people’s local-
ized travel habits. Therefore, the heatmap computation is a perfect
application for our DotProd where the input vectors are sparse.
By applying DotProd, we show that the computational complexity
of the dot product in the heatmap example can be reduced from
O(N) to O(t), where ¢ is the maximum between the upper bound
on the number of new positive test cases and the upper bound on
the number of individuals visiting a geographical area covered by
a cell tower.

Multiple MNOs. We support a heatmap computation between
one HHS, Py, and multiple MNOs, Py, ..., P,. For a cell tower j €
[1, m], the MNO Py (k € [n]) has the vector yﬁ? of N elements. yﬁf [i]
indicates whether a subscriber i connects to a cell tower j of the
MNO Py (we assume that the j-th cell tower of all MNOs covers
the same geographical area, this should be adjusted in practice).
The sum of the dot products 3 (x - yf) indicates how many
individuals, across different MNOs, visit a certain area. In our multi-
party heatmap, if Py invokes DotProd with each MNO P;. where
Py’s input is x and P¢’s input is y;‘ , Py learns extra information —
each term of the sum ZZ:l (x- yj.‘). To address the issue, we modify
the underlying shuffled-opprf protocol of DotProd. At the high-
level idea, C computes PRF values of all MNOs Py [,], permutes
them before returning to the Py. The formal description of our
multi-party heatmap computation is presented in Protocol 13.

PROTOCOL 13. (Server-aided Heatmap Construction)
PARAMETERS:

e Parameters k, N, t.

e AHHS and n MNO P4, ..., P,, and a cloud server C
e APRFF: {0,1}* x {0,1}* — {0,1}*

INPUTS:

e A HHS P, has input a binary vector x of length N

e Each MNO Pj¢[| has input a binary matrix Y of size N x m
e Cloud server C has no input.

ProTocoL n = 1: For each j € [m], the HHS and the MNO P;
invoke DotProd where P) input is x and P1 input is y}‘ The HHS
outputs x - y}
ProtocoL n > 1:
(1) HHS computes a set A « idx(x) and pads A with dummy items
to the upper-bound set size ¢.
(2) Py chooses a random s « {0, 1}* and sends it to Py, ..
(3) For each j € [m]:
(@) Pre[n) computes a set By « idx(y}“), and pads By with
dummy items to the upper-bound set size t.
(b) Each MNO Py [, the HHS, and the cloud server C jointly
invoke a modified shuffled-OPRF:
® Py chooses two PRF keys sg 1, sg2 < {0,1}*
e Py sends si; to HHS and sends s to C
e HHS computes and sends A} = F(sk,1,4) to C.
e C computes A} = F(sg2, A}).
C sends a permutation of A” «— {A”,..., Al}} to HHS
(c) Each Pye[n sends BY' = F(s, F(sk.2, F(sk,1, Bx))) to C who
sends a permutation of B* « {B{’,..., By} to HHS.
(d) HHS computes A* = F(s, A”) and outputs |A* N B*|.

., Pn.

In real-world scenarios, HHS prefers to minimize bandwidth cost
and computation workload on their side. Our protocol makes this

Proceedings on Privacy Enhancing Technologies 2024(2)

happen by making use of the untrusted server. For the heatmap com-
putation, HHS only needs to compute nmt and 2nmt symmetric-key
operations in the two-party and multi-party settings, respectively.
In terms of communication cost, HHS sends and receives 3nmt ele-
ments. Finally, our protocol requires only 1-round communication.

5.3 Association Rule Learning

Association rules learning (ARL) aims to discover regularities/rules
between variables in transaction data. In this work, we use our
DotProd protocol to mitigate information leakage in ARL when
training the model on a vertical partitioning of the private data-
base between multiple parties. We study the ARL definition in [3]
and adapt it to the privacy-preserving context (see Definition 1 in
Appendix B). We consider only a vertically-partitioned database
since if the data is horizontally-partitioned, each party can locally
compute ARL. For whom are not familiar with ARL, we provide a
detailed explanation of the algorithm in Appendix C.

PROTOCOL 14. (Privacy-Preserving ARL)

PARAMETERS:

A ARL threshold 7, « attributes, empty lists Ly, ..., Lg.
n parties: Py, ..., Py.

An DotProd functionality described in Functionality 5.
An apriori-gen algorithm described in Figure 1.

INPUTS: Pjc|p) has input a vertically-partitioned database Tic[y)-

ProTocoL:

(1) Pjcpn locally computes a list Li of frequent itemsets that has
only 1 attribute.

(2) Pjc[n] invoke a DotProd with each attribute input j; € Li, and
add j; into a published list L, if the output of the DotProd is
great than 7 (e.g. a sum of element-wise products of multiple
sparse binary vectors T [j;] as X0, [T, T[ji][v] > 7)

(3) For k = n+1to a, if Ly is empty, the parties do the following:

(@) Pic[n) locally computes Cx = apriori-gen(Lg_1).
(b) For each candidate ¢ € Cg, let J = {j1,. .., jm} be a set of

attributes in c.

e Assume that each Pjc[,] have h; attributes J; =
{jil""’jihi }. P; locally computes an element-wise
product of multiple binary vectors T|[j;,] as X; «
2%, Tl

e Parties invoke a DotProd execution:

- P; inputs X;.
— P; obtains the output s, and adds ¢ to Ly if s > 7

Privacy-preserving ARL (PPARL) consists of two subproblems
(see Appendix B). The second subproblem can be publicly solved
since the frequent itemsets are a part of the ARL result. According
to [44], one can reduce the first subproblem of PPARL to securely
computing the dot products of the binary vectors with minor leak-
age information. For simplicity, consider the candidate itemset has
only two attributes. Let x and y represent columns in the database.
ie, x[i] = 1iff row i has value 1 for attribute X (similar for y and
Y). Each party P; and P, holds a vertically-partitioned database
of the transaction x and y respectively. The dot product of two
m-element vectors x and y as x - y = 310 x[i]y[i] is the support
count which indicates how many times the itemset XY appears
in the joint transaction set. The dot product computation requires
the joint database from both parties, thus, it should be computed
in a privacy-preserving manner. Given s « x - y, the parties can

82

Jiahui Gao, Ni Trieu, and Avishay Yanai

check whether the obtained support count is greater or equal to
the threshold 7. If yes, the candidate itemset is a frequent itemset.
In the ideal world, if s < 7, the exact value of s is not revealed to
the parties. Thus, the information is considered as leakage informa-
tion in our PPARL scheme as well as previous work [16, 44]. Note
that [16, 44] reveal more information than ours - they leak indexes
that x[i] = y[i] = 1 (i.e. intersection items).

In this work, we consider n-party setting with global rules where
every vertically-partitioned transaction database Tjc [, has at least
one item in the frequent itemset. Protocol 14 presents our PPARL
construction which closely follows the Apriori algorithm [3, 44].
The first two steps aim to find a list of itemsets that (1) appear in
the transaction set T at least 7 times; and (2) every party has at least
one attribute in the itemset. We denote the obtained list to be L,,.
Given L,, the party locally computes a list of candidates Cp1 for
itemsets of size n + 1 using the apriori-gen algorithm [3]. At the
high-level idea, the function apriori-gen is done by generating
a superset of possible candidate itemsets and pruning this set. We
present the apriori-gen algorithm in Figure 1, and refer the reader
to [3] for more detail. Note that apriori-gen is computed on the
public list Ly, thus it leaks no additional information. The parties
jointly execute Step (3) to compute L;>, until it is empty.

6 IMPLEMENTATION AND PERFORMANCE

We evaluate the performance of our PSI-CA (or DotProd) protocols
and estimate the performance of heatmap computation and ARL.
Protocols are evaluated under different network settings, number of
parties, and input set sizes to demonstrate their scalability. Our im-
plementation is available at https://github.com/asu-crypto/mpsica.

