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ABSTRACT

In 2012 Chen and Singer introduced the notion of discrete residues
for rational functions as a complete obstruction to rational summa-
bility. More explicitly, for a given rational function f(x), there
exists a rational function g(x) such that f(x) = g(x + 1) — g(x) if
and only if every discrete residue of f(x) is zero. Discrete residues
have many important further applications beyond summability:
to creative telescoping problems, thence to the determination of
(differential-)algebraic relations among hypergeometric sequences,
and subsequently to the computation of (differential) Galois groups
of difference equations. However, the discrete residues of a rational
function are defined in terms of its complete partial fraction decom-
position, which makes their direct computation impractical due to
the high complexity of completely factoring arbitrary denominator
polynomials into linear factors. We develop a factorization-free al-
gorithm to compute discrete residues of rational functions, relying
only on ged computations and linear algebra.
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1 INTRODUCTION

Let K be a field of characteristic zero, and consider the field K(x)
of rational functions in an indeterminate x with coefficients in K.
First formulated in [Abr71], the rational summation problem asks,
for a given f(x) € K(x), to construct g(x), h(x) € K(x) such that

f(x) =g(x+1) —g(x) + h(x) (1.1)
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and the degree of the denominator of h(x) is as small as possible.
Such an h(x) is called a reduced form of f(x). The rational sum-
mation problem has a long and illustrious history [Abr71, Abr75,
Moe77, Kar81, Pau95, Pir95, PS95, MS95, Abr95, Pol08]. It is clear
that the problem admits a solution (by the well-ordering principle),
and that such a solution is not unique, because for any solution
(g(x), h(x)) we obtain another solution (g(x) —h(x), h(x+1)) since
the degree of the denominator of A(x+1) is the same as that of A(x).
In comparing the approaches in op. cit., one can then ask for the de-
nominator of g(x) to be also as small as possible, and/or to compute
some (any) solution (g(x), h(x)) to (1.1) as efficiently as possible.
We refer to the introduction of [PS95] for a concise summary and
comparison between most of these different approaches.

Every algorithm for solving the rational summation problem
also addresses, as a byproduct, the rational summability problem
of deciding, for a given f(x) € K(x), whether (just yes/no) there
exists g(x) € K(x) such that f(x) = g(x + 1) — g(x), in which
case we say f(x) is rationally summable. There are various algo-
rithms for addressing this simpler question, designed to forego
the usually expensive and often irrelevant computation of the cer-
tificate g(x), which are presented and discussed for example in
[Mat00, GGSZ03, BCCL10, CS12, CHKL15, HW15, GHLZ22] and
the references therein.

We center our attention on the approach to rational summabil-
ity proposed in [CS12]. The discrete residues of f(x) € K(x) are
constants defined in terms of the complete partial fraction decompo-
sition of f(x), and have the obstruction-theoretic property that they
are all zero if and only if f(x) is rationally summable. Computing
these discrete residues directly from their definition is impracti-
cal due to the high computational cost, or possible infeasibility, of
factoring the denominator of f(x) into linear factors. We propose
here algorithms for computing these discrete residues relying only
on ged computations and solving systems of linear equations in
K. To be clear, the discrete residue data of an arbitrary f(x) are in
general algebraic over K. We submit that it would be perverse to
avoid expensive factorizations throughout the algorithm, only to
demand them at the very end! Inspired by [BS93, Thm. 1] our output
consists of pairs of polynomials with coefficients in K: one whose
roots are the places where f(x) has non-zero discrete residues, the
other whose evaluation at each such root gives the corresponding
discrete residue (see §3 for a more detailed description). Of course,
any user who wishes to actually see the discrete residue data of f
may use the K-polynomials produced by our algorithms to compute
them explicitly to their heart’s content and at their own risk.

Let us now describe our general strategy for computing discrete
residues (cf. Algorithm 4). We apply iteratively Hermite reduction
to f(x) in order to reduce to the special case where the denominator
of f(x) is squarefree. Then we compute a reduced form f(x) of
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f(x) whose denominator is both squarefree and shift-free, so that
the discrete residues of f(x) are the classical first-order residues
of f(x). The factorization-free computation of the latter is finally
achieved by [Tra76, Lem. 5.1].

Our proposed algorithms to compute discrete residues are ob-
tained by combining in novel ways many old ingredients. Indeed,
Hermite reduction is very old [Ost45, Her72], and its iteration in
Algorithm 1 is already suggested in [Hor71, §5] for computing iter-
ated integrals of rational functions. And yet, we have not seen this
approach being more widely used in the literature, and it seems to
us a good trick to have to hand. Indeed, we wonder whether it could
provide a reasonable alternative, at least in some cases and for some
purposes, to the algorithm in [BS93] for symbolically computing
complete partial fraction decompositions over the field of definition.
Having thus reduced via Algorithm 1 to the case where f(x) has
squarefree denominator, many of the varied earlier approaches to
the summation and summability problems seem to accidentally
collide into essentially the same procedure when restricted to this
simpler situation. In this sense, our own reduction procedure de-
scribed in §5 strikes us as eerily similar to the one presented in
[GGSZ03, §5] over 20 years ago — that ours may look simpler is a
direct consequence of its being restricted to a simpler class of inputs.
The simplicity of our approach allows us to exercise a great deal of
control over the form of the outputs, in ways that are particularly
useful for developing some extensions of our basic procedures, elab-
orated in §7. It is not obvious to us (but it would be interesting to
see) how the same goals might be better accomplished differently,
say by combining the reduction of [GGSZ03] with the symbolic
complete partial fraction decomposition algorithm of [BS93].

