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1 | INTRODUCTION

Biological research increasingly leverages machine learning
(ML) algorithms and methods (Greener et al.,, 2022; Mahmud
et al., 2018, 2021; Tarca et al., 2007), with a focus on the grow-
ing number of biological image data resources [i.e. MorphoSource
(Boyer et al., 2016), iDigBio (idigbio.org) and iNaturalist (inatural-
ist.org)]. Image data are ripe for applications of ML techniques,
including neural networks (NN), to extract information such
as metadata (Karnani et al., 2022; Leipzig et al., 2021; Pepper
et al., 2021; Rinaldo et al., 2022; Stork et al., 2019), species clas-
sification (Schuettpelz et al., 2017; Waldchen & Mader, 2018;
Wilf et al., 2016) and presence of traits (Alfaro et al., 2019; Liirig
et al., 2021; MaclLeod, 2017; Weeks et al., 2016). Although ML of-
fers powerful tools for automatic object detection and subsequent
analysis of biological image data, no single ML technique provides
a complete solution. As a result, the need to combine various tech-
niques to solve complex problems is inevitable.

Similar to the need to create complex, computational workflows
for genomic studies generating large datasets, complex workflows
are also required for computationally intensive research that uses
ML to extract information from image data. We draw on lessons from
the genomic world (Ahmed et al., 2021; Koéster & Rahmann, 2012;
Molder et al., 2021; Papageorgiou et al., 2018) and from best prac-
tices for creating workflows (Goble et al., 2020; Leipzig et al., 2021,
Shade & Teal, 2015) and apply them to the emerging field of ‘ima-
geomics’. Imageomics harnesses revolutions in artificial intelligence
and ML—as well as the rapidly growing collections of biological
image data—to accelerate biological knowledge of organisms from
images (https://imageomics.org/about).

Creating FAIR (findable, accessible, interoperable, reusable), re-
producible, modular, and automated workflows empowers domain
scientists, the users of technologies to answer a research question,
to use ML tools for their research. The need for automated and re-
producible workflows that string together technologies is not unique,
and has been previously discussed in biology (e.g. Brack et al., 2022;
Goble et al., 2020; Haston et al., 2012; Roach et al., 2022; Shade
& Teal, 2015). Although workflow tools geared for biologists who
need to combine ML models on image data have been developed
(Lurig, 2022; Porto & Voje, 2020; Weeks et al., 2022), biologist-

oriented best practice guidelines for materializing an automated,

4. We encourage researchers—both computer scientists and biologists—to build
upon this conceptual workflow that combines machine learning tools on image

data to answer novel scientific questions in their respective fields.

computational reproducibility, FAIR, image data, imageomics, machine learning, workflow

FAIR, and reproducible imageomics workflow are, to the best of our
knowledge, missing. Combining techniques and tools as FAIR com-
ponents of a reusable workflow help to avoid duplication, reduce
user-error, facilitate the retention of metadata and attribution, and
promote reproducibility through automation. Developing workflows
depends on effective collaboration among a team that includes ML
researchers, who often develop the ML algorithms used as compo-
nents in a workflow, and software engineers, who help create the
tooling and workflows.

Here, we showcase a conceptual imageomics workflow
(Figure 1). This conceptual workflow arose from a need from our
interdisciplinary team to develop NNs for discovering phenotypic
traits using structured biological knowledge. We recognized a need
to converge on a central standardized, conceptual workflow that
brings in data from shared resources, uses interoperable and porta-
ble components, and infrastructure to enable collaboration.

We implement the conceptual imageomics workflow in a spe-
cific case study (Figure 2). The application of the conceptual ima-
geomics workflow showcases how technologies and tools can be
modularized, combined and automated as an application-specific
imageomics workflow definition (i.e. a workflow that has defined
rules and execution)We wanted these components interopera-
ble with different computing environments and reusable by other
workflows (Brito et al., 2020; Roach et al., 2022), to be end-to-end
automated for full reproducibility, and provide flexibility in how a
domain scientist might configure and interact with workflow compo-
nents. We follow best practices for reproducible workflows from the
field of computational biology (Brito et al., 2020; Roach et al., 2022;
Sandve et al., 2013), for creating FAIR and Open Science compo-
nents for data, metadata, software, and ML models (Barker et al.,
2022; Brito et al., 2020; Chue Hong et al., 2022; Goble et al., 2020;
Jiménez et al., 2017; Miura & Ngrrelykke, 2021; Roach et al., 2022;
Sandve et al., 2013; Wilkinson et al., 2016), for image data repro-
ducibility (Miura & Ngrrelykke, 2021), and for the modularization of
tools (Brack et al., 2022; Niist et al., 2020). While we built our case
study to be reused internally by our collaborative team, teams im-
plementing the conceptual imageomics workflow may have different
requirements for data openness and FAIR-ness. Our intention is for
the conceptual workflow and the example of how to implement such
a workflow using FAIR data principles to guide biological research

communities using ML with image data.
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FIGURE 1 Conceptual imageomics workflow. The general steps (row 1; grey ovals) are: (1) acquiring or downloading image metadata,
(2) filtering metadata (i.e. data wrangling), (3) downloading image data, (4) applying ML models, (5) analysing outputs from the models.
Components (row 2), which are scripts (pink) and tools (teal) are required to perform these steps. Each step produces an output (row 3;
rectangles) that is itself read by further downstream steps or saved as a result. Together, these steps, components and tools can be called

using a WM.

