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ABSTRACT
In 2012 Chen and Singer introduced the notion of discrete residues

for rational functions as a complete obstruction to rational summa-

bility. More explicitly, for a given rational function 𝑓 (𝑥), there
exists a rational function 𝑔(𝑥) such that 𝑓 (𝑥) = 𝑔(𝑥 + 1) − 𝑔(𝑥) if
and only if every discrete residue of 𝑓 (𝑥) is zero. Discrete residues
have many important further applications beyond summability:

to creative telescoping problems, thence to the determination of

(differential-)algebraic relations among hypergeometric sequences,

and subsequently to the computation of (differential) Galois groups

of difference equations. However, the discrete residues of a rational

function are defined in terms of its complete partial fraction decom-

position, which makes their direct computation impractical due to

the high complexity of completely factoring arbitrary denominator

polynomials into linear factors. We develop a factorization-free al-

gorithm to compute discrete residues of rational functions, relying

only on gcd computations and linear algebra.
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1 INTRODUCTION
Let K be a field of characteristic zero, and consider the field K(𝑥)
of rational functions in an indeterminate 𝑥 with coefficients in K.
First formulated in [Abr71], the rational summation problem asks,

for a given 𝑓 (𝑥) ∈ K(𝑥), to construct 𝑔(𝑥), ℎ(𝑥) ∈ K(𝑥) such that

𝑓 (𝑥) = 𝑔(𝑥 + 1) − 𝑔(𝑥) + ℎ(𝑥) (1.1)
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and the degree of the denominator of ℎ(𝑥) is as small as possible.

Such an ℎ(𝑥) is called a reduced form of 𝑓 (𝑥). The rational sum-

mation problem has a long and illustrious history [Abr71, Abr75,

Moe77, Kar81, Pau95, Pir95, PS95, MS95, Abr95, Pol08]. It is clear

that the problem admits a solution (by the well-ordering principle),

and that such a solution is not unique, because for any solution

(𝑔(𝑥), ℎ(𝑥)) we obtain another solution (𝑔(𝑥)−ℎ(𝑥), ℎ(𝑥 +1)) since
the degree of the denominator of ℎ(𝑥 +1) is the same as that of ℎ(𝑥).
In comparing the approaches in op. cit., one can then ask for the de-

nominator of 𝑔(𝑥) to be also as small as possible, and/or to compute

some (any) solution (𝑔(𝑥), ℎ(𝑥)) to (1.1) as efficiently as possible.

We refer to the introduction of [PS95] for a concise summary and

comparison between most of these different approaches.

Every algorithm for solving the rational summation problem

also addresses, as a byproduct, the rational summability problem
of deciding, for a given 𝑓 (𝑥) ∈ K(𝑥), whether (just yes/no) there
exists 𝑔(𝑥) ∈ K(𝑥) such that 𝑓 (𝑥) = 𝑔(𝑥 + 1) − 𝑔(𝑥), in which

case we say 𝑓 (𝑥) is rationally summable. There are various algo-
rithms for addressing this simpler question, designed to forego

the usually expensive and often irrelevant computation of the cer-
tificate 𝑔(𝑥), which are presented and discussed for example in

[Mat00, GGSZ03, BCCL10, CS12, CHKL15, HW15, GHLZ22] and

the references therein.

We center our attention on the approach to rational summabil-

ity proposed in [CS12]. The discrete residues of 𝑓 (𝑥) ∈ K(𝑥) are
constants defined in terms of the complete partial fraction decompo-

sition of 𝑓 (𝑥), and have the obstruction-theoretic property that they
are all zero if and only if 𝑓 (𝑥) is rationally summable. Computing

these discrete residues directly from their definition is impracti-

cal due to the high computational cost, or possible infeasibility, of

factoring the denominator of 𝑓 (𝑥) into linear factors. We propose

here algorithms for computing these discrete residues relying only

on gcd computations and solving systems of linear equations in

K. To be clear, the discrete residue data of an arbitrary 𝑓 (𝑥) are in
general algebraic over K. We submit that it would be perverse to

avoid expensive factorizations throughout the algorithm, only to

demand them at the very end! Inspired by [BS93, Thm. 1] our output

consists of pairs of polynomials with coefficients in K: one whose
roots are the places where 𝑓 (𝑥) has non-zero discrete residues, the

other whose evaluation at each such root gives the corresponding

discrete residue (see §3 for a more detailed description). Of course,

any user who wishes to actually see the discrete residue data of 𝑓

may use theK-polynomials produced by our algorithms to compute

them explicitly to their heart’s content and at their own risk.

Let us now describe our general strategy for computing discrete

residues (cf. Algorithm 4). We apply iteratively Hermite reduction

to 𝑓 (𝑥) in order to reduce to the special case where the denominator

of 𝑓 (𝑥) is squarefree. Then we compute a reduced form
¯𝑓 (𝑥) of

1
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𝑓 (𝑥) whose denominator is both squarefree and shift-free, so that

the discrete residues of 𝑓 (𝑥) are the classical first-order residues
of

¯𝑓 (𝑥). The factorization-free computation of the latter is finally

achieved by [Tra76, Lem. 5.1].

Our proposed algorithms to compute discrete residues are ob-

tained by combining in novel ways many old ingredients. Indeed,

Hermite reduction is very old [Ost45, Her72], and its iteration in

Algorithm 1 is already suggested in [Hor71, §5] for computing iter-

ated integrals of rational functions. And yet, we have not seen this

approach being more widely used in the literature, and it seems to

us a good trick to have to hand. Indeed, we wonder whether it could

provide a reasonable alternative, at least in some cases and for some

purposes, to the algorithm in [BS93] for symbolically computing

complete partial fraction decompositions over the field of definition.

Having thus reduced via Algorithm 1 to the case where 𝑓 (𝑥) has
squarefree denominator, many of the varied earlier approaches to

the summation and summability problems seem to accidentally

collide into essentially the same procedure when restricted to this

simpler situation. In this sense, our own reduction procedure de-

scribed in §5 strikes us as eerily similar to the one presented in

[GGSZ03, §5] over 20 years ago — that ours may look simpler is a

direct consequence of its being restricted to a simpler class of inputs.

The simplicity of our approach allows us to exercise a great deal of

control over the form of the outputs, in ways that are particularly

useful for developing some extensions of our basic procedures, elab-

orated in §7. It is not obvious to us (but it would be interesting to

see) how the same goals might be better accomplished differently,

say by combining the reduction of [GGSZ03] with the symbolic

complete partial fraction decomposition algorithm of [BS93].

