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Abstract
1.	 Image-based machine learning tools are an ascendant ‘big data’ research avenue. 

Citizen science platforms, like iNaturalist, and museum-led initiatives provide re-
searchers with an abundance of data and knowledge to extract. These include 
extraction of metadata, species identification, and phenomic data. Ecological and 
evolutionary biologists are increasingly using complex, multi-step processes on 
data. These processes often include machine learning techniques, often built by 
others, that are difficult to reuse by other members in a collaboration.

2.	 We present a conceptual workflow model for machine learning applications using 
image data to extract biological knowledge in the emerging field of imageomics. We 
derive an implementation of this conceptual workflow for a specific imageomics 
application that adheres to FAIR principles as a formal workflow definition that al-
lows fully automated and reproducible execution, and consists of reusable workflow 
components.

3.	 We outline technologies and best practices for creating an automated, reusable and 
modular workflow, and we show how they promote the reuse of machine learning 
models and their adaptation for new research questions. This conceptual workflow 
can be adapted: it can be semi-automated, contain different components than those 
presented here, or have parallel components for comparative studies.
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1  |  INTRODUC TION

Biological research increasingly leverages machine learning 
(ML) algorithms and methods (Greener et  al.,  2022; Mahmud 
et al., 2018, 2021; Tarca et al., 2007), with a focus on the grow-
ing number of biological image data resources [i.e. MorphoSource 
(Boyer et al., 2016), iDigBio (idigb​io.​org) and iNaturalist (inatu​ral-
ist.​org)]. Image data are ripe for applications of ML techniques, 
including neural networks (NN), to extract information such 
as metadata (Karnani et  al.,  2022; Leipzig et  al.,  2021; Pepper 
et al., 2021; Rinaldo et al., 2022; Stork et al., 2019), species clas-
sification (Schuettpelz et  al.,  2017; Wäldchen & Mäder,  2018; 
Wilf et al., 2016) and presence of traits (Alfaro et al., 2019; Lürig 
et al., 2021; MacLeod, 2017; Weeks et al., 2016). Although ML of-
fers powerful tools for automatic object detection and subsequent 
analysis of biological image data, no single ML technique provides 
a complete solution. As a result, the need to combine various tech-
niques to solve complex problems is inevitable.

Similar to the need to create complex, computational workflows 
for genomic studies generating large datasets, complex workflows 
are also required for computationally intensive research that uses 
ML to extract information from image data. We draw on lessons from 
the genomic world (Ahmed et al., 2021; Köster & Rahmann, 2012; 
Mölder et al., 2021; Papageorgiou et al., 2018) and from best prac-
tices for creating workflows (Goble et al., 2020; Leipzig et al., 2021; 
Shade & Teal, 2015) and apply them to the emerging field of ‘ima-
geomics’. Imageomics harnesses revolutions in artificial intelligence 
and ML—as well as the rapidly growing collections of biological 
image data—to accelerate biological knowledge of organisms from 
images (https://​image​omics.​org/​about​).

Creating FAIR (findable, accessible, interoperable, reusable), re-
producible, modular, and automated workflows empowers domain 
scientists, the users of technologies to answer a research question, 
to use ML tools for their research. The need for automated and re-
producible workflows that string together technologies is not unique, 
and has been previously discussed in biology (e.g. Brack et al., 2022; 
Goble et  al.,  2020; Haston et  al.,  2012; Roach et  al.,  2022; Shade 
& Teal,  2015). Although workflow tools geared for biologists who 
need to combine ML models on image data have been developed 
(Lürig,  2022; Porto & Voje,  2020; Weeks et  al.,  2022), biologist-
oriented best practice guidelines for materializing an automated, 

FAIR, and reproducible imageomics workflow are, to the best of our 
knowledge, missing. Combining techniques and tools as FAIR com-
ponents of a reusable workflow help to avoid duplication, reduce 
user-error, facilitate the retention of metadata and attribution, and 
promote reproducibility through automation. Developing workflows 
depends on effective collaboration among a team that includes ML 
researchers, who often develop the ML algorithms used as compo-
nents in a workflow, and software engineers, who help create the 
tooling and workflows.

Here, we showcase a conceptual imageomics workflow 
(Figure  1). This conceptual workflow arose from a need from our 
interdisciplinary team to develop NNs for discovering phenotypic 
traits using structured biological knowledge. We recognized a need 
to converge on a central standardized, conceptual workflow that 
brings in data from shared resources, uses interoperable and porta-
ble components, and infrastructure to enable collaboration.

We implement the conceptual imageomics workflow in a spe-
cific case study (Figure  2). The application of the conceptual ima-
geomics workflow showcases how technologies and tools can be 
modularized, combined and automated as an application-specific 
imageomics workflow definition (i.e. a workflow that has defined 
rules and execution).We wanted these components interopera-
ble with different computing environments and reusable by other 
workflows (Brito et al., 2020; Roach et al., 2022), to be end-to-end 
automated for full reproducibility, and provide flexibility in how a 
domain scientist might configure and interact with workflow compo-
nents. We follow best practices for reproducible workflows from the 
field of computational biology (Brito et al., 2020; Roach et al., 2022; 
Sandve et  al.,  2013), for creating FAIR and Open Science compo-
nents for data, metadata, software, and ML models (Barker et  al., 
2022; Brito et al., 2020; Chue Hong et al., 2022; Goble et al., 2020; 
Jiménez et al., 2017; Miura & Nørrelykke, 2021; Roach et al., 2022; 
Sandve et  al., 2013; Wilkinson et  al., 2016), for image data repro-
ducibility (Miura & Nørrelykke, 2021), and for the modularization of 
tools (Brack et al., 2022; Nüst et al., 2020). While we built our case 
study to be reused internally by our collaborative team, teams im-
plementing the conceptual imageomics workflow may have different 
requirements for data openness and FAIR-ness. Our intention is for 
the conceptual workflow and the example of how to implement such 
a workflow using FAIR data principles to guide biological research 
communities using ML with image data.

