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Abstract We propose a simplified version of the par-
tially observed quasi-information matrix (Poquim) method

for inference about non-Gaussian linear mixed models
and show its computational advantage over the original
method. We illustrate the difference, and compare per-

formance of the simplified version with Poquim as well
as the normality-based method in simulation studies.
An example of real-data analysis is considered.
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1 Introduction

Linear mixed models (LMM; e.g., Jiang 2007) are widely
used in practice. One advantage that has contributed
to the popularity of such models has to do with their
robustness, at least in large sample, to violation of the

normality assumption, which is often assumed for the
distribution of the random effects and errors. In fact,
it is known (e.g., Richardson & Welsh 1994, Jiang 1996,
1997) that the normality-based restricted maximum like-
lihood (REML) estimators of the variance components
in a LMM remain consistent and asymptotically normal
even if the random effects and errors are not normally

distributed; similar results also hold for the maximum
likelihood (ML) estimators under suitable restrictions
on the dimension of the fixed effects (e.g., Jiang 1996,
1998).
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In spite of the large-sample properties, inference
about non-Gaussian LMM becomes complicated when

it comes to estimating the asymptotic covariance ma-
trix (ACM) of the REML or ML estimator because,
without the normality assumption, the ACM does not

have the well-known form as inverse of the Fisher in-
formation matrix; in fact, the ACM involves additional
higher-order (third and fourth) moments of the random

effects and errors, whose estimates are not available in
the outputs of standard software packages, such as SAS
and R. To illustrate specifically, let us consider Gaus-
sian REML estimation under a non-Gaussian LMM,

which can be regarded as quasi-likelihood estimation
(e.g., Heyde 1997). It is known [e.g., Jiang 2007, eq.
(1.27)] that the ACM of the (Gaussian) REML estima-

tor has the familiar “sandwich” expression:

ΣR = I−12 I1I
−1
2 , (1)

where I1 = Var(∂lR/∂θ), I2 = −E(∂2lR/∂θ∂θ
′), lR is

the restricted log-likelihood function, and θ is the vec-
tor of variance components. Note that, here, the ex-

pressions of ∂lR/∂θ and ∂2lR/∂θ∂θ
′ are derived un-

der the normality assumption, but the expectation and
covariance matrix, E and Var, are taken with respect
to the true underlying distribution, which may not be
Gaussian. Under the normality assumption, one has
I2 = I1, hence (1) becomes I−11 , which is the inverse
of the Fisher-information matrix for REML estimation.
However, if the normality assumption does not hold, the
information identity, I2 = I1, may not hold. In fact, in
such a case, I2 remains the same as that under the nor-
mality assumption, which depends only on θ, but I1
involves the fourth moments of the random effects and
errors, in additional to the variance components, θ. Sim-

ilar difference also exists for the ML estimation under a
non-Gaussian LMM, in which case the corresponding I1
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also involves the third moments of the random effects
and errors, in additional to θ and the fourth moments.
Ignoring such a difference in inference may lead to in-
correct standard errors, inaccurate confidence intervals
and/or misleading assessment of statistical significance.

In order to address such an issue, Jiang (2007, sec.
1.4) proposed two methods of estimating the ACM un-
der a non-Gaussian LMM. The first is called empirical
method of moments (EMM). Basically, one obtains es-
timators of the fourth moments of the random effects
and errors, assuming that the third moments of the ran-
dom effects and errors are zero. One then replaces the
fourth moments involved in I1 in (1) by their EMM esti-
mators, and also θ by θ̂, the REML estimator of θ. This
leads to an estimator of ΣR. An obvious restriction of
EMM is that the third moments of the random effects
and errors are zero. This assumption holds if, in partic-
ular, the random effects and errors are symmetrically
distributed; but, like normality, symmetry also may not

hold in practice. The second proposed method, which
is the main subject of study of this paper, is called par-
tially observed quasi-information matrix (Poquim). For

the most part, one avoids taking expectations of certain
terms that potentially leads to the higher moments; in-
stead, those terms are handled in a way similar to the
observed information in ML estimation (e.g., Efron &

Hinkley 1978). The final expression of the Poquim is
a sum of two terms, the first similar to the observed
information matrix and the second to the estimated in-

formation matrix, hence explaining the name, Poquim.
The term quasi-information matrix refers to (1), or a
similar expression for ML estimation, when the distri-
bution of the data is non-Gaussian.

The Poquim method does not require the third mo-
ments of the random effects and errors being zero; in
this regard, the method is more broadly applied than
EMM. In the original paper of Poquim, Jiang (2005),
the author established some nice theoretical properties
of the method. On the other hand, despite the theoret-
ical advance, the method has never been implemented,
mainly because of its complex form (see below), which

remains a hurdle in the computation. The main pur-
pose of the current paper is to offer a (much) simplified
version of Poquim, called simplified Poquim, or Spo-
quim, and compare its performance with Poquim and
EMM via empirical studies. In Section 2, we provide
an overview of Poquim and discuss its computational
challenge; the Spoquim method is naturally introduced
in this context. In Section 3 we make a comparison be-
tween Spoquim and Poquim via a simple example, and
carry out a Monte-Carlo simulation study that com-
pares the performance of Spoquim, Poquim and EMM.

A real-data example is discussed in Section 4. R code

for implementing Spoquim is provided in the Supple-
mentary Material.

2 Poquim: Computational challenge and
remedy

Consider a non-Gaussian linear mixed model that has
a general ANOVA structure:

y = Xβ + Z1α1 + · · ·+ Zsαs + ε, (2)

where X,Z1, . . . , Zs are known matrices, β is an un-
known vector of fixed effects, and α1, . . . , αs, ε are in-
dependent vectors of random effects and errors such
that the components of αr are i.i.d. with mean 0 and
variance σ2

r , 1 ≤ r ≤ s and the components of ε are i.i.d.
with mean 0 and variance τ2. Let mr = dim(αr), 1 ≤
r ≤ s, and n = dim(y) = dim(ε). Let γr = σ2

r/τ
2, 1 ≤

r ≤ s, and θ = (τ2, γ1, . . . , γs)
′ = (θr)0≤r≤s.