Our interest in computing discrete residues is motivated by the

following variant of the summability problem, which often arises

as a subproblem in algorithms for computing (differential) Galois

groups associated with (shift) difference equations [vdPS97, Hen98,

HS08, Arr17]. Given several 𝑓1 (𝑥), . . . , 𝑓𝑛 (𝑥) ∈ K(𝑥), compute (or

decide non-existence) of 0 ≠ v = (𝑣1, . . . , 𝑣𝑛) ∈ K𝑛 such that

𝑣1 𝑓1 (𝑥) + · · · + 𝑣𝑛 𝑓𝑛 (𝑥) = 𝑔v (𝑥 + 1) − 𝑔v (𝑥) (1.2)

for some 𝑔v (𝑥) ∈ K(𝑥). Even if one wishes to compute the cer-

tificate 𝑔v (𝑥) explicitly, it seems wasteful to perform a rational

summation algorithm 𝑛 times for each 𝑓𝑖 (𝑥) separately to produce

(𝑔𝑖 (𝑥), ℎ𝑖 (𝑥)) as in (1.1) as an intermediate step, because there is

no guarantee that ℎv (𝑥) =
∑
𝑖 𝑣𝑖ℎ𝑖 (𝑥) has smallest possible de-

nominator, so one may need to perform the algorithm an (𝑛 + 1)st
time to ℎv (𝑥) in order to decide summability (this last step may

be avoidable by making a more careful sequence of interrelated

reduction choices; see e.g. [CHKL15, §5]). These inefficiencies are

exacerbated in the more general context of creative telescoping prob-
lems [Zei90, Zei91, WZ92], where the unknown 𝑣𝑖 ∈ K are replaced

with unknown linear differential operators L𝑖 ∈ K
[
𝑑
𝑑𝑥

]
(cf. [HS08,

Prop. 3.1]). We refer to [Che19] for a succinct and illuminating

discussion of the history and computational aspects of creative

telescoping problems, and in particular how the “fourth generation”

reduction-based approaches bypass the computation of certificates,

as our motivating problem (1.2) illustrates.

Our approach based on discrete residues makes it very straight-

forward how to accommodate several 𝑓𝑖 (𝑥) simultaneously as in

(1.2), which adaptation is less obvious (to us) how to carry out

efficiently using other reduction methods. On the other hand, we

share in the reader’s disappointment that we offer hardly any theo-

retical or experimental evidence supporting the efficiency of our

approach in contrast with other possible alternatives. In fact, we

expect that our approach will not be universally more efficient

than some future adaptation of [GGSZ03, §5] or [CHKL15, §5] (for

example) to the situation of (1.2), but rather that it can be a useful

complement to them. We also expect that the conceptual simplicity

of our approach will be useful in developing analogues to other

related (but more technically challenging) contexts beyond the shift

case, such as 𝑞-difference equations, Mahler difference equations,

and elliptic difference equations, for which the corresponding no-

tions of discrete residues have also been developed respectively in

[CS12], [AZ22, AZ23], and [HS21].

2 PRELIMINARIES
2.1 Basic notation and conventions
We denote by N the set of strictly positive integers, and by K a

computable field of characteristic zero in which it is feasible to

compute integer solutions to arbitrary polynomial equations with

coefficients in K. Such a field is termed canonical in [Abr71]. We

denote by K a fixed algebraic closure of K. We do not assume K

is algebraically closed, and we will only refer to K in proofs or for

defining theoretical notions, never for computations.

We work in the field K(𝑥) of rational functions in a formal

(transcendental) indeterminate 𝑥 . For 𝑓 (𝑥) ∈ K(𝑥), we define
𝜎 : 𝑓 (𝑥) ↦→ 𝑓 (𝑥 + 1); and Δ : 𝑓 (𝑥) ↦→ 𝑓 (𝑥 + 1) − 𝑓 (𝑥).

Note that 𝜎 is aK-linear field automorphism ofK(𝑥) and Δ = 𝜎− id
is only a K-linear map with ker(Δ) = K. We often suppress the

functional notation and write 𝑓 instead of 𝑓 (𝑥), 𝜎 (𝑓 ) instead of

𝑓 (𝑥 + 1), etc., when no confusion is likely to arise.

A proper rational function is either 0 or else has numerator of

strictly smaller degree than that of the denominator. We assume

implicitly throughout that rational functions are normalized to have

monic denominator. Even when our rational functions are obtained

as (intermediate) outputs of some procedures, we will take care to

arrange things so that this normalization always holds. In particular,

we also assume that the outputs of gcd and lcm procedures are also

always normalized to be monic. An unadorned gcd or lcm or deg

means that it is with respect to 𝑥 . On the few occasions where

we need a gcd with respect to a different variable 𝑧, we will write

gcd𝑧 . We write
𝑑
𝑑𝑥

(resp.,
𝑑
𝑑𝑧

) for the usual derivation operator with

respect to 𝑥 (resp., with respect to 𝑧).

2.2 Partial fraction decompositions
A polynomial 𝑏 ∈ K(𝑥) is squarefree if 𝑏 ≠ 0 and gcd

(
𝑏, 𝑑

𝑑𝑥
𝑏
)
= 1.

Consider a proper rational function 𝑓 = 𝑎
𝑏
∈ K(𝑥), with deg(𝑏) ≥ 1

and gcd(𝑎, 𝑏) = 1. Suppose further that 𝑏 is squarefree, and that

we are given a set 𝑏1, . . . , 𝑏𝑛 ∈ K[𝑥] of monic non-constant poly-

nomials such that

∏𝑛
𝑖=1 𝑏𝑖 = 𝑏. Then necessarily gcd(𝑏𝑖 , 𝑏 𝑗 ) = 1

whenever 𝑖 ≠ 𝑗 , and there exist unique non-zero polynomials

𝑎1, . . . , 𝑎𝑛 ∈ K[𝑥] with deg(𝑎𝑖 ) < deg(𝑏𝑖 ) for each 𝑖 = 1, . . . , 𝑛

such that 𝑓 =
∑𝑛
𝑖=1

𝑎𝑖
𝑏𝑖
. In this situation, we denote

ParFrac(𝑓 ;𝑏1, . . . , 𝑏𝑛) := (𝑎1, . . . , 𝑎𝑛). (2.1)

2
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We emphasize that the computation of partial fraction decompo-

sitions (2.1) can be done very efficiently [KT77], provided that the

denominator 𝑏 of 𝑓 has already been factored into pairwise rela-

tively prime factors 𝑏𝑖 , which need not be irreducible in K[𝑥]. One
can similarly carry out such partial fraction decompositions more

generally for pre-factored denominators 𝑏 that are not necessarily

squarefree. But here we only need to compute partial fraction de-

compositions for pre-factored squarefree denominators, in which

case the notation (2.1) is conveniently light.