3) Image
Steps 1) Metadata 2)(;‘:;” data AN?)QM\_
download L

4b) ML
Model

BGNN_Core_Workflow

Hori Zenodo Minnow_Segmented_Traits Zenodo %
R it I_Seg L
epositories L ‘Archive WL Code Base WL e 1 drexlala [

Tools or
Components

Drexel_metadata_formatter WL Crop_lmage W L
Code Base Code Base ode Base

Morphology-analysis WL Minnow_Segmented_Traits W
(ol

Snakemake
(Rules)

download_
image
L )

generate_metatdata

("download_
zenodo J select_minnow,_images
J

data

Image Image
metadata Selection

e
metadata

Outputs ‘

ode Base e Base
( ) ( . B (" create (" presence.
[:::gz;':; L crop_image } sei,gnrgegt L morphulogﬁcaL } L absence:
. ) Czy analysis analysis )
‘ | Reformatted ‘ — _ ‘ |Presem=e ‘ | Output

files files

FIGURE 2 Application-specific imageomics workflow definition. The application-specific imageomics workflow for the case study
includes steps from Figure 1 (row 1). These translate to rules for a WM (row 4; yellow) that call different components directly from external
repositories (row 2; light teal), components (row 3) that are derived from containers (dark teal), and scripts (pink) from a researcher's
repository. The outputs (row 5) may feed into the subsequent rules until the final output files.

2 | MATERIALS AND METHODS

2.1 | Workflow

2.1.1 | Conceptual imageomics workflow

The steps of a conceptual imageomics workflow (Figure 1) emphasizes
findable and accessible components throughout. Each step (Figures 1
and 2, row 1) calls a component. These steps are: (1) extracting a meta-
data list of image data items that can be from an archive (preferable) or
alocal folder, (2) filtering the image data using a script, (3) downloading
selected image data, (4) implementing components such as ML mod-
els, and (5) analysing the outputs using a script. The workflow does not
need to be linear: outputs may be results themselves and not always
feed into the next step, and/or a workflow might branch such that ver-

sions of the tools or methods can be compared.
2.1.2 | Case study: Application-specific imageomics
workflow definition

The purpose of this case study is to apply the conceptual imageomics
workflow to a biological problem, here, the extraction of traits from

images (Figure 2). We built upon our previous work (Bakis et al., 2021;
Jebbia et al., 2022; Karnani et al., 2022; Leipzig et al., 2021; Pepper
et al.,, 2021), using image data from a specific group of fishes, the min-
nows (Family: Cyprinidae), incorporating previously created metadata
extraction methods (Karnani et al., 2022; Leipzig et al., 2021; Pepper
et al., 2021), the outputs of which would become the input to a seg-
mentation model to extract traits from image data. We chose simple
traits to extract: trunk, head, eye, dorsal fin, caudal fin, anal fin, pelvic
fin, and pectoral fin (e.g. Figures S1 and S2; README of Morphology-
analysis repository). The ML researchers who created the components
kept the associated code and models in publicly available GitHub re-
positories. However, as these personnel moved on from the project,
the biologists (i.e. domain scientists) were unable to use or adapt the
tools themselves, rendering the models inaccessible and not reusable.
We recognized that integrating these computational tools into a work-
flow would enable the domain scientists, including new team mem-

bers, to work independently and creatively.

2.2 | Repositories

We use repositories to ensure that the data and components are
accessible and findable to our team (Figure 2, row 2). We used

[ewnofsoqy/:sdny woiy papeo[umo( ‘9 4707 X01Z1+0T

KoM A

ASUODI'] SUOWIUOY) dANEAI) d[qeatjdde oy Aq PauIdAOS dIe SO[OIE () 08N JO SN I0J AIRIQI SUI[UQ AO[IAN UO (SUONIPUOD-PUB-SULId}/W0d" K3[1M" ATeIqrout[uoy/:sdny) SUonIpuoy) pue suio I, oY) 98 “[$70¢/L0/60] U0 A1eIqu our[uQ AO[IM “LZEH 1 X0T1Z-1H#0Z/1TT1°01/10p



BALK ET AL.

Methods in Ecology and Evoluti EE‘:‘E?E“:‘“‘

the following repositories: Fish-AlIR for image metadata and data,
Zenodo for archiving the fish image metadata, Hugging Face for
the MLmodels, and GitHub for the codebases, which include work-
flow definitions (see Section 2.3), and a registry for the containers
providing the runnable workflow components (Table 1). GitHub
is widely used for hosting Git-based version control repositories,
including for collaborative research projects. Further, it is an ap-
plication that many in the team, including the domain scientists,
were familiar with and comfortable using. Likewise, we adopted
Hugging Face as the ML model repository because it is widely
used in the ML community, supports version control, has seamless
integration with Git-based code versioning, and has rich metadata

in the form of ‘model cards’. Like GitHub does for code sharing,
these features enable FAIR ML model sharing, such as making it
easy for researchers to find, pull and reuse the models. For perma-
nently archiving version-specific snapshots, we used Zenodo for
GitHub repositories and Hugging Face's built-in capability to ob-
tain DataCite DOIs for the ML models. For future reproducibility,
we deposited relevant parts of the Fish-AIR metadata download
in a Zenodo archive (Balk, Tabarin, et al., 2023), which is common
practice among the biological (domain science) community. All
resources, including repository URLs and permanent identifiers,
are listed in Table 1. While there are many options for where and
how to archive data, we chose these based on what our team was

TABLE 1 Resources used in this paper (table format adapted from Cell Press Key Resources Table).