2.1 Spoquim for REML

Let us first consider REML estimation. As noted, the
focus is on I1. According to Jiang (2005), the Poquim of
I1 is given by Î1 = (Î1,qr)0≤q,r≤s, where Î1,qr = Î1,1,qr+

Î1,2,qr and Î1,a,qr, a = 1, 2 are defined below. First, we
have

Î1,1,qr =
∑

f(i1,i2,i3,i4)6=0

ĉqr(i1, i2, i3, i4)ûi1 ûi2 ûi3 ûi4 (3)

and the notations in (3) are defined below. Let u =
y−Xβ = (ui)1≤i≤n, ui be the ith component of u, and
ûi be ui with β replaced by β̂, the REML estimator of

β. Next, let

f(i1, i2, i3, i4) =
s∑

r=0

κrzi1r · zi2r · zi3r · zi4r, (4)

where κs = E(α4
r1) − 3σ4

r , 0 ≤ r ≤ s, with α0 = ε and
σ2
0 = τ2. Finally, z′ir is the ith row of Zr, 0 ≤ r ≤ s

with Z0 = In, the n-dimensional identity matrix, and

zi1r · zi2r · zi3r · zi4r =

mr∑
k=1

zi1rkzi2rkzi3rkzi4rk

with zirk being the (i, k) element of Zr, 1 ≤ k ≤ mr, 0 ≤
r ≤ s, with m0 = n. The f(i1, i2, i3, i4) defined by (4)
is viewed as a function of κ = (κr)0≤r≤s; therefore,
f(i1, i2, i3, i4) 6= 0 means that the function is not a zero
function (which equals to 0 for any κ). Furthermore,
let f1, . . . , fL be the different nonzero functional values
of f(i1, i2, i3, i4), that is, fl, 1 ≤ l ≤ L are all of the
different nonzero functions of κ resulted from (4) as
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i1, i2, i3, i4 vary between 1 and n. Let ĉqr(i1, i2, i3, i4) =
ĉqr,l if f(i1, i2, i3, i4) = fl, where

ĉqr,l =
1

dr

∑
f(i1,i2,i3,i4)=fl

B̂q,i1i2B̂r,i3i4 , (5)

where dr = |{(i1, i2, i3, i4) : f(i1, i2, i3, i4) = fl}| and
|S| denotes the cardinality of set S, B̂r,i1i2 is the (i1, i2)
element of B̂r, 0 ≤ r ≤ s. Here, B0 = P/2τ2, Br =
(τ2/2)PZrZ

′
rP , 1 ≤ r ≤ s with

P = V −1 − V −1X(X ′V −1X)−1X ′V −1,

V = Var(y) = τ2
∑s

r=0 γrZrZ
′
r (γ0 = 1), and B̂r is Br

with θ replaced by θ̂, the REML estimator of θ. Note
that

Br =
1

2
P
∂V

∂θr
P, 0 ≤ r ≤ s. (6)

This completes the definition of Î1,1,qr. Next, define
Γ (i1, i2) =

∑s
r=0 γrzi1r · zi2r with

zi1r · zi2r =

mr∑
k=1

zi1rkzi2rk,

0 ≤ r ≤ s. Then, we have

Î1,2,qr = 2tr(B̂qV̂ B̂rV̂ )

−3τ̂4
∑

f(i1,i2,i3,i4)6=0

ĉqr(i1, i2, i3, i4)

×Γ̂ (i1, i3)Γ̂ (i2, i4), (7)

where V̂ and Γ̂ (i1, i2) are V and Γ (i1, i2) with θ re-
placed by θ̂, respectively.

The two terms Î1,1,qr and Î1,2,qr correspond to the

“observed” and “estimated” parts of Poquim, respec-
tively. The main difficulty with Poquim has to do with
identifying all different functional values of f(i1, i2, i3, i4),
which, although may seem simple from a mathematical
standpoint, is not easy to implement in terms of com-
puter programming. Below we propose an alternative
approach that follows the same basic idea of Poquim,
but does it in a way that is computationally easier to
implement.

According to Jiang (2007, sec. 1.8.5), we have

∂lR/∂θr = u′Bru− br

with br = E(u′Bru), 0 ≤ r ≤ s. Thus, we have

I1,qr = cov

(
∂lR
∂θq

,
∂lR
∂θr

)
= cov(u′Bqu, u

′Bru)

=
∑

i1,i2,i3,i4

Bq,i1i2Br,i3i4cov(ui1ui2 , ui3ui4). (8)

Note that

cov(ui1ui2 , ui3ui4)

= E(ui1ui2ui3ui4)− E(ui1ui2)E(ui3ui4).