2.3 Summability and dispersion
We say 𝑓 ∈ K(𝑥) is (rationally) summable if there exists 𝑔 ∈ K(𝑥)
such that 𝑓 = Δ(𝑔). For a non-constant polynomial 𝑏 ∈ K[𝑥], we
follow the original [Abr71] in defining the dispersion of 𝑏

disp(𝑏) := max{ℓ ∈ N | gcd(𝑏, 𝜎ℓ (𝑏)) ≠ 1}.
For a reduced rational function 𝑓 = 𝑎

𝑏
∈ K(𝑥) with gcd(𝑎, 𝑏) = 1

and 𝑏 ∉ K, the polar dispersion pdisp(𝑓 ) := disp(𝑏).
We denote by K/Z the set of orbits for the action of the additive

group Z on K. For 𝛼 ∈ K, we denote
𝜔 (𝛼) := {𝛼 + 𝑛 | 𝑛 ∈ Z},

the unique orbit in K/Z containing 𝛼 . We will often simply write

𝜔 ∈ K/Z whenever there is no need to reference a specific 𝛼 ∈ 𝜔 .

3 DISCRETE RESIDUES AND SUMMABILITY
Definition 3.1 ([CS12, Def. 2.3]). Let 𝑓 ∈ K(𝑥), and consider the

complete partial fraction decomposition

𝑓 = 𝑝 +
∑︁
𝑘∈N

∑︁
𝛼∈K

𝑐𝑘 (𝛼)
(𝑥 − 𝛼)𝑘

, (3.1)

where 𝑝 ∈ K[𝑥] and all but finitely many of the 𝑐𝑘 (𝛼) ∈ K are zero

for 𝑘 ∈ N and 𝛼 ∈ K. We define the discrete residue of 𝑓 of order

𝑘 ∈ N at the orbit 𝜔 ∈ K/Z to be

dres(𝑓 , 𝜔, 𝑘) :=
∑︁
𝛼∈𝜔

𝑐𝑘 (𝛼) . (3.2)

The relevance of discrete residues to the study of rational summa-

bility is captured by the following result.

Proposition 3.2 ([CS12, Prop. 2.5]). 𝑓 ∈ K(𝑥) is rationally
summable if and only if dres(𝑓 , 𝜔, 𝑘) = 0 for every 𝜔 ∈ K and 𝑘 ∈ N.

As pointed out in [CS12, Rem. 2.6], the above Proposition 3.2

recasts in terms of discrete residues a well-known rational summa-

bility criterion that reverberates throughout the literature, for ex-

ample in [Abr95, p. 305], [Mat00, Thm. 10], [GGSZ03, Thm. 11],

[AC05, Cor. 1], and [HW15, Prop. 3.4]. All of these rely in some

form or another on the following fundamental result of Abramov,

that already gives an important obstruction to summability.

Proposition 3.3 ([Abr71, Prop. 3]). If a proper rational function
0 ≠ 𝑓 ∈ K(𝑥) is rationally summable then pdisp(𝑓 ) > 0.

Discrete residues are also intimately related to the computation

of reduced forms for 𝑓 , in the sense that, as discussed in [CS12,

§2.4], every reduced form ℎ of 𝑓 as in (1.1) has the form

ℎ =
∑︁
𝑘∈N

∑︁
𝜔∈K/Z

dres(𝑓 , 𝜔, 𝑘)
(𝑥 − 𝛼𝜔 )𝑘

(3.3)

for some arbitrary choice of representatives 𝛼𝜔 ∈ 𝜔 . Conversely,
for any ℎ of the form (3.3), Proposition 3.2 immediately yields that

𝑓 − ℎ is rationally summable. An equivalent characterization for

ℎ ∈ K(𝑥) to be a reduced form is for it to have polar dispersion 0

(see [Abr75, Props. 4 & 6]). By (3.3), knowing the dres(𝑓 , 𝜔, 𝑘) is
thus “the same” as knowing some/all reduced forms ℎ of 𝑓 . But

discrete residues still serve as a very useful organizing principle

and technical tool, for both theoretical and practical computations.

For a given 𝑓 ∈ K(𝑥), our goal is to compute polynomials

𝐵𝑘 (𝑥), 𝐷𝑘 (𝑥) ∈ K[𝑥] for each 𝑘 ∈ N such that (𝐵𝑘 , 𝐷𝑘 ) = (1, 0) if
and only if dres(𝑓 , 𝜔, 𝑘) = 0 for every 𝜔 ∈ K (which holds for all

but finitely many 𝑘 ∈ N) and, for the remaining 𝑘 ∈ N, we have
0 ≤ deg(𝐷𝑘 ) < deg(𝐵𝑘 ) and 𝐵𝑘 is squarefree with disp(𝐵𝑘 ) = 0.

These polynomials will have the property that the set of roots 𝛼 ∈ K
of 𝐵𝑘 is a complete and irredundant set of representatives for all

the orbits 𝜔 ∈ K/Z such that dres(𝑓 , 𝜔, 𝑘) ≠ 0, and for each such

root 𝛼 ∈ K such that 𝐵𝑘 (𝛼) = 0, we have dres(𝑓 , 𝜔 (𝛼), 𝑘) = 𝐷𝑘 (𝛼).

4 ITERATED HERMITE REDUCTION
It is immediate that the polynomial part of 𝑓 ∈ K(𝑥) in (3.1) is

irrelevant, both for the study of summability as well as for the

computation of discrete residues. So in this section we restrict our

attention to proper rational functions 𝑓 ∈ K(𝑥).
Our first task is to reduce to the case where 𝑓 has squarefree

denominator. In this section we describe how to compute 𝑓𝑘 ∈ K(𝑥)
for 𝑘 ∈ N such that, relative to the theoretical partial fraction

decomposition (3.1) of 𝑓 , we have

𝑓𝑘 =
∑︁
𝛼∈K

𝑐𝑘 (𝛼)
𝑥 − 𝛼 . (4.1)

Of course we will then have by Definition 3.1

dres(𝑓 , 𝜔, 𝑘) = dres(𝑓𝑘 , 𝜔, 1) (4.2)

for every 𝜔 ∈ K/Z and 𝑘 ∈ N.
Our computation of the 𝑓𝑘 ∈ K(𝑥) satisfying (4.1) is based on

iterating classical so-called Hermite reduction algorithms, originally

developed in [Ost45, Her72] and for which we refer to the fantastic

modern reference [Bro05, §2.2,§2.3].