4.	 We encourage researchers—both computer scientists and biologists—to build 
upon this conceptual workflow that combines machine learning tools on image 
data to answer novel scientific questions in their respective fields.

K E Y W O R D S
computational reproducibility, FAIR, image data, imageomics, machine learning, workflow 
automation
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2  |  MATERIAL S AND METHODS

2.1  |  Workflow

2.1.1  |  Conceptual imageomics workflow

The steps of a conceptual imageomics workflow (Figure 1) emphasizes 
findable and accessible components throughout. Each step (Figures 1 
and 2, row 1) calls a component. These steps are: (1) extracting a meta-
data list of image data items that can be from an archive (preferable) or 
a local folder, (2) filtering the image data using a script, (3) downloading 
selected image data, (4) implementing components such as ML mod-
els, and (5) analysing the outputs using a script. The workflow does not 
need to be linear: outputs may be results themselves and not always 
feed into the next step, and/or a workflow might branch such that ver-
sions of the tools or methods can be compared.

2.1.2  |  Case study: Application-specific imageomics 
workflow definition

The purpose of this case study is to apply the conceptual imageomics 
workflow to a biological problem, here, the extraction of traits from 

images (Figure 2). We built upon our previous work (Bakış et al., 2021; 
Jebbia et al., 2022; Karnani et al., 2022; Leipzig et al., 2021; Pepper 
et al., 2021), using image data from a specific group of fishes, the min-
nows (Family: Cyprinidae), incorporating previously created metadata 
extraction methods (Karnani et al., 2022; Leipzig et al., 2021; Pepper 
et al., 2021), the outputs of which would become the input to a seg-
mentation model to extract traits from image data. We chose simple 
traits to extract: trunk, head, eye, dorsal fin, caudal fin, anal fin, pelvic 
fin, and pectoral fin (e.g. Figures S1 and S2; README of Morphology-
analysis repository). The ML researchers who created the components 
kept the associated code and models in publicly available GitHub re-
positories. However, as these personnel moved on from the project, 
the biologists (i.e. domain scientists) were unable to use or adapt the 
tools themselves, rendering the models inaccessible and not reusable. 
We recognized that integrating these computational tools into a work-
flow would enable the domain scientists, including new team mem-
bers, to work independently and creatively.

2.2  |  Repositories

We use repositories to ensure that the data and components are 
accessible and findable to our team (Figure  2, row 2). We used 

F I G U R E  1  Conceptual imageomics workflow. The general steps (row 1; grey ovals) are: (1) acquiring or downloading image metadata, 
(2) filtering metadata (i.e. data wrangling), (3) downloading image data, (4) applying ML models, (5) analysing outputs from the models. 
Components (row 2), which are scripts (pink) and tools (teal) are required to perform these steps. Each step produces an output (row 3; 
rectangles) that is itself read by further downstream steps or saved as a result. Together, these steps, components and tools can be called 
using a WM.
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F I G U R E  2  Application-specific imageomics workflow definition. The application-specific imageomics workflow for the case study 
includes steps from Figure 1 (row 1). These translate to rules for a WM (row 4; yellow) that call different components directly from external 
repositories (row 2; light teal), components (row 3) that are derived from containers (dark teal), and scripts (pink) from a researcher's 
repository. The outputs (row 5) may feed into the subsequent rules until the final output files.
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the following repositories: Fish-AIR for image metadata and data, 
Zenodo for archiving the fish image metadata, Hugging Face for 
the MLmodels, and GitHub for the codebases, which include work-
flow definitions (see Section 2.3), and a registry for the containers 
providing the runnable workflow components (Table  1). GitHub 
is widely used for hosting Git-based version control repositories, 
including for collaborative research projects. Further, it is an ap-
plication that many in the team, including the domain scientists, 
were familiar with and comfortable using. Likewise, we adopted 
Hugging Face as the ML model repository because it is widely 
used in the ML community, supports version control, has seamless 
integration with Git-based code versioning, and has rich metadata 

in the form of ‘model cards’. Like GitHub does for code sharing, 
these features enable FAIR ML model sharing, such as making it 
easy for researchers to find, pull and reuse the models. For perma-
nently archiving version-specific snapshots, we used Zenodo for 
GitHub repositories and Hugging Face's built-in capability to ob-
tain DataCite DOIs for the ML models. For future reproducibility, 
we deposited relevant parts of the Fish-AIR metadata download 
in a Zenodo archive (Balk, Tabarin, et al., 2023), which is common 
practice among the biological (domain science) community. All 
resources, including repository URLs and permanent identifiers, 
are listed in Table 1. While there are many options for where and 
how to archive data, we chose these based on what our team was 

TA B L E  1  Resources used in this paper (table format adapted from Cell Press Key Resources Table).