Choice of Parameters. We run experiments on a single machine
2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM and simu-
lated network using the Linux tc command. We consider two net-
work settings: the LAN setting has 0.02ms round-trip latency and
10 Gbps network bandwidth; the WAN setting has 96ms round-trip
latency and 200 Mbps network bandwidth. In our implementation,
each party uses a separate thread to communicate with other parties.
The computational security parameter k = 128 and the statistical
security parameter o = 40. The number of parties is in a range of
{2,4,8,16}. The set size m of PSI-CA or the upper-bound Hamming
weight ¢ of DotProd is in {212, 216 220 224}.

Choice of PRF, OPPRF, and OKVS. We instantiate the PRF F using
AES-NI. We use OKVS and OPPRF as a black box in the imple-
mentation. Our implementation uses the table-based OPPRF code
from [30]. While there are different OKVS constructions [22], we
choose the most efficient Encode and Decode of 3-cuckoo PaXoS
data structure. The number of bins in the cuckoo table is 1.3m with
3 hash functions.

PSI-CA and DotProd protocols. Recall that the steps of PSI-CA
and DotProd protocols are similar, except for a small cost overhead
in Step (1) of DotProd where each party locally computes a function
idx(). In the DotProd protocol, we assume that there is a known
upper bound, ¢, on the Hamming weight of the party’s input vector
X. To implement DotProd using PSI-CA, we require that the parties’
input to the PSI-CA contains exactly ¢t items. Thus, we only report
the detailed computational and communication performance results

https://github.com/asu-crypto/mpsica

Multiparty Private Set Intersection Cardinality and Its Applications

of our PSI-CA protocols for the set size m. It indicates that the
DotProd protocols are evaluated with the upper bound t = m.

6.1 Performance of Two-party Protocols

PSI-CA Protocol. We evaluate the two-party PSI-CA protocol [27]
(Protocol 10) in the LAN and WAN settings. The aim is to evaluate
its performance in comparison to existing work and determine the
most effective candidate for our multi-party protocols, heatmap
computation, and ARL among the two-party PSI-CA options. We
consider both balanced and unbalanced set sizes as our heatmap
computation is built on the asymmetric two-party PSI-CA. In Pro-
tocol 10, the parties do not need to involve in the entire protocol’s
computation. The sender S send F((ki, k2),X) and k; to the re-
ceiver, send k; to the server C at the same time and complete its
computation. Similarly, the C does not need to be online during the
whole process. Instead, the C start its computation when receiving
the S’s key PRF ky and the set of receiver’s queries. Therefore, we
report the performance of each participant separately in Table 6 (in
Appendix). We find that Protocol 10 scales well in the experiments
as it contains only AES calls. For instance, the total run time with
the input set size m; = my = 220 is only 1.5 seconds.

Two-party PSI-CA Comparison. Both DH-based and delegated
PSI-CA [18] protocols are secure against a semi-honest adversary,
but the latter requires two non-colluding servers. Note that one can
use the protocol proposed in [33] to implement PSI-CA, however,
the protocol is much expensive compared to DH-based PSI-CA.
The PSI-CA implementation of [15, 43] is not available?, thus we
exclude them from the comparison. In addition, we compare Pro-
tocol 10 with ROOM-based protocol [41]. The two-party DotProd
of [41] consists of two expensive steps: ROOM and a generic dense
matrix multiplication. We only report the performance of ROOM
in settings where [41] performs best. We use DH-based PSI code
implemented by [39] with the fastest Curve25519 implementation
from libsodium. For a fair comparison, we run the implementation
of delegated PSI-CA [18] and DH-based PSI on the same benchmark
machine and network settings. Note that [18] only provides the
implementation of their protocol building blocks, thus, there are
no performance results on the WAN setting. The times® for ROOM
are taken from [41, Figure 17] and [31, Table 2], initially provided
for a database 50,000 and a number of queries 5,000 and 50, 000.
Table 4 presents the performance of each PSI-CA protocol. When
comparing the protocols, we find that the running time of Proto-
col 10 is 10 — 100X faster than that of the prior works. In addition,
our protocol requires 2 — 5% less bandwidth cost compared to them.

Performance of Heatmap Computation. In the two-party setting,
executing the heatmap computation essentially involves multiple
DotProd or PSI-CA executions. Similar to [4], we want to evaluate
our protocol for smaller nation-states such as New York City or
Singapore which has a population around N = 23, Concretely, we
consider a case in which the MNO has a matrix Y of size N X m
and the HHS has a vector x of N, where N = 223 and m = 21°. The
parties need to perform m DotProd instances as x - yj¢], Where

2[43] requires a non-colluding server that is similar to Protocol 10, but their protocol
heavily replies on DH based PSL [15] requires two non-colluding senders, each holds
an identical input set.

3Unknown benchmark machine

83

Proceedings on Privacy Enhancing Technologies 2024(2)

yj is the j’ h column of Y. Recall the x and y j are binary vectors that
indicate whether an individual tested positive to COVID-19, and
whether this individual visited a place nearby the network town
yj, respectively. Among N = 223, we assume that there are tp = 212
new positive cases per day [2], and each patient visits 4 places per
day on average. We run m = 2!° instances of Protocol 10 with the
MNO’s set size #; = 214 and the HHS’s set size t = 2!2, and find
that our protocol costs about 10 minutes using a single thread. On
the other hand, [4] reports about 90 minutes but using 96 threads
and stronger benchmark machine 4. Therefore, we estimate that our
protocol is at least 50 faster than [4]. It is due to the fact that our
protocol is based on symmetric-key operations while [4] heavily
relies on public-key operations. In addition, [4] requires that the
participants agree on database indices (i.e. data alignment before
running heatmap computation). Using PSI-CA, we can remove this
requirement. The party’s input can be a set of patient/visitor ids
(instead of the vector/matrix).

Performance of ARL. Based on the DotProd performance, we
estimate the performance of our ARL. In two-party setting, each
party P;c[s] locally computes a list Li of frequent itemsets that
has only one attribute. The parties sequentially invoke DotProd to
compute lists Ly of frequent itemsets that has exactly k attributes
where Ly, is empty (say Lyj+1 is empty). Assume that each at-
tribute/vector in Ljc[2 m] has a Hamming weight ¢;. Also, assume
that each C; has |Cj| candidates. The performance of our ARL

: (t.2) (21,2) .
is Y, |Cj|[HD(J)thduct], where [HD(’)thduct] is the cost of two-
party DotProd with Hamming weight ¢;. According to Table 6, we
estimate that our ARL would take under hours to compute ARL of

the database with million records.

6.2 Performance of Multi-party Protocols

PSI-CA Protocol. The running times and communication over-
head of our server-aided multiparty PSI-CA are shown in Table 5
(Appendix). The protocol is asymmetric with respect to the server,
the receiver P; and other parties P;c[,], thus, we report the per-
formance results of these parties separately. In our protocol, the
workload of the receiver is light as it only requires to call m AES
instances. The majority of the receiver’s running time is to wait
for other parties to finish their work. For example, P; takes 34.74
seconds to compute PSI-CA (or DotProd) with n = 8 and m = 220
(or t = 2%0) in the LAN setting. Also, the server plays the role of
the receiver in most OPPRFs, his communication cost is highest
amongst other participants. For n = 8 and m = 22° (or t = 220), the
PSI-CA (or DotProd) requires 3305 MB on the server’s side.

Table 1 presents the performance of our “server-less” multiparty
PSI-CA protocol in both LAN and WAN settings. Similar to the
server-aided protocol, we separately report the performance results
of P1, Py, P, and other parties Pj¢[3 1] Unlike server-aided proto-
col, this protocol only relies on OKVS (i.e. makes use of symmetric-
key operations only). We find that our protocol scales to large input
sets (e.g. m = 2%0) with a large number of participants (e.g. n = 16).
For n = 16 and m = 2% (or t = 2%°), our protocol requires only 6
seconds with the total communication cost 1GB.