Resource

Deposited data

Burress et al. 2017
supplementary
information

Metadata used and data
generated

Software and algorithms

Application-specific
imageomics Workflow:
Minnow_Segmented_
Traits

Sub-workflow: BGNN Core
Workflow

Metadata generation:
drexel_metadata

Reformat metadata: drexel_
metadata_reformatter

Crop image: Crop_Image

Segmentation:
BGNN-trait-segmentation

Trait extraction:
Morphology_analysis

Other
Fish-AIR

Source

Burress et al. (2017)

This paper

This paper

This paper

Leipzig et al. (2021),

Pepper et al. (2021),
Karnani et al. (2022)

This paper

This paper

This paper

This paper

https://fishair.org/

Identifier

https://doi.org/10.1111/jeb.13024

https://doi.org/10.5281/zenodo.10629836

https://zenodo.org/records/8205729
Repository: https://github.com/hdr-bgnn/Minnow_
Segmented_Traits/tree/v1.0.2

https://zenodo.org/records/8184608
Repository: https://github.com/hdr-bgnn/BGNN_Core_
Workflow/tree/1.0.1

https://huggingface.co/imageomics/Drexel-metadata-
generator

Container: https://ghcr.io/hdr-bgnn/drexel_metad
ata:0.6

Repository: https://github.com/hdr-bgnn/drexel_metad
ata/tree/0.6

https://doi.org/10.5281/zenodo.7987576

Container: https://ghcr.io/hdr-bgnn/drexel_metadata_
formatter:v0.0.1

Repository: https://github.com/hdr-bgnn/drexel_metad
ata_formatter/tree/v0.0.1

https://doi.org/10.5281/zenodo.7987485

Container: https://ghcr.io/hdr-bgnn/crop_image:0.0.4

Repository: https://github.com/hdr-bgnn/Crop_image/
tree/v0.0.4

https://doi.org/10.57967/hf/0832

Container: https://ghcr.io/hdr-bgnn/bgnn-trait-segme
ntation:0.0.7

Repository: https://github.com/hdr-bgnn/BGNN-trait-
segmentation/tree/0.0.7

https://doi.org/10.5281/zenodo.7987697

Container: https://ghcr.io/hdr-bgnn/morphology-analy
sis/morphology:1

Repository: https://github.com/hdr-bgnn/Morphology-
analysis/tree/v1.0.0

https://fishair.org/

Citation

Burress et al. (2017)

Balk, Tabarin,
et al. (2023)

Balk, Bradley,
et al. (2023)

Tabarin, Bradley,
Balk, and
Lapp (2023a)

Karnani et al. (2023)

Tabarin, Bradley, and
Lapp (2023a)

Tabarin, Bradley, and
Lapp (2023b)

Maruf and
Karpatne (2022)

Tabarin, Bradley,
Balk, and
Lapp (2023b)
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accustomed to using (i.e. GitHub), standards for the scientific com-
munity (i.e. Zenodo), and ease of use for the software engineers

and domain scientists to use (i.e. Hugging Face).

2.21 | Image data and metadata

The case study uses image data generated by museums, specifi-
cally of freshwater museum fish specimens belonging to the min-
now group (Family: Cyprinidae). The image data and metadata are
hosted and downloaded from the Fish-AIR repository (https://
fishair.org/), and were originally from the lllinois Natural History
Survey (INHS; https://inhs.illinois.edu/) as part of the Great Lakes
Invasives Network (GLIN; https://greatlakesinvasives.org/portal/
). The associated extended image metadata (IMD) and image qual-
ity metadata (IQM) were extracted using the workflow described
at Fish-AIR (https://fishair.org/workflow.html). The IMD includes
information about image size and IQM includes qualitative infor-
mation about the contents of the image (Leipzig et al., 2021). These
metadata files that serve as the input for the automated workflow
can be found in the folder ‘Files’ in the Minnow_Segmented_Traits
repository (Table 1). The metadata files contain resolvable URLs to
access the image data (Figure 2, metadata).

Maintaining the images and their metadata in a repository facil-
itates findability and accessibility of the image data and metadata
by all members of a collaborative team (Brito et al., 2020; Goble
et al., 2020; Miura & Ngrrelykke, 2021). As a repository, Fish-AIR
also facilitates the retention of provenance and attribution metadata
of the image data (Table 1; Brito et al., 2020), which could easily be
lost if sharing a local folder of images. To provide open and long-term
access, and to ensure reproducibility of filtering steps (see below),
we deposited the metadata files from Fish-AIR in a Zenodo archive
(Table 1). For the image data, Fish-AIR as a repository provides open
access to them under stable unique identifiers, even if it is currently
not set up as a permanent archive.

2.3 | Workflow manager

A workflow manager (WM; Figure 2, row 4) is a software tool for
executing the steps in a computational workflow that is codified
in the WM's definition language. Ideally, the WM can: invoke the
components, identify when a change has been made to re-complete
a step, identify when a step has already been completed and not
duplicate the work, and run the steps sequentially or in parallel. This
automation afforded by the WM also helps prevent duplication of
outputs and avoids missing critical steps (Brito et al., 2020; Goble
et al., 2020; Sandve et al., 2013).