Resource Source Identifier Citation

Deposited data

Burress et al. 2017 
supplementary 
information

Burress et al. (2017) https://​doi.​org/​10.​1111/​jeb.​13024​ Burress et al. (2017)

Metadata used and data 
generated

This paper https://​doi.​org/​10.​5281/​zenodo.​10629836 Balk, Tabarin, 
et al. (2023)

Software and algorithms

Application-specific 
imageomics Workflow: 
Minnow_Segmented_
Traits

This paper https://​zenodo.​org/​recor​ds/​8205729
Repository: https://​github.​com/​hdr-​bgnn/​Minnow_​

Segme​nted_​Traits/​tree/​v1.0.​2

Balk, Bradley, 
et al. (2023)

Sub-workflow: BGNN Core 
Workflow

This paper https://​zenodo.​org/​recor​ds/​8184608
Repository: https://​github.​com/​hdr-​bgnn/​BGNN_​Core_​

Workf​low/​tree/1.​0.​1

Tabarin, Bradley, 
Balk, and 
Lapp (2023a)

Metadata generation: 
drexel_metadata

Leipzig et al. (2021), 
Pepper et al. (2021), 
Karnani et al. (2022)

https://​huggi​ngface.​co/​image​omics/​​Drexel-​metad​ata-​
gener​ator

Container: https://​ghcr.​io/​hdr-​bgnn/​drexel_​metad​
ata:0.​6

Repository: https://​github.​com/​hdr-​bgnn/​drexel_​metad​
ata/​tree/0.​6

Karnani et al. (2023)

Reformat metadata: drexel_
metadata_reformatter

This paper https://​doi.​org/​10.​5281/​zenodo.​7987576
Container: https://​ghcr.​io/​hdr-​bgnn/​drexel_​metad​ata_​

forma​tter:​v0.0.​1
Repository: https://​github.​com/​hdr-​bgnn/​drexel_​metad​

ata_​forma​tter/​tree/​v0.0.​1

Tabarin, Bradley, and 
Lapp (2023a)

Crop image: Crop_Image This paper https://​doi.​org/​10.​5281/​zenodo.​7987485
Container: https://​ghcr.​io/​hdr-​bgnn/​crop_​image:0.​0.​4
Repository: https://​github.​com/​hdr-​bgnn/​Crop_​image/​​

tree/​v0.0.​4

Tabarin, Bradley, and 
Lapp (2023b)

Segmentation: 
BGNN-trait-segmentation

This paper https://​doi.​org/​10.​57967/​​hf/​0832
Container: https://​ghcr.​io/​hdr-​bgnn/​bgnn-​trait-​segme​

ntati​on:0.​0.​7
Repository: https://​github.​com/​hdr-​bgnn/​BGNN-​trait-​

segme​ntati​on/​tree/0.​0.​7

Maruf and 
Karpatne (2022)

Trait extraction: 
Morphology_analysis

This paper https://​doi.​org/​10.​5281/​zenodo.​7987697
Container: https://​ghcr.​io/​hdr-​bgnn/​morph​ology-​analy​

sis/​morph​ology:​1
Repository: https://​github.​com/​hdr-​bgnn/​Morph​ology-​

analy​sis/​tree/​v1.0.​0

Tabarin, Bradley, 
Balk, and 
Lapp (2023b)

Other

Fish-AIR https://​fisha​ir.​org/​ https://​fisha​ir.​org/​
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accustomed to using (i.e. GitHub), standards for the scientific com-
munity (i.e. Zenodo), and ease of use for the software engineers 
and domain scientists to use (i.e. Hugging Face).

2.2.1  |  Image data and metadata

The case study uses image data generated by museums, specifi-
cally of freshwater museum fish specimens belonging to the min-
now group (Family: Cyprinidae). The image data and metadata are 
hosted and downloaded from the Fish-AIR repository (https://​
fisha​ir.​org/​), and were originally from the Illinois Natural History 
Survey (INHS; https://​inhs.​illin​ois.​edu/​) as part of the Great Lakes 
Invasives Network (GLIN; https://​great​lakes​invas​ives.​org/​portal/​
). The associated extended image metadata (IMD) and image qual-
ity metadata (IQM) were extracted using the workflow described 
at Fish-AIR (https://​fisha​ir.​org/​workf​low.​html). The IMD includes 
information about image size and IQM includes qualitative infor-
mation about the contents of the image (Leipzig et al., 2021). These 
metadata files that serve as the input for the automated workflow 
can be found in the folder ‘Files’ in the Minnow_Segmented_Traits 
repository (Table 1). The metadata files contain resolvable URLs to 
access the image data (Figure 2, metadata).

Maintaining the images and their metadata in a repository facil-
itates findability and accessibility of the image data and metadata 
by all members of a collaborative team (Brito et  al.,  2020; Goble 
et  al., 2020; Miura & Nørrelykke, 2021). As a repository, Fish-AIR 
also facilitates the retention of provenance and attribution metadata 
of the image data (Table 1; Brito et al., 2020), which could easily be 
lost if sharing a local folder of images. To provide open and long-term 
access, and to ensure reproducibility of filtering steps (see below), 
we deposited the metadata files from Fish-AIR in a Zenodo archive 
(Table 1). For the image data, Fish-AIR as a repository provides open 
access to them under stable unique identifiers, even if it is currently 
not set up as a permanent archive.

2.3  |  Workflow manager

A workflow manager (WM; Figure 2, row 4) is a software tool for 
executing the steps in a computational workflow that is codified 
in the WM's definition language. Ideally, the WM can: invoke the 
components, identify when a change has been made to re-complete 
a step, identify when a step has already been completed and not 
duplicate the work, and run the steps sequentially or in parallel. This 
automation afforded by the WM also helps prevent duplication of 
outputs and avoids missing critical steps (Brito et al., 2020; Goble 
et al., 2020; Sandve et al., 2013).