4an c5.24xlarge AWS EC2 instance (96 vCPU @ 3.6 GHz, 192 GiB RAM)

Proceedings on Privacy Enhancing Technologies 2024(2)

Jiahui Gao, Ni Trieu, and Avishay Yanai

Table 1: Run time (in second) and communication cost (in MB) of our “server-less” multiparty PSI-CA protocols for n parties on sets of size m.

PL | P |Pany| Po | P | P2 [Pomny| P | P1 | P |Pany)| P
Runtime | 272 0.08 0.07 0.06 0.07 0.08 0.07 0.06 0.07 0.08 0.08 0.06 0.08
LAN 216 0.40 0.37 0.21 0.33 0.41 0.38 0.22 0.34 0.43 0.39 0.23 0.36
(second) | 270 7.00 5.69 3.99 6.38 7.31 5.77 4.26 7.02 7.74 6.43 4.60 7.16
Runtime | 212 1.52 1.33 0.06 0.75 1.74 1.54 0.06 0.96 1.74 1.55 0.06 0.97
WAN 210 4.21 3.61 0.98 2.37 4.60 4.00 1.17 2.76 6.09 5.49 1.46 4.26
(second) 270 22.59 | 21.24 11.32 20.20 3474 | 33.34 19.86 32.34 60.62 | 59.27 36.72 58.26
Comm. | 212 0.52 0.28 0.16 0.71 1.02 0.28 0.16 1.85 2.02 0.29 0.16 4.12
Cost 218 8.27 4.54 2.54 11.35 16.27 4.54 2.54 29.51 32.27 4.54 2.54 65.83
(MB) 220 [132.32 | 72.64 40.64 | 181.60 || 260.32 | 72.64 40.64 | 472.16 || 516.32 | 72.64 40.64 | 1053.28

Table 2: Run time (in second) and communication cost (in MB), and round number of[10] and our protocols for 4 parties and no collusion.
Each party has a set size m. The numbers of [10] are for PSI itself (not, PSI-CA).

PSI [10] PSI-CA Protocol 11 PSI-CA Protocol 12
(server-less, semi-honest) | (server-aided, semi-honest) | (server-less, semi-honest)
m 212 | 916 20 212 216 20 212 216 220
LAN 0.23 1.6 23.8 || 0.19 1.38 19.65 || 0.07 | 0.40 7.00
WAN 1.9 7 69.6 || 1.89 6.90 106.08 || 1.52 | 4.21 22.59
Comm. 32| 494 790.2 || 3.41 | 53.86 967.32 || 0.84 | 13.35 213.6
Rounds 10 4 4

Table 3: Run time (in second), communication cost (in MB) of [34] and our server-less protocol for n parties. Each party has a set size m.

Three-party PSI-CA [34] Our PSI-CA Protocol 12
(n,m) || (8,21)/(4,25) | (8,21%)/(4,21%) | (8,2%)/(4,2%) [| (8,2™) | (8,2™%) | (8,2%) || (4.2) | (4,27) | (4,2%)
LAN 0.2 3.1 74 0.15 1.79 29.39 0.23 3.48 56.28
WAN 1.8 15.8 267 2.31 10.63 131.19 2.78 12.79 159.83
Comm. 32.6 521.5 8344 7.88 187.00 | 1008.32 6.68 106.80 | 1708.80

Comparison with Prior Work. The three-party PSI-CA proto-
col [34] can be applied to multi-party cases by letting all the n
parties secret-share their set of m items to their three parties/leaders
S1, S2, S3, then the three leaders jointly compute the PSI-CA output.
The three leaders conduct the computation in the honest-majority
model, which might achieve the similar security assumption in our
server-less protocol in which Py, Py, P, acts as leaders. To imple-
ment a n-party PSI-CA, each having m input items, the protocol
of [34] requires to run PSI-CA on the total of mn secret-shared input
items. Note that [34] only consider computing the PSI-CA for two
sets, each of m items. Thus, the running time and communication
cost of their protocol reported in [34, Figure 8] is for computing
PSI-CA on the total of 2m secret-shared input items. To have a fair
comparison, we report the performance of ours and [34]’s protocol
for the total mn input items. For example, computing PSI-CA for
n=23 parties, each with m = {214 218 222} results in the compu-
tation of the total mn € {217, 221 225} elements. This is equivalent
to the experiential results for the two-party PSI-CA using [34] with
the set size {2 * 216, 2 % 220, 2 x 224} which are reported in [34, Fig-
ure 8] where each party has {21, 220, 224} input items, respectively
(i.e., one needs to execute the two-party PSI-CA of [34] with each
input set of mn/2 items). Since the implementation of [34] is not
publicly available, we take numbers from the publication and have

84

the comparison with our protocol. We present the detailed perfor-
mance comparison in Table 3 °. Our protocol shows about 1.5x
faster than [34] for sufficient large m. We also note that when these
leaders servers collude, our protocol only reveals the intersection
items while [34] leaks all input items to the adversary.

As far as we know, [10]’s implementation is not publicly available.
Thus, we take their reported run times from [10, Table 2-5]. For the
most direct comparison, we used the same configured machine (2x
36-core Intel Xeon 2.30GHz 256GB of RAM) and network settings
to evaluate their and our protocols. We compare our “server-less"
protocol with [10] for the case of n = 4, one dishonestly colluding
(no collusion), each with m € {212,216 229} ‘We show an improve-
ment of 1.6 —4X in the run time, and 3.5 — 4X in the bandwidth cost.
We report the performance numbers in Table 2. Our server-less
protocol with n = 16 requires only 7.74s in the LAN setting and
m = 220 (see Table 1). From Table 2, the [10] with n = 4 requires
23.8s in the same setting. Our protocol with n = 16 is already 3.07x
faster than [10] with n = 4, thus, we do not present the comparison
of the two protocols for larger n.

Performance of Heatmap Computation. The complexity of our
heatmap protocol is linear in the number of MNOs. Using the suit-
able parameters of the two-party heatmap where each MNO has a
matrix of size 223 x21°, and HHS has a vector of size 223, we estimate

SWe estimate the running time by using linear interpolation for m < 2%° and linear
extrapolation for m > 2% based on the running time we have in Table 1.

Multiparty Private Set Intersection Cardinality and Its Applications

that our protocol takes about one hour if there are 6 MNOs involved
in the protocol execution. Note that our protocol does not reveal
additional information other than the output — how many patients
visit a certain area. In contrast, [4] only works in the two-party
setting. In real-world scenarios, there are many MNOs. If using
only their protocol where the HHS executes vector-matrix multi-
plication with each MNO and then computes the “global" heatmap,
this solution leaks extra information - the individual result of each
vector-matrix multiplication.

Performance of ARL. Similar to the two-party ARL, the perfor-
e

DotProduct

[Hl()t;;z)roduct] is the cost of n-party DotProd with Hamming weight
tj. Here, we assume that each attribute/vector in L;c(p,] has a
Hamming weight t;. According to the performance of our multi-
party DotProd (or multi-party PSI-CA) shown in Table 5&1, we
estimate that our ARL would take under a day to compute ARL of
the database with million records.

mance of our multi-party ARL is 372 |C;|[], where

ACKNOWLEDGMENTS

The first and the third authors were partially supported by NSF
awards #2101052, #2200161, #2115075, and ARPA-H SP4701-23-C-
0074.

REFERENCES

[1] 2018. Outsourcing scalar products and matrix products on privacy-protected
unencrypted data stored in untrusted clouds. Information Sciences (2018).

[2] 2023. Covid-19 Coronavirus Pandemic. https://www.worldometers.info/
coronavirus/ https://www.worldometers.info/coronavirus/.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. 1993. Mining Association
Rules between Sets of Items in Large Databases. SIGMOD Rec. 22, 2 (June 1993),
207-216. https://doi.org/10.1145/170036.170072

[4] Alexandros Bampoulidis, Alessandro Bruni, Lukas Helminger, Daniel Kales, Chris-
tian Rechberger, and Roman Walch. 2020. Privately Connecting Mobility to In-
fectious Diseases via Applied Cryptography. Cryptology ePrint Archive, Report
2020/522. https://ia.cr/2020/522.

