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Abstract: The mean squared prediction error (MSPE) has been used as an impor-
tant measure of uncertainty in small area estimation. It is desirable to produce
a second-order unbiased MSPE estimator, that is, the bias of the estimator is
o(m™1), where m is the total number of small areas for which data are available.
The task is difficult, however, especially if one needs to take into consideration
that an MSPE estimator needs to be positive, or at least nonnegative. In fact,
very few MSPE estimators have the property of being both second-order unbi-
ased and guaranteed positive. We consider an alternative, easier approach of
estimating the logarithm of the MSPE (log-MSPE), which avoids the issue of
positivity. A second-order unbiased estimator of the log-MSPE is derived using
the Prasad-Rao linearization method. Empirical studies demonstrate superiority
of the proposed log-MSPE estimator over a naive log-MSPE estimator as well as

an existing method known as McJack. A real-data example is considered.
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1. Introduction

The mean squared prediction error (MSPE) has been an important, and
popular, measure of uncertainty in small area estimation (SAE; e.g., Rao
and Molina 2015) ever since the seminal paper of Prasad and Rao (1990).
It is desirable to produce a second-order unbiased estimator of the MSPE,
that is, the bias of the MSPE estimator is o(m™'), where m is the total
number of small areas, for which data are available. See Liu, Ma and Jiang
(2022a, b) for some recent advances. The mission is complicated, however,
especially if one needs to take into account another desirable property of
an MSPE estimator, that is, an MSPE estimator needs to be positive, or at
least nonnegative. In fact, with very few exceptions (Prasad and Rao 1990,
Chen and Lahiri 2011), all of the existing second-order unbiased MSPE
estimators do not possess the double-property of being both second-order
unbiased and guaranteed positive; see Jiang, Lahiri and Nguyen (2018, p.
408) for detailed discussion.

As noted by the latter authors, typically, it is fairly easy to obtain a pos-
itive MSPE estimator that is first-order unbiased. The complication arises

when one tries to bias-correct the first-order unbiased MSPE estimator to



make it second-order unbiased. This is because the resulting second-order
unbiased MSPE estimator is no longer guaranteed positive. To deal with
the latter drawback, one typically modify the value of the MSPE estimator
when it is negative, for example, by truncating the estimator at zero, but
by doing so it destroys the second-order unbiasedness. Jiang et al. (2018)
used Hall and Maiti (2006) as an example to illustrate this dilemma. In-
tuitively, this may be compared an effort of trying to cover two ants, both
moving fast in random directions, with two fingers of the same hand, which
is difficult; however, the task is much easier with one finger covering just
one ant, no matter how fast and randomly the latter moves.

Jiang et al. (2018) further proposed an alternative to “make life easier”
by estimating the logarithm of the MSPE (log-MSPE), instead of the MSPE
itself. They noted a number of advantages of targeting the log-MSPE,
including the latter being a simple, one-to-one transformation of the MSPE
that one can easily convert a log-MSPE estimator to an MSPE estimator
by taking the exponential, that reporting the log-MSPE results is often
space-saving, some advantage in hypothesis testing, a linear association
between the logarithms of MSPE and the square root of MSPE and, more
importantly, that one does not need to worry about the issue of positivity,

because the exponential of a log-MSPE estimator is always positive. Jiang



et al. (2018) further proposed a Monte-Carlo jackknife method of estimating
the log-MSPE, called McJack. The authors showed that McJack produces
a second-order unbiased estimator of the log-MSPE.

In the SAE literature, there are two standard methods of producing a
second-order unbiased MSPE estimator, namely, the Prasad-Rao lineariza-
tion method (Prasad and Rao 1990) and resampling method (e.g., Jiang
et al. 2002, Hall and Maiti 2006); also see Rao and Molica (2015). The
McJack belongs to the resampling methods. The main objective of this
paper is to develop a class of second-order unbiased estimators of the log-
MSPE using the linearization method, and demonstrate its advantage over
the existing methods.

The method is described, in general, in Section 2. In Section 3 we
consider a special case of estimating the log-MSPE of the empirical best
predictor (EBP) based on generalized linear mixed models (GLMM,; e.g.,
Jiang and Nguyen 2021). Some simulation results are presented in Section 4.
A real-data example is discussed in Section 5. A summary and concluding

remark are offered in Section 6.