The basic idea of Poquim is not to compute E(ui1ui2ui3ui4)
analytically, if some fourth moments of the random ef-
fects and errors are going to appear in the result (the
third moments will not appear). Now let us see how
the fourth moments are going to show up. According
to Lemma 1.3 of Jiang (2007; same as Lemma 1, part
1 of Jiang 2005), we have

cov(ui1ui2 , ui3ui4)

= τ4{Γ (i1, i3)Γ (i2, i4) + Γ (i1, i4)Γ (i2, i3)}

+
s∑

r=0

κrzi1r · zi2r · zi3r · zi4r. (9)

Because Γ depends only on θ, the fourth moments will
show up if and only if at least one of the 4-factor in-
ner products, zi1r · zi2r · zi3r · zi4r, is nonzero, which is
equivalent to
s∑

r=0

|zi1r · zi2r · zi3r · zi4r| > 0. (10)

Let P denote the subset of indexes (i1, i2, i3, i4) such
that (10) holds. By (8), (9), we have

I1,qr

=
∑

(i1,i2,i3,i4)∈P

Bq,i1i2Br,i3i4{E(ui1ui2ui3ui4)

−τ4Γ (i1, i2)Γ (i3, i4)}
+τ4

∑
(i1,i2,i3,i4)/∈P

Bq,i1i2Br,i3i4{Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}

= E

 ∑
(i1,i2,i3,i4)∈P

Bq,i1i2Br,i3i4ui1ui2ui3ui4


+τ4

 ∑
(i1,i2,i3,i4)/∈P

Bq,i1i2Br,i3i4{Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}

−
∑

(i1,i2,i3,i4)∈P

Bq,i1i2Br,i3i4Γ (i1, i2)Γ (i3, i4)

 , (11)

noting that E(ui1ui2) = τ2Γ (i1, i2). Furthermore, note
that

τ4
∑

(i1,i2,i3,i4)/∈P

Bq,i1i2Br,i3i4{Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}
= τ4

∑
i1,i2,i3,i4

Bq,i1i2Br,i3i4{Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}
−τ4

∑
(i1,i2,i3,i4)∈P

Bq,i1i2Br,i3i4{Γ (i1, i3)Γ (i2, i4)

+Γ (i1, i4)Γ (i2, i3)}. (12)
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For the first term on the right side of (2), note that, in
view of (9), this is cov(u′Bqu, u

′Bru) when the random
effects and errors are Gaussian, which implies that the
kurtoses κr, 0 ≤ r ≤ s in (9) are all zero. It follows that
the first term on the right side of (12) is equal to

2tr(BqV BrV ) =
1

2
tr

(
P
∂V

∂θq
P
∂V

∂θr

)
, (13)

using an identity for the covariance of normal quadratic
forms (e.g., Jiang 2007, p. 38), (6), and the identity
PV P = P . Note that ∂V/∂τ2 = V/τ2 and ∂V/∂γr =
τ2ZrZ

′
r, 1 ≤ r ≤ s. As for the second term on the right

side of (12), note that (i1, i2, i3, i4) ∈ P if and only if
(i1, i2, i4, i3) ∈ P , and Br,i3i4 = Br,i4i3 . It follows that
the second term on the right side of (12) is equal to
−2τ4

∑
(i1,i2,i3,i4)∈P Bq,i1i2Br,i3i4Γ (i1, i3)Γ (i2, i4). Com-

bining these simplifications, we can write (11) further
as I1,qr = I1,1,qr + I1,2,qr, where

I1,1,qr

= E

 ∑
(i1,i2,i3,i4)∈P

Bq,i1i2Br,i3i4ui1ui2ui3ui4

 , (14)

I1,2,qr

=
1

2
tr

(
P
∂V

∂θq
P
∂V

∂θr

)
−τ4

∑
(i1,i2,i3,i4)∈P

Bq,i1i1Br,i3i4{Γ (i1, i2)Γ (i3, i4)

+2Γ (i1, i3)Γ (i2, i4)}. (15)

The I1,1,qr in (14) corresponds to the “observed” and
the I1,2,qr in (15) the “estimated” parts, respectively.
Following the Poquim idea, for the observed part, we

remove the expectation sign in (14), and replace the un-
known parameters involved in B and u by their REML
estimators. This leads to

Ĩ1,1,qr =
∑

(i1,i2,i3,i4)∈P

B̂q,i1i2B̂r,i3i4 ûi1 ûi2 ûi3 ûi4 . (16)

For the estimated part, which only depends on θ, we
simply replace θ by θ̂. This leads to

Ĩ1,2,qr = 2tr(B̂qV̂ B̂rV̂ )

−τ̂4
∑

(i1,i2,i3,i4)∈P

B̂q,i1i2B̂r,i3i4{Γ̂ (i1, i2)Γ̂ (i3, i4)

+2Γ̂ (i1, i3)Γ̂ (i2, i4)}, (17)

using (13). Note that the first term on the right side of
(17) is the same as that on the right side of (7). The
combination of (16) and (17) leads to the simplified

Poquim (Spoquim):

Ĩ1,qr = Ĩ1,1,qr + Ĩ1,2,qr, 0 ≤ q, r ≤ s, (18)

and Ĩ1 = (Ĩ1,qr)0≤q,r≤s. The main simplicity of Spo-
quim over Poquim is in that the functions f(i1, i2, i3, i4)

and the quantities cqr(i1, i2, i3, i4) involved in (3) and
(7), whose computations are not straightforward, are
avoided altogether.

On the other hand, the I2 in (1) has the same expres-
sion as that under normality, that is, I2 = (I2,qr)0≤q,r≤s,
where I2,qr is equal to (13). Because I2 depends only on
θ, an estimator is obtained by replacing the θ by θ̂. De-
note the resulting estimator of I2 by Î2. An estimator of
the ACM, ΣR in (1), is then given by Σ̂R = Î−12 Ĩ1Î

−1
2 .