[5] Donald Beaver. 1991. Efficient Multiparty Protocols Using Circuit Randomization.
In CRYPTO (LNCS, Vol. 576), Joan Feigenbaum (Ed.). Springer, 420-432.

[6] Alex Berke, Michiel Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson,
and AlexSandy’ Pentland. 2020. Assessing disease exposure risk with location
histories and protecting privacy: A cryptographic approach in response to a
global pandemic. arXiv preprint arXiv:2003.14412 (2020).

[7] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe.
2021. The Apple PSI System. [Online; accessed 18-Sept-2021].

[8] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In
EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth Oswald and Marc Fischlin
(Eds.). Springer, Heidelberg, 337-367. https://doi.org/10.1007/978-3-662-46803-
6_12

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser,

Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,

1292-1303. https://doi.org/10.1145/2976749.2978429

Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai Lakshmi Bhavana Ob-

battu, Sruthi Sekar, and Akash Shah. 2021. Efficient Linear Multiparty PSI and

Extensions to Circuit/Quorum PSI. CCS.

Melissa Chase and Peihan Miao. 2020. Private Set Intersection in the Internet Set-

ting from Lightweight Oblivious PRF. In CRYPTO 2020, Part III (LNCS, Vol. 12172),

Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 34-63.

https://doi.org/10.1007/978-3-030-56877-1_2

Ivan Damgérd and Jesper Buus Nielsen. 2007. Scalable and Unconditionally Secure

Multiparty Computation. In CRYPTO 2007 (LNCS, Vol. 4622), Alfred Menezes (Ed.).

Springer, Heidelberg, 572-590. https://doi.org/10.1007/978-3-540-74143-5_32

Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. 2012. Fast and Private

Computation of Cardinality of Set Intersection and Union. In Cryptology and

Network Security, Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 218-231.

Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-

work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS 2015.

The Internet Society.

[10

[11]

[12]

(13

[14

85

[15

[16

[17

[19

[20

[21

[22

[23

[24

[25

[26]

[28

[29

'S
=

[31

(32]

[33

™
=

[35

Proceedings on Privacy Enhancing Technologies 2024(2)

Samuel Dittmer, Yuval Ishai, Steve Lu, Rafail Ostrovsky, Mohamed Elsabagh,
Nikolaos Kiourtis, Brian Schulte, and Angelos Stavrou. 2020. Function Secret
Sharing for PSI-CA: With Applications to Private Contact Tracing. Cryptology
ePrint Archive, Report 2020/1599.

Changyu Dong and Liqun Chen. 2014. A fast secure dot product protocol with
application to privacy preserving association rule mining. In PAKDD.

Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection
meets big data: an efficient and scalable protocol. In ACM CCS 2013, Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, 789-800. https:
//doi.org/10.1145/2508859.2516701

Thai Duong, Duong Hieu Phan, and Ni Trieu. 2020. Catalic: Delegated PSI
Cardinality with Applications to Contact Tracing. In ASTACRYPT 2020, Part III
(LNCS, Vol. 12493), Shiho Moriai and Huaxiong Wang (Eds.). Springer, Heidelberg,
870-899. https://doi.org/10.1007/978-3-030-64840-4_29

Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr. 2022. Accountable
Private Set Cardinality for Distributed Measurement. ACM Trans. Priv. Secur. 25,
4, Article 25 (jul 2022), 35 pages. https://doi.org/10.1145/3477531

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-
word Search and Oblivious Pseudorandom Functions. In TCC, Joe Kilian (Ed.).
Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and
Jaspal Singh. 2021. Private Set Operations from Oblivious Switching. In Public-Key
Cryptography — PKC 2021, Juan A. Garay (Ed.). Springer International Publishing,
Cham, 591-617.

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
2021. Oblivious Key-Value Stores and Amplification for Private Set Intersection.
In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris Peikert (Eds.).
Springer, Heidelberg, Virtual Event, 395-425. https://doi.org/10.1007/978-3-030-
84245-1_14

Shafi Goldwasser and Silvio Micali. 1982. Probabilistic Encryption How to Play
Mental Poker Keeping Secret All Partial Information (STOC °82).

Chungiang Hu, Ruinian Li, Wei Li, Jiguo Yu, Zhi Tian, and Rongfang Bie. 2016.
Efficient Privacy-Preserving Schemes for Dot-Product Computation in Mobile
Computing (PAMCO ’16).

Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On Deploying
Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P. IEEE,
370-389.

Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and
Christian Weinert. 2019. Mobile Private Contact Discovery at Scale. In USENIX.
Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian.
2014. Scaling Private Set Intersection to Billion-Element Sets. In Financial Cryp-
tography and Data Security - 18th International Conference, FC 2014, Christ Church,
Barbados, March 3-7, 2014, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 8437), Nicolas Christin and Reihaneh Safavi-Naini (Eds.). Springer,
195-215. https://doi.org/10.1007/978-3-662-45472-5_13

Lea Kissner and Dawn Xiaodong Song. 2005. Privacy-Preserving Set Operations.
In CRYPTO 2005 (LNCS, Vol. 3621), Victor Shoup (Ed.). Springer, Heidelberg,
241-257. https://doi.org/10.1007/11535218_15

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. 2016. Ef-
ficient Batched Oblivious PRF with Applications to Private Set Intersection. In
ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, 818-829. https://doi.org/
10.1145/2976749.2978381

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
2017. Practical Multi-party Private Set Intersection from Symmetric-Key Tech-
niques. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM Press, 1257-1272. https://doi.org/10.1145/3133956.
3134065

Tancréde Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. 2020.
Private Join and Compute from PIR with Default. Cryptology ePrint Archive,
Report 2020/1011. https://ia.cr/2020/1011.

Catherine Meadows. 1995. Formal Verification of Cryptographic Protocols: A
Survey (Invited Lecture). In ASTACRYPT 94 (LNCS, Vol. 917), Josef Pieprzyk and
Reihaneh Safavi-Naini (Eds.). Springer, Heidelberg, 135-150. https://doi.org/10.
1007/BFb0000430

Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. 2020.
Two-Sided Malicious Security for Private Intersection-Sum with Cardinality.
In CRYPTO 2020, Part III (LNCS, Vol. 12172), Daniele Micciancio and Thomas
Ristenpart (Eds.). Springer, Heidelberg, 3-33. https://doi.org/10.1007/978-3-030-
56877-1_1

Payman Mohassel, Peter Rindal, and Mike Rosulek. 2020. Fast Database Joins and
PSI for Secret Shared Data. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna (Eds.). ACM Press, 1271-1287. https://doi.org/10.1145/
3372297.3423358

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:
Fast, Malicious Private Set Intersection. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 739-767.
https://doi.org/10.1007/978-3-030-45724-2_25

https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://doi.org/10.1145/170036.170072
https://ia.cr/2020/522
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1145/3477531
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-662-45472-5_13
https://doi.org/10.1007/11535218_15
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/2976749.2978381
https://doi.org/10.1145/3133956.3134065
https://doi.org/10.1145/3133956.3134065
https://ia.cr/2020/1011
https://doi.org/10.1007/BFb0000430
https://doi.org/10.1007/BFb0000430
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1145/3372297.3423358
https://doi.org/10.1145/3372297.3423358
https://doi.org/10.1007/978-3-030-45724-2_25

Proceedings on Privacy Enhancing Technologies 2024(2)

[36] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. 2019.
Efficient Circuit-Based PSI with Linear Communication. In EUROCRYPT 2019,
Part Il (LNCS, Vol. 11478), Yuval Ishai and Vincent Rijmen (Eds.). Springer, Hei-
delberg, 122-153. https://doi.org/10.1007/978-3-030-17659-4_5

Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private

Set Intersection Based on OT Extension. In USENIX Security 2014, Kevin Fu and

Jaeyeon Jung (Eds.). USENIX Association, 797-812.

