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Abstract

We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method
for estimating model parameters for non-linear systems of ODEs. Without relying
on any numerical differential equation solvers, WENDy computes accurate estimates
and is robust to large (biologically relevant) levels of measurement noise. For low
dimensional systems with modest amounts of data, WENDy is competitive with con-
ventional forward solver-based nonlinear least squares methods in terms of speed
and accuracy. For both higher dimensional systems and stiff systems, WENDy is
typically both faster (often by orders of magnitude) and more accurate than forward
solver-based approaches. The core mathematical idea involves an efficient conver-
sion of the strong form representation of a model to its weak form, and then solving
a regression problem to perform parameter inference. The core statistical idea rests
on the Errors-In-Variables framework, which necessitates the use of the iteratively
reweighted least squares algorithm. Further improvements are obtained by using
orthonormal test functions, created from a set of C* bump functions of varying
support sizes.We demonstrate the high robustness and computational efficiency by
applying WENDYy to estimate parameters in some common models from population
biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra,
FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model.
Software and code for reproducing the examples is available at https://github.com/
MathBioCU/WENDy.
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1 Introduction

Accurate estimation of parameters for a given model is central to modern scientific
discovery. It is particularly important in the modeling of biological systems which
can involve both first principles-based and phenomenological models and for which
measurement errors can be substantial, often in excess of 20%. The dominant method-
ologies for parameter inference are either not capable of handling realistic errors,
or are computationally costly relying on forward solvers or Markov chain Monte
Carlo methods. In this work, we propose an accurate, robust and efficient weak form-
based approach to estimate parameters for parameter inference. We demonstrate that
our “Weak form Estimation of Nonlinear Dynamics” (WENDy) method offers many
advantages including high accuracy, robustness to substantial noise, and computational
efficiency often up to several orders of magnitude over the existing methods.

In the remainder of this section, we provide an overview of modern parameter
estimation methods in ODE systems, as well as a discussion of the literature that
led to the WENDy idea. Section 2 contains the core weak-form estimation ideas as
well as the WENDy algorithm itself. In Sect. 2.1, we introduce the idea of weak-
form parameter estimation, including a simple algorithm to illustrate the idea. In Sect.
2.2, we describe the WENDy method in detail. We describe the Errors-In-Variables
(EiV) framework, and derive a Taylor expansion of the residual which allows us to
formulate the (in Sect. 2.2) Iteratively Reweighted Least Squares (IRLS) approach to
inference. The EiV and IRLS modifications are important as they offers significant
improvements to the Ordinary Least Squares approach. In Sect. 2.3, we present a
strategy for computing an orthogonal set of test functions that facilitate a successful
weak-form implementation. In Sect. 3 we illustrate the performance of WENDy using
five common mathematical models from the biological sciences and in Sect. 4 we offer
some concluding remarks.

1.1 Background

A ubiquitous version of the parameter estimation problem in the biological sciences
is

W := arg min |lu(t; w) — U|3, M
weR/

where the function u : R — R¥ is a solution to a differential equation model'

u

Z]J':l w; fiu), )

u(tg) = ug € Rd,

! While we restrict ourselves to deterministic differential equations, there is nothing in the WENDy
approach that inhibits extension to discrete or stochastic models.
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The ODE system in (2) is parameterized by w € R, the vector of J true parameters
which are to be estimated by W. The solution to the equation is then compared (in a
least squares sense) with data U € RM+D*4 that is sampled at M + 1 timepoints
t = {ti}f‘i o- We note that in this work, we will restrict the differential equations to
those with right sides that are linear combinations of the f; functions with coefficients
wj, as in Eq. (2).

Conventionally, the standard approach for parameter estimation methodologies has
been forward solver-based nonlinear least squares (FSNLS). In that framework, 1)
a candidate parameter vector is proposed, 2) the resulting equation is numerically
solved on a computer, 3) the output is compared (via least squares) to data, and 4)
then this process is repeated until a convergence criteria is met. This is a mature field
and we direct the interested reader to references by Ljung (1999, 2017) and, for those
interested in a more theoretical perspective, to the monograph by Banks and Kunisch
(1989).

The FSNLS methodology is very well understood and its use is ubiquitous in the
biological, medical, and bioengineering sciences. However, as models get larger and
more realism is demanded of them, there remain several important challenges that do
not have fully satisfying answers. For example, the accuracy of the solver can have a
huge impact on parameter estimates; see (Nardini and Bortz 2019) for an illustration
with PDE models and Bortz (2006) for an example with ODE and DDE models.
There is no widespread agreement on a method to detect this type of error and the
conventional strategy would be to simply increase the solution accuracy (usually at
significant computational cost) until the estimate stabilizes.

Given the above, it is reasonable to consider alternatives to fitting via comparing an
approximate model solution with the measured data. A natural idea would be to avoid
performing forward solves altogether via substituting the data directly into the model
Eq. (2). The derivative could be approximated via differentiating a projection of the
data onto, e.g., orthogonal polynomials, and the parameters could then be estimated by
minimizing the norm of the residual of the Eq. (2)—i.e., via a gradient matching crite-
ria. Indeed, Richard Bellman proposed exactly this strategy in 1969 (Bellman 1969).
There have been similar ideas in the literature of chemical and aerospace engineering,
which can be traced back even further (Perdreauville and Goodson 1966; Greenberg
1951). However, these methods are known to perform poorly in the presence of even
modest noise.

To account for the noise in the measurements while estimating the parameters (and
in some cases the state trajectories), researchers have proposed a variety of different
non-solver-based methods. The most popular modern approaches involve denoising
the measured state via Gaussian Processes (Yang et al. 2021; Martina-Perez et al. 2021,
Wang and Zhou 2021; Wenk et al. 2020; Calderhead et al. 2008) and collocations
projecting onto a polynomial or spline basis (Varah 1982; Ramsay et al. 2007; Liang
and Wu 2008; Poyton et al. 2006; Brunel 2008; Zhang et al. 2022). For example,
Yang et al. (2021), restricted a Gaussian Process to the manifold of solutions to an
ODE to infer both the parameters and the state using a Hamiltonian Markov chain
Monte Carlo method. Ramsay et al. (2007) proposed a collocation-type method in
which the solution is projected onto a spline basis. In a two-step procedure, both the
basis weights and the unknown parameters are iteratively estimated. The minimization
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identifies the states and the parameters by penalizing poor faithfulness to the model
equation (i.e., gradient matching) and deviations too far from the measured data. Liang
and Wu (2008) proposed a similar strategy based on local polynomial smoothing to first
estimate the state and its derivative, compute derivatives of the smoothed solution, and
then estimate the parameters. Ding and Wu later improved upon this work in Ding and
Wu (2014) by using local polynomial regression instead of the pseudo-least squares
estimator used in Liang and Wu (2008).

There are also a few approaches which focus on transforming the equations with
operators that allow efficiently solving for the parameters.In particular Xu and Khan-
mohamadi created smoothing and derivative smoothing operators based on Fourier
theory (Xu et al. 2008) and Chebyshev operators (Khanmohamadi and Xu 2009).
However, they have not proven to be as influential as the integral and weak form
methods described in the next subsection.

1.2 Integral and Weak Form Methods

Recent efforts by our group and others suggest that there is a considerable advantage in
parameter estimation performance to be gained from using an integral-based transform
of the model equations. The two main approaches are to (1) use integral forms of the
model equation or (2) convolve the equation with a compactly supported test function
to obtain the so-called "weak form" of the equation. The weak form idea can be traced
back to Laurent Schwartz’s Theory of Distributions (Schwartz 1950),2 which recasts
the classical notion of a function acting on a point to one acting on a measurement
structure or "test function". In the context of differential equation models, Lax and
Milgram pioneered the use of the weak form for relaxing smoothness requirements
on unique solutions to parabolic PDE systems in Hilbert spaces (Lax and Milgram
1955). Since then, the weak form has been heavily used in studying solutions to PDEs
as well as numerically solving for the solutions (e.g., the Finite Element Method), but
not with the goal of directly estimating parameters.