2.2 Spoquim for ML

Let l denote the Gaussian log-likelihood function. Ac-
cording to Jiang (2005, sec. 4), we have ∂l/∂β = X ′V −1u,
∂l/∂θr = u′Cru − cr, where C0 = V −1/2τ2, Cr =
(τ2/2)V −1ZrZ

′
rV
−1, 1 ≤ r ≤ s, and cr = E(u′Cru), 0 ≤

r ≤ s.The quasi-information matrix has a similar ex-
pression as (1), that is,

Σ = I−12 I1I
−1
2 , (19)

where I1 = Var(∂l/∂ψ) and I2 = E(∂2l/∂ψ∂ψ′) with

ψ = (β′, θ′)′. Furthermore, I2 has the same expression
as that under the normality assumption, that is [e.g.,
Jiang 2007, eq. (1.13)–(1.15)], we have

I2 = diag{∂2l/∂β∂β′,E(∂2l/∂θ∂θ′)} with

∂2l

∂β∂β′
= −X ′V −1X,

E

(
∂2l

∂θq∂θr

)
= −1

2
tr

(
V −1

∂V

∂θq
V −1

∂V

∂θr

)
, (20)

0 ≤ q, r ≤ s. Thus, the focus is on estimation of I1. We
have (e.g., Jiang 2005)

Var

(
∂l

∂β

)
= X ′V −1X, (21)

which is easily estimated by replacing V by V̂ , which is
obtained by replacing θ in the expression of V by its ML
estimator. Furthermore, the Spoquim of Var(∂l/∂θ) is
the same way as that of I1 for REML estimation, with
the only difference being replacing B by C, that is, (16),
(17) with B replaced by C. Finally, we have

cov

(
∂l

∂βj
,
∂l

∂θr

)
= cov(X ′jV

−1u, u′Cru)

= X ′jV
−1

∑
i2,i3

Cr,i2i3cov(ui1 , ui2ui3)


1≤i1≤n

, (22)

where Xj is the jth column of X, 1 ≤ j ≤ p = dim(β),
0 ≤ r ≤ s. According to Jiang (2005; Lemma 2), we
have

cov(ui1 , ui2ui3) =

s∑
r=0

E(α3
r1)zi1r · zi2r · zi3r, (23)
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where zi1r · zi2r · zi3r =
∑mr

k=1 zi1rkzi2rkzi3rk. Thus, at
least one third moment of random effects or errors will
appear in (23) provided that

s∑
r=0

|zi1r · zi2r · zi3r| > 0. (24)

Let Q denote the subset of indexes (i1, i2, i3) such that
(24) holds, and Hi the ith column of V −1, 1 ≤ i ≤ n.
Then, by (22), (23), we have

cov

(
∂l

∂βj
,
∂l

∂θr

)
=

∑
i1,i2,i3

X ′jHi1Cr,i2i3cov(ui1 , ui2ui3)

=
∑

(i1,i2,i3)∈Q

X ′jHi1Cr,i2i3E(ui1ui2ui3)

= E

 ∑
(i1,i2,i3)∈Q

X ′jHi1Cr,i2i3ui1ui2ui3

 . (25)

It follows that the covariance consists only of the ob-
served part, which is estimated by

c̃ov

(
∂l

∂βj
,
∂l

∂θr

)
=

∑
(i1,i2,i3)∈Q

X ′jĤi1Ĉr,i2i3 ûi1 ûi2 ûi3 , 1 ≤ j ≤ p, (26)

0 ≤ r ≤ s, where Ĥi is the ith column of V̂ −1 and Ĉr

is Cr with θ replaced by its ML estimator, θ̂.

3 Example, simulation, and computing notes

We first use a simple example to illustrate Spoquim
and its difference with Poquim. We then carry out a
simulation study under the same example to compare

the performances of Spoquim and Poquim. We conclude
the section with some notes on computing and coding.

3.1 Example

Jiang (2005) used a simple example of balanced one-
way random effects model to illustrate Poquim. The
model can be expressed as

yij = µ+ αi + εij , (27)

i = 1, . . . ,m, j = 1, . . . , b, where µ is an unknown mean,
αi is a random effect and εij is an error. It is assumed
that the random effects and errors are independent with
mean 0, and var(αi) = σ2, var(εij) = τ2. The model
can be expressed as (2) with X = 1m ⊗ 1b, s = 1, and
Z1 = Z = Im⊗1b, where ⊗ denotes Kronecker product.

We focus on REML estimation. It can be shown that

B0 =
1

2τ4

(
Im ⊗ Ib −

σ2

τ2 + bσ2
Im ⊗ Jb

)
− J̄m ⊗ J̄b

2τ2(τ2 + bσ2)
, (28)

B1 =
τ2

2(τ2 + bσ2)2
(Im − J̄m)⊗ Jb. (29)

where J̄k = k−1Jk with Jk being the k × k matrix of
1s. It is more convenient to use a double index, (i, j),
with 1 ≤ i ≤ m, 1 ≤ j ≤ b than a single index, i,
with 1 ≤ i ≤ n = mb when relevant. For example,
y = (y1, . . . , yn)′ is the same as

y = (y11, . . . , y1b, y21, . . . , y2b, . . . , ym1, . . . , ymb)
′.

Then, the (i, j)th row of Z0 = In = Im ⊗ Ib is the
row vector z′(i,j)0 = [1{(k,l)=(i,j)}]

′
1≤k≤m,1≤l≤b, that is,

the 1× n vector whose (i, j) component is 1 and other
components are 0. Thus, we have

z(i1,j1)0 · z(i2,j2)0 · z(i3,j3)0 · z(i4,j4)0

=
m∑

k=1

b∑
l=1

1{(k,l)=(i1,j1)}1{(k,l)=(i2,j2)}

×1{(k,l)=(i3,j3)}1{(k,l)=(i4,j4)}.

which is positive if and only if (i1, j1) = (i2, j2) =
(i3, j3) = (i4, j4), that is, i1 = i2 = i3 = i4 and

j1 = j2 = j3 = j4. Also, the (i, j) row of Z1 = Im ⊗ 1b
is the row vector z(i,j)1k = [1(k=i)]1≤k≤m, that is, the
1×m vector whose ith component is 1 and other com-

ponents are 0. It follows that

z(i1,j1)1 · z(i2,j2)1 · z(i3,j3)1 · z(i4,j4)1

=

m∑
k=1

1(k=i1)1(k=i2)1(k=i3)1(k=i4),

which is positive if and only if i1 = i2 = i3 = i4. It
follows that the index set P defined below (10) can be

expressed as

P = {[(i1, j1), (i2, j2), (i3, j3), (i4, j4)] :

i1 = i2 = i3 = i4}. (30)

By (28), the [(i1, j1), (i2, j2)] element of B0 is

B0,(i1,j1)(i2,j2)

=
1

2τ4

{
1(i1=i2,j1=j2) −

σ2

τ2 + bσ2
1(i1=i2)

}
− (mb)−1

2τ2(τ2 + bσ2)
.