Our interest in computing discrete residues is motivated by the
following variant of the summability problem, which often arises
as a subproblem in algorithms for computing (differential) Galois
groups associated with (shift) difference equations [vdPS97, Hen98,
HS08, Arr17]. Given several fi(x), ..., fu(x) € K(x), compute (or
decide non-existence) of 0 # v = (vy,...,0,) € K" such that

01fi(%) + - +onfa(x) = gu(x +1) = gv(x) (1.2)

for some gy(x) € K(x). Even if one wishes to compute the cer-
tificate gy (x) explicitly, it seems wasteful to perform a rational
summation algorithm n times for each f;(x) separately to produce
(gi(x), hi(x)) as in (1.1) as an intermediate step, because there is
no guarantee that hy(x) = ); v;h;(x) has smallest possible de-
nominator, so one may need to perform the algorithm an (n + 1)t
time to hy(x) in order to decide summability (this last step may
be avoidable by making a more careful sequence of interrelated
reduction choices; see e.g. [CHKL15, §5]). These inefficiencies are
exacerbated in the more general context of creative telescoping prob-
lems [Zei90, Zei91, WZ92], where the unknown v; € K are replaced
with unknown linear differential operators £; € K[%] (cf. [HSO08,
Prop. 3.1]). We refer to [Che19] for a succinct and illuminating
discussion of the history and computational aspects of creative
telescoping problems, and in particular how the “fourth generation”
reduction-based approaches bypass the computation of certificates,
as our motivating problem (1.2) illustrates.

Our approach based on discrete residues makes it very straight-
forward how to accommodate several f;(x) simultaneously as in
(1.2), which adaptation is less obvious (to us) how to carry out
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efficiently using other reduction methods. On the other hand, we
share in the reader’s disappointment that we offer hardly any theo-
retical or experimental evidence supporting the efficiency of our
approach in contrast with other possible alternatives. In fact, we
expect that our approach will not be universally more efficient
than some future adaptation of [GGSZ03, §5] or [CHKL15, §5] (for
example) to the situation of (1.2), but rather that it can be a useful
complement to them. We also expect that the conceptual simplicity
of our approach will be useful in developing analogues to other
related (but more technically challenging) contexts beyond the shift
case, such as g-difference equations, Mahler difference equations,
and elliptic difference equations, for which the corresponding no-
tions of discrete residues have also been developed respectively in
[CS12], [AZ22, AZ23], and [HS21].

2 PRELIMINARIES

2.1 Basic notation and conventions

We denote by N the set of strictly positive integers, and by K a
computable field of characteristic zero in which it is feasible to
compute integer solutions to arbitrary polynomial equations with
coefficients in K. Such a field is termed canonical in [Abr71]. We
denote by K a fixed algebraic closure of K. We do not assume K
is algebraically closed, and we will only refer to K in proofs or for
defining theoretical notions, never for computations.

We work in the field K(x) of rational functions in a formal
(transcendental) indeterminate x. For f(x) € K(x), we define

o:f(x) > f(x+1); A:f(x)— f(x+1) - f(x).

Note that o is a K-linear field automorphism of K(x) and A = o —id
is only a K-linear map with ker(A) = K. We often suppress the
functional notation and write f instead of f(x), o(f) instead of
f(x+1), etc., when no confusion is likely to arise.

A proper rational function is either 0 or else has numerator of
strictly smaller degree than that of the denominator. We assume
implicitly throughout that rational functions are normalized to have
monic denominator. Even when our rational functions are obtained
as (intermediate) outputs of some procedures, we will take care to
arrange things so that this normalization always holds. In particular,
we also assume that the outputs of gcd and lem procedures are also
always normalized to be monic. An unadorned ged or lcm or deg
means that it is with respect to x. On the few occasions where
we need a gcd with respect to a different variable z, we will write

and

ged,. We write % (resp., %) for the usual derivation operator with
respect to x (resp., with respect to z).

2.2 Partial fraction decompositions

A polynomial b € K(x) is squarefree if b # 0 and ged (b, %b) =1
Consider a proper rational function f = % € K(x), with deg(b) > 1
and gcd(a, b) = 1. Suppose further that b is squarefree, and that
we are given a set by,...,b, € K[x] of monic non-constant poly-
nomials such that []}_; b; = b. Then necessarily ged(b;, b;) = 1
whenever i # j, and there exist unique non-zero polynomials
ai,...,an € K[x] with deg(a;) < deg(b;) for eachi = 1,...,n
such that f = 37, Z—i In this situation, we denote

ParFrac(f;b1,...,bn) = (a1,... (2.1)

»an).
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We emphasize that the computation of partial fraction decompo-
sitions (2.1) can be done very efficiently [KT77], provided that the
denominator b of f has already been factored into pairwise rela-
tively prime factors b;, which need not be irreducible in K[x]. One
can similarly carry out such partial fraction decompositions more
generally for pre-factored denominators b that are not necessarily
squarefree. But here we only need to compute partial fraction de-
compositions for pre-factored squarefree denominators, in which
case the notation (2.1) is conveniently light.