The idea of weak-form based estimation has been repeatedly discovered over the
years (see (Preisig and Rippin 1993) for a good historical overview). Briefly, in 1954,
Shinbrot created a proto-weak-form parameter inference method, called the Equations
Of Motion (EOM) method (Shinbrot 1954). In it, he proposes to multiply the model
equations by so-called method functions, i.e., what we would now call test functions.
These test functions were based on sin” (vt) for different values of v and n. In 1965,
Loeb and Cahen (1965a,b) independently discovered the same method, calling it
the Modulating Function (MF) method. They proposed and advocated for the use of
polynomial test functions. The issue with these approaches (and indeed all subsequent
developments based on these methods) is that the maximum power n is chosen to
exactly match the number of derivatives needed to perform integration by parts (IBP).
As we have shown, this choice means that these methods are not nearly as effective
as they could be. As we initially reported in Messenger and Bortz (2021b), a critical
step in obtaining robust and accurate parameter estimation is to use highly smooth test

2 See (Duistermaat and Kolk 2010) for a modern introduction.
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functions, e.g., to have n be substantially higher than the minimum needed by the IBP.
This insight led to our use of the C* bump functions in WENDYy (see Sect. 2.3).

In the statistics literature, there are several examples of using integral or weak-form
equations. Dattner etal. (2017) illustrate an integral-based approach and Dattner’s 2021
review (Dattner 2021) provides a good overview of other efforts to use the integral
form for parameter estimation. Concerning the weak form, several researchers have
used it as a core part of their estimation methods (see works by Brunel et al. 2014 and
Sangalli 2021). Unlike WENDy, however, either these approaches smooth the data
before substitution into the model equation (which can lead to poor performance) or
still require forward solves. As with the EOM and MF method above, the test functions
in these methods were also chosen with insufficient smoothness to yield the highly
robust parameter estimates we obtain with WENDy.

As the field of SINDy-based equation learning (Brunton et al. 2016) is built upon
direct parameter estimation methods, there are also several relevant contributions from
this literature. Schaeffer and McCalla (2017) showed that parameter estimation and
learning an integral form of equations can be done in the presence of significant noise.
Broadly speaking, however, the consensus has emerged that the weak form is more
effective than a straightforward integral representation. In particular, several groups
(including ours) independently proposed weak form-based approaches (Pantazis and
Tsamardinos 2019; Gurevich et al. 2019; Messenger and Bortz 2021b; Wang et al.
2019; Messenger and Bortz 2021a). The weak form is now even implemented in the
PySINDy code (Kaptanoglu et al. 2022) which is actively developed by the authors
of the original SINDy papers (Brunton et al. 2016; Rudy et al. 2017). However, we
do note that the Weak SINDy in PySINDy is based on an early weak form imple-
mentation (proposed in Gurevich et al. 2019; Reinbold et al. 2020). A more recent
implementation with autotuned hyperparameters can be found at https://github.com/
MathBioCU/WSINDy_ODE for ODEs (Messenger and Bortz 2021b) and https://
github.com/MathBioCU/WSINDy_PDE for PDEs (Messenger and Bortz 2021a).

While our group wasn’t the first to propose a weak form methodology, we have
pioneered its use for equation learning in a wide range of model structures and appli-
cations including: ODEs (Messenger and Bortz 2021b), PDEs (Messenger and Bortz
2021a), interacting particle systems of the first (Messenger and Bortz 2022b) and sec-
ond (Messenger et al. 2022b) order, and online streaming (Messenger et al. 2022a). We
have also studied and advanced the computational method itself. Among other contri-
butions, we were the first to automate (with mathematical justification) test function
hyperparameter specification, feature matrix rescaling (to ensure stable computations),
and to filter high frequency noise (Messenger and Bortz 2021a). Lastly we have also
studied the theoretical convergence properties for WSINDy in the continuum data limit
(Messenger and Bortz 2022a). Among the results are a description of a broad class
of models for which the asymptotic limit of continuum data can overcome any noise
level to yield both an accurately learned equation and a correct parameter estimate
(see Messenger and Bortz 2022a for more information).

@ Springer


https://github.com/MathBioCU/WSINDy_ODE
https://github.com/MathBioCU/WSINDy_ODE
https://github.com/MathBioCU/WSINDy_PDE
https://github.com/MathBioCU/WSINDy_PDE

110  Page60f36 D. M. Bortz et al.

2 Weak form Estimation of Nonlinear Dynamics (WENDy)

In this work, we assume that the exact form of a differential equation-based mathe-
matical model is known, but that the precise values of constituent parameters are to
be estimated using existing data. As the model equation is not being learned, this is
different than the WSINDy methodology and, importantly, does not use sparse regres-
sion. We thus denote the method presented in this paper as the Weak-form Estimation
of Nonlinear Dynamics (WENDy) method.

In Sect. 2.1, we start with an introduction to the idea of weak-form parameter
estimation in a simple OLS setting. In Sect. 2.2 we describe the WENDy algorithm
in detail, along with several strategies for improving the accuracy: in Sect. 2.3 we
describe a strategy for optimal test function selection, and in Sect. 2.4 the strategy for
improved iteration termination criteria.

2.1 Weak-Form Estimation with Ordinary Least Squares

We begin by considering a d-dimensional matrix form of (2), i.e., an ordinary differ-
ential equation system model

u=0ww (3)

with row vector of the d solution states u(t; W) = [u1(t; W) |ua(t; W)|- - -|ua(t; W)],
row vector of J features (i.e., right side terms> where fi R - Ris C 3)
such that ®(u) = [ f1(u) ‘fz(u)‘~ . -‘f] (u)], and the matrix of unknown parame-
ters W € R’*¢. We consider a C* test function ¢ compactly supported in the time
interval [0, T'] (e.g. ¢ € C2°([0, T'])), multiply both sides of (3) by ¢, and integrate
over 0 to T'. Via integration by parts we obtain

T T
& (T)u(T) —¢(O)u(0)—/ dudt =/ O w)Wdr.
0 0

As the compact support of ¢ implies that ¢ (0) = ¢ (T') = 0, this yields a transform
of (3) into

T T
—/ ¢udt=/ O w)Wdt. @)
0 0

This weak form of the equation allows us to define a novel methodology for estimating
the entries in W.

Observations of states of this system are (in this paper) assumed to occur at a
discrete set of M + 1 timepoints {t,, }nﬁfzo with uniform stepsize At. The test functions
are thus centered at a subsequence of K timepoints {tmk},le. We choose the test
function support to be centered at a timepoint #,,, with radius m; At where m; is an

3 Note that here we assume that fjisin CCZ, simply to ensure that the Taylor expansion in Sect. 2.2 is
well-defined.

@ Springer



Direct Estimation of Parameters in ODE Models Using WENDy... Page70f36 110

integer (to be chosen later). Bold variables denote evaluation at or dependence on the
chosen timepoints, e.g.,

fo ui(to) -+ uq(to) Siu(to)) -+ fr(u(t))
t:= ol u= : : , O() = : . :
M ui(ty) - ug(ty) fiu(s) -+ fru(tm))

Approximating the integrals in (4) using a Newton-Cotes quadrature yields
— fru~ GOWW, )
where

i = [¢0)]- et ] Q. = [ etto)|---|uitan) ] @

and ¢ is a test function centered at timepoint #,,. To account for proper scal-
ing, in computations we normalize each test function ¢y to have unit £5-norm, or
S oo 97t = 1.

The © matrix contains the quadrature weights on the diagonal. In this work we use
the composite Trapezoidal rule* for which the matrix is

Q :=diag(2t)2, At, ..., At, Atfa) € RMFDXM+D),

We defer full consideration of the integration error until Sect. 2.3.1 but note that in the
case of a non-uniform timegrid, @ would simply be adapted with the correct stepsize
and quadrature weights.