Similarly, by (29), the [(i1, j1), (i2, j2)] element of B1 is

B1,(i1,j1)(i2,j2) =
τ2

2(τ2 + bσ2)2

{
1(i1=i2) −

1

m

}
.
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Using these expressions, and (30), it can be derived that

Ĩ1,1,00 =
1

4τ̂8

m∑
i=1


b∑

j=1

û2ij

− σ̂
2 + τ̂2/n

τ̂2 + bσ̂2

 b∑
j=1

ûij

2


2

,

Ĩ1,1,01 =
1− 1/m

4τ̂2(τ̂2 + bσ̂2)2

m∑
i=1


b∑

j=1

û2ij

− σ̂
2 + τ̂2/n

τ̂2 + bσ̂2

 b∑
j=1

ûij

2

 b∑

j=1

ûij

2

,

Ĩ1,1,11 =
τ̂4(1− 1/m)2

4(τ̂2 + bσ̂2)4

m∑
i=1

 b∑
j=1

ûij

4

,

where ûij = yij − µ̂ and µ̂ is the REML estimator of µ.

Similarly, it can be derived that

Ĩ1,2,00 =
m

2τ̂4

{
1− 1

m
−
(

1− 1

m

)2

−b
2

2

(
1− σ̂2/m+ τ̂2/n

τ̂2 + bσ̂2

)2
}
,

Ĩ1,2,01 =
(m− 1)b

2(τ̂2 + bσ̂2)

{
1

m

− b
2

(
1− σ̂2/m+ τ̂2/n

τ̂2 + bσ̂2

)}
,

Ĩ1,2,11 =
(m− 1)b2τ̂4

4(τ̂2 + bσ̂2)2

(
3

m
− 1

)
.

Jiang (2005; also see Jiang 2007, p. 47) derived de-
tailed expressions of Poquim for this example. It can

be seen that f(i1j1, . . . , i4j4) = 0, if not i1 = · · · = i4;
κ1, if i1 = · · · = i4 but not j1 = · · · = j4; and κ0 + κ1,
if i1 = · · · = i4 and j1 = · · · j4. Thus, L = 2 [note
that L is the number of different functional values of
f(i1j1, . . . , i4j4)]. Define the following functions of θ =
(τ2, γ)′ with γ = σ2/τ2: t0 = 1− γ/(1 + bγ)− 1/{(1 +
bγ)n} (note that n = mb), t1 = (m− 1)b/{m(1 + bγ)},
and t2 = {b(1 + bγ)2 − (1 + γ)2}/(b3 − 1). Then, the
Poquim is given by Î1,qr = Î1,1,qr + Î1,2,qr, q, r = 0, 1,
where

Î1,1,00 =
t̂21 − t̂20b

4τ̂8b(b3 − 1)


m∑
i=1

 b∑
j=1

ûij

4

−
m∑
i=1

b∑
j=1

û4ij

+
t̂20

4τ̂8

m∑
i=1

b∑
j=1

û4ij ,

Table 1 Values of Spoquim (SPOQ) and Poquim (POQ)
from Example Data

SPOQ Ĩ1,1,00 = 919.6722 Ĩ1,2,00 = −430.0872 Ĩ1,00 = 489.585

POQ Î1,1,00 = 742.989 Î1,2,00 = −422.0935 Î1,00 = 320.8955

SPOQ Ĩ1,1,01 = 141.09 Ĩ1,2,01 = −47.47662 Ĩ1,01 = 93.61338

POQ Î1,1,01 = 128.8025 Î1,2,01 = −18.45532 Î1,01 = 110.3472

SPOQ Ĩ1,1,11 = 67.53872 Ĩ1,2,11 = −5.10062 Ĩ1,11 = 62.4381

POQ Î1,1,11 = 67.53872 Î1,2,11 = −5.10062 Î1,11 = 62.4381

Î1,1,01 =
(m− 1)(t̂1b− t̂0)

4τ̂6(1 + bγ̂)2m(b3 − 1)


m∑
i=1

 b∑
j=1

ûij

4

−
m∑
i=1

b∑
j=1

û4ij

+
(m− 1)t̂0

4τ̂6(1 + bγ̂)2m

m∑
i=1

b∑
j=1

û4ij ,

Î1,1,11 =
(m− 1)2

4τ̂4(1 + bγ̂)4m2

m∑
i=1

∑
j

ûij

4

;

Î1,2,00 =
1

2τ̂4
(mb− 1

−3

2
m[bt̂20{(1 + γ̂)2 − t̂2}+ t̂21t̂2]

)
,

Î1,2,01 =
(m− 1)b

2τ̂2(1 + bγ̂)
{1

−
(

3

2

)
(bt̂1 − t̂0)t̂2 + (1 + γ̂)2t̂0

1 + bγ̂

}
,

Î1,2,11 = − (m− 1)(m− 3)b2

4m(1 + bγ̂)2
,

where γ̂ = σ̂2/τ̂2, and the t̂’s are the t’s with θ replaced
by θ̂, the REML estimator.