Definition 4.1. For proper 𝑓 ∈ K(𝑥), the Hermite reduction of 𝑓 is

HermiteReduction(𝑓 ) = (𝑔, ℎ)
where 𝑔, ℎ ∈ K(𝑥) are proper rational functions such that

𝑓 =
𝑑

𝑑𝑥
(𝑔) + ℎ

and ℎ has squarefree denominator.

The following Algorithm 1 computes the 𝑓𝑘 ∈ K(𝑥) satisfying
(4.1) by applying Hermite reduction iteratively and scaling the

intermediate outputs appropriately.

Lemma 4.2. Algorithm 1 is correct.

Proof. Letting | |𝑓 | | = 𝑚 ∈ N denote the highest order of any

pole of 𝑓 ∈ K(𝑥), note that 𝑓1, . . . , 𝑓𝑚 ∈ K(𝑥) defined by (4.1)

are uniquely determined by having squarefree denominator and

satisfying

𝑓 =

𝑚∑︁
𝑘=1

(−1)𝑘−1
(𝑘 − 1)!

𝑑𝑘−1

𝑑𝑥𝑘−1
(𝑓𝑘 ). (4.3)

3
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Algorithm 1 HermiteList procedure

Input: A proper rational function 0 ≠ 𝑓 ∈ K(𝑥).
Output: A list (𝑓1, . . . , 𝑓𝑚) of 𝑓𝑘 ∈ K(𝑥) satisfying (4.1), such that

𝑐𝑘 (𝛼) = 0 for every 𝑘 > 𝑚 and every 𝛼 ∈ K, with 𝑓𝑚 ≠ 0.

Initialize loop:𝑚 ← 0; 𝑔← 𝑓 ;

while 𝑔 ≠ 0 do
(𝑔, ˆ𝑓𝑚+1) ← HermiteReduction(𝑔);
𝑚 ←𝑚 + 1;

end while;
𝑓𝑘 ← (−1)𝑘−1 (𝑘 − 1)! ˆ𝑓𝑘 ;
return (𝑓1, . . . , 𝑓𝑚).

Defining inductively 𝑔0 := 𝑓 and

(𝑔𝑘 , ˆ𝑓𝑘 ) := HermiteReduction(𝑔𝑘−1)

⇐⇒ 𝑔𝑘−1 =
𝑑

𝑑𝑥
(𝑔𝑘 ) + ˆ𝑓𝑘 (4.4)

for 𝑘 ∈ N as in Algorithm 1, we obtain by construction that all

𝑔𝑘 ,
ˆ𝑓𝑘 ∈ K(𝑥) and every

ˆ𝑓𝑘 has squarefree denominator. Moreover,

| |𝑔𝑘 | | = | |𝑔𝑘−1 | | −1 =𝑚−𝑘 , and therefore the algorithm terminates

with 𝑔𝑚 = 0. Moreover, it follows from (4.4) that

𝑚∑︁
𝑘=1

𝑑𝑘−1 ˆ𝑓𝑘
𝑑𝑥𝑘−1

=

𝑚∑︁
𝑘=1

(
𝑑𝑘−1𝑔𝑘−1
𝑑𝑥𝑘−1

− 𝑑𝑘𝑔𝑘

𝑑𝑥𝑘

)
= 𝑔0 −

𝑑𝑚𝑔𝑚

𝑑𝑥𝑚
= 𝑓 .

Therefore the elements (−1)𝑘−1 (𝑘−1)! ˆ𝑓𝑘 are squarefree and satisfy

(4.3), so they agree with the 𝑓𝑘 ∈ K(𝑥) satisfying (4.1). □

Remark 4.3. As we mentioned in the introduction, we do not expect

Algorithm 1 to be surprising to the experts. What is surprising to

us is that this trick is not used more widely since being originally

suggested in [Hor71, §5]. We expect the theoretical cost of com-

puting HermiteList(𝑓 ) iteratively as in Algorithm 1 is essentially

the same as that of computing HermiteReduction(𝑓 ) only once.

This might seem counterintuitive, since the former is defined by

applying the latter as many times as the highest order𝑚 of any

pole of 𝑓 . But the size of the successive inputs in the loop decreases

so quickly that the cost of the first step essentially dominates the

added cost of the remaining steps put together. This conclusion is

already drawn in [Hor71, §5] regarding the computational cost of

computing iterated integrals of rational functions.

5 SIMPLE REDUCTION
The results of the previous section allow us to further restrict our

attention to proper rational functions 𝑓 ∈ K(𝑥) with simple poles,

which we write uniquely as 𝑓 = 𝑎
𝑏
with 𝑎, 𝑏 ∈ K[𝑥] such that 𝑏 is

monic and squarefree, and either 𝑎 = 0 or else 0 ≤ deg(𝑎) < deg(𝑏).
Our next task is to compute a reduced form

¯𝑓 ∈ K(𝑥) such that

𝑓 − ¯𝑓 is rationally summable and
¯𝑓 has squarefree denominator as

well as polar dispersion 0, which we accomplish in Algorithm 3. As

we mentioned already in the introduction, many algorithms have

been developed beginning with [Abr71] that can compute such a

reduced form, even without assuming 𝑓 has only simple poles.

Algorithm 3 requires the computation of the following set of

integers, originally defined in [Abr71].

Definition 5.1. For 0 ≠ 𝑏 ∈ K[𝑥], the (forward) shift set of 𝑏 is

ShiftSet(𝑏) = {ℓ ∈ N | deg(gcd(𝑏, 𝜎ℓ (𝑏))) ≥ 1}.

The following Algorithm 2 for computing ShiftSet(𝑏) is based
on the observation already made in [Abr71, p. 326], but with minor

modifications to optimize the computations.

Algorithm 2 ShiftSet procedure

Input: A polynomial 0 ≠ 𝑏 ∈ K.
Output: ShiftSet(𝑏).

if deg(𝑏) ≤ 1 then 𝑆 ← ∅;
else

𝑅(𝑧) ← Resultant𝑥 (𝑏 (𝑥), 𝑏 (𝑥 + 𝑧));

𝑅̃(𝑧) ← 𝑅(𝑧)

𝑧 · gcd𝑧
(
𝑅(𝑧), 𝑑𝑅

𝑑𝑧
(𝑧)

) ; ⊲ Exact division.

𝑇 (𝑧) ← 𝑅̃(𝑧
1

2 ); ⊲ 𝑅̃(𝑧) is even; slight speed-up.
𝑆 ← {ℓ ∈ N | 𝑇 (ℓ2) = 0};

end if;
return 𝑆 .