The core idea of the weak-form-based direct parameter estimation is to identify W
as a least squares solution to

min [[vec(GW — B)|3 (6)

where “vec” vectorizes a matrix,

G:
B:

$OU) € R/,
—(bU e ]RKXd7

where U € RM+Dxd represents the data, and the integration matrices are
¢ b1
p=| 1 | eREXMED and g = | : | e RKXMHD,

(0F bk

4 The composite Trapezoidal rule works best for the uniform spacing and thus the left and right sides of
(5) are sums weighted by ¢ (t) and ¢y (t), respectively.
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In much of the previous work in regression-based data-driven modeling (including
our own), the solution to the problem in (6) was computed by solving the normal
equations to minimize the (Euclidean norm) residual (see Messenger and Bortz 2021a;
Fasel et al. 2021; Nicolaou et al. 2023; Bertsimas and Gurnee 2023; Brunton et al. 2016
for examples). When the errors are present only in the output of the linear function (e.g.,
having errors only in b), and under the assumption that those errors are independent
and identically distributed (i.i.d.) Gaussian random variables, this is known as the
Ordinary Least Squares (OLS) method for solving linear least squares problems. In
that case, as the number of data points increases, asymptotically the parameter estimate
converges in probability to the true parameter (i.e., the OLS estimate is a consistent
estimator).

The OLS solution to the regression problem in (6) is presented in Algorithm 1. We
note that we have written the algorithm this way to promote clarity concerning the
weak-form estimation idea. For actual implementation, we create a different ®; for
each variable i = 1...,d and use regression for state i to solve for a vector W; of
parameters (instead of a matrix of parameters W, which can contain values known to be
zero). To increase computational efficiency, we make sure to remove any redundancies
and use sparse computations whenever possible.

Algorithm 1: Weak-form Parameter Estimation with Ordinary Least Squares

input : Data {U}, Feature Map {©}, Test Function Matrices {¢, ¢}
output: Parameter Estimate {W}

// Solve Ordinary Least Squares Problem
1 G« ¢OW)
2 B« —¢5U
3 W< GT'G)"!GTB

For this OLS problem, in order for the linear regression in Algorithm 1 to have
a unique solution, G must be full rank (i.e., rank(G) = J) and we now present the
conditions needed to satisfy this criteria. As we have done everywhere in this work,
we assume that there are M + 1 sample points in time with stepsize At and for each
k, ¢i is centered at t,,, and compactly supported on [ty — m;At, ty + m;At]. Thus,
for J features, K test functions and M samples in time, there is a unique solution to
the OLS problem when all of the following conditions hold.

Condition 1 ¢; € CY(R) forany p > 1.
Condition 2 rank(¢) = K

Condition 3 rank(®) = J

Condition4 J <K <M + 1 —2m,.

The first condition requires that all test functions {¢};_; and their first derivatives
{d:k}l.K: | have compact support so that the conversion to the weak form is valid. The
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second condition means that the test functions must be chosen so that they are distinct.
The third condition means that for each feature, in at least some sub-region of the
sampled trajectory, the evaluation of that feature changes over time.> The last condition
simply enforces the relationship between the cardinality of features, test functions (and
their radii), and sampled points. All 4 of these conditions must be true to ensure that
G is full rank.

The OLS solution has respectable performance in some cases, but in general there is
aclear need for improvement upon OLS.° In particular, we note that (6) is not a standard
least squares problem. The (likely noisy) observations of the state u appear on both
sides of (5). In Statistics, this is known as an Errors in Variables (EiV) problem.7 While
a full and rigorous analysis of the statistical properties of weak-form estimation is
beyond the scope of this article,® here we will present several formal derivations aimed
at improving the accuracy of weak-form parameter estimators. These improvements
are critical as the OLS approach is not reliably accurate. Accordingly, we define
WENDy (in the next section) as a weak-form parameter estimation method which
uses techniques that address the EiV challenges.

2.2 WENDy: Weak-Form Estimation Using Iterative Reweighting

In this subsection, we address the fact that the posed regression problem does not fit
within the framework of ordinary least squares, and is actually an Errors-In-Variables
problem. We now derive a linearization that yields insight into the covariance structure
of the problem. First, we denote the vector of true (but unknown) parameter values
used in all state variable equations as w* and let u* := u(t; w*) and ©* := O (u*).
We also assume that measurements of the system are noisy, so that at each timepoint
t all states are observed with additive noise

U@) =u*@)+e(t) @)

where each element of e (¢) isi.i.d. NV (0, 02) 9 Lastly, we note that there are d variables,
J feature terms, and M + 1 timepoints. In what follows, we present the expansion
using Kronecker products (denoted as ®).

We begin by considering the sampled data U := u* +& € RM+D*4 and vector of
parameters to be identified w € R’?. We use bolded variables to represent evaluation

5 In practice, this means that one must have enough data such that the the columns of ® are linearly
independent, which can easily be verified on any given data set. Identifying when this happens involves
questions of data sufficiency and is beyond the scope of this work.

6 See upper right plots in Figs. 5, 6,7, 8, 9 and 9 for illustration of the improvements over the OLS method.

7 Errors in Variables models are regression models accounting for errors in both the dependent and inde-
pendent variables. If the ratio between the variances of dependent and independent variables is known,
the 1D regression is called Demming regression while the multidimensional case is known as Total Least
Squares (TLS). We direct the interested reader to Van et al. (2002) for more information.

8 See our work in Messenger and Bortz (2022a) for an investigation of the asymptotic consistency in the
limit of continuum data.

9N aturally, for real data, there could be different variances for different states as well as more sophisticated
measurement error models. We defer such questions to future work.
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at the timegrid t, and use superscript » notation to denote quantities based on true
(noise-free) parameter or states. We now consider the residual

r(U,w) := Gw — b, (8)
where we redefine

G :=[1; ® (O W))],
b= —vec(d)U).

We then note that we can decompose the residual into several components

r(U,w) =Gw —G*'w+ G*'w — G*W" + G*wW* — (b* +b®) )
= (G - GHW+G* (W — w") + (G*W* — b*) —b®, (10)
(6) ro €int

where

G :=[ly ® (O W))],
b := —vec(du*) + —vec(d€).
————— ——

b* b®

Here, ry is the residual without measurement noise or integration errors, and ejy, is the
numerical integration error induced by the quadrature (and will be analyzed in Sect.
2.3).

Let us further consider the leftover terms eg — b and take a Taylor expansion
around the data U

eo — b = (G — G*)w + vec(¢ g)
=[Le@oew-ou-e)|w+|lLodlece  an
= Lyvec(e) +h(U, w, ¢)

where h(U, w, &) is a vector-valued function of higher order terms in the measurement
errors € (including the Hessian as well as higher order derivatives). Note that the h
function will generally produce a bias and higher-order dependencies for all system
where V20 # 0, but vanishes when &€ = 0.