It is seen that, compared to Spoquim, the expres-
sions of Poquim are more complicated involving the

functions ta, a = 0, 1, 2, with the exception of Î1,a,11, a =
1, 2, which are equal to their Spoquim counterparts.
In order to see the difference, we compute Î1,a,qr and
Ĩ1,a,qr, (q, r) 6= (1, 1), a = 1, 2 numerically. A dataset
is generated under model (27) with µ = σ2 = τ2 = 1,
m = 50 and b = 5. The distributions of the random ef-
fects and errors are centralized exponential with rate
equal to 1, that is, the distribution of ξ − 1, where
ξ ∼ Exponential(1). This distribution is denoted by
CE(1). Note that the mean and variance of CE(1) are
0 and 1, respectively. The REML estimates of µ, σ2, τ2

are 0.930, 1.105 and 0.848, respectively. Based on the
data and REML estimates, the Spoquim and Poquim

are computed and summarized on Table 1.

3.2 Simulation study

From the previous subsection we see that the values of
Spoquim and Poquim may be different. A simulation
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study is carried out under the same model of the previ-
ous subsection to compare the performance of Spoquim
and Poquim in estimating the ACM, given by (1). As
noted, I2 is the same as that under normality, which,
in this case, is given by

I2,00 =
n− 1

2τ4
,

I2,01 =
(m− 1)b

2(τ2 + bσ2)
,

I2,11 =
τ4(m− 1)b2

2(τ2 + bσ2)2
, (31)

where n = mb. The difference between Spoquim and
Poquim in estimating the ACM is therefore in that
Σ̃R = Î−12 Ĩ1Î

−1
2 for Spoquim and Σ̂R = Î−12 Î1Î

−2
2 for

Poquim, where the expressions of Ĩ1, Î1 are given in the
previous subsection, and Î2 is given by (31) with θ re-
placed by θ̂, the REML estimator.

The simulation setting covers normality and varies
situations of non-normality, including heavy-tail, skewed,
and bimodal distributions. Specifically, there are four
cases: (I) both α and ε are normal; (II) both α and

ε are
√

2/3t6; (III) both α and ε are CE(1) (see the
previous subsection); and (IV) both α and ε are equal-
weight mixture of N(1/

√
2, 1/2) and N(−1/

√
2, 1/2).

We also consider a case of discrete random effects and
errors, namely, (V) α has equal probability mass of 0.5
at −1 and 1 and ε has probability masses of 1/12, 1/6,

1/2, 1/6, 1/12 at −2, −1, 0, 1, 2, respectively. It is easy
to see that all of the distributions have been standard-
ized to have mean 0 and variance 1, and finite fourth
moment. Two performance measures of ACM estima-

tion are considered. The first is percentage relative bias
(%RB), defined as

%RB = 100×
{

E(σ̂qr)− σqr
σqr

}
, 0 ≤ q ≤ r ≤ 1,

where σ̂qr is the (q, r) element of the estimator of ΣR,
either by Spoquim or by Poquim, E(σ̂qr) is the simu-
lated mean of σ̂qr, and σqr is the (q, r) element of the
simulated true covariance matrix, Var(θ̂). The second

is coefficient of variation (CV), defined as

CV =

√
var(σ̂qr)

|E(σ̂qr)|
, 0 ≤ q ≤ r ≤ 1.

The results, based on 1,000 simulation runs, are pre-
sented in Table 2 It is seen that the overall performance
of Spoquim and Poquim are quite close. In terms of ab-

solute value of %RB, Spoquim performs better in ex-
actly half of the cases (6 out of 12); in terms of CV,
Spoquim performs better in 8 out of the 12 cases. Con-
sidering that Spoquim is much easier to program to
a software package (see Appendix) than Poquim, we

Table 2 Comparing Performance of Spoquim (SPOQ) and
Poquim (POQ) in Terms of %RB and CV

%RB CV
Case Element True σqr SPOQ POQ SPOQ POQ

(I) (0,0) 0.010 1.05 -3.40 0.31 0.45
(0,1) -0.011 8.77 0.33 0.40 0.43
(1,1) 0.069 4.48 1.88 0.50 0.49

(II) (0,0) 0.023 -4.70 -8.58 1.38 1.34
(0,1) -0.025 -11.72 -15.28 0.87 1.00
(1,1) 0.139 -6.43 -7.11 1.51 1.57

(III) (0,0) 0.034 0.66 4.85 0.80 0.98
(0,1) -0.040 -20.48 -10.76 0.73 1.03
(1,1) 0.254 -12.60 -7.84 1.78 1.80

(IV) (0,0) 0.007 6.67 3.05 0.27 0.43
(0,1) -0.010 -1.45 -10.41 0.41 0.37
(1,1) 0.066 -7.52 -10.64 0.51 0.47

(V) (0,0) 0.010 -0.47 -2.87 0.25 0.22
(0,1) -0.013 -2.77 -7.93 0.26 0.19
(1,1) 0.035 0.09 -3.40 0.36 0.35

Table 3 Comparing Spoquim (SPOQ), Poquim (POQ) and
Normality-based Method (NBM) in Terms of %RB and Size
(Nominal Level = 0.10)

Sample Case %RB Size
Size SPOQ POQ NBM SPOQ POQ NBM

m = 50 (I) -5.00 -7.26 1.85 0.138 0.146 0.114
b = 5 (II) -6.00 -6.67 -45.87 0.151 0.158 0.201

(V) -1.37 -5.26 116.41 0.109 0.113 0.028

m = 100 (I) -8.90 -9.72 -4.25 0.138 0.134 0.112
b = 5 (II) -2.99 -3.05 -45.71 0.125 0.128 0.217

(V) -0.38 -2.21 120.93 0.101 0.112 0.015

therefore conclude that there is a significant compu-
tational advantage of Spoquim over Poquim without
losing estimation efficiency.