Peter Rindal and Phillipp Schoppmann. 2021. VOLE-PSI: Fast OPRF and Circuit-

PSI from Vector-OLE. In EUROCRYPT 2021, Part II (LNCS, Vol. 12697), Anne

Canteaut and Francois-Xavier Standaert (Eds.). Springer, Heidelberg, 901-930.

https://doi.org/10.1007/978-3-030-77886-6_31

Mike Rosulek and Ni Trieu. 2021. Compact and Malicious Private Set Intersection

for Small Sets. CCS. https://ia.cr/2021/1159.

Cynthia Rudin. 2012. MIT Lecture Notes: Machine Learning and Sta-

tistics. https://ocw.mit.edu/courses/sloan-school-of-management/15-

097-prediction-machine-learning-and- statistics-spring-2012/lecture-
notes/MIT15_097S12_lec01.pdf.

Phillipp Schoppmann, Adria Gascon, Mariana Raykova, and Benny Pinkas. 2019.

Make Some ROOM for the Zeros: Data Sparsity in Secure Distributed Machine

Learning. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,

and Jonathan Katz (Eds.). ACM Press, 1335-1350. https://doi.org/10.1145/3319535.

3339816

Babak Siabi, Mehdi Berenjkoub, and Willy Susilo. 2019. Optimally Efficient Secure

Scalar Product With Applications in Cloud Computing. IEEE Access (2019).

Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. 2020.

Epione: Lightweight contact tracing with strong privacy. arXiv (2020).

[44] Jaideep Vaidya and Chris Clifton. 2002. Privacy Preserving Association Rule
Mining in Vertically Partitioned Data (KDD).

[45] Jaideep Vaidya and Chris Clifton. 2005. Secure set intersection cardinality with
application to association rule mining. Journal of Computer Security 13 (10 2005),
593-622. https://doi.org/10.3233/JCS-2005-13401

[46] Jun Zhang, Xin Wang, Siu-Ming Yiu, Zoe Jiang, and Jin Li. 2017. Secure Dot

Product of Outsourced Encrypted Vectors and its Application to SVM.

Youwen Zhu, Zhikuan Wang, Bilal Hassan, Yue Zhang, Jian Wang, and Cheng

Qian. 2016. Fast Secure Scalar Product Protocol with (almost) Optimal Efficiency.

In Collaborative Computing: Networking, Applications, and Worksharing, Song

Guo, Xiaofei Liao, Fangming Liu, and Yanmin Zhu (Eds.). Springer International

Publishing, Cham, 234-242.

[37]

[38]

[39]

[40

[41

[42]

[43]

[47]

A CORRECTNESS AND SECURITY PROOF
A.1 Server-Aided Shuffled OPRF

THEOREM 1. Protocol 1™ securely implements its functionality
soprf

7_—(”1)

soprf in the presence of an adversary who may passively corrupt
either S, R, or C.

Proor. We exhibit simulators Simg, Simg, and Sim¢ for simu-
lating the view of corrupt S, R, and C respectively which consists
of the randomness, input, output, and received messages during the
execution of the protocol. And then we argue the indistinguishabil-
ity of the produced transcript from the real execution.

e Passively Corrupted S. S does not receive anything during the
execution of the protocol. So it is trivial to simulate his view.

o Passively Corrupted R. Simg randomly select a pair of keys
(k1, k2) and appends the k; to the view. Given the PRF F, Simg
computes Y”” = F(ky, F(k1,Y)) for the input set Y and appends a
permutation of Y”” to the view. Now we argue that the view out-
put by Simg is indistinguishable from the real one. The way that
Simg selects keys is identical to the real execution when assum-
ing that the receiver does not collude with the server. Outputs of
the PRF given different keys are computationally indistinguish-
able. So this simulated view is computationally indistinguishable
from the real execution.

e Passively Corrupted C. Sim¢ randomly selects a pair of keys
(k1, k2) and appends the ky to the view. Given the PRF F, Sim¢
computes Y’ = F(ky,Y) for the randomly selected input set Y
and appends it to the view. Now we argue that the view output by

86

Jiahui Gao, Ni Trieu, and Avishay Yanai

Sim¢ is indistinguishable from the real one. The way that Sim¢
selects keys is identical to the real execution when assuming
that the receiver does not collude with the server. Outputs of
the PRF given are computationally indistinguishable. So this
simulated view is computationally indistinguishable from the
real execution.

[m]

A.2 Server-Aided OPPRF

(my,my) . .
THEOREM 2. Protocol l'IsoplprfZ securely computes functionality
(my,my)
(};Opprf
who may passively corrupt either S, R, or C.

in the T;E)rsr)f-hybrid model, in the presence of an adversary

Proor. We exhibit simulators Simg, Simg, and Sim¢ for sim-
ulating the view of corrupt S, R, and C respectively, and argue
the indistinguishability of the produced transcript from the real
execution.

o Passively Corrupted S. Simg simulates the view of corrupt S,
which consists of S’s randomness, input, output, and received
messages. Simg proceeds as follows. It chooses a random key

k = (ko, k1) « {0, 1}%%, calls a simulator Sim‘zJprf of the corrupt

sender in the server-aided OPRF, and appends its output to the

view. Since the Simf;prf is trivial (i.e. S does not receive any

messages during the execution of Hi;n)rf), it is easy to see the

view of Sim g is computationally indistinguishable from the real
execution.
o Passively Corrupted R. Simg simulates the view of corrupt R,
which consists of R’s randomness, input, output, and received
messages. Simg proceeds as follows. It calls a $im°P"" with in-
put Y and appends the output to the view. To simulate Step 3,
Simg generates m; random points (x;,v;) « {0, 1}¥ x {0, 1}¥,
constructs an OKVS over T «— Encode({(x;,v;)}, and appends it
to the view.
We now argue that the output of Simg is indistinguishable from
the real execution. For this, we formally show the simulation by
proceeding with the sequence of hybrid transcripts T0; T1; T2,
where T0 is the real view of S, and T3 is the output of Simg.

— Hybrid 1. Let Ty be the same as Tp, except the output of server-

aid OPRF execution is replaced by the output of the Sim;gprf. It

is easy to see T and T; are computationally indistinguishable.

— Hybrid 2. Let T be the same as Ti, except the OKVS T is con-
structed on randomly selected points (x;,v;). Since the value
F’(k, x;) & v; are also pseudorandom in the real execution, the
two constructed OKVS tables T are computationally indistin-
guishable.

o Passively Corrupted C. Since the C only participates in the ex-
ecution of server-aid OPRF as the C, the Sim¢ is exactly the
same Sim¢ in the server-aid OPRF. According Theorem 1, it is
computationally indistinguishable from the real execution and
we omit the proof here.

O

https://doi.org/10.1007/978-3-030-17659-4_5
https://doi.org/10.1007/978-3-030-77886-6_31
https://ia.cr/2021/1159
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec01.pdf
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.1145/3319535.3339816
https://doi.org/10.3233/JCS-2005-13401

Multiparty Private Set Intersection Cardinality and Its Applications

Proceedings on Privacy Enhancing Technologies 2024(2)

Table 4: Run time (in second), communication cost (in MB), and system requirement of the two-party PSI-CA (or DotProd) protocols: DH-based
PSICA [25, 32], OSN-based PSI-CA [21], Catalic [18], ROOM as a building block in DotProd [41], and Protocol 10 (a simpler variant of the [27]
PSI protocol) for the sender set size m; and receiver set size m;. Cells with — denote trials that are not supported by the protocol.