The first order matrix in the expansion (11) is

Ly = [mat(w)” ® ¢]VOK + [I; ® §],
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where “mat” is the matricization operation and K is the commutation matrix such that
Kvec(e) = vec(e”). The matrix VO contains derivatives of the features

"V f1(Up)

ViUum)
Vo : : )
V f7(Uo)

V£ rUpy) |

where
VU = | 5 £ U5 iU |

and U, € R'*4 is the row vector of data at #,,.
As mentioned above, we assume that all elements of & are i.i.d. Gaussian, i.e.,
N (0, 02) and thus to first order

r(U, w) — (ro + €int) ~ N'(0, 0°Ly, (Ly)"). (12)
In the case where w = w* and the integration error is negligible, (12) simplifies to
GW* —b ~ N (0, 0°Ly+(Lyo) 7). (13)

We note that the first order expansion in (11) performs particularly well when the
underlying model equations are linear or a linearization of the equations is an accurate
approximation. However, in the presence of strong model nonlinearities and large
noise, this approximation is not substantially better than OLS. For instance, in the
Hindmarsh-Rose example, with 128 data points and 10% noise (upper right of Fig.
8), the improvement over the OLS estimate of w is less than 10%. Conversely, for this
equation the issue can be resolved with higher resolution data (as illustrated by the
higher resolution data performance also in Fig. 8).!°

We note that in (13) (and in 12), the covariance is dependent upon the parame-
ter vector w. In the statistical inference literature, the Iteratively Reweighted Least
Squares (IRLS) Jorgensen (2012) method offers a strategy to account for a parameter-
dependent covariance by iterating between solving for w and updating the covariance
matrix C. Furthermore, while the normality in (13) is approximate, the weighted least
squares estimator has been shown to be consistent under fairly general conditions even
without normality (Bollerslev and Wooldridge 1992). In Algorithm 2 we present the
WENDy method, updating C™ (at the n-th iteration step) in lines 7-8 and then the
new parameters w1 are computed in line 9 by weighted least squares.

10 For a full description of the class of models for which more data always improves estimates, see Mes-
senger and Bortz (2021b).
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Algorithm 2: WENDy

input : Data {U}, Feature Map {®, V®}, Test Function Matrices {¢, &}, Stopping Criteria {SC},
Covariance Relaxation Parameter {a}, Variance Filter {f}
output: Parameter Estimate {W, C, 7, S, stdx}

// Compute weak-form linear system
G Lo gqs@(U))]
b < —vec(¢pU)

[SIC

// Solve Ordinary Least Squares Problem
w® — GT6)~'G6Tp

w

// Solve Iteratively Reweighted Least Squares Problem
n<0
check <« true
while check is true do
L™ « [matw™)T @ $]VO U)K + [I; ® ¢]
C™ = (1 —a)LOLNHT 1 oI
w(n+]) < (GT(C(H))71 G)71 GT(C(H))7] b
10 check « SC(w+D) w<"))
11 n<n+1
12 end

® N w B

-

// Return estimate and standard statistical quantities
B W <« wm
1 C <« cm
G« (Md)~2 |t x U|E
S < 52((GTG)~1GT) C (G(GTG)))
stdx <« +/diag(S)

1

n

1
1

[SIE-N

The IRLS step in line 9 requires inverting C”, which is done by computing its
Cholesky factorization and then applying the inverse to G and b. Since this inversion
may be unstable, we allow for possible regularization of C™ in line 8 via a convex
combination between the analytical first-order covariance L (L™)7 and the iden-
tity via the covariance relaxation parameter «. This regularization allows the user to
interpolate between the OLS solution (¢ = 1) and the unregularized IRLS solution
(¢ = 0). In this way WENDy extends and encapsulates Algorithm 1. However, in
the numerical examples below, we simply set & = 1070 throughout, as the afore-
mentioned instability was not an issue. Lastly, any iterative scheme needs a stopping
criteria and we will defer discussion of ours until Sect. 2.4.

The outputs of Algorithm 2 include the estimated parameters W as well as the
covariance C of the response vector b such that approximately

b ~ N (GW, 52C). (14)

A primary benefit of the WENDy methodology is that the parameter covariance matrix
S can be estimated from C using

S:=52((G"G)'GT) € (GWGTG) ). (15)
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This yields the variances of individual components of W along diag(S) as well as the
correlations between elements of W in the off-diagonals of S. Here 2 is an estimate of
the measurement variance o2, which we compute by convolving each compartment of
the data U with a high-order!! filter f and taking the Frobenius norm of the resulting
convolved data matrix f * U. Throughout we set f to be the centered finite difference
weights of order 6 over 15 equally-spaced points (computed using Fornberg 1988), so
that f has order 5. The filter f is then normalized to have unit 2-norm. This yields a high-
accuracy approximation of o for underlying data U that is locally well-approximated
by polynomials up to degree 5.

Once S is obtained, for any given ¢ € (0, 1) one may compute a confidence interval
[W; — d;(c), W; + d;(c)] around the learned parameter W;, an interval which contains
the ground truth parameter w} in 100(1 — ¢)% of trials under the assumption that W is
normally distributed around w* with covariance matrix S. For 0 < ¢ < 1, the bound
d;(c) is defined by

di(c) = Fg,' (1 —¢/2) (16)

where Fg;; (x) = % [1 + erf (ﬁ)] is the CDF of a normal distribution with mean
zero and variance S;;.

Note the above provides only individual parameters’ confidence intervals. In gen-
eral, if multivariate confidence regions are of interest, they can be obtained using the
F distribution, or Hotelling’s T'-squared distribution. The latter is able to account for
the uncertainty in the estimated variance-covariance matrix S simultaneously with the

joint uncertainty in the vector w.

2.3 Choice of Test Functions

When using WENDYy for parameter estimation, a valid question concerns the choice
of test function. This is particularly challenging in the sparse data regime, where inte-
gration errors can easily affect parameter estimates. In Messenger and Bortz (2021b)
we reported that using higher order polynomials as test functions yielded more accu-
racy (up to machine precision). Inspired by this result and to render moot the question
of what order polynomial is needed, we have developed a 2-step process for offline
computation of highly efficient test functions, given a timegrid t.

We note that in (9) when there is no noise, the only remaining term in the residual
is the integration error ej,;. We can derive an estimator that can be computed using
the noisy data U and used to detect a minimal radius m, such that m; > m, leads
to negligible integration error compared to the errors introduced by random noise.
Inspired by wavelet decompositions, we next row-concatenate convolution matrices
of test functions at different radii m; := (2emt; L =1{0,..., Z_}). An SVD of this
tall matrix yields an orthonormal test function matrix ¢, which maximally extracts
information across different scales. We note that in the later examples we have £ = 3,

11 The order of a filter is defined as the number of moments that the filter leaves zero (other than the zero-th
moment). For more mathematical details see (Messenger and Bortz 2022a) Appendix F.
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Fig.1 Coefficient error Ep = ||[w* — W||2/||w*||2 of WENDy applied to the Logistic Growth model vs test
function radius m, for noise levelsoy g € {1076, ..., 107 1}. For large enough radius, errors are dominated
by noise and integration error is negligible. The minimum radius 7, computed as in Sect. 2.3.1 finds this
noise-dominated region, which varies depending on oy g

which in many cases leads to a largest test function support covering half of the time
domain.
To begin, we consider a C* bump function

N _ Ui
o= Cexp( = (r/a>2]+>’ a

where the constant C enforces that |||, = 1, n is a shape parameter, and [-]4 :=
max(+, 0), so that ¥ (¢; @) is supported only on [—a, a] where

a = m;At. (18)

With the v in (17) we have discovered that the accuracy of the parameter estimates
is relatively insensitive to a wide range of n values. Therefore, based on empirical
investigation we arbitrarily choose n = 9 in all examples and defer more extensive
analysis to future work. In the rest of this section, we will describe the computation
of m, and how to use ¥ to construct ¢ and b.

2.3.1 Minimum Radius Selection

In (9), the residual is decomposed into several terms. Notably the ej,; term can
be interpreted as the error in the residual for a specified test function at the true
solution u*. Below we show how to reduce this component of the residual. Figure 1
illustrates for the Logistic Growth model how the relative error changes as a function
of test function radius m, (for different noise levels). As the radius increases, the error
becomes dominated by the measurement noise. To establish a lower bound m, on the
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test function radius m,, we create an estimate for the integration error which works
for any of the d variables in a model. To promote clarity, we will let u be any of the
d variables for the remainder of this section. However, it is important to note the the
final €, sums over all d variables.

We now consider the k-th element of e;,¢

M—1

eint(u*, g, M)k = (G'W* = b )i = Y (e (tm) 0y, + i (t)uy)

m=0

M=l g
At Z T (@tn)u),

El*l

where At = T /M for a uniform timegrid t = (0, At, 2At, ..., M At) with overall
length 7. We also note that the biggest benefit of this approach is that ej, does not
explicitly depend upon w*.