2.3 Summability and dispersion
We say f € K(x) is (rationally) summable if there exists g € K(x)
such that f = A(g). For a non-constant polynomial b € K[x], we
follow the original [Abr71] in defining the dispersion of b
disp(b) := max{¢ € N | ged(b, o’ (b)) # 1}.

For a reduced rational function f = § € K(x) with ged(a,b) = 1
and b ¢ K, the polar dispersion pdisp(f) := disp(b).

We denote by K/Z the set of orbits for the action of the additive
group Z on K. For a € K, we denote

w(a) ={a+n|nei},

the unique orbit in K/Z containing a. We will often simply write
w € K/Z whenever there is no need to reference a specific @ € w.

3 DISCRETE RESIDUES AND SUMMABILITY

Definition 3.1 ([CS12, Def. 2.3]). Let f € K(x), and consider the
complete partial fraction decomposition

f= p+22 k()

(3.1)
keN geK (x = o()k

where p € K[x] and all but finitely many of the ¢ () € K are zero
for k € N and a € K. We define the discrete residue of f of order
k € N at the orbit w € K/Z to be

dres(f, w, k) = Z cx(a).

acw

(3.2)

The relevance of discrete residues to the study of rational summa-
bility is captured by the following result.

ProrosITION 3.2 ([CS12, PrOP. 2.5]). f € K(x) is rationally
summable if and only if dres(f, w, k) = 0 for every w € K and k € N.

As pointed out in [CS12, Rem. 2.6], the above Proposition 3.2
recasts in terms of discrete residues a well-known rational summa-
bility criterion that reverberates throughout the literature, for ex-
ample in [Abr95, p. 305], [Mat00, Thm. 10], [GGSZ03, Thm. 11],
[ACO5, Cor. 1], and [HW15, Prop. 3.4]. All of these rely in some
form or another on the following fundamental result of Abramov,
that already gives an important obstruction to summability.

PRrOPOSITION 3.3 ([ABR71, ProP. 3]). Ifa proper rational function
0 # f € K(x) is rationally summable then pdisp(f) > 0.

Discrete residues are also intimately related to the computation
of reduced forms for f, in the sense that, as discussed in [CS12,
§2.4], every reduced form h of f as in (1.1) has the form

B Z Z dres(fa)k)

(3.3)
PR
keN 4ek/z (x — )
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for some arbitrary choice of representatives o, € w. Conversely,
for any h of the form (3.3), Proposition 3.2 immediately yields that
f — his rationally summable. An equivalent characterization for
h € K(x) to be a reduced form is for it to have polar dispersion 0
(see [Abr75, Props. 4 & 6]). By (3.3), knowing the dres(f, , k) is
thus “the same” as knowing some/all reduced forms h of f. But
discrete residues still serve as a very useful organizing principle
and technical tool, for both theoretical and practical computations.

For a given f € K(x), our goal is to compute polynomials
By (x), Dp(x) € K[x] for each k € N such that (Bg, Dy) = (1,0) if
and only if dres(f, w, k) = 0 for every w € K (which holds for all
but finitely many k € N) and, for the remaining k € N, we have
0 < deg(Dy) < deg(Bg) and By is squarefree with disp(Bg) = 0.
These polynomials will have the property that the set of roots & € K
of By is a complete and irredundant set of representatives for all
the orbits w € K/Z such that dres(f, », k) # 0, and for each such
root & € K such that By (a) = 0, we have dres(f, (), k) = D.(a).

4 ITERATED HERMITE REDUCTION

It is immediate that the polynomial part of f € K(x) in (3.1) is
irrelevant, both for the study of summability as well as for the
computation of discrete residues. So in this section we restrict our
attention to proper rational functions f € K(x).

Our first task is to reduce to the case where f has squarefree
denominator. In this section we describe how to compute f; € K(x)
for k € N such that, relative to the theoretical partial fraction
decomposition (3.1) of f, we have

k(@)
= —_—. 4.1
=) (1)
aekK
Of course we will then have by Definition 3.1
dres(f, w, k) = dres(fy, w, 1) (4.2)

for every w € K/Z and k € N,

Our computation of the fi € K(x) satisfying (4.1) is based on
iterating classical so-called Hermite reduction algorithms, originally
developed in [Ost45, Her72] and for which we refer to the fantastic
modern reference [Bro05, §2.2,§2.3].

Definition 4.1. For proper f € K(x), the Hermite reduction of f is
HermiteReduction(f) = (g, h)

where g, h € K(x) are proper rational functions such that

d
=— h
f=09+
and h has squarefree denominator.

The following Algorithm 1 computes the f;. € K(x) satisfying
(4.1) by applying Hermite reduction iteratively and scaling the
intermediate outputs appropriately.

LEmMMA 4.2. Algorithm 1 is correct.

Proor. Letting ||f|| = m € N denote the highest order of any
pole of f € K(x), note that fi,..., fm € K(x) defined by (4.1)
are uniquely determined by having squarefree denominator and

satisfying m(Cyket gkt

£ (=) dxkt

f= (fie)- (4.3)
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Algorithm 1 HermitelList procedure

Input: A proper rational function 0 # f € K(x).
Output: Alist (fi,..., fm) of fr € K(x) satisfying (4.1), such that
ck(a) = 0 for every k > m and every « € K, with f;;, # 0.