We use Snakemake as the WM, while acknowledging that there
are many options (Wratten et al., 2021). Snakemake is well-suited for
an image-based, collaborative application because it permits exten-
sive documentation, is compatible with using HPC environments, is
open source, requires relatively little setup, and is built on Python, a

Methods in Ecology and Evolution E"

El
SOCIETY

programming language already commonly used in image-based ML.
Further, it is compatible with R programming, which is widely used
in ecological, biodiversity, and evolutionary analyses, and it is there-
fore the language of choice for the domain scientist in our applica-
tion. Additionally, Snakemake enables modularization of a workflow
through user-defined rules or steps. Snakemake also allows for the
specification of component versions, ensuring reproducibility and
flexibility with testing changes to the codebase. Finally, Snakemake
also generates log files, which are useful for debugging problems,
reading errors, and for a domain scientist to work with a software
engineer. Thus, the advantages are that the domain scientist can
select which parts of the workflow to rerun and is empowered to
troubleshoot (Roach et al., 2022).

Snakemake rules (Figure 2, row 4), which correspond to
steps in the conceptual imageomics workflow, specify the com-
mands that transform inputs into outputs by calling a component,
such as executable programs, scripts, and containers (Koster
& Rahmann, 2012). To more clearly link the generated output
files to rules, we devised a naming convention for the outputs,
‘ARKID_ruleName.fileExtension’ (Sandve et al., 2013). We reduce
redundancy and the potential for errors by using a configuration
file that defines paths, file names, etc. that can be used by the
workflow definition and custom scripts. Thus, if a path or file name
changes or is added, the change needs to be made only in a sin-
gle place, rather than repeatedly throughout (Roach et al., 2022).
We leverage Snakemake's capability to use entire workflows as
components by creating a sub-workflow, BGNN_Core_Workflow
(Table 1; Goble et al., 2020). This workflow consists of steps that
are used by the entire collaborative team, not specific to a project,
such as downloading image metadata and image data, generating
and reformatting image processing metadata, creating a mask,

cropping the image and applying the segmentation module.

2.3.1 | Environment

Most workflows will require the creation of a computational envi-
ronment suitable to run the various scripts and containers (Figure 2,
create environment). We use a high-performance computing (HPC)
environment to isolate the environment and allow multiple users
to run the workflow. Our workflow requires Conda (Anaconda
Software Distribution, 2020; for Python and Snakemake) and
Singularity (now Apptainer; Kurtzer et al., 2017; Singularity
Developers, 2021; to create and run Docker container images). The
configuration file (config/config.yaml) sets the inputs and outputs
as relative paths, as this allows paths to components or outputs to
be changed only in the configuration file rather than multiple times
across components, following best practices (Roach et al., 2022;
Sandve et al., 2013). We also create YAML files to load environ-
ments, such as an R environment and for image data downloads,
following best practices for version control and defining paths to
components (Roach et al., 2022; Sandve et al., 2013). These files are
in the folder ‘envs’ and called by the workflow definition.
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We created a way to recreate the R environment used by do-
main scientists' scripts, which were in the R programming language
(version 4.2.3; R Core Team, 2018). We intentionally did not contain-
erize the R dependencies and environment for ease of use for do-
main scientists who may not have expertise in containers. Instead,
we supply a Conda environment YAML file (envs/r-minnows.yaml)
so that Snakemake will automatically create an R environment be-
fore running the R scripts. The environment is initialized using init.R
in the folder ‘Scripts’ by defining the paths to all files (paths.R) and
initializing all the functions (functions.R). The computational envi-
ronment automatically loads the R programming dependencies [dplyr
1.0.8 (Wickham, 2023a), ggplot2 3.3.5 (Wickham, 2016), ggpubr 0.4.0
(Kassambara, 2023), json 0.2.21 (Couture-Beil, 2022), moments 0.14.1
(Komsta & Novomestky, 2022), RColorBrewer 1.1.2 (Neuwirth, 2022),
remotes 2.4.0 (Csardi et al., 2022), reshape2 1.4.4 (Wickham, 2022),
stringr 1.4.0 (Wickham, 2023b), tidyr 1.2.0 (Wickham et al., 2024),
yaml 2.3.5 (Garbett et al., 2023)] into a created folder, ‘Library’.

2.4 | Components

Components are the scripts and tools, such as containers and
ML models, that the WM invokes based on the rule definitions
(Figure 1, row 2; Figure 2, row 3). We store, build, and develop the
components using GitHub for version control and for making the
components findable and accessible to the full team (and the public).
The components used are either an entire repository that is later
containerized or scripts within the project repository. We created
specialized components for this case study, though general to our
collaborative team and thus can be used as modular, interoperable
components in any future workflow.

Containerizing the components enables interoperability and por-
tability for use in a workflow (Brack et al., 2022; Gruening et al., 2018;
Nust et al., 2020; Roach et al., 2022). Although the trained models
can be included directly in the codebase, this makes individual com-
ponents difficult to identify and access, inhibiting reuse. Therefore,
we consider models (more specifically, the trained ML model
weights) as their own digital objects, and deposit them in Hugging
Face (https://huggingface.co/) where they receive their own identi-
fier and resolvable URI, and from where they can be downloaded by
the component (Gruening et al., 2018; Kadri et al., 2022). A domain
scientist can incorporate as many of these components as necessary
for their project. We chose to containerize components using Docker
(Merkel, 2014) as these containers are compatible with Singularity,
and therefore Snakemake and most HPC environments. Below we
discuss the specific components in our case study and their imple-
mentation into the conceptual imageomics workflow.

241 | Download metadata

To be completely automated, the first step is to read in the metadata
(Figures 1 and 2, step 1)—that is, the metadata is not stored in the

Minnow_Segmented_Traits repository (rules download_fish_air_data or
download_zenodo_data). The IMD provides a unique ID [called ARKID
by Fish-AlIR, but as a current limitation of Fish-AIR they lack the Name
Assigning Authority Number (NAAN) prefix and are thus not resolv-
able as ARK IDs] and path to download for each image datum. This
step downloads IQM (imageQualityMetadata.csv), which contains in-
formation about each image, such as if the specimen is curved or ob-
structed in the image. Since we restrict image data to contain species
that overlap with those in Burress et al. (2017), the WM invokes the
rule download_burress to download Burress et al. (2017) supplemen-
tary data for later image filtering (see Section 2.4.2).