By expanding % (¢r (t)u*(¢)) into its Fourier series!2

we then have

T d M—1 '
enc(u*, ¢r, M) = M—ﬁrgz]_'n [E(@c(f)u*(l‘))} (E) e27Tlnm/M)

2mi

== nMFuuld’], (19)
ﬁ nez
so that the integration error is entirely represented by aliased modes {M,2M, ...} of

¢ru*. For a > 0 as defined in (18), if [ty —a,tx +a]l C [0, T]and T /2 > a > 1, we
have the relation

a T/ —2mina/T
Fuldr (- a)] = ﬁ | @ (s; e ds

— L /T¢(S. l)e—Zﬂina/Tds
VT Jo
= aFnalr(-; 1]

where the first equality comes from the change of variables s = ¢/a and the second
from extending the domain of integration to [0, T'] using compact support of ¢. This
suggests that increasing m; corresponds to higher-order Fourier coefficients of ¢ (+; 1)
entering the error formula (19), which shows, using (19), that increasing a (eventually)
lowers the integration error. For small m,, this leads to the ej,; term being dominated
by the numerical integration approximation error, while for large m,, the noise-related
effects are dominant.

12 For f € L2([0, T)) Ge. fy £2(t)dt < 00) we define the £th Fourier coefficient of f for & € R as
Felf]:= # fOT f(t)efz”’f/Tdt,andfisequal to its Fourier series, f (1) = # D nez Fn [f]e2”i"/T.
We refer to F,[ f] as the nth Fourier mode of f when n is an integer.
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We now derive a surrogate approximation of ejy using the noisy data U to estimate
this transition from integration error-dominated to noise error-dominated residuals.
From the noisy data U on timegrid t € RM  we wish to compute ejn(u*, ¢r, M) by
substituting U for #* and using the discrete Fourier transform (DFT), however the
highest mode!? we have access to is ]/-:iM ,2[@U]. On the other hand, we are able to
approximate elm(u br, IM/s]) from U, thati is, 1 the integration error over a coarsened
timegrid (0, At,2At1, . LM/sJAt) where At = T/IM/s| and s > 2 is a chosen
coarsening factor. By introducmg the truncated error formula

. Ls/2]
-~ * Tl *
Cint(u”, gr, LM/s],s) = NG E n M /s|Fnmysiléru™],
n=—|s/2]

we have that

Cinc(*, G, [M/s],5) ~ einu”, gi, IM/s]),

and € can be directly evaluated at U using the DFT. In particular, with 2 < s < 4,
we get

€in(U, ¢, [M/s].5)

ZmLM/sJ =
e (Fumysi kU] — F s [ U
NG (Fiaassi (kU1 — F— a1 U])
4 | M/s] =~
—————— = Tm{F pys U
i m{F | p/s| [ Ul}

where Im{z} denotes the imaginary portion of z € C, so that only a single Fourier
mode needs computation. In most practical cases of interest, this leads to (see Fig. 2)

eint(u*ﬂ ¢k7 M) =< ’e\int(U’ ¢k’ LM/SJ9 S) = eint(u*v ¢k’ I_M/SJ) (20)

so that ensuring €y (U, ¢, LM /s],s) is below some tolerance 7 leads also to
eint(u, ¢k7 M) <T.

Statistically, under our additive noise model we have that €, (U, ¢, | M/s], s) is
an unbiased estimator of € (u*, ¢y, | M /s], s), i.e.,

El€ini(U, ¢i. LM /5], $)] = E[— (47 1M/s)/yT)IM{F a1 /s) [pr (0* + £)]1}]
= El€in(u”, ¢x, [M/s], 9],

13 We define the nth discrete Fourier mode of a function f over a periodic grid (m At)%:o by .7-:,,[ fl:=

\/% Z:t11‘14:7()l f(mA[)e_zﬂinm/M'
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where E denotes expectation. The variance satisfies, for 2 < s < 4,

47| M/s]\?
=)

Var[ein (U, ¢k, IM/s], s)] = o2 (

M—1 5
> G2 A sinx [ M/s)j/M) < o (%)
=

where 02 = Var[e]. The upper bound follows from ||¢x|, = 1, and shows that the
variance is not sensitive to the radius of the test function ¢x.

We pick a minimum radius m, as a changepoint of log(€rms), where €y is the
root-mean-squared integration error over test functions placed along the timeseries,

K d

Cms(m) = K'Y " @ (UY, (s my), LM /s],9)°, @1)

k=1 i=1

where U®) is the ith variable in the system. Figure 2 depicts €ms as a function of
support radius m;. As can be seen, since the variance of € is insensitive to the radius
m;, the estimator is approximately flat over the region with negligible integration error,
a perfect setting for changepoint detection. Crucially, Figure 2 demonstrates that, in
practice, the minimum radius m, lies to the right of the changepoint of the coefficient
errors

ExW) = |[W—w 3/ w3,

as a function of m;,. Lastly, note that the red x in Figure 1 depicts the identified m,
for the Logistic Growth model.

2.3.2 Orthonormal Test Functions

Having computed the minimal radius m,, we then construct the test function matrices
(¢, ¢) by orthonormalizing and truncating a concatenation of test function matrices
withm, :=m, x (1, 2, 4, 8). Letting W, be the convolution matrix for ¥ (- ; nglAt),
we compute the SVD of

W
W T
Vi=| g | = Q8

W3

The right singular vectors V then form an orthonormal basis for the set of test functions
forming the rows of W. Letting r be the rank of W, we then truncate the SVD to rank
K, where K is selected as the changepoint in the cumulative sum of the singular values
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Fig. 2 Visualization of the minimum radius selection using single realizations of Fitzhugh-Nagumo data
with 512 timepoints at three different noise levels. Dashed lines indicate the minimum radius m, Left: we
see that inequality (20) holds empirically for small radii m;. Right: coefficient error E; as a function of m;
is plotted, showing that for each noise level the identified radius m; using €rms lies to right of the dip in E»,
as random errors begin to dominate integration errors. In particular, for low levels of noise, m, increases to
ensure high accuracy integration

(Zii)i_,. We then let
¢ =(VEHT

be the test function basis where V(X) indicates the first K modes of V. Unlike our
previous implementations, the derivative matrix ¢» must now be computed numerically,
however given the compact support and smoothness of the reference test functions
W(s; 2Km At), this can be done very accurately with Fourier differentiation. Hence,
we let

¢ = F~'diag(ik) Fo

where F is the discrete Fourier transform and k are the requisite wavenumbers. Figure
3 displays the first six orthonormal test functions along with their derivatives obtained
from this process applied to Hindmarsh-Rose data.