2. Second-order unbiased log-MSPE estimator

Let 6 denote a mixed effect of interest, which may be a small area mean,
and 0 a predictor of #. For example, 0 may be the empirical best linear
unbiased predictor (EBLUP; e.g., Rao and Molina 2015), or observed best

predictor (OBP; Jiang, Nguyen and Rao 2011). Define the MSPE of 6 as
MSPE = MSPE() = E(6 — 6)*. (2.1)

Let hm be an estimator of the MSPE that possesses the below properties:
(i) MSPE is positive with probability one;

(ii) MSPE is at least first-order unbiased; that is, E(l\m — MSPE) =
O(m™1); and

(iii) MSPE — MSPE = Op(m~"/2)

(see, e.g., Jiang 2010, sec. 3.4 for the definition of Op and also op). More

specifically, suppose that we have the following expressions:

MSPE = a(¢) + o(1), (2.2)
E(MSPE — MSPE) = m~'b(¢) + o(m™), (2.3)
E(MSPE — MSPE)? = m~le(¢) + o(m™), (2.4)

where a(-),b(-),c(-) are continuous, which may depend on m, but a(v),

b(v), c(¢) are bounded and a(v)) has a positive lower bound for the 1)



that satisfies (2.2)—(2.4). Note that (2.4) is a consequences of (iii) under

regularity conditions, By Taylor series expansion, we have

MSPE — MSPE  (MSPE — MSPE)?
MSPE 2MSPE?

+Op (m*3/2) .

log(MSPE) — log(MSPE) =

Thus, under regularity conditions, it can be shown that

2a(¥)b(v) — c(¥)
2ma? (1)

E{log(MSPE) — log(MSPE)} = +fo(m™).  (2.5)

Let 1& be a consistent estimator of ). Then, under regularity conditions,

we have
2a(0)b(¥) — () _ . [ 2a(]
2ma*(1)) 2ma2
1a )b(w) c(¥)  2a()b(y) — c(t)
m 2a2(¢) 2a%(1)
— {2“ Ib(W) — 2(¥) }—l—o(m_l), (2.6)
2a2(¢
where b()) = b(¢))/m and &(v c(y)/m. Note that {2a(¢)b(v)) —

c(1)}/2ma?(v) is non-random. Combining (2.5) and (2.6), we have

20()8() — ()
20(9)

E{log(MSPE) — log(MSPE)} = E { } +o(m™Y). (2.7)

Thus, if we define a bias-corrected log-MSPE estimator as

2a()b() — &(¢))

log(MSPE) = log(MSPE) — )
a

, (2.8)



then, by (2.7), we have
E{log(MSPE) — log(MSPE)} = o(m™); (2.9)

thus, ﬂ)?g(MSPE) is a second-order unbiased estimator of log(MSPE).

The derivation above is quite general, which, depending on the speci-
fications of I\Z_S\ﬁ, and a(-),b(-),(+), leads to a class of second-order un-
biased estimators of the log-MSPE. Note that, however, the exponential of
a second-order unbiased log-MSPE estimator is not necessarily a second-
order unbiased MSPE estimator. This is because the back-transformation
(exponential) results in a bias of O(m™!).

Next, we demonstrate the method by considering a special case.

3. EBP based on GLMM

In the context of SAE with discrete or categorical responses, Jiang (2003)
proposed an EBP method based on a GLMM, which assumes that, con-
ditional on random effect vectors, v; = (v;j)1<j<n;, 1 < @ < m, responses

Yij, 1 < j <mn,; are independent with conditional pmf, or pdf, in the form of

f(yijlvi) = exp { (%) (Wi — (&) + <yz'j, wi;]) } :

where 7(+), s(+, -) are functions associated with the exponential family (Mec-

Cullagh and Nelder 1989, ch. 2); ¢ is a dispersion parameter, which in



some cases is known; w;; is a weight such that w;; = 1 for ungrouped data,
w;; = l;; for grouped data if the average is considered as response (I;; is the
group size), and w;; = ligl if the sum of individual responses is considered.
Furthermore, ¢;; is associated with a linear predictor, n; = ;8 + zj;v;
through a link function, g(&;) = n;j, or &; = h(n;;), where h = g~'. Here,
Tij = (@ijk)1<k<p and 2;; = (2ijx)1<k<r are known vectors, and [ is a vector
of regression coefficients. In case of a canonical link, one has &; = n;;. Fi-
nally, vy, ..., v, are independent with density f,(-), where v is a vector of
variance components. For simplicity, we focus on cases where ¢ is known.
This includes important cases such as the binomial and Poisson families.
Let v = (6',V').