Lemma 5.2. Algorithm 2 is correct.

Proof. As pointed out in [Abr71, p. 326], ShiftSet(𝑏) is the
set of positive integer roots of the resultant 𝑅(𝑧) ∈ K[𝑧] defined
in Algorithm 2, which is the same as the set of positive integer

roots of the square-free part 𝑅(𝑧)/gcd𝑧
(
𝑅(𝑧), 𝑑𝑅

𝑑𝑧
(𝑧)

)
. It is clear

that 𝑅(0) = 0, and since we do not care for this root, we are now

looking for positive integer roots of the polynomial 𝑅̃(𝑧) defined
in Algorithm 2. It follows from the definition of 𝑅(𝑧) that 𝑅(ℓ) = 0

if and only if 𝑅(−ℓ) = 0 for every ℓ ∈ K (not just for ℓ ∈ Z), and we

see that this property is inherited by 𝑅̃(𝑧). Since 𝑧 ∤ 𝑅̃(𝑧), the even
polynomial 𝑅̃(𝑧) = 𝑇 (𝑧2) for a unique 𝑇 (𝑧) ∈ K[𝑧], whose degree
is evidently half of that of 𝑅̃(𝑧). □

Remark 5.3. The role of the assumption thatK be canonical (cf. §2.1)
is made only so that one can compute ShiftSet(𝑏). We note that

in [GGSZ03, §6] a much more efficient (and general) algorithm than

Algorithm 2 is described, which works for 𝑏 ∈ Z[𝑥]. We remark

that in order to compute ShiftSet(𝑏) in general, it is sufficient

to be able to compute a basis {𝑤1, . . . ,𝑤𝑠 } of the Q-vector sub-
space of K spanned by the coefficients of the auxiliary polynomial

𝑇 (𝑧) ∈ K[𝑥] defined in Algorithm 2. Indeed, we could then write

𝑇 (𝑧) = ∑𝑠
𝑗=1𝑤 𝑗𝑇𝑗 (𝑧) with each 𝑇𝑗 (𝑧) ∈ Q[𝑧] and simply compute

the set of (square) integer roots of 𝑇 (𝑧) = gcd(𝑇1, . . . ,𝑇𝑠 ), which is

the same as the set of (square) integer roots of 𝑇 (𝑧).

The previous Algorithm 2 to compute ShiftSet is called by

the following Algorithm 3 to compute reduced forms of rational

functions with squarefree denominators.

Proposition 5.4. Algorithm 3 is correct.

Proof. As in Algorithm 3, let 𝑏 denote the denominator of 𝑓

and let 𝑆 = ShiftSet(𝑏). Then indeed if 𝑆 = ∅, pdisp(𝑓 ) = 0,

so 𝑓 is already reduced and there is nothing to do. Assume from
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Algorithm 3 SimpleReduction procedure

Input: A proper rational function 𝑓 ∈ K(𝑥) with squarefree de-

nominator.

Output: A proper rational function
¯𝑓 ∈ K(𝑥) with squarefree

denominator, such that 𝑓 − ¯𝑓 is rationally summable and either

¯𝑓 = 0 or pdisp( ¯𝑓 ) = 0.

𝑏 ← denom(𝑓 );
𝑆 ← ShiftSet(𝑏);
if 𝑆 = ∅ then

¯𝑓 ← 𝑓 ;

else
for ℓ ∈ 𝑆 do

𝑔ℓ ← gcd(𝑏, 𝜎−ℓ (𝑏));
end for;
𝐺 ← lcm(𝑔ℓ | ℓ ∈ 𝑆);
𝑏0 ← 𝑏

𝐺
; ⊲ Exact division.

for ℓ ∈ 𝑆 do
𝑏ℓ ← 𝑔𝑐𝑑 (𝜎−ℓ (𝑏0), 𝑏);

end for;
𝑁 ← {0} ∪ {ℓ ∈ 𝑆 | deg(𝑏ℓ ) ≥ 1};
(𝑎ℓ | ℓ ∈ 𝑁 ) ← ParFrac(𝑓 ;𝑏ℓ | ℓ ∈ 𝑁 );
¯𝑓 ←

∑︁
ℓ∈𝑁

𝜎ℓ
(
𝑎ℓ

𝑏ℓ

)
;

end if;
return ¯𝑓 .

now on that 𝑆 ≠ ∅, and let us consider roots of polynomials in K.
For each ℓ ∈ 𝑆 , the roots of 𝑔ℓ := gcd(𝑏, 𝜎−ℓ (𝑏)) are those roots
𝛼 of 𝑏 such that 𝛼 − ℓ is also a root of 𝑏. Therefore the roots of

𝐺 = lcm(𝑔ℓ : ℓ ∈ 𝑆) are those roots 𝛼 of 𝑏 such that 𝛼 − ℓ is also
a root of 𝑏 for some ℓ ∈ N (because all possible such ℓ belong to

𝑆 , by the definition of 𝑆). It follows that the roots of 𝑏0 := 𝑏/𝐺 are

those roots 𝛼 of 𝑏 such that 𝛼 − ℓ is not a root of 𝑏 for any ℓ ∈ N.
In particular, disp(𝑏0) = 0. We call 𝑏0 the divisor of initial roots.

Now the roots of 𝑏ℓ := gcd(𝜎−ℓ (𝑏0), 𝑏) are those roots 𝛼 of 𝑏

such that 𝛼 − ℓ is a root of 𝑏0, i.e., the roots of 𝑏 which are precisely

ℓ shifts away from the initial root in their respective Z-orbits. It
may happen that 𝑏ℓ = 1 for some ℓ ∈ 𝑆 , because even though each

ℓ ∈ 𝑆 is the difference between two roots of 𝑏, it might be that

no such pair of roots of 𝑏 involves any initial roots of 𝑏0. Writing

𝑁 := {0} ∪ {ℓ ∈ 𝑆 | deg(𝑏ℓ ) ≥ 1}, it is clear that∏
ℓ∈𝑁

𝑏ℓ = 𝑏 and gcd(𝑏ℓ , 𝑏 𝑗 ) = 1 for ℓ ≠ 𝑗 . (5.1)

Therefore we may uniquely decompose 𝑓 into partial fractions as in

(2.1) with respect to the factorization (5.1) as called by Algorithm 3,

𝑓 =
∑︁
ℓ∈𝑁

𝑎ℓ

𝑏ℓ
, and set

¯𝑓 :=
∑︁
ℓ∈𝑁

𝜎ℓ
(
𝑎ℓ

𝑏ℓ

)
.