We use Snakemake as the WM, while acknowledging that there 
are many options (Wratten et al., 2021). Snakemake is well-suited for 
an image-based, collaborative application because it permits exten-
sive documentation, is compatible with using HPC environments, is 
open source, requires relatively little setup, and is built on Python, a 

programming language already commonly used in image-based ML. 
Further, it is compatible with R programming, which is widely used 
in ecological, biodiversity, and evolutionary analyses, and it is there-
fore the language of choice for the domain scientist in our applica-
tion. Additionally, Snakemake enables modularization of a workflow 
through user-defined rules or steps. Snakemake also allows for the 
specification of component versions, ensuring reproducibility and 
flexibility with testing changes to the codebase. Finally, Snakemake 
also generates log files, which are useful for debugging problems, 
reading errors, and for a domain scientist to work with a software 
engineer. Thus, the advantages are that the domain scientist can 
select which parts of the workflow to rerun and is empowered to 
troubleshoot (Roach et al., 2022).

Snakemake rules (Figure  2, row 4), which correspond to 
steps in the conceptual imageomics workflow, specify the com-
mands that transform inputs into outputs by calling a component, 
such as executable programs, scripts, and containers (Köster 
& Rahmann,  2012). To more clearly link the generated output 
files to rules, we devised a naming convention for the outputs, 
‘ARKID_ruleName.fileExtension’ (Sandve et al., 2013). We reduce 
redundancy and the potential for errors by using a configuration 
file that defines paths, file names, etc. that can be used by the 
workflow definition and custom scripts. Thus, if a path or file name 
changes or is added, the change needs to be made only in a sin-
gle place, rather than repeatedly throughout (Roach et al., 2022). 
We leverage Snakemake's capability to use entire workflows as 
components by creating a sub-workflow, BGNN_Core_Workflow 
(Table 1; Goble et al., 2020). This workflow consists of steps that 
are used by the entire collaborative team, not specific to a project, 
such as downloading image metadata and image data, generating 
and reformatting image processing metadata, creating a mask, 
cropping the image and applying the segmentation module.

2.3.1  |  Environment

Most workflows will require the creation of a computational envi-
ronment suitable to run the various scripts and containers (Figure 2, 
create environment). We use a high-performance computing (HPC) 
environment to isolate the environment and allow multiple users 
to run the workflow. Our workflow requires Conda (Anaconda 
Software Distribution,  2020; for Python and Snakemake) and 
Singularity (now Apptainer; Kurtzer et  al.,  2017; Singularity 
Developers, 2021; to create and run Docker container images). The 
configuration file (config/config.yaml) sets the inputs and outputs 
as relative paths, as this allows paths to components or outputs to 
be changed only in the configuration file rather than multiple times 
across components, following best practices (Roach et  al.,  2022; 
Sandve et  al.,  2013). We also create YAML files to load environ-
ments, such as an R environment and for image data downloads, 
following best practices for version control and defining paths to 
components (Roach et al., 2022; Sandve et al., 2013). These files are 
in the folder ‘envs’ and called by the workflow definition.
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We created a way to recreate the R environment used by do-
main scientists' scripts, which were in the R programming language 
(version 4.2.3; R Core Team, 2018). We intentionally did not contain-
erize the R dependencies and environment for ease of use for do-
main scientists who may not have expertise in containers. Instead, 
we supply a Conda environment YAML file (envs/r-minnows.yaml) 
so that Snakemake will automatically create an R environment be-
fore running the R scripts. The environment is initialized using init.R 
in the folder ‘Scripts’ by defining the paths to all files (paths.R) and 
initializing all the functions (functions.R). The computational envi-
ronment automatically loads the R programming dependencies [dplyr 
1.0.8 (Wickham, 2023a), ggplot2 3.3.5 (Wickham, 2016), ggpubr 0.4.0 
(Kassambara, 2023), json 0.2.21 (Couture-Beil, 2022), moments 0.14.1 
(Komsta & Novomestky, 2022), RColorBrewer 1.1.2 (Neuwirth, 2022), 
remotes 2.4.0 (Csárdi et al., 2022), reshape2 1.4.4 (Wickham, 2022), 
stringr 1.4.0 (Wickham,  2023b), tidyr 1.2.0 (Wickham et  al.,  2024), 
yaml 2.3.5 (Garbett et al., 2023)] into a created folder, ‘Library’.

2.4  |  Components

Components are the scripts and tools, such as containers and 
ML models, that the WM invokes based on the rule definitions 
(Figure 1, row 2; Figure 2, row 3). We store, build, and develop the 
components using GitHub for version control and for making the 
components findable and accessible to the full team (and the public). 
The components used are either an entire repository that is later 
containerized or scripts within the project repository. We created 
specialized components for this case study, though general to our 
collaborative team and thus can be used as modular, interoperable 
components in any future workflow.

Containerizing the components enables interoperability and por-
tability for use in a workflow (Brack et al., 2022; Gruening et al., 2018; 
Nüst et al., 2020; Roach et al., 2022). Although the trained models 
can be included directly in the codebase, this makes individual com-
ponents difficult to identify and access, inhibiting reuse. Therefore, 
we consider models (more specifically, the trained ML model 
weights) as their own digital objects, and deposit them in Hugging 
Face (https://​huggi​ngface.​co/​) where they receive their own identi-
fier and resolvable URI, and from where they can be downloaded by 
the component (Gruening et al., 2018; Kadri et al., 2022). A domain 
scientist can incorporate as many of these components as necessary 
for their project. We chose to containerize components using Docker 
(Merkel, 2014) as these containers are compatible with Singularity, 
and therefore Snakemake and most HPC environments. Below we 
discuss the specific components in our case study and their imple-
mentation into the conceptual imageomics workflow.