Consider prediction a possibly nonlinear mixed effect in the form of

¢ = ¢Bvs), (3.10)

where S is a subset of {1,...,m}, and vs = (v;)ics. Let ys = (¥;)ics, where
Vi = (Yij)i<j<n:; and ys— = (¥s)igs. According to Jiang (2003), the best

predictor (BP) of ¢ in the sense of minimum MSPE;, is given by

J ¢(B,vs) exp(07" i 5:(8,v0)) Tics folwi) [Lics dovs
[Lics | exp(étsi(B8,v)) fo(v)dv

u(ys, ¥), (3.11)

where s;(8,v) = > 7L, wijlyih(x; 8+ 2;v) —r(h(z}; B+ z;;v))]. The integral



involved in (3.11) may be evaluated via numerical integration or Monte-
Carlo methods. As for the unknown parameters, v, involved in (3.11),
Jiang (2003) suggests to use the method of moments (MoM) estimators,
which are consistent (Jiang 1998). Let 1& denote the MoM estimator of 1.

If one replaces the ¢ in (3.11) by 7,&, one gets the empirical BP, or EBP,

~ ~

¢ = ulys, ). (3.12)

The MSPE of the EBP is of primary concern. Jiang (2003) derived
a second-order unbiased MSPE estimator, which is not guaranteed posi-
tive. We now apply the general result of Section 2 to derive a second-order

unbiased log-MSPE estimator. Suppose that
B —4)( — ) =m V() + o(m™). (3.13)
Then, according to Jiang (2003), one has the following expression:
MSPE = MSPE(() = d(¢) + m™e(y)) 4+ o(m™), (3.14)

where d(v)) = MSPE({) = E(¢?)—E({?), using the fact that ¢ = E((|y), and
e(v) = E{(Ou/oy")V (¢)(0u/0v)}. We now obtain a further expression for

~

V(1). According to Jiang (1998), ¢ is a solution to the estimating equation

M) = M, (3.15)



where M = (M},)1<k<q, with ¢ = dim(¢)), is a vector of normalized statis-

~

tics in the sense that, when 9 is the true parameter vector, one has E(M) =
O(1) and Var(NT) = O(m=); M() = [My()n, with My(t) = Ey (L),
It is known that, under regularity conditions, 1/; is root-m consistent (Jiang
1998), that is, ) —¢) = Op(m~"/2). Write M = M (3)) when ¢ is the true pa-
rameter vector. Then, by Taylor series expansion at ¢, the true parameter
vector, one has, under regularity conditions,
M=M@) =M+ A@Y) — ) + Op(m™Y), (3.16)
where A = 0M/0y'. (3.16) implies the following asymptotic expansion
b —1p =AY (M — M)+ Op(m™), (3.17)
which results in, under regularity conditions, the following approximation:
B =) —v) = ATE(M — M)(M = MY (A7) +o(m™). (3.18)
Note that E(M—M)(M—M)" = Var(M). This leads to a further expression:
V(y) = mA™ Var(M)(A™"Y. (3.19)

Thus, combining (3.14) and (3.19), we have

MSPE = d(v) + b3(¥) + o(m™") = d(¥) + o(1), (3.20)



where bs(¢) = E{(du/0y') A~ Var(M)(A1) (du/dp)}. In fact, by()) =
O(m™1). Tt follows that (2.2) holds with a(¢)) = d(v).
Now define MSPE = d(1). By the definition of d(v), condition (i) of

Section 2 is satisfied (assuming non-singularity). Also, by (3.20), we have
E(MSPE — MSPE) = E{d()) — d(¢))} — b3(¢)) + o(m™"). (3.21)

Furthermore, again by Taylor series expansion at the true ¢, and (3.17), it

can be shown that

U) = d) = S50 =)+ ST = MY A (T = )
+op(m™1). (3.22)

We can expand (3.17) to obtain a further expansion (see the supplement):

+op(m™), (3.23)

where By = 90*M;/0vydy’. Combining (3.22) and (3.23), we have, under
regularity conditions, that

b1(¥h) — ba(¥)

5 +o(m™), (3.24)