Now this
¯𝑓 is a sum of proper rational functions with squarefree

denominators, whence
¯𝑓 also is proper with squarefree denomina-

tor. Since 𝜎ℓ (𝑏ℓ ) = gcd(𝑏0, 𝜎ℓ (𝑏)) is a factor of 𝑏0 for each ℓ ∈ 𝑁
and disp(𝑏0) = 0, we conclude that pdisp( ¯𝑓 ) = 0. Finally, for each

ℓ ∈ 𝑁 − {0} we see that

𝑎ℓ

𝑏ℓ
− 𝜎ℓ

(
𝑎ℓ

𝑏ℓ

)
=

ℓ−1∑︁
𝑖=0

𝜎𝑖
(
𝑎ℓ

𝑏ℓ
− 𝜎

(
𝑎ℓ

𝑏ℓ

))
,

whence 𝑓 − ¯𝑓 is a sum of rationally summable elements, and is

therefore itself rationally summable. □

Remark 5.5. As we stated in the introduction, Algorithm 3 strikes

us as being conceptually similar to the one already developed in

[GGSZ03, §5], but its description is made simpler by our restriction

to rational functions with simple poles only. Having a procedure

that is easier for humans to read is not necessarily a computational

virtue. But it is so in this case, because the relative simplicity of

Algorithm 3 makes it also nimble and adaptable, enabling us in §7

to easily modify it to pursue other related applications beyond plain

rational summability.

6 COMPUTATION OF DISCRETE RESIDUES
Nowwe wish to put together the algorithms presented in the earlier

sections to compute symbolically all the discrete residues of an

arbitrary proper 𝑓 ∈ K(𝑥), in the sense described in §3. In order to

do this, we first recall the following result describing the sense in

which we compute classical residues symbolically by means of an

auxiliary polynomial, and its short proof which explains how to

actually compute this polynomial in practice.

Lemma 6.1 ([Tra76, Lem. 5.1]). Let 𝑓 = 𝑎
𝑏
∈ K(𝑥) such that

𝑎, 𝑏 ∈ K[𝑥] satisfy 𝑎 ≠ 0, deg(𝑎) < deg(𝑏), gcd(𝑎, 𝑏) = 1, and 𝑏 is
squarefree. Then there exists a unique polynomial 0 ≠ 𝑟 ∈ K[𝑥] such
that deg(𝑟 ) < deg(𝑏) and

𝑓 =
∑︁

{𝛼∈K | 𝑏 (𝛼 )=0}

𝑟 (𝛼)
𝑥 − 𝛼 .

Proof. Since the set of poles of 𝑓 (all simple poles) is the set of

roots of 𝑏, we know the classical first-order residue 𝑐1 (𝛼) of 𝑓 at

each 𝛼 ∈ K such that 𝑏 (𝛼) = 0 satisfies 0 ≠ 𝑐1 (𝛼) = 𝑎(𝛼)/𝑑𝑏
𝑑𝑥
(𝛼) .

Using the extended Euclidean algorithm we find the unique 0 ≠ 𝑟

in K[𝑥] such that deg(𝑟 ) < deg(𝑏) and 𝑟 · 𝑑
𝑑𝑥
(𝑏) ≡ 𝑎 (mod 𝑏) . □

For 𝑓 ∈ K(𝑥) satisfying the hypotheses of Lemma 6.1, we denote

FirstResidues(𝑓 ) := (𝑏, 𝑟 ), (6.1)

where 𝑏, 𝑟 ∈ K[𝑥] are also as in the notation of Lemma 6.1. We also

define FirstResidues(0) := (1, 0), for convenience. With this, we

can now describe the following simple Algorithm 4 to compute a

symbolic representation of the discrete residues of 𝑓 .

Theorem 6.2. Algorithm 4 is correct.

Proof. It follows from the correctness of Algorithm 1 proved

in Lemma 4.2 that 𝑓 has no poles of order greater than𝑚, whence

by Definition 3.1 every non-zero discrete residue of 𝑓 has order

at most𝑚. Consider now
¯𝑓𝑘 := SimpleReduction(𝑓𝑘 ), which by

the correctness of Algorithm 3 is such that 𝑓𝑘 − ¯𝑓𝑘 is summable.

We prove the correctness of Algorithm 4 for each 𝑘 = 1, . . . ,𝑚

depending on whether
¯𝑓𝑘 = 0 or not.

In case
¯𝑓𝑘 = 0, Algorithm 4 produces (𝐵𝑘 , 𝐷𝑘 ) = (1, 0). In this

case we also know that 𝑓𝑘 is summable, and therefore by (4.2)

5
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Algorithm 4 DiscreteResidues procedure

Input: A proper rational function 0 ≠ 𝑓 ∈ K(𝑥).
Output: A list

(
(𝐵1, 𝐷1), . . . , (𝐵𝑚, 𝐷𝑚)

)
of pairs (𝐵𝑘 , 𝐷𝑘 ) ∈ K[𝑥]2

such that every non-zero discrete residue of 𝑓 is of order at most

𝑚 and, for each 𝑘 = 1, . . . ,𝑚:

(1) either (𝐵𝑘 , 𝐷𝑘 ) = (1, 0) or else 𝐷𝑘 ≠ 0, deg(𝐷𝑘 ) < deg(𝐵𝑘 ),
𝐵𝑘 is squarefree, and disp(𝐵𝑘 ) = 0;

(2) the set of roots of 𝐵𝑘 inK contains precisely one representative

from each 𝜔 ∈ K/Z such that dres(𝑓 , 𝜔, 𝑘) ≠ 0; and

(3) 𝐷𝑘 (𝛼) = dres(𝑓 , 𝜔 (𝛼), 𝑘) for each root 𝛼 ∈ K of 𝐵𝑘 .

(𝑓1, . . . , 𝑓𝑚) ← HermiteList(𝑓 );
for 𝑘 = 1..𝑚 do

¯𝑓𝑘 ← SimpleReduction(𝑓𝑘 );
(𝐵𝑘 , 𝐷𝑘 ) ← FirstResidues( ¯𝑓𝑘 );

end for;
return

(
(𝐵1, 𝐷1), . . . , (𝐵𝑚, 𝐷𝑚)

)
.

dres(𝑓𝑘 , 𝜔, 1) = dres(𝑓 , 𝜔, 𝑘) = 0 for every 𝜔 ∈ K/Z. Thus the
output of Algorithm 4 is (vacuously) correct in this case because

the constant polynomial 𝐵𝑘 = 1 has no roots.