2.4.2 | Filter image data

The specific filtering of the image data and metadata are unique
to our case study; however, the implementation of this step is
generalizable (Figures 1 and 2, step 2). The filtering scripts are
executed by rule select_minnow_images. We first manipulated the
metadata files for ease of use using R scripts. We created a custom
script, Data_Manipulation.R in Scripts to combine the IQM and IMD
files, and to modify the Burress et al. (2017) supplementary file for
future downstream analyses. To identify the image data to download,
we again used a custom script, ‘Minnow_Selection_Image_Quality_
Metadata.R’ in ‘Scripts’. High-quality minnow image data were
selected based on the parameters and values recommended by
Leipzig et al. (2021) (Table 2). Finally, we selected only those species
that were also in Burress et al. (2017). This resulted in a final dataset
of 13 species and 273 image data records (Table S1).

2.4.3 | Download image data

Image data are downloaded from the Fish-AIR repository based on a
unique URL from a file in the Zenodo archive (Figures 1 and 2, step 3;
Table 1). This is encoded in the rule download_image from the BGNN _
Core_Workflow. These image data are stored locally in a new folder
‘Images’ for further processing. Storing data locally rather than on
the shared GitHub repository helps keep the repository size down.
All image data are saved as ARKID.jpg, where ARKID is an unique
identifier assigned to the fish image data by Fish-AIR.We added
a limiting step in the downloading component so that the domain
scientist can specify the number of image data to be downloaded in
the ‘config.yaml’ file. This helps with testing, as the domain scientist
can select 10 image data, as an example, speeding up processing
time (Roach et al., 2022). The input is an integer or to download all
the image data (") for the final runs.

244 | Metadata generation

The first ML component (Figures 1 and 2, step 4a) performs ob-
ject detection and metadata generation as defined by the rule
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TABLE 2 Filtering criteria for Minnow image download using Fish-AIR vocabulary (https://fishair.org/vocabulary.html).

Statement

If the specimen is
not curved

If all the parts of
the fish are
visible

If no objects
overlap with
the fish

If the fins are

folded

If the background
is uniform

Fish facing left

Fish possessing
all parts

Brightness

Focus

Color

Ruler included

Note: The option kept is bolded. Fish image unique IDs are linked to their image hosted by Fish-AIR.

QM

specimenCurved

allPartsVisible

partsOverlapping

partsFolded

uniformBackground

specimenView

partsMissing

brightness

onFocus

colorlssue

containsScaleBar

Options

straight, curved

True, False

True, False

True, False

True, False

left, lefttop,

leftbottom, right

True, False

normal, dark, bright

True, False

none, contrast,

slightly dark, very

dark, dark, dark

spots, small black
dots on posterior

of fish, blotchy
discoloration,

specimen is dark,
light spots, slightly
dim and dirty
picture, specimen
has discoloration,
discoloration on
scales, anterior
portion, dim

True, False

Filter

Remove all images of
specimens that are not
straight

Remove all images of
specimens that have
parts not visible

Remove all images of
specimens where fins or
other parts overlap

Remove all images of
specimens where fins or
other parts are folded

Remove images where
background is not
uniform and so may
obstruct machine
learning tools

Remove images of
specimens which are
not facing left

Remove images of
specimens missing fins
or other parts

Remove images either too
bright or too dark

Remove images that are not
in focus

Remove images with color
issues

Remove images which do
not have a scale bar

Example of a removed image:

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/1p85b80p.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/1105vw55.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/2596p382.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/9f80858x.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/sh31rb7q.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/1p72wx0g.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/xv05jh70.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/1942x257.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/q794d840.jpg

https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/6p98d534.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/3h107h5f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/8532wr8k.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/1942x257.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/2d067q3z.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/3b62vj85.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/qr35mf7x.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/6509cm1w.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/7p08pmér.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/8r32wx1b.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/kn585s9%t.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/UWZM/wv25c43f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/v2871wé7.jpg
https://fishair.org/hdr-share/ftp/ark/89609/
GLIN/INHS/xx32hs1k.jpg

All cases were true; we checked that the scale
bar was perceived by the object detection.
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https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/1105vw55.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/2s96p382.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/2s96p382.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/9f80858x.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/9f80858x.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/sh31rb7q.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/sh31rb7q.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/1p72wx0g.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/1p72wx0g.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/xv05jh70.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/xv05jh70.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/1942xz57.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/1942xz57.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/q794d840.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/q794d840.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/6p98d534.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/6p98d534.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/3h107h5f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/3h107h5f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/8532wr8k.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/8532wr8k.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/1942xz57.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/1942xz57.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/2d067q3z.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/2d067q3z.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/3b62vj85.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/3b62vj85.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/qr35mf7x.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/qr35mf7x.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/6509cm1w.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/6509cm1w.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/7p08pm4r.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/7p08pm4r.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/8r32wx1b.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/8r32wx1b.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/kn585s9t.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/kn585s9t.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/wv25c43f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/UWZM/wv25c43f.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/v2871w67.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/v2871w67.jpg
https://fishair.org/hdr-share/ftp/ark/89609/GLIN/INHS/xx32hs1k.jpg
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generate_metadata from the BGNN_Core_Workflow (Tabarin,
Bradley, Balk, & Lapp, 2023a; Table 1). This rule calls the container
drexel_metadata from the drexel_metadata repository (Karnani
et al., 2023; Table 1), which generates a metadata file for each image
datum (named ARKID.json). The codebase has two outputs and is
described in Leipzig et al. (2021), Pepper et al. (2021), and expanded
upon in Karnani et al. (2022). The domain scientists and software en-
gineer worked with the ML researchers to containerize their code-
base for reuse in this workflow.