2.4.1  |  Download metadata

To be completely automated, the first step is to read in the metadata 
(Figures  1 and 2, step 1)—that is, the metadata is not stored in the 

Minnow_Segmented_Traits repository (rules download_fish_air_data or 
download_zenodo_data). The IMD provides a unique ID [called ARKID 
by Fish-AIR, but as a current limitation of Fish-AIR they lack the Name 
Assigning Authority Number (NAAN) prefix and are thus not resolv-
able as ARK IDs] and path to download for each image datum. This 
step downloads IQM (imageQualityMetadata.csv), which contains in-
formation about each image, such as if the specimen is curved or ob-
structed in the image. Since we restrict image data to contain species 
that overlap with those in Burress et al. (2017), the WM invokes the 
rule download_burress to download Burress et al.  (2017) supplemen-
tary data for later image filtering (see Section 2.4.2).

2.4.2  |  Filter image data

The specific filtering of the image data and metadata are unique 
to our case study; however, the implementation of this step is 
generalizable (Figures  1 and 2, step 2). The filtering scripts are 
executed by rule select_minnow_images. We first manipulated the 
metadata files for ease of use using R scripts. We created a custom 
script, Data_Manipulation.R in Scripts to combine the IQM and IMD 
files, and to modify the Burress et al. (2017) supplementary file for 
future downstream analyses. To identify the image data to download, 
we again used a custom script, ‘Minnow_Selection_Image_Quality_
Metadata.R’ in ‘Scripts’. High-quality minnow image data were 
selected based on the parameters and values recommended by 
Leipzig et al. (2021) (Table 2). Finally, we selected only those species 
that were also in Burress et al. (2017). This resulted in a final dataset 
of 13 species and 273 image data records (Table S1).

2.4.3 | Download image data

Image data are downloaded from the Fish-AIR repository based on a 
unique URL from a file in the Zenodo archive (Figures 1 and 2, step 3; 
Table 1). This is encoded in the rule download_image from the BGNN_
Core_Workflow. These image data are stored locally in a new folder 
‘Images’ for further processing. Storing data locally rather than on 
the shared GitHub repository helps keep the repository size down. 
All image data are saved as ARKID.jpg, where ARKID is an unique 
identifier assigned to the fish image data by Fish-AIR.We added 
a limiting step in the downloading component so that the domain 
scientist can specify the number of image data to be downloaded in 
the ‘config.yaml’ file. This helps with testing, as the domain scientist 
can select 10 image data, as an example, speeding up processing 
time (Roach et al., 2022). The input is an integer or to download all 
the image data (‘’) for the final runs.

2.4.4  |  Metadata generation

The first ML component (Figures  1 and 2, step 4a) performs ob-
ject detection and metadata generation as defined by the rule 
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TA B L E  2  Filtering criteria for Minnow image download using Fish-AIR vocabulary (https://​fisha​ir.​org/​vocab​ulary.​html).

Statement IQM Options Filter Example of a removed image:

If the specimen is 
not curved

specimenCurved straight, curved Remove all images of 
specimens that are not 
straight

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​1p85b​80p.​jpg

If all the parts of 
the fish are 
visible

allPartsVisible True, False Remove all images of 
specimens that have 
parts not visible

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​1105v​w55.​jpg

If no objects 
overlap with 
the fish

partsOverlapping True, False Remove all images of 
specimens where fins or 
other parts overlap

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​2s96p​382.​jpg

If the fins are 
folded

partsFolded True, False Remove all images of 
specimens where fins or 
other parts are folded

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​9f808​58x.​jpg

If the background 
is uniform

uniformBackground True, False Remove images where 
background is not 
uniform and so may 
obstruct machine 
learning tools

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​sh31r​b7q.​jpg

Fish facing left specimenView left, lefttop, 
leftbottom, right

Remove images of 
specimens which are 
not facing left

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​1p72w​x0g.​jpg

Fish possessing 
all parts

partsMissing True, False Remove images of 
specimens missing fins 
or other parts

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​xv05j​h70.​jpg

Brightness brightness normal, dark, bright Remove images either too 
bright or too dark

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​1942x​z57.​jpg

Focus onFocus True, False Remove images that are not 
in focus

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​q794d​840.​jpg

Color colorIssue none, contrast, 
slightly dark, very 
dark, dark, dark 
spots, small black 
dots on posterior 
of fish, blotchy 
discoloration, 
specimen is dark, 
light spots, slightly 
dim and dirty 
picture, specimen 
has discoloration, 
discoloration on 
scales, anterior 
portion, dim

Remove images with color 
issues

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​6p98d​534.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​3h107​h5f.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​8532w​r8k.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​1942x​z57.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​2d067​q3z.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​3b62v​j85.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​qr35m​f7x.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​6509c​m1w.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​7p08p​m4r.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​8r32w​x1b.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​kn585​s9t.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​UWZM/​wv25c​43f.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​v2871​w67.​jpg

https://​fisha​ir.​org/​hdr-​share/​​ftp/​ark/​89609/​​
GLIN/​INHS/​xx32h​s1k.​jpg

Ruler included containsScaleBar True, False Remove images which do 
not have a scale bar

All cases were true; we checked that the scale 
bar was perceived by the object detection.

Note: The option kept is bolded. Fish image unique IDs are linked to their image hosted by Fish-AIR.
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generate_metadata from the BGNN_Core_Workflow (Tabarin, 
Bradley, Balk, & Lapp, 2023a; Table 1). This rule calls the container 
drexel_metadata from the drexel_metadata repository (Karnani 
et al., 2023; Table 1), which generates a metadata file for each image 
datum (named ARKID.json). The codebase has two outputs and is 
described in Leipzig et al. (2021), Pepper et al. (2021), and expanded 
upon in Karnani et al. (2022). The domain scientists and software en-
gineer worked with the ML researchers to containerize their code-
base for reuse in this workflow.