It may be wondered what impact one may get by ig-
noring the possible non-normality, and use the normality-
based method to obtain the variance of the REML es-
timator. This issue was previously addressed in Jiang

(2005), but here we illustrate numerically using the
current simulated example. We consider estimation of
γ = σ2/τ2 and also testing the hypothesis H0 : γ = 1.

We first compare the %RB of the normality method
with Poquim and Spoquim. Next, we compare the size
(or observed level of significance) for testing H0 at the
10% level of significance. We make the comparison un-
der normality, case (I), and two non-normal situations,
namely, case (II) and case (V). Furthermore, we con-
sider the same sample size configuration, m = 50, b = 5,
as well as an increased sample size configuration, m =
100, b = 5, and observe the changes when the sample
size increases. The results, based on 1,000 simulation

runs, are presented in Table 3.

It is seen that, under normality [case (I)], NBM per-
forms better both in terms of %RB and in terms of the
size; however, the trend is reversed, significantly, under

the non-normal situations [case (II) and case (V)]. Also
note that, in terms of %BR, although NBM performs
better under normality, the %RB for all three meth-
ods stay within single-digit, which is generally consid-
ered good performance. On the other hand, in the non-
normal situations the %RB for NBM is much higher in
the range of mid double-digit or low triple-digit, which
are considered poor performance; meanwhile, the %RB
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of SPOQ and POQ remain single-digit. Finally, it is
observed that, the performance of SPOQ and POQ, in
terms of the size, improves as the sample size increases.
However, this does not seem to be the case for NBM;
in fact, the size for NBM seems to get a little worse as
the sample size increases in the non-normal cases.

An inaccurate estimate of the variance of the esti-
mator, whose square root is the standard error (s.e.),
or inaccurate level of significance, may be misleading in
practice. Thus, if there is a serious doubt about the nor-
mality of the random effects or errors, which is often the
case in practice, one should use Spoquim or Poquim in
assessing uncertainty, and Spoquim is computationally
more attractive than Poquim as we have shown.

3.3 Some notes on computing

The expression of Spoquim, (16) and (17), involve sum-
mation of a 4-way array over a subset of indexes 1 ≤
i1, i2, i3, i4 ≤ n, where n is the sample size. A brute-
force coding that involves a 4-way loop is computation-

ally inefficient and extremely slow even for moderately
large n. The following are some computing ideas that
avoid the 4-way loop and, as a result, speed up the
computation tremendously.

First consider the index set P defined by (10). De-
fine a ∗ b = (akbk)1≤k≤K for a = (ak)1≤k≤K and b =
(bk)1≤k≤K . Recall z′ir is the ith row of Zr. Then, for

fixed (i1, i2),

zi1r · zi2r · zi3r · zi4r =

mr∑
k=1

zi1rkzi2rkzi3rkzi4rk

is the (i3, i4) element of Zrdiag(zi1r ∗ zi2r)Z ′r. It follows
that, for fixed i1, i2,

∑s
r=0 |zi1r · zi2r · zi3r · zi4r| is the

(i3, i4) element of the matrix S =
∑s

r=0 |Zrdiag(zi1r ∗
zi2r)Z ′r|. Here |A| = (|aij |) for matrix A = (aij) [i.e.,
the abs() function in R]. The R code ifelse(S > 0, 1, 0)
then returns a matrix Q = Qi1i2 , whose elements are 1

if (10) holds, and 0 otherwise.
Now consider expression (16). The expression can

be written as

S1 =
∑
i1,i2

 ∑
(i3,i4):(i1,i2,i3,i4)∈P

B̂r,i3i4 ûi3 ûi4


×B̂q,i1i2 ûi1 ûi2

=
∑
i1,i2

û′[B̂q,i1i2 û
′[B̂r,i3i4Qi1i2,i3i4 ]1≤i3,i4≤nû

]1≤i1,i2≤nû

= û′
[
B̂q,i1i2 û

′(B̂r ∗Qi1i2)û
]
û, (32)

where Qi1i2,i3i4 is the (i3, i4) element of Qi1i2 , and the
∗ operation between two matrices is defined similarly

as that between two vectors, that is, A ∗ B = (aijbij)
for matrices A = (aij) and B = (bij). Next, we con-
sider (17). There are two main 4-way summations here,
namely,

S2,1 =
∑

(i1,i2,i3,i4)∈P

B̂q,i1i2B̂r,i3i4 Γ̂ (i1, i2)Γ̂ (i3, i4),

S2,2 =
∑

(i1,i2,i3,i4)∈P

B̂q,i1i2B̂r,i3i4 Γ̂ (i1, i3)Γ̂ (i2, i4).

The first can be written as

S2,1 =
∑
i1,i2

∑
i3,i4

B̂r,i3i4 Γ̂ (i3, i4)Qi1i2,i3i4


×B̂q,i1i2 Γ̂ (i1, i2)

=
∑
i1,i2

sum(B̂r ∗ Γ̂ ∗Qi1i2)B̂q,i1i2 Γ̂ (i1, i2)

= sum([sum(B̂r ∗ Γ̂ ∗Qi1i2)]1≤i1,i2≤n

∗B̂q ∗ Γ̂ ), (33)

where sum() denotes the sum function in R,

Γ̂ = [Γ̂ (i1, i2)]1≤i1,i2≤n,

and the ∗ operation for three matrices is defined simi-

larly as for two. The second can be written as

S2,2 =
∑
i1,i2

∑
i3,i4

B̂r,i3i4Qi1i2,i3i4 Γ̂ (i1, i3)Γ̂ (i2, i4)


×B̂q,i1i2

=
∑
i1,i2

Γ̂ (i1)′(B̂r ∗Qi1i2)Γ̂ (i2)B̂q,i1i2

= sum([Γ̂ (i1)′(B̂r ∗Qi1i2)Γ̂ (i2)]1≤i1,i2≤n

∗B̂q), (34)

where Γ̂ (i)′ denotes the ith row of Γ̂ .