2.4 Stopping Criteria
Having formed the test function matrices {¢, ¢}, the remaining unspecified process in
Algorithm 2 is the stopping criteria SC. The iteration can stop in one of three ways:

(1) the iterates reach a fixed point, (2) the number of iterates exceeds a specified limit,
or (3) the residuals

r+D . — (C(n))—1/2(Gw(n+1) —b)

are no longer approximately normally distributed. (1) and (2) are straightfoward lim-
itations of any iterative algorithm while (3) results from the fact that our weighted
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Fig. 3 First six orthonormal test functions obtained from Hindmarsh-Rose data with 2% noise and 256
timepoints using the process outlined in Sect. 2.3.2

least-squares framework is only approximate. In ideal scenarios where the discrep-
ancy terms ejp; and h(u*, w*; ) are negligible, Eq. (12) implies that

(€~ HGW* —b) ~ N(0, 5°T)

where C* = L*(L*)7 is the covariance computed from w*. Hence we expect r’ to
agree with a normal distribution more strongly as n increases. If the discrepancy terms
are non-negligible, it is possible that the reweighting procedure will not result in an
increasingly normal r, and iterates w may become worse approximations of w*.
A simple way to detect this is with the Shapiro-Wilk (S-W) test for normality (Shapiro
and Wilk 1965), which produces an approximate p-value under the null hypothesis
that the given sample is i.i.d. normally distributed. However, the first few iterations
are also not expected to yield i.i.d. normal residuals (see Figure 4), so we only check
the S-W test after a fixed number of iterations nq. Letting SW® := SW(r™) denote
the p-value of the S-W test at iteration n > n, and setting SW"0) = 1, we specify
the stopping criteria as:

SCw D wy = {w D — w5 /|w™ I, > tpp) and {n < max_its)
and {SWMaximnoh) o 7oy (22)

We set the fixed-point tolerance to tpp = 1079, the S-W tolerance and starting point
to gw = 10~% and ng = 10, and max_its = 100.
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Fig.4 Histograms of the OLS residual in blue (r(U, w*), Eq. 8) versus the WENDy residual in red (given
by C(w*)_]/ 2r(U, w*), see Eq. (14)) both evaluated at the true solution w*, overlaying the probability
density function of a standard normal N'(0, 1) in green. Each curve approximates the probability density
p(r) of finding a residual entry near r under the given statistical model. Left to right: Logistic Growth,
Lotka-Volterra, and Fitzhugh-Nagumo, each with 256 timepoints and 20% noise. Curves are averaged
over 500 independent trials with each histogram scaled by its empirical standard deviation. In each case,
the WENDy residual agrees well with a standard normal, while the OLS residual exhibits distinctly non-
Gaussian features, indicative that OLS is the wrong statistical regression model (Color figure online)

2.5 Comments on the Convergence of the WENDy Estimate

In §2.1, Conditions 1-4 describe the criteria needed for the OLS problem to have a
unique solution. However, the EiV- / IRLS-based WENDy method in Algorithm 2 is
iterative. To ensure that WENDYy converges to a unique solution would mean proving
that the algorithm is a contraction map converging to a fixed point when the initial
estimate (i.e., the OLS estimate) is close enough to the true solution w*. This is not
straightforward, given that the covariance is updated at every step and we thus leave
as a topic for future work.

3 lllustrating Examples

Here we demonstrate the effectiveness of WENDYy applied to five ordinary differential
equations canonical to biology and biochemical modeling (see Table 1 for the specific
equations and parameters used). As demonstrated in the works mentioned in Sect. 1,
it is known that the weak or integral formulations are advantageous, with previous
works mostly advocating for a two step process involving (1) pre-smoothing the data
before (2) solving for parameters using ordinary least squares. The WENDy approach
does not involve smoothing the data, and instead leverages the covariance structure
introduced by the weak form to iteratively reduce errors in the ordinary least squares
(OLS) weak-form estimation. Utilizing the covariance structure in this way not only
reduces error, but reveals parameter uncertainties as demonstrated in Sect. 3.3.

We compare the WENDY solution to the weak-form ordinary least squares solution
(described in Sect. 2 and denoted simply by OLS in this section) to forward solver-
based nonlinear least squares (FSNLS). Comparison to OLS is important due to the
growing use of weak formulations in joint equation learning/parameter estimation
tasks, but often without smoothing or further variance reduction steps (Messenger and
Bortz 2021a; Fasel et al. 2021; Nicolaou et al. 2023; Bertsimas and Gurnee 2023). In
most cases WENDy reduces the OLS error by 60%—90% (see the bar plots in Figs.
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5, 6,7, 8 and 9). When compared to FSNLS, WENDy provides a more efficient and
accurate solution in typical use cases, however in the regime of highly sparse data and
large noise, FSNLS provides an improvement in accuracy at a higher computational
cost. Furthermore, we demonstrate that FSNLS may be improved by using the WENDy
output as an initial guess. We aim to explore further benefits of combining forward
solver-based approaches with solver-free weak-form approaches in a future work.
Code to generate all examples is available at https://github.com/MathBioCU/WENDy.

3.1 Numerical Methods and Performance Metrics

In all cases below, we solve for approximate weights W using Algorithm 2 over
100 independent trials of additive Gaussian noise with standard deviation 0 =
onrllvec(U*")||ims for a range of noise ratios oy g. This specification of the variance
implies that

~ lvec(U* — U)|lms
lvec(U) [l rms

ONR

’

so that oy g can be interpreted as the relative error between the true and noisy data.
Results from all trials are aggregated by computing the mean and median. Compu-
tations of Algorithm 2 are performed in MATLAB on a laptop with 40GB of RAM
and an 8-core AMD Ryzen 7 pro 4750u processor. Computations of FSNLS are also
performed in MATLAB but were run on the University of Colorado Boulder’s Blanca
Condo Cluster in a trivially parallel manner over a homogeneous CPU set each with
Intel Xeon Gold 6130 processors and 24GB RAM. Due to the comparable speed of
the two processors (1.7 GHz for AMD Ryzen 7, 2.1 GHz for Intel Xeon Gold) and the
fact that each task required less than 5 GB working memory (well below the maximum
allowable), we believe the walltime comparisons between WENDy and FSNLS below
are fair.

As well as oy g, we vary the stepsize At (keeping the final time 7T fixed for each
example), to demonstrate large and small sample behavior. For each example, a high-
fidelity solution is obtained on a fine grid (512 timepoints for Logistic Growth, 1024
for all other examples), which is then subsampled by factors of 2 to obtain coarser
datasets.

To evaluate the performance of WENDYy, we record the relative coefficient error

W =w2
Eyi=—— (23)
[[w*ll2

as well as the forward simulation error

_|lvec(U* — O)|l

Eps := 24
B = T vecUn) @4

The data U is obtained by simulating forward the model using the learned coefficients
w from the exact initial conditions u(0) using the same At as the data. The RK45
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Fig.5 Logistic growth: Estimation of parameters in the Logistic Growth model. Top left: true solution with
example noise realization. Top right: median percentage drop in E5 from the OLS solution to the WENDy
output (e.g. at 30% noise and 512 timepoints WENDy results in a 85% reduction in error). Bottom left and
right panels display parameter errors E» and forward simulation error E g, respectively. Solid lines show
the mean error and dash-dot lines show the median error. The dashed maroon line depicts an O(M -l 2)
curve

algorithm is used for all forward simulations (unless otherwise specified) with relative
and absolute tolerances of 10~12. Comparison with OLS solutions is displayed in bar
graphs which give the drop in error from the OLS solution to the WENDYy solution as
a percentage of the error in the OLS solution (Figs. 5, 6, 7, 8, 9).

3.2 Summary of Results
3.2.1 Logistic Growth

The logistic growth model is the simplest nonlinear model for population growth,
yet the u? nonlinearity generates a bias that affects the OLS solution more strongly as
noise increases. Figure 5 (top right) indicates that when M > 256 WENDy decreases
the error by 50%-85% from the OLS solution for noise level is 10% or higher. WENDy
also leads to a robust fit for smaller M, providing coefficient errors E, and forward
simulation errors Efg that are both less than 6% for data with only 64 points and 10%
noise (Fig. 5 (top left) displays an example dataset at this resolution).

@ Springer



110  Page 24 of 36 D. M. Bortz et al.

100 N T9% noise MMM 10% noise
U(20%, 25 o0 | HEEN2% noise [EEEI20% noise
6 Nk 5% noise [EEE30% noise

—

median E, decrease (%)

64 128 256 512 1024
t num timepoints (M)
1
== 1% noise == 20% noise = 1% noise ~&—20% noise
0.3162 == 2% noise =“==30% noise &= 2% noise =& 30% noise
: 5% noise = =Q(M7?) 1 5% noise = — O(M1/2)

= 10% noise “—10% noise

64 128 256 512 1024 64 128 256 512 1024
num timepoints num timepoints

Fig. 6 Lotka-volterra: Estimation of parameters in the Lotka-Volterra model (for plot details see Figure 5
caption)

3.2.2 Lotka-Volterra

The Lotka-Volterra model is a system of equations designed to capture predator-
prey dynamics (Lotka 1978). Each term in the model is unbiased when evaluated
at noisy data (under the i.i.d. assumption), so that the first-order residual expansion
utilized in WENDY is highly accurate. The bottom left plot in Fig. 6 shows even with
30% noise and only 64 timepoints, the coefficient error is still less than 10%. WENDy
reduces the error by 40%—70% on average from the OLS (top right panel).