DH-PSICA [25] OSN-based PSI-CA [21] ROOM [41] Catalic [18] Protocol 10
m 216 220 216 220 216 220 216 220 216 220
ma 212 216 216 220 212 216 216 220 212 216 216 220 212 216 216 220 212 216 216 220
LAN 8.31 | 10.21 | 112.51 | 191.87 - | 6.56 - | 84.88 | 14.3 | 144.17 - - | 6.41 | 8.92 85.1 | 166.12 | 0.1 | 0.13 1.01 1.5
WAN 11.26 11.5 | 150.14 | 248.32 - | 24.57 - | 284.62 B — - - N B - - | 1.54 | 237 | 485 | 8.24
Comm. | 2.82 | 478 | 46.14 | 77.59 - | 55.49 - 1030 | 863 | 13788 | 878 | 13837 | 6.29 | 6.29 | 100.66 | 100.66 | 1.18 | 3.15 | 18.87 | 50.33
System server-less two non-colluding servers one non-colluding server
Req. semi-honest parties semi-honest parties/servers semi-honest parties/servers

Table 5: Run time (in second) and communication cost (in MB) of our server-aided multiparty PSI-CA protocols for n parties on sets of size m.

m n=4 n=2=8 n=16
Py ‘ P ‘ Server Py ‘ P ‘ Server P ‘ Pian) ‘ Server
Runtime | 212 0.19 0.18 0.19 0.35 0.28 0.35 0.54 0.39 0.54
LAN 216 1.38 1.02 1.37 231 1.22 2.3 4.56 1.97 455
SeCcon R
d) [2% 19.65 15.6 1939 || 33.86 16.8 33.61 71.17 | 3236 | 70.89
Runtime | 212 1.89 1.15 1.84 2.47 1.16 2.08 3.04 1.25 2.66
WAN | 2T° 6.9 3.18 6.01 14.07 4.1 13.28 || 26.09 6.01 25.3
secon
d) [2% 1] 106.08 | 23.98 97.49 || 19735 | 39.43 | 196.87 || 409.13 | 71.26 | 408.65
Comm. | 2T 0.13 1.64 5.05 0.13 1.64 11.61 0.13 1.64 | 2473
Cost | 2T® 2| 2593 79.79 2| 2593 183,51 2| 2593 | 390.95
(MB) | 2% 32 | 467.66 | 1434.98 32 | 467.66 | 3305.62 32 | 467.66 | 7046.9

Table 6: Running time (in second) and communication cost (in MB) of the two-party PSI-CA protocol [27] (Protocol 10) for the
sender set size m; and receiver set size m;.

Comm. LAN WAN
ma | my || Receiver | Sender ‘ Server ‘ Receiver | Sender ‘ Server ‘ Receiver | Sender | Server
28 0.012 0.004 0.008 0.002 0.001 0.002 0.481 0.001 0.289
28 [210 0.025 0.016 0.008 0.002 0.002 0.002 0.482 0.002 0.29
212 0.074 0.066 0.008 0.008 0.006 0.006 0.679 0.005 0.486
212 0.197 0.066 0.131 0.01 0.005 0.008 1.066 0.005 0.681
212 [oT2 0.393 0.262 0.131 0.029 0.019 0.02 1.274 0.02 0.888
210 1.18 1.049 0.131 0.099 0.065 0.065 1.537 0.066 1.144
216 3.146 1.049 2.097 0.132 0.058 0.102 2.374 0.065 1.579
216 [218 6.291 4.194 2.097 0.315 0.209 0.203 2.924 1.42 2.097
220 18.874 16.777 2.097 1.007 0.583 0.553 4.853 3.732 3.597
2%0 50.332 16.777 | 33.554 1.501 0.964 1.206 8.235 5.745 7.681
220 [222 100.663 67.109 | 33.554 4.814 2.637 4.247 19.535 15.373 | 18.772
222 301.99 | 268.435 | 33.554 19.123 9.625 | 17.305 66.244 | 54.594 | 64.089
A.3 Server-Aided Two-party PSI-CA Sim?soprf of the corrupt sender in the server-aided OPRF, and

THEOREM 3. Protocol 10 securely realizes Functionality 4 (Fpsi—ca)
withn = 2 in the ﬁoprf-hybrid model, in the presence of an adversary

who may passively corrupt either S, R, or C.

Proor. We exhibit simulators Simg, Simg, and Sim¢ for sim-
ulating the view of corrupt S, R, and C respectively, and argue
the indistinguishability of the produced transcript from the real
execution.

o Passively Corrupted S. Simg simulates the view of corrupt
S, which consists of §’s randomness, input, output, and
received messages. Simg proceeds as follows. It chooses
a random key k = (ko,k1) < {0, 1}2’<, calls a simulator

87

appends its output to the view. Since the Simf;)prf does not
receive any messages in the protocol, it is easy to see the
view of Simg and the view in the real execution are identical.
Passively Corrupted R. Simg simulates the view of corrupt

R, which consists of R’s randomness, input, output, and re-
ceived messages. Simg proceeds as follows. It calls a Sim‘j}gprf
with input Y and appends the output to the view. To simu-

late Step 2, Simg generates a random set of m; values X =

{x1, ... Xm, }, chooses random key k’

(kj.k5) {0, 1}%%,

computes X"/ = F’(k,X) and appends it to the view. The

Proceedings on Privacy Enhancing Technologies 2024(2)

PRF values X"’ received from the simulator are computation-
ally indistinguishable from the random permutation of X’
received from the real execution.

o Passively Corrupted C. Since the C only participates in the ex-
ecution of server-aid OPRF as the C, the Sim¢ is exactly the
same Sim¢ in the server-aid OPRF. According Theorem 1, it
is computationally indistinguishable from the real execution
and we omit the proof here.

A.4 Server-Aided Multi-Party PSI-CA

Correctness. We consider three cases based on whether x is in
the intersection of all sets Xje[n]

e Case 1: Suppose x € ()| X;¢[p]- In other words, Vi € [n], Exl Ji €
Xi, such that x; j, = x. Thus, we have (i) all PRF values x; i =
F(k, x; j;) are equal which is F(k, x), (ii) XORing all zero shares
S(Ki, xj;) fori € [2,n] is equal to zero. When querylng the OPPRF
programmed P;¢[3] using the common PRF value x; = F(k, x),
the cloud server obtains y; j. Based on the correctness of OPPREF,
we have y; j, = S(Kj, xj,). In addition, the cloud server obtains
Y2j, = S(Kz2,xj,) ® yj, when querying on x{. Therefore, the
value w; = @?:2 yi,j; is equal to y;j, which belongs to the set I
known by P;. Thus, P; can count how many w; in T to output
the intersection size.

e Case 2: Suppose x is in Xj and is not an element in some sets
Xie[2,n]- Some OPPRF output y; ; is a random value since F(k, x)
was never used in the OPPRF programming process. Therefore,
wj = @?:2 y;,j is random and does not belong to the set I'.

e Case 3: Suppose x is an element in some sets X;c[3], but not
in X;. Some OPPRF output y; ; is a random value. Therefore,
wj = @:—lzz y;,j is random and does not belong to the set I'.

THEOREM 4. Protocol 11 securely realizes Functionality 4 (Fpsi—ca)
for arbitraryn, in the (| opprf® Fzs)-hybrid model, in the presence of an
adversary who may passively corrupt any subset of {P1, P3, ..., Py}
or{Py, Ps,...,Pp} or passively corrupt the cloud server C.