Suppose now that
¯𝑓𝑘 ≠ 0. It follows from the definition of

(𝐵𝑘 , 𝐷𝑘 ) := FirstResidues( ¯𝑓𝑘 ) as in (6.1) that 𝐵𝑘 is the denomi-

nator of the proper rational function
¯𝑓𝑘 , and therefore 𝐵𝑘 is non-

constant, squarefree, and has disp(𝐵𝑘 ) = 0, by the correctness

of Algorithm 3 proved in Lemma 5.4. Let us denote by 𝑐𝑘 (𝛼) the
classical first order residue of

¯𝑓𝑘 at each 𝛼 ∈ K (note that
¯𝑓𝑘 has

only simple poles, so there are no other residues). We obtain from

Lemma 6.1 that 𝐷𝑘 ≠ 0, deg(𝐷𝑘 ) < deg(𝐵𝑘 ), and 𝐷𝑘 (𝛼) = 𝑐𝑘 (𝛼)
for each root 𝛼 of 𝐵𝑘 . Since

¯𝑓𝑘 has at most one pole in each orbit

𝜔 ∈ K/Z (this is the very meaning of pdisp( ¯𝑓𝑘 ) = 0), it follows that

𝑐𝑘 (𝛼) = dres( ¯𝑓𝑘 , 𝜔 (𝛼), 1) for every 𝛼 ∈ K. To conclude, we observe
that

dres( ¯𝑓𝑘 , 𝜔, 1) = dres(𝑓𝑘 , 𝜔, 1) = dres(𝑓 , 𝜔, 𝑘)
for each 𝜔 ∈ K/Z; the first equality follows from the summability

of 𝑓𝑘 − ¯𝑓𝑘 established in the proof of Proposition 5.4, and the second

equality is (4.2). □

Remark 6.3. As we mentioned in §3, the knowledge of a reduced

form ℎ for 𝑓 is morally “the same” as knowledge of the discrete

residues of 𝑓 . And yet, the output

(
(𝐵1, 𝐷1), . . . , (𝐵𝑚, 𝐷𝑚)

)
of Al-

gorithm 4 has the following deficiency: it may happen that for

some 𝑗 ≠ 𝑘 , we have dres(𝑓 , 𝜔, 𝑘) ≠ 0 ≠ dres(𝑓 , 𝜔, 𝑗), and yet the

representatives 𝛼 𝑗 , 𝛼𝑘 ∈ 𝜔 such that 𝐵 𝑗 (𝛼 𝑗 ) = 0 = 𝐵𝑘 (𝛼𝑘 ) may be

distinct, with 𝛼 𝑗 ≠ 𝛼𝑘 . In many applications, this is not an issue be-

cause summability problems decompose into parallel summability

problems in each degree component, as we see from Proposition 3.2.

Actually, the systematic exploitation of this particularity was the

original motivation of Algorithm 1 and remains its raison d’être. But
it is still unsatisfying that the different 𝐵𝑘 associated to the same 𝑓

are not better coordinated, and this does become a more serious (no

longer merely aesthetic) issue in further applications to creative

telescoping, where the discrete residues of different orders begin

to interact. We explain how to address this problem in Remark 7.2,

when we have developed the requisite technology.

7 EXTENSIONS AND APPLICATIONS
In this section we collect some modifications to the procedures

described in the previous sections to produce outputs that allow

for more immediate comparison of discrete residues across several

rational functions and across different orders.

We begin with the parameterized summability problem (1.2)

described in the introduction. Let f = (𝑓1, . . . , 𝑓𝑛) ∈ K(𝑥)𝑛 be

given, and suppose we wish to compute a K-basis for

𝑉 (f) :=
{
v ∈ K𝑛

�� ⟨v, f⟩ is summable

}
, (7.1)

where ⟨•, •⟩ denotes the usual inner product. By Proposition 3.2,

v = (𝑣1, . . . , 𝑣𝑛) ∈ 𝑉 (f) ⇐⇒
𝑛∑︁
𝑖=1

𝑣𝑖 · dres(𝑓𝑖 , 𝜔, 𝑘) = 0 (7.2)

for every 𝜔 ∈ K/Z and every 𝑘 ∈ N. If only we knew how to write

down this linear system explicitly, we would be able to solve for

the unknown v. We can apply Algorithm 4 to each 𝑓𝑖 , and obtain

DiscreteResidues(𝑓𝑖 ) =
(
(𝐵𝑖,1, 𝐷𝑖,1), . . . , (𝐵𝑖,𝑚𝑖

, 𝐷𝑖,𝑚𝑖
)) .

But it may happen that many different 𝛼𝑖,𝑘 ∈ K all belong to the

same orbit 𝜔 ∈ K/Z and satisfy 𝐵𝑖,𝑘 (𝛼𝑖,𝑘 ) = 0, which leads to very

undesirable bookkeping problems.

To address this kind of problem, we introduce in Algorithm 5

a generalization of Algorithm 3 that computes reduced forms for

several 𝑓1, . . . , 𝑓𝑛 compatibly, so that whenever 𝑓𝑖 and 𝑓𝑗 have non-

zero residue of order a given 𝑘 at a given orbit 𝜔 if and only if 𝐵𝑖,𝑘

and 𝐵 𝑗,𝑘 have a common root 𝛼 ∈ K such that 𝜔 = 𝜔 (𝛼). For this
purpose, we may assume as in §5 that the 𝑓𝑖 are proper and, thanks

to Algorithm 1, that they all have squarefree denominators.

Corollary 7.1. Algorithm 5 is correct.

Proof. The proof is very similar to that of Proposition 5.4, so

we only sketch the main points. The key difference is that now

𝑏0 has been defined so that for each root 𝛼 of 𝑏0 and each root 𝛼𝑖
of 𝑏𝑖 belonging to 𝜔 (𝛼) we have that 𝛼𝑖 − 𝛼 ∈ Z≥0. The roots of
𝑏𝑖,ℓ are precisely those roots of 𝑏𝑖 which are ℓ steps away from the

unique root of 𝑏0 that belongs to the same orbit. By construction,

the denominator of each
¯𝑓𝑖 is a factor of 𝑏0, which has disp(𝑏0) = 0

as before. □

Remark 7.2. Algorithm 5 also allows us to fix the deficiency dis-

cussed in Remark 6.3. For a non-zero proper 𝑓 ∈ K(𝑥), let us
define (𝑓1, . . . , 𝑓𝑚) := HermiteList(𝑓 ) as in Algorithm 4. If we

now set ( ¯𝑓1, . . . , ¯𝑓𝑚) := SimpleReduction+ (𝑓1, . . . , 𝑓𝑚), instead of

¯𝑓𝑘 := SimpleReduction(𝑓𝑘 ) separately for 𝑘 = 1, . . . ,𝑚, we will no

longer have the problem of the 𝐵𝑘 being incompatible.