Initialize loop: m < 0; g « f;

while g # 0 do
(9> fmt1) — HermiteReduction(g);
mee—m+1;

end while; R

fe = (=DF (k= )1y

return (fi,..., fm)-

Defining inductively go := f and
(gk,fk) := HermiteReduction(gg_;)

(4.4)

d X
= Gk-1= a(gkﬂfk

for k € N as in Algorithm 1, we obtain by construction that all
k> fk € K(x) and every fk has squarefree denominator. Moreover,
19!l = llgg—1l| —1 = m—k, and therefore the algorithm terminates
with g, = 0. Moreover, it follows from (4.4) that

i a1 _i gy dge|
£ dxk-1 _k dxk-1 dxk =90
=1 =1

d™gm
dx™

=f.

Therefore the elements (—1)¥~! (k—1)! f;c are squarefree and satisfy
(4.3), so they agree with the f;. € K(x) satisfying (4.1). O

Remark 4.3. As we mentioned in the introduction, we do not expect
Algorithm 1 to be surprising to the experts. What is surprising to
us is that this trick is not used more widely since being originally
suggested in [Hor71, §5]. We expect the theoretical cost of com-
puting HermiteList(f) iteratively as in Algorithm 1 is essentially
the same as that of computing HermiteReduction(f) only once.
This might seem counterintuitive, since the former is defined by
applying the latter as many times as the highest order m of any
pole of f. But the size of the successive inputs in the loop decreases
so quickly that the cost of the first step essentially dominates the
added cost of the remaining steps put together. This conclusion is
already drawn in [Hor71, §5] regarding the computational cost of
computing iterated integrals of rational functions.

5 SIMPLE REDUCTION

The results of the previous section allow us to further restrict our
attention to proper rational functions f € K(x) with simple poles,
which we write uniquely as f =  with a,b € K[x] such that b is
monic and squarefree, and either a = 0 or else 0 < deg(a) < deg(b).

Our next task is to compute a reduced form f € K(x) such that
f — f is rationally summable and f has squarefree denominator as
well as polar dispersion 0, which we accomplish in Algorithm 3. As
we mentioned already in the introduction, many algorithms have
been developed beginning with [Abr71] that can compute such a
reduced form, even without assuming f has only simple poles.

Algorithm 3 requires the computation of the following set of
integers, originally defined in [Abr71].
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Definition 5.1. For 0 # b € K[x], the (forward) shift set of b is
ShiftSet(b) = {£ € N | deg(gcd(b, o’ (b))) > 1}.

The following Algorithm 2 for computing ShiftSet(b) is based
on the observation already made in [Abr71, p. 326], but with minor
modifications to optimize the computations.

Algorithm 2 ShiftSet procedure

Input: A polynomial 0 # b € K.
Output: ShiftSet(b).

if deg(b) < 1then S « 0;
else
R(z) « Resultant, (b(x), b(x + 2));

R(2) ,
z - ged, (R(z), %(z)) ’

T(2) « R(z7);
S« {£eN|T(? =0};
end if;

return S.

R(z) « > Exact division.

> R(2) is even; slight speed-up.

LEMMA 5.2. Algorithm 2 is correct.

PRrROOF. As pointed out in [Abr71, p. 326], ShiftSet(b) is the
set of positive integer roots of the resultant R(z) € K[z] defined
in Algorithm 2, which is the same as the set of positive integer
roots of the square-free part R(z)/ged, (R(2), %(z)). It is clear
that R(0) = 0, and since we do not care for this root, we are now
looking for positive integer roots of the polynomial R(z) defined
in Algorithm 2. It follows from the definition of R(z) that R(£) =0
if and only if R(—£) = 0 for every ¢ € K (not just for ¢ € Z), and we
see that this property is inherited by R(z). Since z t R(z), the even
polynomial R(z) = T(z?) for a unique T(z) € K[z], whose degree
is evidently half of that of R(z). o

Remark 5.3. The role of the assumption that K be canonical (cf. §2.1)
is made only so that one can compute ShiftSet(b). We note that
in [GGSZ03, §6] a much more efficient (and general) algorithm than
Algorithm 2 is described, which works for b € Z[x]. We remark
that in order to compute ShiftSet(d) in general, it is sufficient
to be able to compute a basis {wj,..., ws} of the Q-vector sub-
space of K spanned by the coefficients of the auxiliary polynomial
T(z) € K[x] defined in Algorithm 2. Indeed, we could then write
T(z) = 23:1 w;Tj(z) with each T;(z) € Q[z] and simply compute
the set of (square) integer roots of T(z) = ged(Ty, ..., T), which is
the same as the set of (square) integer roots of T(z).

The previous Algorithm 2 to compute ShiftSet is called by
the following Algorithm 3 to compute reduced forms of rational
functions with squarefree denominators.

PROPOSITION 5.4. Algorithm 3 is correct.

PROOF. As in Algorithm 3, let b denote the denominator of f
and let S = ShiftSet(b). Then indeed if S = 0, pdisp(f) = 0,
so f is already reduced and there is nothing to do. Assume from
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Algorithm 3 SimpleReduction procedure

Input: A proper rational function f € K(x) with squarefree de-
nominator.