This component uses detectron2 (He et al., 2018; Wu et al., 2019)
to detect five instance classes within images: fish, fish eye, ruler,
number ‘2', number ‘3. detectron2 outputs bounding boxes, binary
masks, and a series of attributes for each instance of each class.
The generate_metadata software post-processes information using
the instance classes, like determining the image scale (pixels/cm). If
a fish is identified, generate_metadata creates a new, refined binary
mask over the specimen. These masks are created by using the ini-
tial bounding box from detectron2 and performing pixel-based con-
trast analysis to determine the contours of the fish. The bounding
box is recalculated based on this refined mask. These image data
are stored in the folder ‘Mask’ and are named ARKID_mask.png. The
final bounding boxes created are used further down the pipeline to
crop the fish specimen from the rest of the image so that the tag and
ruler are not fed into the segmentation model.

2.4.5 | Reformat metadata

We created a component called drexel_metadata_formatter (Tabarin,
Bradley, & Lapp, 2023a; Table 1) that reformats the output from the
generate_metadata component to only include what is needed for
downstream analyses for this case study. This rule, transform_meta-
data, is from the BGNN_Core_Workflow that the WM calls. We re-
tain base_name, version, fish number, bbox, pixel_analysis, rescale,
eye_bbox, eye_cener, angle_degree, eye_direction, foreground_
mean, background_mean, ruler, and ruler_bbox, ruler_scale. These
intermediate data are stored locally in the folder ‘Metadata’. This is
an example of a domain scientist customizing the component. In this
example, metadata can be reformatted or scripts in R or Python to

reformat in a domain scientist's repository that are not containers.

2.4.6 | Cropimage

We cropped the image data to only include the fish; extraneous items
such as the specimen tag and scale bar were removed. To implement
this step in a reusable way, we added code for cropping image data
in its own repository, Crop_Image (Tabarin, Bradley, & Lapp, 2023b;
Table 1), which made it easy to containerize. The corresponding rule,
crop_image, is invoked by the WM from the BGNN_Core_Workflow.
Using the output from the generate_metadata rule, we increased the
bounding box by 5% (2.5% per side) to crop the image. These image
data are stored in the folder ‘Cropped’ as ARKID_cropped.jpg. This

is an example of the domain scientist interacting with the ML re-

searcher's products.

247 | Segmentation

The second ML component is a segmentation model (Figures 1 and
2, step 4b). To facilitate integration and improve reusability, we con-
tainerized the segmentation model. The Docker container image
includes the code (model architecture, preprocessing, and post-
processing code) and downloads the model weights from the BGNN-
trait-segmentation (Maruf & Karpatne, 2022; Table 1), to build
a full-fledged independent tool for the segmentation (Table S3).
The segmentation model is from the Segmentation Models library
(lakubovskii, 2019), which is based on PyTorch (Paszke et al., 2017).
The model was previously trained using ImageNet (Deng et al.,
2009), then fine-tuned to our dataset (see Data S1). The segmenta-
tion model classifies pixels on the image of the specimen as a trait
(Figure S1). The results of the segmentation model are in the folder
‘Segmentation’ and the image data are stored as ARKID_segmented.
jpg. These results are then used for downstream analyses.

We modified the codebase, BGNN-trait-segmentation (Maruf &
Karpatne, 2022; Table 1), which is invoked from the BGNN_Core_
Workflow, to work with our images. Since segmentation models are
designed to process a specific image size, we needed to resize the
cropped image data to minimize spatial distortion. The resizing of
images was based on the size distribution of the images in the data-
set and resizing to the mean of each dimension's distribution. We did
not add any padding to the images. After segmentation, the image
is again resized to the size of the cropped image so that the scale
remains the same as the original image data from which the ruler has
been extracted. We worked with the ML researcher to containerize

their codebase for reuse in this workflow.

2.4.8 | Morphological analysis

We created two components to analyse segmentation outputs
(Figures 1 and 2, step 5). One component extracts the classification
of the traits (i.e. segmentations) from the segmentation model. We
created a codebase, Morphology-analysis (Tabarin, Bradley, Balk, &
Lapp, 2023b; Table 1), for scripts to record the number of groupings
of continuous areas of pixels classified with the same label, which
we call blobs, corresponding to a trait (Figure S2), the percentage
by area (number of pixels) of the biggest blob. The container is in-
voked in the rule create_morphological_analysis in the workflow. The
outputs are saved as a json file, ARKID_presence.json in ‘Presence’.

The other component is a R script for statistical analy-
sis. In general, the nature of the statistical analysis on the ML-
generated outputs will be specific to a domain scientist's research
question(s). For our case study, we created a script, Presence_
Absence_Analyses.R in ‘Scripts’, for deriving presence or absence
metrics of the traits segmented by the Segementation step. The rule
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presence_absence_analysis in the workflow invokes this script and
creates figures and tables that are put into the folder ‘Results’. In
general, domain scientists require creative control over this compo-
nent, and thus writing a script to be stored in the project repository
is appropriate.