This component uses detectron2 (He et al., 2018; Wu et al., 2019) 
to detect five instance classes within images: fish, fish eye, ruler, 
number ‘2’, number ‘3’. detectron2 outputs bounding boxes, binary 
masks, and a series of attributes for each instance of each class. 
The generate_metadata software post-processes information using 
the instance classes, like determining the image scale (pixels/cm). If 
a fish is identified, generate_metadata creates a new, refined binary 
mask over the specimen. These masks are created by using the ini-
tial bounding box from detectron2 and performing pixel-based con-
trast analysis to determine the contours of the fish. The bounding 
box is recalculated based on this refined mask. These image data 
are stored in the folder ‘Mask’ and are named ARKID_mask.png. The 
final bounding boxes created are used further down the pipeline to 
crop the fish specimen from the rest of the image so that the tag and 
ruler are not fed into the segmentation model.

2.4.5  |  Reformat metadata

We created a component called drexel_metadata_formatter (Tabarin, 
Bradley, & Lapp, 2023a; Table 1) that reformats the output from the 
generate_metadata component to only include what is needed for 
downstream analyses for this case study. This rule, transform_meta-
data, is from the BGNN_Core_Workflow that the WM calls. We re-
tain base_name, version, fish number, bbox, pixel_analysis, rescale, 
eye_bbox, eye_cener, angle_degree, eye_direction, foreground_
mean, background_mean, ruler, and ruler_bbox, ruler_scale. These 
intermediate data are stored locally in the folder ‘Metadata’. This is 
an example of a domain scientist customizing the component. In this 
example, metadata can be reformatted or scripts in R or Python to 
reformat in a domain scientist's repository that are not containers.

2.4.6  |  Crop image

We cropped the image data to only include the fish; extraneous items 
such as the specimen tag and scale bar were removed. To implement 
this step in a reusable way, we added code for cropping image data 
in its own repository, Crop_Image (Tabarin, Bradley, & Lapp, 2023b; 
Table 1), which made it easy to containerize. The corresponding rule, 
crop_image, is invoked by the WM from the BGNN_Core_Workflow. 
Using the output from the generate_metadata rule, we increased the 
bounding box by 5% (2.5% per side) to crop the image. These image 
data are stored in the folder ‘Cropped’ as ARKID_cropped.jpg. This 

is an example of the domain scientist interacting with the ML re-
searcher's products.

2.4.7  |  Segmentation

The second ML component is a segmentation model (Figures 1 and 
2, step 4b). To facilitate integration and improve reusability, we con-
tainerized the segmentation model. The Docker container image 
includes the code (model architecture, preprocessing, and post-
processing code) and downloads the model weights from the BGNN-
trait-segmentation (Maruf & Karpatne,  2022; Table  1), to build 
a full-fledged independent tool for the segmentation (Table  S3). 
The segmentation model is from the Segmentation Models library 
(Iakubovskii, 2019), which is based on PyTorch (Paszke et al., 2017). 
The model was previously trained using ImageNet (Deng et  al., 
2009), then fine-tuned to our dataset (see Data S1). The segmenta-
tion model classifies pixels on the image of the specimen as a trait 
(Figure S1). The results of the segmentation model are in the folder 
‘Segmentation’ and the image data are stored as ARKID_segmented.
jpg. These results are then used for downstream analyses.

We modified the codebase, BGNN-trait-segmentation (Maruf & 
Karpatne, 2022; Table 1), which is invoked from the BGNN_Core_
Workflow, to work with our images. Since segmentation models are 
designed to process a specific image size, we needed to resize the 
cropped image data to minimize spatial distortion. The resizing of 
images was based on the size distribution of the images in the data-
set and resizing to the mean of each dimension's distribution. We did 
not add any padding to the images. After segmentation, the image 
is again resized to the size of the cropped image so that the scale 
remains the same as the original image data from which the ruler has 
been extracted. We worked with the ML researcher to containerize 
their codebase for reuse in this workflow.

2.4.8  |  Morphological analysis

We created two components to analyse segmentation outputs 
(Figures 1 and 2, step 5). One component extracts the classification 
of the traits (i.e. segmentations) from the segmentation model. We 
created a codebase, Morphology-analysis (Tabarin, Bradley, Balk, & 
Lapp, 2023b; Table 1), for scripts to record the number of groupings 
of continuous areas of pixels classified with the same label, which 
we call blobs, corresponding to a trait (Figure S2), the percentage 
by area (number of pixels) of the biggest blob. The container is in-
voked in the rule create_morphological_analysis in the workflow. The 
outputs are saved as a json file, ARKID_presence.json in ‘Presence’.

The other component is a R script for statistical analy-
sis. In general, the nature of the statistical analysis on the ML-
generated outputs will be specific to a domain scientist's research 
question(s). For our case study, we created a script, Presence_
Absence_Analyses.R in ‘Scripts’, for deriving presence or absence 
metrics of the traits segmented by the Segementation step. The rule 
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presence_absence_analysis in the workflow invokes this script and 
creates figures and tables that are put into the folder ‘Results’. In 
general, domain scientists require creative control over this compo-
nent, and thus writing a script to be stored in the project repository 
is appropriate.

We combine the ARKID_presence.json files (Table S2). We then 
performed analyses on how well the model performed at finding the 
traits and created visualizations that are stored in ‘Results’. Although 
the segmentation performance was high [mean IoU of 0.9 (scores 
range from 0 to 1)], some artefacts were present such as the erro-
neous presence of traits or fragmented trait segmentation. We as-
sessed the degree of uncertainty in identifying a trait by quantifying 
how many traits had the biggest blob as less than 85% of total trait 
blobs and the spread of the area of the biggest blob for each trait 
(Figure S3).