Output: A proper rational function f € K(x) with squarefree
denominator, such that f — f is rationally summable and either

£ =0or pdisp(f) = 0.

b « denom(f);
S « ShiftSet(b);
if S = 0 then

f<r
else
for ¢ € S do
ge — ged(b, a7 (b));
end for;
G «lem(ge | £ €S);
by «— &;
for £ € Sdo
be — ged(a™“(bo), b);
end for;
N — {0} U{t €S |deg(br) = 1};
(ae | £ € N) « ParFrac(f;b; | £ € N);
fe ()
end if;
return f

> Exact division.

now on that S # 0, and let us consider roots of polynomials in K.
For each ¢ € S, the roots of g¢ := ged(b, 0=¢(b)) are those roots
a of b such that a — ¢ is also a root of b. Therefore the roots of
G =lem(gy : £ € S) are those roots « of b such that « — ¢ is also
a root of b for some ¢ € N (because all possible such ¢ belong to
S, by the definition of S). It follows that the roots of by := b/G are
those roots a of b such that & — ¢ is not a root of b for any ¢ € N.
In particular, disp(bo) = 0. We call by the divisor of initial roots.

Now the roots of by := ged(c~¢(bo), b) are those roots a of b
such that @ — £ is a root of by, i.e., the roots of b which are precisely
¢ shifts away from the initial root in their respective Z-orbits. It
may happen that by = 1 for some ¢ € S, because even though each
¢ € S is the difference between two roots of b, it might be that
no such pair of roots of b involves any initial roots of by. Writing
N :={0} U {¢ €S |deg(bs) = 1}, itis clear that

]_[be

teN

and ged(bp,bj) =1 for ¢ #j. (5.1)
Therefore we may uniquely decompose f into partial fractions as in

(2.1) with respect to the factorization (5.1) as called by Algorithm 3,
- a e
f= Z be’ 7 (bl ) '

teN
Now this f is a sum of proper rational functions with squarefree
denominators, whence f also is proper with squarefree denomina-
tor. Since o (by) = ged(bo, ot (b)) is a factor of by for each £ € N
and disp(bo) = 0, we conclude that pdisp(f) = 0. Finally, for each

and set f:= Z

teN
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¢ € N — {0} we see that

a el e
be b, by be))”

whence f — f is a sum of rationally summable elements, and is
therefore itself rationally summable. O

-1

Y

i=0

Remark 5.5. As we stated in the introduction, Algorithm 3 strikes
us as being conceptually similar to the one already developed in
[GGSZ03, §5], but its description is made simpler by our restriction
to rational functions with simple poles only. Having a procedure
that is easier for humans to read is not necessarily a computational
virtue. But it is so in this case, because the relative simplicity of
Algorithm 3 makes it also nimble and adaptable, enabling us in §7
to easily modify it to pursue other related applications beyond plain
rational summability.

6 COMPUTATION OF DISCRETE RESIDUES

Now we wish to put together the algorithms presented in the earlier
sections to compute symbolically all the discrete residues of an
arbitrary proper f € K(x), in the sense described in §3. In order to
do this, we first recall the following result describing the sense in
which we compute classical residues symbolically by means of an
auxiliary polynomial, and its short proof which explains how to
actually compute this polynomial in practice.

LemMma 6.1 ([TRA76, LEm. 5.1]). Let f = § € K(x) such that
a,b € K[x] satisfy a # 0, deg(a) < deg(b), gcd(a,b) =1, and b is
squarefree. Then there exists a unique polynomial 0 # r € K[x] such
that deg(r) < deg(b) and

3 RAC%
x—a

f =
{aeK | b(a)=0}

ProoF. Since the set of poles of f (all simple poles) is the set of
roots of b, we know the classical first-order residue c; () of f at
each a € K such that b(«) = 0 satisfies 0 # ¢1(a) = a(a)/%((x).
Using the extended Euclidean algorithm we find the unique 0 # r
in K[x] such that deg(r) < deg(b) and r - %(b) =a (mod b). O

For f € K(x) satisfying the hypotheses of Lemma 6.1, we denote
FirstResidues(f) := (b, 1), (6.1)

where b, r € K|[x] are also as in the notation of Lemma 6.1. We also
define FirstResidues(0) := (1,0), for convenience. With this, we
can now describe the following simple Algorithm 4 to compute a
symbolic representation of the discrete residues of f.

THEOREM 6.2. Algorithm 4 is correct.

Proor. It follows from the correctness of Algorithm 1 proved
in Lemma 4.2 that f has no poles of order greater than m, whence
by Definition 3.1 every non-zero discrete residue of f has order
at most m. Consider now f;. := SimpleReduction(f), which by
the correctness of Algorithm 3 is such that f; — f; is summable.
We prove the correctness of Algorithm 4 for each k = 1,...,m
depending on whether f = 0 or not.

In case f; = 0, Algorithm 4 produces (B, Di) = (1,0). In this
case we also know that f; is summable, and therefore by (4.2)
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Algorithm 4 DiscreteResidues procedure

Input: A proper rational function 0 # f € K(x).