3.2.3 Fitzhugh-Nagumo

The Fitzhugh-Nagumo equations are a simplified model for an excitable neuron
(FitzHugh 1961). The equations contain six fundamental terms with coefficients to
be identified. The cubic nonlinearity implies that the first-order covariance expansion
in WENDy becomes inaccurate at high levels of noise. Nevertheless, Fig. 7 (lower
plots) shows that WENDy produces on average 6% coefficient errors at 10% noise
with only 128 timepoints, and only 7% forward simulation errors (see upper left plot
for an example dataset at this resolution). In many cases WENDYy reduces the error by
over 50% from the OLS solution, with 80% reductions for high noise and M = 1024
timepoints (top right panel). For sparse data (e.g. 64 timepoints), numerical integration
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Fig. 7 FitzHugh-nagumo: Estimation of parameters in the FitzHugh-Nagumo model (for plot details see
Fig. 5 caption)

errors prevent estimation of parameters with lower than 3% error, as the solution is
nearly discontinuous in this case (jumps between datapoints are O(1)).

3.2.4 Hindmarsh-Rose

The Hindmarsh-Rose model is used to emulate neuronal bursting and features 10
fundamental parameters which span 4 orders of magnitude (Hindmarsh and Rose
1984). Bursting behavior is observed in the first two solution components, while the
third component represents slow neuronal adaptation with dynamics that are two orders
of magnitude smaller in amplitude. Bursting produces steep gradients which render
the dynamics numerically discontinuous at M = 128 timepoints, while at M = 256
there is at most one data point between peaks and troughs of bursts (see Fig. 8, upper
left). Furthermore, cubic and quadratic nonlinearities lead to inaccuracies at high levels
of noise. Thus, in a multitude of ways (multiple coefficient scales, multiple solution
scales, steep gradients, higher-order nonlinearities, etc.) this is a challenging problem,
yet an important one as it exhibits a canonical biological phenomenon. Figure 8 (lower
left) shows that WENDYy is robust to 2% noise when M > 256, robust to 5% noise
when M > 512, and robust to 10% noise when M > 1024. It should be noted that
since our noise model applies additive noise of equal variance to each component,
relatively small noise renders the slowly-varying third component u3 unidentifiable
(in fact, the noise ratio of only U@ exceeds 100% when the total noise ratio is 10%).
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Fig.8 Hindmarsh-rose: Estimation of parameters in the Hindmarsh-Rose model (for plot details see Fig. 5
caption)

In the operable range of 1%—2% noise and M > 256, WENDy results in 70%-90%
reductions in errors from the naive OLS solution, indicating that inclusion of the
approximate covariance is highly beneficial under conditions which can be assumed
to be experimentally relevant. We note that the forward simulation error here is not
indicative of performance, as it will inevitably be large in all cases due to slight
misalignment with bursts in the true data.

3.2.5 Protein Transduction Benchmark (PTB)

The PTB model is a five-compartment protein transduction model identified in
Schoeberl et al. (2002) as a mechanism in the signaling cascade of epidermal growth
factor (EGF). It was used in Vyshemirsky and Girolami (2008) to compare between
four other models, and has since served as a benchmark for parameter estimation
studies in biochemistry (Macdonald and Husmeier 2015; Niu et al. 2016; Kirk et al.
2013). The nonlinearites are quadratic and sigmoidal, the latter category producing
nontrivial transformations of the additive noise. WENDYy estimates the 11 parameters
with reasonable accuracy when 256 or more timepoints are available (Fig. 9), which is
sufficient to result in forward simulation errors often much less than 10%. The benefit
of using WENDYy over the OLS solution is most apparent for M > 512, where the
coefficient errors are reduced by at least 70%, leading to forward simulation errors
less than 10%, even at 20% noise.
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Fig.9 Protein transduction benchmark (PTB): Estimation of parameters in the PTB model (for plot details
see Fig. 5 caption)

3.3 Parameter Uncertainties Using Learned Covariance

We now demonstrate how the WENDy methodology can be used to communi-
cate uncertainty of the parameter estimates, and comment on the performance of the
WENDYy confidence intervals over repeated simulations. Figures 10 and 11 contain
visualizations of average confidence intervals around each parameter in the FitzHugh-
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Fig. 10 FitzHugh-nagumo: Performance of WENDY for all estimated parameters. The true parameters are
plotted in green, the purple lines indicate the average learned parameters over all experiments and the
black lines represent the average 95% confidence intervals obtained by applying Eq. (16) using the average
learned parameter covariance matrix S. The x-axis indicates noise level and number of timepoints for each
interval (Color figure online)
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Fig. 11 Hindmarsh-Rose: Performance of WENDY for all estimated parameters. See Fig. 10 for a description

Nagumo and Hindmarsh-Rose models, calculated over repeated simulations with
specific noise levels and numbers of timepoints. For each combination of noise level
and number of timepoints, we computed an average 95% confidence interval around
the average learned parameter using Eq. (16) and the averaged covariance matrix'. As
expected, increasing the number of timepoints and decreasing the noise level leads (on
average) to more certainty in the learned parameters, while lower quality data leads
on average to higher uncertainty. The ability to reliably assess uncertainty is useful
not only for our understanding of the precision with which the method can estimate
parameters, but also for designing most efficient experimental protocols (Keck and
Bortz 2016), and assessing resulting uncertainty in the state predictions and decision
functionals based on the fitted model (Elderd et al. 20006).

One could also examine the off-diagonal correlations in S. In Table 2 we show
the average S matrix for FitzHugh-Nagumo at 20% noise using 128 timepoints. This
example illustrates a situation where parameter estimates for w, w, and w3 tend to be
highly correlated pairwise, and that an average dataset with this experimental setting
does not provide much information to estimate separately each of these individual
parameters very precisely. This may seem intuitive because these parameters’ absolute
values are equal, but the terms they correspond to are very different, so this insight
would not necessarily be known a priori. Similarly, when looking at the confidence
intervals in Fig. 10 (left column), we observe that w, wy, w3 also exhibit the highest
variance, meaning again that the uncertainty in these individual parameter estimates
is high due to the data’s reduced ability to support separate precise estimation of these
parameters. This indicates that it may be possible to reduce the total variance of all
states or decision functionals based on these parameters by incorporating their joint
correlation structure. We can also observe that w3 exhibits almost no correlation with
we on average, despite corresponding to the same term (albiet in different equations),
and that coefficients in the second equation (w4, ws, we) do not exhibit the same high

14 Scripts are available at https://github.com/MathBioCU/WENDy to generate similar plots for the other
examples.
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Table 2 Entries of average

. wi wy w3 w4 ws5 we
learned parameter covariance
matrix S matrix for w1000 —0984 0850 0233  —0202 —0.186
Fitzhugh-Nagumo data with
20% noise and 128 timepoints, w2 1.000 —-0813  -0.178 0203 0.135
scaled to have 1’s along the w3 1.000 0411 —0.306  0.003
diagonal m 1.000 —0.551 —0.136
ws 1.000 —0.183
we 1.000

level of correlation as those in the first equation. We aim to explore these directions
in a future work.