E{d() —d(¥)} =

where by (1) = E{(M — M) (A=Y (8%d/8ydy') A=Y (M — M)} and

ba()) = (9d/0W) AT E(M — M) (A~ B A™H(M — M))1<i<q-



Combining (3.21), (3.24), it follows that (2.3) holds with

- b1(¥) — ba(¥)

) = R )

Finally, by (3.20), (3.22), (3.23), it can be shown that

MSPE — MSPE =
S S 55

ATY(M — M) + Op(m™). (3.25)

(3.25) implies that, under regularity conditions, (2.4) holds with

ad
o

ad

A War(M)(A™) 7

c(y) =

—_—

In conclusion, the general result of Section 2 applies with MSPE = d(¢)),
a(y) = d(v), b(x)) and &(¢) specified above and below (3.25), respectively.

The following expressions are computationally more convenient:

bi(y) = tr ((Al)' az;i/Al\/ar(M)), (3.26)
bo(eh) = ;Z,A—l [tr ((A‘l)’BkA‘l\/ar(M)ﬂ e (B2D)
bs(yp) = tr <A—1Var(M)(A—1)’E (g—zgz,», (3.28)

where the expectation inside the trace is with respect to the yg in (3.11).
Computational /practical notes:
1. Although, in theory, d(¢)) = MSPE(() should be positive for any
1, depending on the method used to evaluate it, the value of d(¢) can

occasionally be negative. For example, in the next section we use numerical



integration to evaluate d(¢)). Then, due to the integral approximations,
d(zﬂ) can occasionally take negative values. When the value of d(?ﬁ) is
negative, we suggest to evaluate it via a Monte-Carlo method as in Jiang
et al. (2018). The latter is computationally more time-consuming than
numerical integration, but is guaranteed to produce a positive number.

2. Also, the matrix A can occasionally be singular. In this case, we
suggest to use the Moore-Penrose generalized inverse of A in place of A7L.

3. In some cases there are known bounds for the value of MSPE. Such
bounds should be used, in practice, to improve the precision of the log-
MSPE estimate. For example, in the case considered in the next section,
the MSPE is bounded by 1, hence the log-MSPE is bounded by 0. Thus,

the value of the log-MSPE estimate is taken as 0 (hence the MSPE estimate

equal to 1) in case it is greater than 0.

4. Example and simulation

Consider a case of mixed logistic model for small area estimation (e.g., Jiang
and Lahiri 2001). Suppose that conditional on p;, v;;’s are independent
Bernoulli with P(y;; = 1|p;)) = pi, it = 1,--- ,m, j = 1,--- [ k;. Also, we
have logit(p;) = log(pi/(1 — p;)) = p + v;, where p is an known parameter.

Furthermore, vy, ..., v,, are independent random effects. Two distributions



of the random effects are considered: (a) v; ~ N(0,0?%), where o2 is an
unknown variance; and (b) v; ~ LP(0), where LP (o) denotes the Laplace
distribution with pdf f(z|o) = (20) te*/7 —00 < z < 0.

For simplicity, let k;, = k > 1,1 < ¢ < m. It is convenient to use the
expression v; = o§;, where & ~ N(0,1) in case (a), and & ~ LP(1) in case
(b). Consider prediction of the conditional probability, p; = h(u + 0&;),

where h(z) =€”/(1 + e*). According to Jiang (2003), the BP of p; is

- e BAep((e + 10t = (k4 1) log(1 + ¢#+%))}

' E{exp(y;.0€ — klog(1 + ertot))}

where ¢ = (p,0), y;. = Z?:l Yi;, and the expectations are with respect
to &, which is N(0,1) in case (a) and LP(1) in case (b). The EBP, p;, is
p; with 1) replaced by zﬂ, the MoM estimator. The latter is the solution
to (3.15) with ¢ = 2, M; = (mk)~'y., where y. = 3.7, Z?Zl Yij, My =
{mk(k—1)} " 30 (47 — yi), and M (¢) = E{h*(u+ 0€)},5 = 1,2 (Jiang

1998). We have the following expression (see the supplementary material):

d(v) = E{h* (1 + 0€)}
— Zuz(l, Y) (?)E {exp (Il + 0€) — klog (1 + €"*7%)) }, (4.30)

=0

where u(l, 1) is u(y;., ¥) [see (4.29)] with y;. = L.
For notation simplicity, write h = h(u + 0&) when 1 is the true pa-

rameter vector and £ is as above. Similarly, we write A’ = h'(u + 0¢),



" = h'(n+ c€), and g = (k')* + hh". Tt is easy to derive the following:

. E(r)  E(WE) B E(R")  E(h"E)
2E(hh!) 2E(hKE) | E(h"¢) E(h"€?) ,
E(g)  E(g€)

B2 == 2
E(g¢) E(¢¢?)