Output: Alist ((By,D1), ..., (Bm, Dm)) of pairs (B, Dy) € K[x]?
such that every non-zero discrete residue of f is of order at most
mand, foreachk=1,..., m:

(1) either (Bg, Dg) = (1,0) or else Dy # 0, deg(Dy) < deg(Bg),
By, is squarefree, and disp(By) = 0;

(2) the set of roots of By, in K contains precisely one representative
from each w € K/Z such that dres(f, w, k) # 0; and

(3) Di(a) = dres(f, w(a), k) for each root @ € K of By.

(fi,--, fm) < HermiteList(f);
for k = 1.mdo
fi < SimpleReduction(f);
(Bg, Di) < FirstResidues(f;);
end for;

return ((Bl, Dy),...,(Bm, Dm)).

dres(fg, w,1) = dres(f,w,k) = 0 for every w € K/Z. Thus the
output of Algorithm 4 is (vacuously) correct in this case because
the constant polynomial B = 1 has no roots.

Suppose now that fi # 0. It follows from the definition of
(Bk, D) = FirstResidues(f;) as in (6.1) that By, is the denomi-
nator of the proper rational function f;, and therefore By, is non-
constant, squarefree, and has disp(Bg) = 0, by the correctness
of Algorithm 3 proved in Lemma 5.4. Let us denote by ¢ () the
classical first order residue of f; at each a € K (note that f has
only simple poles, so there are no other residues). We obtain from
Lemma 6.1 that Dy # 0, deg(Dy) < deg(Bg), and Di(a) = ¢x(a)
for each root a of B. Since fi has at most one pole in each orbit
w € K/Z (this is the very meaning of pdisp(fi.) = 0), it follows that
Cr(a) = dres(fk, w(a), 1) for every a € K. To conclude, we observe
that

dres(fk,a), 1) = dres(fx, w, 1) = dres(f, w, k)

for each w € K/Z; the first equality follows from the summability
of fi. — fx established in the proof of Proposition 5.4, and the second
equality is (4.2). )

Remark 6.3. As we mentioned in §3, the knowledge of a reduced
form h for f is morally “the same” as knowledge of the discrete
residues of f. And yet, the output ((Bl,Dl), ..., (Bm, Dm)) of Al-
gorithm 4 has the following deficiency: it may happen that for
some j # k, we have dres(f, w, k) # 0 # dres(f, w, j), and yet the
representatives o, ax € w such that Bj(a;) = 0 = By () may be
distinct, with &; # aj. In many applications, this is not an issue be-
cause summability problems decompose into parallel summability
problems in each degree component, as we see from Proposition 3.2.
Actually, the systematic exploitation of this particularity was the
original motivation of Algorithm 1 and remains its raison d’étre. But
it is still unsatisfying that the different By associated to the same f
are not better coordinated, and this does become a more serious (no
longer merely aesthetic) issue in further applications to creative
telescoping, where the discrete residues of different orders begin
to interact. We explain how to address this problem in Remark 7.2,
when we have developed the requisite technology.
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7 EXTENSIONS AND APPLICATIONS

In this section we collect some modifications to the procedures
described in the previous sections to produce outputs that allow
for more immediate comparison of discrete residues across several
rational functions and across different orders.

We begin with the parameterized summability problem (1.2)
described in the introduction. Let f = (fi,...,fn) € K(x)" be
given, and suppose we wish to compute a K-basis for

V(f) = {veK" I (v,f) is summable} ,

where (e, ®) denotes the usual inner product. By Proposition 3.2,

(7.1)

n
v=(v,...,0n) €EV(f) Z vi - dres(fi,,k) =0 (7.2)
i=1
for every w € K/Z and every k € N. If only we knew how to write
down this linear system explicitly, we would be able to solve for
the unknown v. We can apply Algorithm 4 to each f;, and obtain

DiscreteResidues(f;) = ((Bi1. Di1), - (Bim;» Dijm;))-

But it may happen that many different a; ;. € K all belong to the
same orbit w € K/Z and satisfy B; ; (@; ;) = 0, which leads to very
undesirable bookkeping problems.

To address this kind of problem, we introduce in Algorithm 5
a generalization of Algorithm 3 that computes reduced forms for
several fi, ..., fu compatibly, so that whenever f; and f; have non-
zero residue of order a given k at a given orbit w if and only if B i
and B; ;. have a common root a € K such that w = w(«). For this
purpose, we may assume as in §5 that the f; are proper and, thanks
to Algorithm 1, that they all have squarefree denominators.

COROLLARY 7.1. Algorithm 5 is correct.

ProOF. The proof is very similar to that of Proposition 5.4, so
we only sketch the main points. The key difference is that now
by has been defined so that for each root « of by and each root «;
of b; belonging to w(a) we have that @; — @ € Zx(. The roots of
b; ¢ are precisely those roots of b; which are ¢ steps away from the
unique root of by that belongs to the same orbit. By construction,
the denominator of each f; is a factor of by, which has disp(bg) = 0
as before. O

Remark 7.2. Algorithm 5 also allows us to fix the deficiency dis-
cussed in Remark 6.3. For a non-zero proper f € K(x), let us
define (fi,..., fm) = HermitelList(f) as in Algorithm 4. If we
now set (f1,..., fm) := SimpleReduction*(fi,..., fin), instead of
fi = SimpleReduction(f;) separately for k = 1,..., m, we will no
longer have the problem of the By being incompatible.