Proor. We separate the proof to the maximal collusion, from
which a security to non-maximal ones can be derived. We exhibit
simulators in three different cases and argue the indistinguishability
of the produced transcript from the real execution.

e Case 1: Py, Ps, ..., Py are passively corrupted. The simulator
first calls the 7 simulator SimZ5 and appends the parties
keys K;’s for a zero sharing to the view of Py, Ps, ..., Py. In
addition, the simulator runs a PRG to generate a set of ' with
key yo and appends them to the view of P, The simulator also
appends a PRF key k to the view of Py, Ps, . . ., P,. The simula-
tor now calls the 5” ¢ simulator SlmOPPRF with input P; =
{(F(k, X;), S(K,,X,))} and appends the output to the view
of P3, ..., P,. Then the simulator calls the T 31mulator

Sim%PPRF with input F(k, X;) = {F(k, xl,j)}JE[m for each
instance of Ps, ..., Pp, receives Y; = {yij}ic[2,...n],je[m]>
computes set W = {w;} je[;n] Where w; = (DL, i, and
appends a random permutation of W to the view of P;
({y2,j}je[m) are obtained by randomly choose m values from

88

Jiahui Gao, Ni Trieu, and Avishay Yanai

{0, 1}). The joint view of the parties Py, Ps, . . ., Py, is identi-
cally distributed in the simulation, and in the real execution,
the messages seen by them are identically distributed and
so is the output given to P; (who is the only party receiving
output).
e Case 2: Py, P3,..., P, are passively corrupted. Most of the
simulation is similar to the case above. The simulator first
calls the F7g simulator SimZS and appends the parties keys
K;’s for a zero sharing to the view of Py, ..., P,. In addition,
the simulator runs a PRG to generate a set of I' with key
vo and appends them to the view of Py, The simulator also
appends a PRF key k to the view of P, . .., P,. The simulator
now calls the 7—; ¢ simulator SlmgPPRF with input P; =
{(F(k,X3), S(K,,Xl))} and appends the output to the view
of Py, ..., Pp. This concludes the simulation. The joint view
of the parties is identically distributed in the simulation
and in the real execution, the messages seen by them are
identically distributed and these corrupted parties do not
receive outputs.
Case 3: C is passively corrupted. The server C has no input or
output. In the protocol it receives the pseudorandom values
X’ from P; and the pseudorandom values y; j for i € [2,n]
and j € [m]. These m - n values can be easily simulated
by handing C m - n random values. The output of all par-
ties Py, ..., Py are identically distributed in the simulation
and the real execution. It only remains to argue that the
view of C is computationally indistinguishable in both cases,
which follows from the security of the F and the OPPRF
functionality.

A.5 Multi-party PSI-CA

Correctness. We consider three following cases based on whether

x is in the intersection of all sets X;¢[,] :

e Case 1: Suppose x € () Xjc[p]- In other words, Vi € [n], 3x; j; €
X, such that x; j; = x. Thus, we have (i) all PRF values F(k, x; j;) =
F(k, x) are equal, (ii) XORing all zero shares S(Kj, xj,),i € [2,7n]
is equal to zero. When querying the OPPRF points ;¢ (2] us-
ing the common PRF value F(k, x), the party P, obtains y; j;.
Based on the correctness of OPPRF, we have y; j, = S(Kj,x)
fori € [3,n— 1] and y2;, = S(Kj,x) ® PRF(s,x). Therefore,
the value w = (@::21 yi,j;) ® S(Kn, x) is equal to PRF (s, x) as
@?:2 S(Ki,x) = 0. Step (7) allows P; to count x to output the
intersection set by checking whether w € F(s, X).

e Case 2: Suppose x is in X and is not an element in some sets
Xie[2,n]- Clearly, w ¢ F(s, X1) with the high probability.

e Case 3: Suppose x is an element in some sets Xjc[2], but not in
X1. The value w; might equal to F(s, x2) for x2 € X or random.
However, x; ¢ X3, thus w ¢ F(s, Xj) with the high probability.

THEOREM 5. Protocol 12 securely realizes Functionality 4 (Fpsi—ca)
for arbitrary n, in the (?;Opprf, Fzs, Fpsi—cA., server-aided two-party
PSI-CA)-hybrid model, in the presence of an adversary who may
passively corrupt any subset from {Ps, ..., Py} or passively corrupt
Py or P, (i.e. P1 and P are non-colluding).

Multiparty Private Set Intersection Cardinality and Its Applications

Proor. We separate the proof into multiple cases, depending
on the adversary’s corruption. As before, we assume maximal cor-
ruption and stress that the security in the case of non-maximal
corruption can be easily derived. We exhibit simulators in three
different cases and argue the indistinguishability of the produced
transcript from the real execution.

e Case 1: P3, ..., Py are passively corrupted. The simulator first
calls the Fzg simulator Sim%S and appends the parties keys
K;’s for a zero sharing to the view of P, ..., P,. The sim-
ulator then appends a PRF key k to the view of Ps, ..., Py.
The simulator now calls the ¥ . simulator SimkogPPRF with

{(F(k,X;),S(K;, X;))} and appends the output to

.., Pn—1. Then the simulator calls the 7:opprf

simulator Sim,,oaPPRF with input F(k, X;,) for each instance of

input P; =
the view of Ps, .

Py, ..., Pp_1,receives Y = {yij}tic[2,...n-1],je[m]> COMpuUtes
set W = {wj}je[m] Where w; = @::21 yi,j © S(Kn, xp,j).
Then the simulator calls the two-party server-aided Fpsj_ca
simulator Sim">'=CA with input W, and appends the output
to the view of Py,.

This concludes the simulation. The joint view of Ps, ..., Py
is computationally indistinguishable for the simulation and
in the real execution.

o Case 2: Passively Corrupted P,. The simulator first calls the
Fzs simulator SimZS and appends the key K3’s for a zero
sharing to the view of P. It then appends the PRG seed
Yo, P2, and the transcript of (};pprf execution with C to its

view. Since the F7s is secure, the message received from Fzg
execution reveals no information to the corrupt P,. For other
views, P, plays as the sender and receives nothing. Thus,
the view of P, is computationally indistinguishable for the
simulation and in the real execution.

o Case 3: Passively Corrupted P1. The simulator first appends
a PRF key s to the view of P;. Then the simulator calls the
two-party server-aided OPPRF simulator SimscOPPRF with-

out input, and appends the output to the view of P;. Fi-

nally the simulator calls the simulator Sim%P'S_CA with in-

put V = F(s, X1) and appends the output to the view of P;.

This concludes the simulation. The view of P; is computa-

tionally indistinguishable for the simulation and in the real

execution.

B MULTI-PARTY ARL

DEFINITION 1. In the privacy-preserving ARL (PPARL) problem,
there are n parties Py, . .., Py, each holding a private vertically par-
titioned database of transactions Ti, ..., T,, respectively. Let T =
Till...||Tn be a jointed vertically database of n parties. Let I =
{i1, 2, ... im} be a public set of binary attributes, called items. Each
transaction (row)t € T is represented as a binary vector, with t[k] = 1
if the transaction contains item iy € I, and t[k] = 0 otherwise. We
say that the transaction t satisfies idx(t). Denote an association rule
by=.LetX,Y C [m], we consider the following association rules:
(1) The rule X = Y holds in T with support factor of 0 < s < 1 iff at

least s% of transactions in T satisfy X U'Y

89

Proceedings on Privacy Enhancing Technologies 2024(2)

(2) The rule X = Y holds in T with confidence factor of 0 < ¢ < 1
iff at least ¢% of transactions in T that satisfy X also satisfy Y.
(3) The rule X = Y is global if every transaction in T has at least
oneiteminX UY.
The goal of PPARL is to allow all parties Py, . . ., Py, to find all global
rules having high support and confidence on their jointed database T
while maintaining the privacy of each individual database.

Generally speaking, the support factor indicates how frequently
the itemset appears in the dataset. The support of X with respect to

T is defined as the proportion of transactions in the dataset which
XCT}|

Kt

IT]

The confidence factor indicates how often the rule X = Y is
true. The confidence value of a rule, X = Y, in a set of transactions
T, is the proportion of the transactions that contain X which also

MA Thus confidence can be
supp(X)

interpreted as an estimate of the conditional probability.

Given the definitions of support and confidence factors, the
method for finding an association rule [3] can be decomposed into
two subproblems.

(1) Find the frequent itemset: The frequent itemset is defined as
the itemset that appears in the transaction set T at least 7 times,
where 7 is predefined minimum support (also called a threshold).