~

Expressions of the elements of Var(M) are given in Section A.2.2 of the
supplement; those of the partial derivatives involved in (3.26)—(3.28) are

given in Section A.2.3 of the supplement. Note that, in this case, we have

ou Ou "k Ou Ou
E(Z2220 ) = talidied
(aw aw') ; (l) o 0

where s(a, b, w) = exp(aw — blog(1+€™)). All of the expectations involved

E{s(l,k, p+08)},
(L)

were evaluated via numerical integration using the integrate() function in
R (lower bound = —5; upper bound = 5). Also note that, in this case,
the MSPE is naturally bounded by 1, hence the log-MSPE bounded by 0.
Thus, the value of the log-MSPE estimate is taken as 0 in case it is positive
(see Note 3 at the end of the last section).

Simulation studies are carried out to evaluate performance of the bias-
corrected log-MSPE estimator, (2.8). The latter is compared with a naive
log-MSPE estimator, which is simply log(M), the first term on the

right side of (2.8). Consider prediction of p; via the EBP. We consider



m = 25,50,100 and k; = 4,1 < i < m. The true parameters are = —1.0

and ¢ = 2.0. The Monte-Carlo sample size used to evaluate d(1)), when it

is occasionally negative (see Note 1 at the end Section 3), is Ny = 1,000.
There performance measures are considered:

(1) Bias, E(log-MSPE estimator)—log-MSPE;

(2) Percentage relative bias (%RB), which is 100 x (Bias/|log-MSPE|); and

(3) Coefficient of variation (CV), which is the standard deviation (s.d.) of

the log-MSPE estimator divided by the absolute value of the mean of the

log-MSPE estimator.

Here, the mean and s.d. are the simulated mean and s.d., respectively, and

the (true) MSPE is evaluated via the simulation runs.

Results, based on N, = 2,000 simulation runs, are presented in Table
1. The bias-corrected estimator, l/ng(MSPE), appears to be a clear winner,
especially in terms of %RB, in both case (a) and case (b).

Next, we compare our log-MSPE estimator with the McJack estimator
of Jiang et al. (2018). The latter is also intended to estimate the log-MSPE.
Because McJack is computationally intensive, and the computational bur-
den increases quickly as m increases, the comparison is limited to the case of

m = 25,k = 4. In addition to the above performance measures, we also con-

sider the average computing time (ACT; in seconds) per simulation run. As



Table 1: Comparison with Naive log-MSPE estimator

Case Sample Simulated log(higPTE) @(MSPE)
Size log-MSPE Bias %RB CV Bias %RB CV
(a) m=25k=4 -3.54 -0.34 -9.64 050 -0.03 -0.87 0.08
m=>50,k=4 -3.63 -0.10 -2.70 0.02 -0.02 -0.46 0.02

m = 100,k =4 -3.68 -0.03 -0.90 0.02 0.00 0.12 0.02

(b) m=25,k=4 -3.61 -0.22 -6.09 0.19 -0.02 -0.46 0.07
m =050,k =4 -3.66 -0.10 -2.76 0.02 -0.03 -0.86 0.03

m = 100,k =4 -3.71 -0.03 -0.74 0.02 0.01 0.14 0.02

MecJack depends on the Monte-Carlo (MC) sample size used in evaluating
expectations, we consider two difference MC sample sizes, K. = 50, 100.
Due to the computational intensity of McJack, here we set Ngy, = 500 (in-
stead of Ngm = 2,000, as in the previous case). The results are reported in
Table 2, in which the results for l?)?@;(MSPE), with the exception of ACT,
are copied from Table 1.