We combine the ARKID_presence.json files (Table S2). We then
performed analyses on how well the model performed at finding the
traits and created visualizations that are stored in ‘Results’. Although
the segmentation performance was high [mean loU of 0.9 (scores
range from O to 1)], some artefacts were present such as the erro-
neous presence of traits or fragmented trait segmentation. We as-
sessed the degree of uncertainty in identifying a trait by quantifying
how many traits had the biggest blob as less than 85% of total trait
blobs and the spread of the area of the biggest blob for each trait
(Figure S3).

3 | RESULTS

The conceptual imageomics workflow is built on the principle of
modularity; the application-specific imageomics workflow is suc-
cessfully implemented and executed following FAIR principles
(Table 3; Barker et al., 2022; Goble et al., 2020; Wilkinson et al.,
2016). For all data, metadata, software, and ML models used, we
created rich metadata files, retained provenance and attribution,
store and retrieve from findable, accessible repositories, registries
or archives. To achieve findability and accessibility we referenced re-
positories for metadata and components in the workflow definition
enabling the automatic download of image data and execution of
the workflow rules. To create modular and portable components we
used containers and specified component versions for reproducibil-
ity. To automate the workflow, we utilized a WM. We use configura-
tion files to define relative paths for both the Snakemake workflow
definition, the scripts invoked by the WM, and for setting up the
environment, thereby reducing redundancy. Using the WM with a
configuration file facilitated interoperability of all components and
scripts.

Our inputs and outputs are findable and accessible. Our meta-
data files, data items, software components, and ML models are as-
signed unique identifiers and are stored in a searchable resource.
Further, the metadata files and image data are retrievable using
their identifiers; this accessibility enables reproducibility by the
public. We take advantage of the built-in metadata structure and
attributions when depositing data (Grossman et al., 2016). Beyond
the metadata, the workflow uses technology that is FAIR, such as
Snakemake, GitHub, and the containerized components, all which
are accessible and free to use.

To achieve interoperable and reusable components that are por-
table across HPC or computing platforms, we create Docker con-
tainer images for each component's codebase. We fully automated
the potentially tedious process of updating container images for
a code repository upon updates, using GitHub Actions that both
build a Docker image (i.e. container) and then push it to GitHub's
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Container Registry (https://ghcr.io) automatically with every code
release. Being part of a registry of containers ensures that these
components are findable and accessible, with associated metadata
and data items, so that the provenance of the source of the container
is apparent. We also archive the code repositories for perpetuity to
facilitate future reproducibility (see ‘Data Availability Statement’).
We follow best practices of containerization, such as limiting one
tool (or component) per container, including licensing, ensuring
container accessibility and keeping the data separate (Gruening
etal., 2018).

Versioning code and components was critical for reproducibility
and project development. For this we followed Semantic Versioning
(https://semver.org) where a versioning scheme was not already
present in a component's repository, by applying corresponding Git
version control tags to respective commits. To allow for flexible con-
trol of which version of a component is recruited in the workflow,
we exploited the fact that the same container image in a registry can
have multiple tags representing different version granularities (NUst
et al., 2020), meaning that the domain scientist can select a specific

version or the latest version.

4 | DISCUSSION

Harnessing data in the form of images is dramatically increasing
across the biological sciences. New tools, models, and algorithms
for analysis are being rapidly produced and recombined to ad-
dress an increasing variety of research questions. We posit that
for this emergent field to develop its full potential in facilitating
novel research endeavours involving interdisciplinary teams, it is
important to establish FAIR data and reproducible workflow prac-
tices (Barker et al., 2022; Brack et al., 2022; Goble et al., 2020). All
team members need to be able to find and access the data, models,
and any components, which usually means that the corresponding
workflow ingredients need identifiers and be publicly available.
The research-grade tools developed by team members needed to
be made interoperable, reusable, and portable for use across com-
putational environments, and in other projects, which we accom-
plished by containerizing tools and placing the container images
into a public registry. Further, unlike data simply comprising facts
of nature, image data requires special attention to best practices
with respect to attribution, provenance chain and licence.

We tackle how to combine tools and technologies emerging from
active research for using ML to process and extract knowledge from
image data such that the resulting workflow is end-to-end auto-
mated, reproducible and (re)usable by domain scientists. We start
by developing a conceptual imageomics workflow and then create
an application-specific implementation emphasizing FAIR principles,
modularity, portability, and flexibility. The application of the con-
ceptual imageomics workflow is intended to serve as a guideline for
team implementation of a workflow incorporating image data and
ML tools using FAIR data principles. By focusing on these princi-
ples and techniques, we avoid common pitfalls when trying to use
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another researcher's tool, such as code redundancy and duplication,
failure-prone dependency management, non-replicable computing
environments, or non-portable file paths. Developing such a work-
flow template facilitates teamwork as its implementation requires
deep collaboration among the ML researchers, domain scientists
and software engineers. In this sense, some of the benefits from the
template and approaches we describe will most directly accrue to an
interdisciplinary team that includes software engineering expertise,

and less so to an individual domain scientist or ML researcher.

4.1 | Team science

In our team, we recognized that it is important to provide and retain
author attribution for all scripts and inputs so that all member con-
tributions are valued and appreciated. While such documentation
may seem mundane, we found attribution is best addressed early in
the project to bring clarity about who is working on the code and to
incentivize collaboration. Giving appropriate credit not only made
team members feel valued, it also served as a point of contact should
the domain scientist need help. Attribution was provided in multiple
places: with data items or trained model weights in a repository, with
any scripts in a repository, and with the container image in a regis-
try. Acknowledgements, licensing and attributions were provided in
the readme and as a script header. Adding licensing makes the rights
and terms of reuse clear for each component (Goble et al., 2020).
Accessible metadata facilitates reproducible and reusable science
(Brito et al., 2020).