3.4 Comparison to Nonlinear Least Squares

We now briefly compare WENDy and forward solver-based nonlinear least squares
(FSNLS) using walltime and relative coefficient error E» as criteria. For nonlinear
least-squares one must specify the initial conditions for the ODE solve (IC), a simula-
tion method (SM), and an initial guess for the parameters (w(?). Additionally, stopping
tolerances for the optimization method must be specified (Levenberg-Marquardt is
used throughout). Optimal choices for each of these hyperparameters is an ongoing
area of research. We have optimized FSNLS in ways that are unrealistic in practice
in order to demonstrate the advantages of WENDy even when FSNLS is performing
somewhat optimally in both walltime and accuracy. Our hyperparameter selections
are collected in Table 3 and discussed below.

To remove some sources of error from FSNLS, we use the true initial conditions
1 (0) throughout, noting that these would not be available in practice. For the simulation
method, we use state-of-the-art ODE solvers for each problem, namely for the stiff
differential equations Fitzhugh-Nagumo and Hindmarsh-Rose we use MATLAB’s
odel5s, while for Lotka-Volterra and PTB we use ode45. In this way FSNLS is
optimized for speed in each problem. We fix the relative and absolute tolerances of
the solvers at 10~ in order to prevent numerical errors from affecting results without
asking for excessive computations. In practice, the ODE tolerance, as well as the
solver, must be optimized to depend on the noise in the data, and the relation between
simulation errors and parameters errors in FSNLS is an on-going area of research
(Nardini and Bortz 2019).

Due to the non-convexity of the loss function in FSNLS, choosing a good initial
guess w'© for the parameters w* is crucial. For comparison, we use two strategies. The
first strategy (simply labeled FSNLS in Figs. 12, 13, 14 and 15), consists of running
FSNLS on five initial guesses, where each parameter is sampled i.i.d from a uniform
distribution, i.e., for the ith parameter,

w ~ W+ U(~0/2,0/2))

1
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Table 3 Hyperparameters for the FSNLS algorithm

IC Simulation method w(0).batch w(O.WENDY  Max evals Max.iter Min. step
u*(0)  L-V,PTB: oded5 wO ~ uw* o), wO=w% 2000 500 1078
FH-N, H-R: best out of 5
odel5s (abs/rel
tol=1079)

and keeping only the best-performing result. Since the sign of coefficients greatly
impacts the stability of the ODE, we take the standard deviations to be

oj = 0.25|W;| (25)

so that initial guesses always have the correct sign but with approximately 25% error
from the true coefficients. (For cases like Hindmarsh-Rose, this implies that the small
coefficients in w* are measured to high accuracy relative to the large coefficients.)
In practice, one would not have the luxury of selecting the lowest-error result of five
independent trials of FSNLS, however it may be possible to combine several results
to boost performance.

For the second initial guess strategy we set w() = W, the output from WENDy
(labeled WENDy-FSNLS in Figs. 12, 13, 14 and 15). In almost all cases, this results
in an increase in accuracy, and in many cases, also a decrease in walltime.

Figures 12, 13, 14 and 15 display comparisons between FSNLS, WENDy-FSNLS,
and WENDYy for Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and PTB mod-
els. In general, we observe that WENDYy provides significant decreases in walltime and

M = 256,5% noise M = 256,10% noise M = 256,20% noise
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Fig. 12 Comparison between FSNLS, WENDy-FSNLS, and WENDy for the Lotka-Volterra model. Left
to right: noise levels {5%, 10%, 20%}. Top: 256 timepoints, bottom: 1024 timepoints. We note that the
M = 1024 with 20% noise figure on the lower right suggests that WENDy results in slightly higher
errors than the FSNLS. This is inconsistent with all other results in this work and appears to be an outlier.
Understanding the source of this discrepancy is a topic or future work
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Fig. 14 Comparison between FSNLS, WENDy-FSNLS, and WENDYy for the Hindmarsh-Rose model. Left
to right: noise levels {1%, 2%, 5%}. Top: 512 timepoints, bottom: 1024 timepoints

modest to considerable increases in accuracy compared to the FSNLS solution. Due to
the additive noise structure of the data, this is surprising because FSNLS corresponds
to (for normally distributed measurement errors) a maximum likelihood estimation,
while WENDy only provides a first order approximation to the statistical model. At
lower resolution and higher noise (top right plot in Figs. 12, 13, 14 and 15), all three
methods are comparable in accuracy, and WENDy decreases the walltime by two
orders of magnitude. In several cases, such as Lotka-Volterra Fig. 12, the WENDy-
FSNLS solution achieves a lower error than both WENDy and FSNLS, and improves
on the speed of FSNLS. For Hindmarsh-Rose, even with high-resolution data and low
noise (bottom left plot of Fig. 14), FSNLS is unable to provide an accurate solution
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(E> =~ 0.2), while WENDy and WENDy-FSNLS result in E> ~ 0.005. The clusters
of FSNLS runs in Fig. 14 with walltimes &~ 10 seconds correspond to local minima, a
particular weakness of FSNLS, while the remaining runs have walltimes on the order
of 20 min, compared to 10-30s WENDy. We see a similar trend in E, for the PTB
model (Fig. 15), with E, rarely dropping below 10%, however in this case FSNLS
runs in a more reasonable amount of time, taking only ~ 100s. The WENDy solution
offers speed and error reductions. For high-resolution data (M = 1024), WENDy runs
in 40-50s on PTB data due to the impact of M and d, the number of ODE compart-
ments (here d = 5), on the computational complexity. It is possible to reduce this
using more a sophisticated implementation (in particular, symbolic computations are
used to take gradients of generic functions, which could be precomputed).

Finally, the aggregate performance of WENDy, WENDy-FSNLS, and FSNLS is
reported in Fig. 16, which reiterates the trends identified in the previous Figures. Firstly,
WENDYy provides significant accuracy and walltime improvements over FSNLS. It is
possible that FSNLS results in lower error for very small sample sizes (see M = 128
results in the left plot), although this comes at a much higher computational cost.
Secondly, WENDy-FSNLS provides similar accuracy improvements over FSNLS and
improves the walltime per datapoint score, suggesting that using WENDY as an initial
guess may alleviate the computational burden in cases where FSNLS is competitive.

4 Concluding Remarks
In this work, we have proposed the Weak-form Estimation of Nonlinear Dynamics
(WENDy) method for directly estimating model parameters, without relying on for-

ward solvers. The essential feature of the method involves converting the strong form
representation of a model to its weak form and then substituting in the data and solving
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aregression problem for the parameters. The method is robust to substantial amounts
of noise, and in particular to levels frequently seen in biological experiments.

As mentioned above, the idea of substituting data into the weak form of an equation
followed by a least squares solve for the parameters has existed since at least the mid
1950’s (Shinbrot 1954). However, due to the their performance, FSNLS-based methods
have dominated and are ubiquitous in the parameter estimation literature and available
software. The disadvantage of FSNLS is that fitting using repeated forward solves
comes at a substantial computational cost and with unclear dependence on the initial
guess and hyperparameters (in both the solver and the optimizer). Several researchers
over the years have created direct parameter estimation methods (that do not rely
on forward solves), but they have historically included some sort of data smoothing
step. The primary issue with this is that projecting the data onto a spline basis (for
example) represents the data using a basis which does not solve the original equation'>.
Importantly, that error propagates to the error in the parameter estimates. However,
we note that the WENDy framework introduced here is able to encapsulate previous
works that incorporate smoothing, namely by including the smoothing operator in the
covariance matrix C.

The conversion to the weak form is essentially a weighted integral transform of the
equation. As there is no projection onto a non-solution based function basis, the weak-
form approach bypasses the need to estimate the true solution to directly estimate the
parameters.

The main message of this work is that weak-form-based direct parameter estimation
offers intriguing advantages over FSNLS-based methods. In almost all the examples
shown in this work and in particular for larger dimensional systems with high noise,
the WENDy method is faster and more accurate by orders of magnitude. In rare cases
where an FSNLS-based approach yields higher accuracy, WENDy can be used as an
efficient method to identify a good initial guess for parameters.

15 Thisisa problem WENDYy does not suffer from as there is no pre-smoothing of the data.
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