3  |  RESULTS

The conceptual imageomics workflow is built on the principle of 
modularity; the application-specific imageomics workflow is suc-
cessfully implemented and executed following FAIR principles 
(Table  3; Barker et  al., 2022; Goble et  al.,  2020; Wilkinson et  al., 
2016). For all data, metadata, software, and ML models used, we 
created rich metadata files, retained provenance and attribution, 
store and retrieve from findable, accessible repositories, registries 
or archives. To achieve findability and accessibility we referenced re-
positories for metadata and components in the workflow definition 
enabling the automatic download of image data and execution of 
the workflow rules. To create modular and portable components we 
used containers and specified component versions for reproducibil-
ity. To automate the workflow, we utilized a WM. We use configura-
tion files to define relative paths for both the Snakemake workflow 
definition, the scripts invoked by the WM, and for setting up the 
environment, thereby reducing redundancy. Using the WM with a 
configuration file facilitated interoperability of all components and 
scripts.

Our inputs and outputs are findable and accessible. Our meta-
data files, data items, software components, and ML models are as-
signed unique identifiers and are stored in a searchable resource. 
Further, the metadata files and image data are retrievable using 
their identifiers; this accessibility enables reproducibility by the 
public. We take advantage of the built-in metadata structure and 
attributions when depositing data (Grossman et al., 2016). Beyond 
the metadata, the workflow uses technology that is FAIR, such as 
Snakemake, GitHub, and the containerized components, all which 
are accessible and free to use.

To achieve interoperable and reusable components that are por-
table across HPC or computing platforms, we create Docker con-
tainer images for each component's codebase. We fully automated 
the potentially tedious process of updating container images for 
a code repository upon updates, using GitHub Actions that both 
build a Docker image (i.e. container) and then push it to GitHub's 

Container Registry (https://​ghcr.​io) automatically with every code 
release. Being part of a registry of containers ensures that these 
components are findable and accessible, with associated metadata 
and data items, so that the provenance of the source of the container 
is apparent. We also archive the code repositories for perpetuity to 
facilitate future reproducibility (see ‘Data Availability Statement’). 
We follow best practices of containerization, such as limiting one 
tool (or component) per container, including licensing, ensuring 
container accessibility and keeping the data separate (Gruening 
et al., 2018).

Versioning code and components was critical for reproducibility 
and project development. For this we followed Semantic Versioning 
(https://​semver.​org) where a versioning scheme was not already 
present in a component's repository, by applying corresponding Git 
version control tags to respective commits. To allow for flexible con-
trol of which version of a component is recruited in the workflow, 
we exploited the fact that the same container image in a registry can 
have multiple tags representing different version granularities (Nüst 
et al., 2020), meaning that the domain scientist can select a specific 
version or the latest version.

4  |  DISCUSSION

Harnessing data in the form of images is dramatically increasing 
across the biological sciences. New tools, models, and algorithms 
for analysis are being rapidly produced and recombined to ad-
dress an increasing variety of research questions. We posit that 
for this emergent field to develop its full potential in facilitating 
novel research endeavours involving interdisciplinary teams, it is 
important to establish FAIR data and reproducible workflow prac-
tices (Barker et al., 2022; Brack et al., 2022; Goble et al., 2020). All 
team members need to be able to find and access the data, models, 
and any components, which usually means that the corresponding 
workflow ingredients need identifiers and be publicly available. 
The research-grade tools developed by team members needed to 
be made interoperable, reusable, and portable for use across com-
putational environments, and in other projects, which we accom-
plished by containerizing tools and placing the container images 
into a public registry. Further, unlike data simply comprising facts 
of nature, image data requires special attention to best practices 
with respect to attribution, provenance chain and licence.

We tackle how to combine tools and technologies emerging from 
active research for using ML to process and extract knowledge from 
image data such that the resulting workflow is end-to-end auto-
mated, reproducible and (re)usable by domain scientists. We start 
by developing a conceptual imageomics workflow and then create 
an application-specific implementation emphasizing FAIR principles, 
modularity, portability, and flexibility. The application of the con-
ceptual imageomics workflow is intended to serve as a guideline for 
team implementation of a workflow incorporating image data and 
ML tools using FAIR data principles. By focusing on these princi-
ples and techniques, we avoid common pitfalls when trying to use 
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another researcher's tool, such as code redundancy and duplication, 
failure-prone dependency management, non-replicable computing 
environments, or non-portable file paths. Developing such a work-
flow template facilitates teamwork as its implementation requires 
deep collaboration among the ML researchers, domain scientists 
and software engineers. In this sense, some of the benefits from the 
template and approaches we describe will most directly accrue to an 
interdisciplinary team that includes software engineering expertise, 
and less so to an individual domain scientist or ML researcher.

4.1  |  Team science

In our team, we recognized that it is important to provide and retain 
author attribution for all scripts and inputs so that all member con-
tributions are valued and appreciated. While such documentation 
may seem mundane, we found attribution is best addressed early in 
the project to bring clarity about who is working on the code and to 
incentivize collaboration. Giving appropriate credit not only made 
team members feel valued, it also served as a point of contact should 
the domain scientist need help. Attribution was provided in multiple 
places: with data items or trained model weights in a repository, with 
any scripts in a repository, and with the container image in a regis-
try. Acknowledgements, licensing and attributions were provided in 
the readme and as a script header. Adding licensing makes the rights 
and terms of reuse clear for each component (Goble et al., 2020). 
Accessible metadata facilitates reproducible and reusable science 
(Brito et al., 2020).