It is a common observation that code artefacts from active com-
putational research often fall under what is referred to as research-
grade, in contrast to product-grade robust and reusable tools
(Griining et al., 2019; Trisovic et al., 2022). We, too, encountered
interoperability issues for command-line invocation of components,
unstable expectations for inputs and outputs, and other problems
when ML tools under active research and development needed to
be included in the larger workflow. We argue that this will be en-
countered commonly in imageomics, given that ML components will
remain under highly active and dynamic research. We used Semantic
Versioning tags for the containerized components enabled the do-
main scientist to precisely control which version of corresponding
ML codes, models, and associated software dependencies is used
in their workflow, enabling reproducibility (Brack et al.,, 2022;
Goble et al., 2020; Niehues et al., 2024; Nust et al., 2020; Roach
et al., 2022). Snakemake allows specifying the desired tag for a con-
tainer and also recognizes if the container for a step (‘rule’) is of a dif-
ferent version than the one with which the step has run previously,
and, if so, re-runs the rule.

4.2 | Workflow

The research and development of WMs is a very active endeavour,
and consequently there are many choices. We found that our core

Methods in Ecology and Evolution EEé“n“lﬁ!m.l
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technical requirements, such as modularity, automation, and HPC
interoperability, are met by many candidate WMs, but that usabil-
ity by team members can differ substantially. In our case, we chose
Snakemake as the WM that provided usability by a domain scientist
with basic familiarity with image data science using Python tools and
has capabilities for using containers, which is how the modules are
implemented. For the software engineers and ML researchers on
the team, Snakemake's rule system is conceptually similar to rules in
Makefiles. This choice has also been reached elsewhere in a related
context (Schmied et al., 2016).

The replicability of a workflow by different users in a team, or
on different computing environments, necessarily hinges on the
files required for any given step to be findable by the components.
Initially, our files were maintained on a local filesystem, and hence
the paths to access these files were at first hardcoded, rendering
them non-portable. We addressed this by downloading input files
from a repository on-demand, and by removing all hard coded paths,
and by defining file paths and identifiers in a configuration file for
the workflow. As a side benefit, this configuration file also allows us
to set options specific to a computing environment, such as whether
a GPU is available to the ML components or not.

Similar to genomic data analysis, image data analysis can con-
sist of conditional steps, branching, and loops, but in the absence
of a formal workflow definition for end-to-end automation the
corresponding computations often run without coordination, par-
allelization, and orchestration. Automation of workflows thus pro-
motes modularity and efficiency. Assembling all computational
components in a study into an automated workflow is also key to
reproducibility. Workflows do not need to begin fully modularized or
even automated; a monolithic and manually-operated approach may
even be more productive in the early stages of an analysis project.
For example, our workflow began as manual because it required less
upfront technical effort and fewer unfamiliar technologies to learn
during the exploratory stages, when the team was still determin-
ing the necessary inputs, the data wrangling steps; and the desired
outputs. As more team members needed to run all or part of the
analysis, automating components of the workflow brought signifi-
cant time savings throughout the continuation of our project and
enabled reuse between the domain scientist, ML researchers and
software engineers. Assembling all computational components in a
study into an automated workflow is also key to its full computa-
tional reproducibility.

4.3 | Modularity

Machine learning research can result in multiple tools being main-
tained in a single large and therefore monolithic repository that
performs many tasks. Modularizing these tools as workflow compo-
nents made our workflow easier to understand, automate and there-
fore use. Further, modularization via components allowed for faster
prototyping of a project because elements can be ‘plug and chug’;
a simple change in the workflow could be tested immediately. The
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downside of modularization is keeping track of external dependen-
cies and versions for each component. Still, we found that modular
components also promoted reuse by our domain scientist and im-
proved computational efficiency.

We adopted earlier best practices for allowing domain scien-
tists to use and combine research-grade software tools created by
dynamic collaborative research endeavours, such as the one we
report here, into an automated and reproducible workflow (Leipzig
et al., 2021; Shade & Teal, 2015). Specifically, we use Docker con-
tainers to allow packaging, distributing, and running research-
grade code in a reproducible environment, isolated from the other
tools in a workflow. Containerization that follows FAIR principles
also prevents codebase duplication, the loss of associated meta-
data, and makes components portable (Nust et al., 2020). Although
Docker is typically unavailable in a shared HPC environment due
to the elevated privileges it requires, Singularity (now Apptainer),
which runs on a Linux operating system and is usually supported
on HPC clusters, can bootstrap its containers from Docker con-
tainer images. Further, automating the process of container image
creation and versioning via GitHub Actions made reproducing the
software environment easy for the domain scientist. Our collabo-
rative team had the benefit that the ML researchers who originally
built the tools were a part of the team and aided in containeriza-
tion of these components. Not all teams may have this benefit, es-
pecially when using third-party tools. It is important, nonetheless,
to be transparent on which components are reusable and which

are not for future use.

5 | OUTLOOK

The future of imageomics is an exciting one: more tools, more
methods, more models will undoubtedly be developed. With these
developments, the need to bring them together to build fully auto-
mated and reproducible workflows will become ever more preva-
lent. The technologies and practices used to realize the conceptual
imageomics workflow into an application-specific, automatic and
reproducible workflow will serve as a guide that reduces tool

wrangling and frees time to explore scientific questions.
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