More generally, we can combine Algorithm 5 with the modifi-
cation proposed in the above Remark 7.2 to compute symbolic
representations of the discrete residues dres(f;, w, k) of several
fis.--s fn € K(x), which are compatible simultaneously across
the different f; as well as across the different k € N. This will be
done in Algorithm 6, after explaining the following small neces-
sary modification to the FirstResidues procedure defined in (6.1).
For an n-tuple of proper rational functions f = (fi, ..., f;) with
squarefree denominators, suppose FirstResidues(f;) =: (bj,ri)
asin (6.1), and let b := lecm(by, ..., by). Letting a; := numer(f;) and
di = bﬁ, we see that gcd(b;, d;j) = 1 because b is squarefree, and
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Algorithm 5 SimpleReduction® procedure

Algorithm 6 DiscreteResidues™® procedure

Input: An n-tuple (fi,...,fn) € K(x)" of proper rational func-
tions with squarefree denominators.

Output: An n-tuple (fi, ..., fn) € K(x)" of proper rational func-
tions with squarefree denominators, such that: each f; — f; is
rationally summable; either f; = 0 or pdisp(f;) = 0 for each i; and
for every 1 < i, j < n such that dres(f;, @, 1) # 0 # dres(fj,w, 1)

we have that f; and f; share a common pole in .

(b1,...,bp) « (denom(fy),...,denom(fp));
b« lem(by,...,by)
S « ShiftSet(b);
if S =0 then
(fs-- s fn) <« (A, --
else
for f € Sdo
ge — ged(b, a7 (b));
end for;
G « lem(ge | £ € S);
by — &;
for i=1..ndo
for £ € SU{0} do
bie — ged(o~" (bo), by);
end for;
N; « {0} U {t €S |deg(bir) = 1};
(ai¢ | £ € N;) « ParFrac(fi;bi¢ | £ € N;);

g e i),
f,<—ZO' (bi,[))

-sfn);

> Exact division.

teN;
end for;
end if;
return (fi,..., fn).

therefore by the Chinese Remainder Theorem we can find a unique
pi € K[x] with deg(p;) < b such that

d
Di- a(bi) =aq; (mod b;) and pi=0 (mod d;).

Then we see that p;(«) is the first-order residue of f; at each root
a of b. We define

FirstResidues®(f) := (b; (p1,...,pn))-

COROLLARY 7.3. Algorithm 6 is correct.

Proor. This is an immediate consequence of the correctness of
Algorithm 5 proved in Corollary 7.1, coupled with the same proof,
mutatis mutandis, given for Theorem 6.2. O

Algorithm 6 leads immediately to a simple algorithmic solution
of the problem of computing V(f) in (7.1).

PrROPOSITION 7.4. Letf = (fi,..., fn) with each 0 # f; € K(x)
proper. Let DiscreteResidues™(f) = (B,D) with

D=Djxl1<i<n1<k<m)
be as in Algorithm 6 and let V (f) be as in (7.1). Then

n
ZUiDi,k =0 foreach1 <k < m} . (7.3)
i=1

V(f) = {V e K"
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Input: Ann-tuple (fi,..., fn) € K(x)" of proper non-zero rational
functions.

Output: A pair (B; D), consisting of a polynomial B € K[x] with
disp(B) =0 and anarray D = (D;; |1 <i < n;1 < k < m) of
polynomials D; ;. € K[x], such that:

(1) Bis non-constant and squarefree, and disp(B) = 0;

(2) the set of roots of B in K contains precisely one representative
from each w € K/Z such that dres(f;, , k) # 0 for some i, k;

(3) deg(D; k) < deg(B) whenever D; . # 0; and

(4) Dj () = dres(f;, w(a), k) for each root & € K of B.

fori=1.ndo

(fi1s---» fim;) < HermiteList(f});
end for;
m «— max{my,...,mp};
fori=1.ndo
for k =1.mdo
if k > m; then
fik < 0;
end if;
end for;
end for;

fe—(fixll<i<mi<k<m)
f « SimpleReduction™(f);
return FirstResidues™(f).

Proor. For each v € K" and « € K such that B(a) = 0,

n

dres((v - £), w(@),k) = > 0:D; (@)

i=1

(7.4)

by the correctness of Algorithm 6 proved in Corollary 7.3. Moreover,
since deg(D; ;) < deg(B) (whenever D; ;. # 0) and B is squarefree,
we see that for each given 1 < k < m the expression (7.4) is zero
for every root a of B if and only if the polynomial }}; v;D; . = 0
identically. We conclude by Proposition 3.2. O

Remark 7.5. One can produce without too much additional ef-
fort a variant of Proposition 7.4 that computes more generally the
K-vector space of solutions to the creative telescoping problem
obtained by replacing the unknown coefficients v; € K in (1.2) with
unknown linear differential operators £; € K[%]

8 CONNECTIONS WITH GALOIS THEORY

Our interest in computing the vector space V (f) in (7.1) is due to
the fact that it is isomorphic to the difference Galois group of the
block-diagonal difference system o(Y) = (A1 @ --- & Ap)Y with
diagonal blocks A; = (é f ) Indeed, this difference Galois group
consists of block-diagonal matrices G(v) = G(v1) @ - - - ® G(vy)
with diagonal blocks G(o;) = (g o L on) € V()
(cf. [Har08, Prop. 2.1]).