(2) Use the frequent itemsets to generate the association rules: For
every large itemset X, find all non-empty subsets A of X. For
every such subset A, output a rule of the form A = (X \ A) if
the ratio of supp(X) to supp(A) is at least 7.

contains the itemset X. That is, supp(X) =

contain Y. conf(X = Y) =

C EXAMPLE OF THE ARL ALGORITHM

For simplicity, we consider two parties Py and Pz, each holding a ver-
tical partitioned database Ty and Ty, respectively. Assume that T; has
3 attributes/columns {ay, az, a3}, and T, has 2 attributes/columns
{b1,b2}.

One important step of the ARL algorithm is to find all “global”
frequent itemsets. For example, we want to compute how many
transactions that contain 2 attributes (aj, b1). If the number of these
transactions is greater than a threshold ¢, we say that (a;, b1) isa
frequent itemset.

For a better protocol explanation. We define “global” vs “local”
frequent itemset. A frequent itemset is global if each party has at
least one item in the frequent itemset (this aligns with the global
rule mentioned in Definition 1). A frequent itemset is local if the
frequent itemset contains only items belonging to one party.

If (a1,by) is a “global” frequent itemset, the attribute a; itself
should be a “local” frequent itemset. Thus, before any interaction
between parties, each party P; needs to locally compute a list Li
that has only 1 attribute. For example, if the attribute a; appears
more than or equal ¢ times in T, then a; is a local frequent itemset,
and thus a; is added to L}. In contrast, if the attribute a; appears
less than ¢ times in the Tj, then a3 is not a local frequent itemset,
and thus ay ¢ L%. Assume that from Step 1, we have Li ={a1,as},
and L% = {bl, bz}.

Step 2 of Protocol 14 aims to find a list L, of “global" frequent
itemsets, where each itemset has n items (n = 2 in the two-party
setting). To do so, the parties run DotProd where the party’s input
is each itemset in L% and Lf. For example, the parties check whether

Proceedings on Privacy Enhancing Technologies 2024(2)

Algorithm 1 apriori-gen(L;)

1: Find all pairs of itemsets in L; where the first ¢ — 1 items are identical.

e.g., t =5 and two pairs {a, b, c}, {a, b,d}
2: Union them (lexicographically) to get a list of candidates C
eg., {ab,c},{abd} — {ab,cd}
3: Prune Cr41 = {c € C},; | Vsc € Lt }, where s is a t-subsets of c.
4: Return Cy4q

’
t+1

Figure 1: A Simplest apriori-gen Algorithm [3, 40]

each of pairs (a1, b1), (a1, bz), (a3, b1), (as, by) are “global” frequent
items. Assume that the column a; is (1, 1, 1,0,0) and the column
b1is (1,1,1,1,0). The dot product ay - by is 3. E.g. a pair (aj, b1)
appears 3 times in the database. If the threshold ¢ = 2, the (a3, b;)
is a “global" frequent itemset.

Step 3 of the protocol aims to find a list Ly of “global” frequent
itemsets, where each itemset has k items (here, k > 2). For example,
the parties want to check whether (aj, as, b1) is a “global” frequent
itemset (in this case, k = 3). They first need to compute the dot
product aj - a3 - by. To do so, P; locally computes a dot product of a;
and a3 before running a secure DotProd with P; (see Step 3b). The
function apriori-gen is for improving the computation - it helps to
generate the set of candidate itemsets for L.

D OUR SECURE DOT PRODUCT PROTOCOL
See Protocol 15.

PROTOCOL 15. (Secure Dot Product -TI"™)

PARAMETERS:

e An upper-bound #.

e n parties: Py, . .., Py; an untrusted server C;

e A PSI-CA functionality Fpsi—ca in Functionality 4.

e A function idx” : Z3 x {0,1}* — ({0,1}*)* in Section 5.1

INPUTS:

® Picin) has X; = {xi1, ..., Xim }.

e Cloud server C has no input.

ProTtocoL:

(1) Each party P;c[,,) computes A; « idx" (X, t).

(2) All parties invoke Fpsj—ca where P; inputs A;, C inputs nothing,
and P; obtains the output | (N7, A;].

E SERVER-AIDED 2-PARTY PSI
PROTOCOL[27]
See Protocol 16.

90

Jiahui Gao, Ni Trieu, and Avishay Yanai

PROTOCOL 16. (Server-Aided 2-Party PSI [27])

PARAMETERS: There are 2 parties P;, P, and a third-party server S.
P, and P, have sets X; and X; as input, respectively. The server S
does not have input. Let F be a PRF, and parameter d > 0.

ProTOCOL:

(1) P; chooses sets Dy, D1, D, and a key k; such that |Dy| =
|D1| = |D2| = d, sends them to P, and set Y; « X; U Dy
D;.
(2) Py sets Yy « X, U Dy U Ds.
(3) P, chooses a random key k; and sends it to the server S.
(4) Party P sends a shuffled version of Y] = {F(ki,x) }xey; to
S.
(5) The server returns a shuffled version 7 of YY" =
{F(kz, y) }erll to Pl
(6) Party P, sends a shuffled version of Y
{F (k2, F(k1,x)) }xey, to P1.
(7) Py computes I = Y] N'Y;” and sends the result to P,
(8) P, computes I"! = {F7!(k;, F (k2,x)) |Vx € I}
(9) P, check that I has the right form and aborts if:
(a) Either Dg ¢ 'Y or D NI71 # 0
(b) There exists x € X, and &, 8 € [A] such that x||e € 7!
and x||f ¢ I
(10) If P, does not abort, it notifies S who sends the shuffled
function 7 to P;. P; uses 7 learns the values in the set 7!
(11) P; checks that I has the right form as in Step (9) and aborts
if the check fails.
(12) The parties output distinct items in I"! \ Dy.

F ZERO SHARING PROTOCOL [30]
See Protocol 17.

C

PROTOCOL 17. (Zero-Sharing - Izs [30])
PARAMETERs: There are n parties Py, ...,
F:{0,1}* x {0,1}f — {0,1}*.

P,,. There is a PRF

ProTOCOL:
(1) Each party P; picks a random seed r;; for j € [i +
1,n] and sends r;; to Pj. The key K; of party P; is
(ki ... Jkin).
(2) To obtain its share for value x, party P; computes

S(Ki,x) = (@ ij,,.<x)) ® (@ Fr,, <x))

Jj<i J>i

> ki—l,i’ ki,i+1’ ce

	Abstract
	1 Introduction
	1.1 State-of-the-Art for PSI Cardinality
	1.2 Secure Dot Product and Its Applications
	1.3 Our Results and Techniques

	2 Preliminaries
	2.1 Security Model
	2.2 Oblivious Key-Value Store (OKVS)
	2.3 Oblivious PRF (OPRF) and Programmable PRF (OPPRF)
	2.4 Unconditional Zero Sharing
	2.5 Private Set Intersection Cardinality
	2.6 Secure Dot Product of Binary Vectors

	3 Server-Aided OPRF and OPPRF
	3.1 Server-Aided Shuffled OPRF
	3.2 Server-Aided OPPRF

	4 PSI Cardinality Protocol
	4.1 Server-Aided Two-Party PSI-CA DBLP:conf/fc/KamaraM0S14
	4.2 Server-Aided Multi-Party PSI-CA
	4.3 Multi-party PSI-CA

	5 Applications
	5.1 Secure Dot Product Construction
	5.2 Heatmap Computation
	5.3 Association Rule Learning

	6 Implementation and Performance
	6.1 Performance of Two-party Protocols
	6.2 Performance of Multi-party Protocols

	Acknowledgments
	References
	A Correctness and Security Proof
	A.1 Server-Aided Shuffled OPRF
	A.2 Server-Aided OPPRF
	A.3 Server-Aided Two-party PSI-CA
	A.4 Server-Aided Multi-Party PSI-CA
	A.5 Multi-party PSI-CA

	B Multi-party ARL
	C Example of the ARL algorithm
	D Our Secure Dot Product Protocol
	E Server-Aided 2-Party PSI ProtocolDBLP:conf/fc/KamaraM0S14
	F Zero Sharing Protocol CCS:KMPRT17