With (32)–(34), efficient R codes can be written (see
Section A.1 of the Supplementary Material) to compute
the Spoquim for REML, S = S1 + 2tr(B̂qV̂ B̂rV̂ ) −
τ̂4
∑2

a=1 aS2,a [see (18), (16), (17)]. Spoquim for ML
codes can be developed similarly (see Appendix A.2 of
the Supplementary Material).

For large n, the idea of parallel computing can be
used. Note that each of the expressions (32)–(34) in-
volves a matrix whose indexes are 1 ≤ i1, i2 ≤ n. The
matrix can be partitioned into sub-matrices, and com-
putation of the sub-matrices can be assigned to differ-
ent computers. This strategy can be used to compute
Spoquim when n is large.

4 Real-data example

As a real-data example, we consider the Television School
and Family Smoking Prevention and Cessation Project
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(TVSFP; e.g., Hedeker et al. 1994). The original study
was designed to test independent and combined effects
of a school-based social-resistance curriculum and a television-
based program in terms of tobacco use prevention and
cessation. The subjects were seventh-grade students from
schools in Los Angeles (LA) and San Diego in the State
of California in the United States. The students were
pretested in January 1986 in an initial study. The same
students completed an immediate post-intervention ques-
tionnaire in April 1986, a one-year follow-up question-
naire (in April 1987), and a two-year follow-up (in April
1988). Schools were randomized to one of four study
conditions: (a) a social-resistance classroom curriculum
(CC); (b) a media (television) intervention (TV); (c)
a combination of CC and TV conditions; and (d) a
no-treatment control. A tobacco and health knowledge
scale (THKS) score was one of the primary study out-
come variables. The THKS consisted of seven question-
naire items used to assess student tobacco and health
knowledge. A student’s THKS score was defined as the
sum of the items that the student answered correctly.

The data is available at
www.hsph.harvard.edu/fitzmaur/ala/tvsfp.txt.

Histogram

sample size

F
re

q
u

e
n

c
y

0 5 10 15 20 25 30

0
1

0
2

0
3

0
4

0

Fig. 1 Histogram of Sample Sizes from Classes in LA Schools

Here, we consider part of the data involving m = 28
LA schools. The schools are considered as the clusters
associated with the random effects. There were n =
135 classes within those schools that participated in the
study, or a total of 1,600 student. The sample sizes from
those classes ranged from 1 to 28. A histogram of the

sample sizes is presented in Figure 1. For each of those
students, the THKS scores were available for the pretest
and immediate post-intervention studies. The response
variable that we consider, is the average mean difference
in THKS score, that is, the immediate post-intervention

score minus the pretest score for each sampled student,
averaged over the class.

Hedeker et al. (1994) considered fitting the TVSFP
data using normality-based maximum likelihood. Note
that the THKS score is integer-valued ranging from 0
to 7. Also, due to the relatively small sample size from
each class, the central limit theorem does not apply
to those averages. As a result, the response variable is
clearly not normal. Thus, we consider fitting a Non-
Gaussian LMM using REML and Spoquim to address
the non-normality issue. The LMM can be expressed as

yij = β0 + β1CCij + β2TVij + β3CCTVij

+αi + εij , (35)

i = 1, . . . , 28, j = 1, . . . , bi, where CCij ,TVij are in-
dicators on whether the class participated in the CC
program, or TV program, and CCTVij is the product
of CCij and TVij representing the interaction. Here
βk, k = 0, 1, 2, 3 are unknown fixed effects, αi is a school-
level random effect, and εij an additional error. The
random effects and errors are assumed to be indepen-

dent such that αi ∼ N(0, σ2), εij ∼ N(0, τ2), where
σ2, τ2 are unknown variances. Here, τ2 and γ = σ2/τ2

are considered as the variance components.

The REML estimates for the fixed effects are β̂0 =
0.269, β̂1 = 0.632, β̂2 = 0.050 and β̂3 = −0.105. The
standard errors for the fixed-effect estimates are ob-

tained from the standard outputs after fitting the REML
with R, namely, s.e.(β̂0) = 0.038, s.e.(β̂1) = 0.054,
s.e.(β̂2) = 0.054 and s.e.(β̂3) = 0.078. Thus, one may
interpret the result as that the intercept and CC indi-

cator are significant, while the TV indicator and CCTV
interaction are not significant (say, at 5% level of sig-
nificance).

Furthermore, the REML estimates of the variance
components are τ̂2 = 0.050 and γ̂ = 12.610. Due to the
non-normality of the data, the normality-based Fisher
information matrix may not be appropriate to be used
to obtain the standard errors (see Section 1). Therefore,
we compute the Spoquim using the R code that we have
developed. This leads to the following results (see the
end of Section 2.1):

Î1 =

(
1.494× 107 42.756

42.756 0.037

)
,

Î2 =

(
26040.534 2.193

2.193 0.008

)
,

Σ̂R = Î−12 Î1Î
−1
2 =

(
0.023 −6.107
−6.107 2180.161

)
.

It follows that the standard errors for τ̂2 and γ̂ are 0.152
and 46.692, respectively.

A main purpose of this real-data example is to illus-
trate a situation where it may not be appropriate to use
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the normality-based method to compute the standard
errors (s.e.) associated with the variance component es-
timates; the Spoquim method is more appropriate to
use. As noted earlier, the data are clearly not normal;
therefore, the normality-based s.e. is expected to be less
accurate than the Spoquim s.e. (Jiang 2005; also see
our additional result in Section 3.2), even though the
normality-based REML estimators may still be appro-
priate to use as point estimators (Jiang 1996, 1997).
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