Another application of the procedures developed here to Galois
theory of difference equations arises from the consideration of

) for v = (vy,.
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diagonal systems
o(Y) = diag(r1,...,r)Y, . € K(x)*
As shown in [vdPS97, §2.2], the difference Galois group of (8.1) is
I:= {()/1,...,)/”) € (Kx)n ‘ Yitoynt =1fore EE},

., epn) such that

where rq, .. (8.1)

where E C Z" is the subgroup of e = (e, ..

€1

ity = o(pe) /e

for some pe € K(x)*. Now suppose (8.2) holds, and let us write

fi= %(r,-)/ri foreachi=1,...,nand ge = %(pe)/pe, so that

we have

(8.2)

eifi+--+enfn =0(ge) — ge- (8.3)
At first glance, this looks like a version of problem (1.2), but it is
even more special because the f; have only first-order residues, all
in Z. So we can compute the Q-vector space V of solutions to (8.3)
using SimpleReduction®(fi,..., fn), just as in Proposition 7.4, as
a preliminary step. Then we can compute a Z-basis ey, ..., es of
the free abelian group E := V N Z". Since each ge; has only simple
poles with integer residues, one can compute explicitly pe; € K(x)
such that % Pe; = Je;Pe;> and thence constants y; € K* such
that r® = y;. This reduces the computation of E from the defin-
ing multiplicative condition (8.2) in K(x)* modulo the subgroup
{o(p)/p | p € K(x)*} to the equivalent defining condition in K*:

S S
E= ijejEE ny;njzl .
Jj=1 J=1

9 EXAMPLE

Let us conclude by illustrating some of our procedures on the fol-
lowing example considered in both [PS95, MS95]. In order to make
the computations easier for the human reader to follow, we have
allowed ourselves to write down explicitly in this small example
the irreducible factorizations of denominators. We emphasize and
insist upon the fact that none of our procedures performs any such
factorization.
Consider the rational function
1

= . 9.1
f 13 (x+2)3(x+3)(x% +1)(x2 + 4x + 5)2 ©-1)
We first compute HermiteList(f) = (fi, f2, f3) with
fi= 787x° +4803x* + 9659x> + 9721x% + 9502x + 5008
1T 180002 + D(x +3) (2 + dx +5) (x + 2)x
787x> +3372x2 + 4696x + 1030 7x — 1
fg = - > ; and fz = —————;
18000(x? + 4x + 5)x(x + 2) 300(x + 2)x

using Algorithm 1. We apply the remaining procedures to f; only -
the remaining f; and f3 are similar, and easier. Denoting

b= (x®+1)(x +3)(x? +4x +5)(x + 2)x

the monic denominator of f;, we compute with Algorithm 2 (or
see by inspection) that ShiftSet(b) = {1, 2, 3}. The factorization
b = bob1bab3 computed within Algorithm 3 is given by

by = ged(o™ (ko) b) = x +2;
b3 = ged(o73(bo), b) = x.

bo = (x +3)(x? + 4x +5);
by = ged(o72(bg), b) = x% + 1;
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The individual summands in the partial fraction decomposition of
f1 with respect to this factorization are given by

13391x2 + 37742x — 9293

ao _ .

bo ~ 1080000(x + 3)(x2 + 4x +5)’
ap 1 ) a;  —Tx-1 ) as 313
by 250(x+2)° by ~ 8000(x%+1) bs ~ 33750x

The reduced form f; = Z—z +0o (Z—i) +0° (Z—;) +03 (Z—z) is given by
273x + 1387

20000(x + 3)(x2 + 4x +5)

The first pair of polynomials (B1, D1) € K[x] computed by Algo-

rithm 4 is given by

fi=

59 4, 33 1321
= X+ x— .
16000 40000 80000
Let us compare this output (B, D1) with the discrete residues
dres(f, w, 1) of f according to the Definition 3.1 in terms of classical
residues. We see from the factorization of the denominator of f in
(9.1) that its set of poles is

{-3,-2,0,V-1-2,V-1,-V-1,-V-1-2},
and that each of these poles belongs to one of the three orbits
a)(i\/—_l) =+V-1+Z

Therefore, f has no discrete residues outside of these orbits, and
we verify that the set of roots {—3, V=1 — 2, —V—=1 — 2} of the
polynomial By correctly contains precisely one representative from
each of these orbits (subject to our verification below that the first-
order discrete residues of f at these orbits are actually non-zero!).
We can compute directly in this small example that the classical
first-order residues of f at the poles in w(0) are given by

Resi (f,0) = Resi(f,—-2) = Resi (f,-3) = ﬁ;
and at the poles in o (+V-1) are given by
+V-1-7

B1 = (x+3) (x?+4x+5) and Dy

w(0)=2Z and

313 .
33750°

1
250°

+V21) =

Resl(f,+ ) 16000 " and
F1119V=1 — 533

Res; (f, +V—1 —2) = ~—— ¥ 2%

es1(f. ) 80000

Finally we can verify directly that the polynomial D; correctly
computes the first-order discrete residues of f at all three orbits

®(0) and (iv—l) according to Definition 3.1:

313 7
dres(f, w(0),1) = —33;50 + ﬁ + ﬁ = ﬁ = D1(-3);

and

dres(f, w(xV=1),1) = +V=1-7 s F1119V=1 — 533 i

16000 80000
_EIVLs
40000
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