It is seen that lo/Tg(MSPE) does better in terms of both %RB and CV,
although the results are comparable. The biggest difference is in terms of

computational efficiency, in which @(MSPE) is doing much better. For



Table 2: Comparison with McJack

Case Method Bias %RB CV ACT
(a)  log(MSPE) 0.03 -0.87 0.08 0.03

McJack (Kpe = 50) | -0.07 -1.97 0.14 13.14

McJack (K. = 100) | -0.05 -1.32 0.11 25.71

(b)  log(MSPE) -0.02 -046 0.07 0.02
McJack (Kme = 50) |-0.04 -1.09 0.14  9.69

MecJack (K, = 100) | -0.03 -0.73 0.11 19.57

example, in case (a), the ACT of McJack is 438 times that of lo/\g(MSPE)
when K. = 50, and 857 times that of @(MSPE) when Kp,. = 100. Keep
in mind that, due to the computational intensity, here we only consider the
case of m = 25. When m is larger, the computing time needed for Mc-
Jack may become unbearable, especially if one needs results quickly. This
leaves lo/\g(MSPE) as the only feasible method that is capable in producing

a second-order unbiased log-MSPE estimator when m is large.

5. A real-data example

Brooks et al. (1997) presented six datasets recording fetal mortality in

mouse litters. As an application, we consider the HS2 dataset from Table 4



of their paper, which reports the number of dead implants in litters of mice
from untreated experimental animals. Jiang and Zhang (2001) analyzed
the data based on a GLMM (also see Jiang and Nguyen 2021, sec. 4.4.1).
Let y;j, @ = 1,...,m, j = 1,...,k; be binary responses such that y;; = 1
if the jth implant in the ith litter is dead, and y;; = 0 otherwise. Here,
m = 1,328 is the total number of litters. The y;;s are assumed to satisty
the same mixed logistic model with normally distributed random effects, as
described at the beginning of Section 4. We have also considered the mixed
logistic model with Laplacian random effects, again as described in Section
4. The results are very similar and therefore omitted.

Note that the data are unbalanced in this case (i.e., the k;s are not
equal). Thus, the definition of M,, s = 1,2 are different than those in the
previous section. Specifically, we have M, = k7'y., where k. = > | k;, and
My = {37 ki(ki — 1)} 327 (2 — i) According to Jiang and Nguyen
(2021, sec. 4.4.1), the MoM estimates are i = —2.276 and ¢ = 0.644.
Expression of Var(M ) in this case, as well as additional expressions in terms
of the current data structure, are given in Section A.3 of the supplement.

Once again, we are interested in predicting the conditional probability,
pi = h(p+0&;), for all m = 1,328 litters. The values of the EBP, as well as

the corresponding log-MSPE estimates, only depend the values of i, 7, k;



and y;.. In this case, the McJack estimates are very computational intensity
to compute (m = 1,328 in this case!); see discussion in the last paragraph
of Section 4. On the other hand, it is fairly easy to obtain the log-MSPE
estimates using our method. As in the previous section, the EBP and
log-MSPE estimates are computed via numerical integration. The results,
including the EBP and corresponding square root of the MSPE (RMSPE)
estimate, obtained via simple transformation from the log-MSPE estimate,
are reported in Table 3. The table is constructed in a way similar to Table
4 of Brooks et al. (1997). The RMSPE is often used as a measure of
uncertainty in a way similar to the standard error in parameter estimation.

It is seen that the EBP decreases as k; increases, and increases as ;.
increases. While both trends can be shown theoretically, there are also
intuitive explanations. Recall the EBP predicts the conditional probability
that the implant is dead given the observed count, y;.. For example, take
a look at k; = 7. If y;. is 0, that is, no implant is dead, the predicted
probability death is 0.084. If y;,, = 1, that is, one implant is dead, one
would expect the conditional probability of death to increase; this is indeed
the case as the predicted probability of death is now 0.112. Now let y;. be
fixed, say, y;, = 1. As k; increases, one expects more death; therefore, the

probability of exactly one death should decrease.