It is a common observation that code artefacts from active com-
putational research often fall under what is referred to as research-
grade, in contrast to product-grade robust and reusable tools 
(Grüning et  al.,  2019; Trisovic et  al.,  2022). We, too, encountered 
interoperability issues for command-line invocation of components, 
unstable expectations for inputs and outputs, and other problems 
when ML tools under active research and development needed to 
be included in the larger workflow. We argue that this will be en-
countered commonly in imageomics, given that ML components will 
remain under highly active and dynamic research. We used Semantic 
Versioning tags for the containerized components enabled the do-
main scientist to precisely control which version of corresponding 
ML codes, models, and associated software dependencies is used 
in their workflow, enabling reproducibility (Brack et  al.,  2022; 
Goble et  al.,  2020; Niehues et  al.,  2024; Nüst et  al.,  2020; Roach 
et al., 2022). Snakemake allows specifying the desired tag for a con-
tainer and also recognizes if the container for a step (‘rule’) is of a dif-
ferent version than the one with which the step has run previously, 
and, if so, re-runs the rule.

4.2  |  Workflow

The research and development of WMs is a very active endeavour, 
and consequently there are many choices. We found that our core 

technical requirements, such as modularity, automation, and HPC 
interoperability, are met by many candidate WMs, but that usabil-
ity by team members can differ substantially. In our case, we chose 
Snakemake as the WM that provided usability by a domain scientist 
with basic familiarity with image data science using Python tools and 
has capabilities for using containers, which is how the modules are 
implemented. For the software engineers and ML researchers on 
the team, Snakemake's rule system is conceptually similar to rules in 
Makefiles. This choice has also been reached elsewhere in a related 
context (Schmied et al., 2016).

The replicability of a workflow by different users in a team, or 
on different computing environments, necessarily hinges on the 
files required for any given step to be findable by the components. 
Initially, our files were maintained on a local filesystem, and hence 
the paths to access these files were at first hardcoded, rendering 
them non-portable. We addressed this by downloading input files 
from a repository on-demand, and by removing all hard coded paths, 
and by defining file paths and identifiers in a configuration file for 
the workflow. As a side benefit, this configuration file also allows us 
to set options specific to a computing environment, such as whether 
a GPU is available to the ML components or not.

Similar to genomic data analysis, image data analysis can con-
sist of conditional steps, branching, and loops, but in the absence 
of a formal workflow definition for end-to-end automation the 
corresponding computations often run without coordination, par-
allelization, and orchestration. Automation of workflows thus pro-
motes modularity and efficiency. Assembling all computational 
components in a study into an automated workflow is also key to 
reproducibility. Workflows do not need to begin fully modularized or 
even automated; a monolithic and manually-operated approach may 
even be more productive in the early stages of an analysis project. 
For example, our workflow began as manual because it required less 
upfront technical effort and fewer unfamiliar technologies to learn 
during the exploratory stages, when the team was still determin-
ing the necessary inputs, the data wrangling steps; and the desired 
outputs. As more team members needed to run all or part of the 
analysis, automating components of the workflow brought signifi-
cant time savings throughout the continuation of our project and 
enabled reuse between the domain scientist, ML researchers and 
software engineers. Assembling all computational components in a 
study into an automated workflow is also key to its full computa-
tional reproducibility.

4.3  |  Modularity

Machine learning research can result in multiple tools being main-
tained in a single large and therefore monolithic repository that 
performs many tasks. Modularizing these tools as workflow compo-
nents made our workflow easier to understand, automate and there-
fore use. Further, modularization via components allowed for faster 
prototyping of a project because elements can be ‘plug and chug’; 
a simple change in the workflow could be tested immediately. The 
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downside of modularization is keeping track of external dependen-
cies and versions for each component. Still, we found that modular 
components also promoted reuse by our domain scientist and im-
proved computational efficiency.

We adopted earlier best practices for allowing domain scien-
tists to use and combine research-grade software tools created by 
dynamic collaborative research endeavours, such as the one we 
report here, into an automated and reproducible workflow (Leipzig 
et al., 2021; Shade & Teal, 2015). Specifically, we use Docker con-
tainers to allow packaging, distributing, and running research-
grade code in a reproducible environment, isolated from the other 
tools in a workflow. Containerization that follows FAIR principles 
also prevents codebase duplication, the loss of associated meta-
data, and makes components portable (Nüst et al., 2020). Although 
Docker is typically unavailable in a shared HPC environment due 
to the elevated privileges it requires, Singularity (now Apptainer), 
which runs on a Linux operating system and is usually supported 
on HPC clusters, can bootstrap its containers from Docker con-
tainer images. Further, automating the process of container image 
creation and versioning via GitHub Actions made reproducing the 
software environment easy for the domain scientist. Our collabo-
rative team had the benefit that the ML researchers who originally 
built the tools were a part of the team and aided in containeriza-
tion of these components. Not all teams may have this benefit, es-
pecially when using third-party tools. It is important, nonetheless, 
to be transparent on which components are reusable and which 
are not for future use.

5  |  OUTLOOK

The future of imageomics is an exciting one: more tools, more 
methods, more models will undoubtedly be developed. With these 
developments, the need to bring them together to build fully auto-
mated and reproducible workflows will become ever more preva-
lent. The technologies and practices used to realize the conceptual 
imageomics workflow into an application-specific, automatic and 
reproducible workflow will serve as a guide that reduces tool 
wrangling and frees time to explore scientific questions.
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