Table 3: Analysis of Mice Mortality Data: For Each # of Implants, 1st Row Is

Observed # of Cases; 2nd Row Is RMSPE (Column RMSPE) and EBPs (Columns 0-9)

# of implants (k;)

# of dead implants (y;.)

RMSPE 0 1 2 3 4 5 6 7 8 9
1 15 1
0.062 0.103 0.144
2 6 1 2
0.061 0.099 0.137 0.184
3 6 6
0.060 0.096 0.131
4 7 2 3 2
0.059 0.092 0.125 0.166 0.27
5 16 9 3 3 1
0.057 0.089 0.121 0.159 0.203 0.255
6 57 38 17 2 2
0.056 0.087 0.116 0.152 0.194 0.241
7 119 81 45 6 1 1
0.056 0.084 0.112 0.146 0.185 0.23 0.385
8 173 118 57 16 3 1
0.055 0.082 0.109 0.141 0.178 0.219 0.417
9 136 103 50 13 6 1 1
0.054 0.08 0.106 0.136 0.171 0.210 0.252 0.298
10 54 51 32 5 1 1
0.053 0.078 0.102 0.131 0.164 0.201 0.425
11 13 15 12 3 1
0.052 0.076 0.100 0.127 0.159 0.194
12 4 3 1
0.051 0.097 0.123 0.153
13 1 1
0.051 0.120 0.290




As for RMSPE, first note that it only depends on k;. This is reasonable
because the MSPE is unconditional, that is, it does not depend on the
value of y;.. In fact, under the assumed model, y;.,7 = 1,...,m are i.i.d.,
whose distribution only depends on k; and . It is also observed that the
RMSPE decreases as k; increases. This also makes sense because k; is part
of the sample sizes. As k; increases, more information is available for better

prediction; as a result, the MSPE should decrease.

6. Discussion and concluding remarks

We have derived a linearization-based method for producing a second-order
unbiased estimator of the log-MSPE of a predictor of a mixed effect of in-
terest. We apply the method to the special case of predicting a (possibly)
non-linear mixed effect via EBP under a GLMM. We demonstrate the su-
periority of our method over a naive predictor and the McJack, especially
in terms of the computational efficiency over the latter. We use a real-data
example to illustrate the practical relevance of our method.

The computational disadvantage of McJack makes it difficult to eval-
uate its performance via large-scale simulation studies, in which a large
number of simulation runs need to be carried out in order to produce accu-

rate results, even when m is moderately large. it may also be inconvenient



in practice when measure-of-uncertainty results need to be produced in a
timely manner. Our proposed log-MSPE estimator does not have any of
these issues, and it is as accurate as McJack, if not more accurate.

Having said that, the current approach is similar to the Prasad-Rao
linearization method in estimating the MSPE (Prasad and Rao 1990); thus,
it does not result in any simplification in terms of the analytic derivations,
compared to the Prasad-Rao method. There is, however, a potentially
middle ground between the analytically tedious Prasad-Rao method and
the computationally intensive McJack method. Recently, Jiang and Torabi
(2020) proposed a Sumca method for estimating the MSPE of a complex
predictor. The method may be viewed as a hybrid of the linearization and
resampling methods. Namely, it uses the linearization method to obtain a
leading term of the MSPE estimator, and a Monte-Carlo method to obtain a
bias-correction to achieve the second-order unbiasedness. The linearization
is (much) simpler to derive compared to the Prasad-Rao (because one does
not need to achieve the second-order unbiasedness for the leading term),
and the Monte-Carlo bias-correction is computationally much faster than
McJack or double bootstrap (Hall & Maiti 2006). In our future work we
shall explore extending the Sumca method to the log-MSPE estimation.

As mentioned in Sectionl, most existing second-order unbiased MSPE



estimators may take negative values. In particular, Liu et al. (2022b)
proposed a modified Prasad-Rao (PR) estimator for estimating the MSPE
of the OBP (Jiang et al. 2011). Empirical studies suggest that the modified
PR estimator does not take negative values; however, so far there is no proof
showing that this estimator is guaranteed positive. Furthermore, we have
explored a recently proposed Sumca method (Jiang and Torabi 2020) in
our simulation study. It was found that Sumca did not take any negative
value in our case; however, it was found elsewhere that Sumca, too, can
take negative values (Liu et al. 2022), but the probability that the Sumca
estimator takes a negative value is very lower.

In our opinion (and this is also suggested by Jiang et al. 2018), log-
MSPE is more convenient to estimate than MSPE in a way similar to that
the log-likelihood is often easier to handle than the likelihood. Once a log-
MSPE estimate is obtained, it can be easily converted to a MSPE estimate,
which is guaranteed positive—one never has to worry that the MSPE es-
timate is negative; hence, for example, its square root cannot be taken,
and used as a standard error of prediction. In particular, the practice of

log-MSPE estimation should be encouraged in SAE.
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