More generally, we can combine Algorithm 5 with the modifi-

cation proposed in the above Remark 7.2 to compute symbolic

representations of the discrete residues dres(𝑓𝑖 , 𝜔, 𝑘) of several
𝑓1, . . . , 𝑓𝑛 ∈ K(𝑥), which are compatible simultaneously across

the different 𝑓𝑖 as well as across the different 𝑘 ∈ N. This will be
done in Algorithm 6, after explaining the following small neces-

sary modification to the FirstResidues procedure defined in (6.1).

For an 𝑛-tuple of proper rational functions f = (𝑓1, . . . , 𝑓𝑛) with
squarefree denominators, suppose FirstResidues(𝑓𝑖 ) =: (𝑏𝑖 , 𝑟𝑖 )
as in (6.1), and let 𝑏 := lcm(𝑏1, . . . , 𝑏𝑛). Letting 𝑎𝑖 := numer(𝑓𝑖 ) and
𝑑𝑖 :=

𝑏
𝑏𝑖
, we see that gcd(𝑏𝑖 , 𝑑𝑖 ) = 1 because 𝑏 is squarefree, and
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Algorithm 5 SimpleReduction+ procedure

Input: An 𝑛-tuple (𝑓1, . . . , 𝑓𝑛) ∈ K(𝑥)𝑛 of proper rational func-

tions with squarefree denominators.

Output: An 𝑛-tuple ( ¯𝑓1, . . . , ¯𝑓𝑛) ∈ K(𝑥)𝑛 of proper rational func-

tions with squarefree denominators, such that: each 𝑓𝑖 − ¯𝑓𝑖 is

rationally summable; either
¯𝑓𝑖 = 0 or pdisp( ¯𝑓𝑖 ) = 0 for each 𝑖; and

for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 such that dres(𝑓𝑖 , 𝜔, 1) ≠ 0 ≠ dres(𝑓𝑗 , 𝜔, 1)
we have that

¯𝑓𝑖 and ¯𝑓𝑗 share a common pole in 𝜔 .

(𝑏1, . . . , 𝑏𝑛) ←
(
denom(𝑓1), . . . , denom(𝑓𝑛)

)
;

𝑏 ← lcm(𝑏1, . . . , 𝑏𝑛)
𝑆 ← ShiftSet(𝑏);
if 𝑆 = ∅ then
( ¯𝑓1, . . . , ¯𝑓𝑛) ← (𝑓1, . . . , 𝑓𝑛);

else
for ℓ ∈ 𝑆 do

𝑔ℓ ← gcd(𝑏, 𝜎−ℓ (𝑏));
end for;
𝐺 ← lcm(𝑔ℓ | ℓ ∈ 𝑆);
𝑏0 ← 𝑏

𝐺
; ⊲ Exact division.

for 𝑖 = 1..𝑛 do
for ℓ ∈ 𝑆 ∪ {0} do

𝑏𝑖,ℓ ← gcd(𝜎−ℓ (𝑏0), 𝑏𝑖 );
end for;
𝑁𝑖 ← {0} ∪ {ℓ ∈ 𝑆 | deg(𝑏𝑖,ℓ ) ≥ 1};
(𝑎𝑖,ℓ | ℓ ∈ 𝑁𝑖 ) ← ParFrac(𝑓𝑖 ;𝑏𝑖,ℓ | ℓ ∈ 𝑁𝑖 );
¯𝑓𝑖 ←

∑︁
ℓ∈𝑁𝑖

𝜎ℓ
(
𝑎𝑖,ℓ

𝑏𝑖,ℓ

)
;

end for;
end if;
return ( ¯𝑓1, . . . , ¯𝑓𝑛).

therefore by the Chinese Remainder Theorem we can find a unique

𝑝𝑖 ∈ K[𝑥] with deg(𝑝𝑖 ) < 𝑏 such that

𝑝𝑖 ·
𝑑

𝑑𝑥
(𝑏𝑖 ) ≡ 𝑎𝑖 (mod 𝑏𝑖 ) and 𝑝𝑖 ≡ 0 (mod 𝑑𝑖 ) .

Then we see that 𝑝𝑖 (𝛼) is the first-order residue of 𝑓𝑖 at each root

𝛼 of 𝑏. We define

FirstResidues+ (f) := (𝑏; (𝑝1, . . . , 𝑝𝑛)) .

Corollary 7.3. Algorithm 6 is correct.

Proof. This is an immediate consequence of the correctness of

Algorithm 5 proved in Corollary 7.1, coupled with the same proof,

mutatis mutandis, given for Theorem 6.2. □

Algorithm 6 leads immediately to a simple algorithmic solution

of the problem of computing 𝑉 (f) in (7.1).

Proposition 7.4. Let f = (𝑓1, . . . , 𝑓𝑛) with each 0 ≠ 𝑓𝑖 ∈ K(𝑥)
proper. Let DiscreteResidues+ (f) = (𝐵,D) with

D = (𝐷𝑖,𝑘 | 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑘 ≤ 𝑚)
be as in Algorithm 6 and let 𝑉 (f) be as in (7.1). Then

𝑉 (f) =
{
v ∈ K𝑛

����� 𝑛∑︁
𝑖=1

𝑣𝑖𝐷𝑖,𝑘 = 0 for each 1 ≤ 𝑘 ≤ 𝑚
}
. (7.3)

Algorithm 6 DiscreteResidues+ procedure

Input: An𝑛-tuple (𝑓1, . . . , 𝑓𝑛) ∈ K(𝑥)𝑛 of proper non-zero rational

functions.

Output: A pair (𝐵;D), consisting of a polynomial 𝐵 ∈ K[𝑥] with
disp(𝐵) = 0 and an array D =

(
𝐷𝑖,𝑘 | 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑘 ≤ 𝑚

)
of

polynomials 𝐷𝑖,𝑘 ∈ K[𝑥], such that:

(1) 𝐵 is non-constant and squarefree, and disp(𝐵) = 0;

(2) the set of roots of 𝐵 in K contains precisely one representative

from each 𝜔 ∈ K/Z such that dres(𝑓𝑖 , 𝜔, 𝑘) ≠ 0 for some 𝑖, 𝑘 ;

(3) deg(𝐷𝑖,𝑘 ) < deg(𝐵) whenever 𝐷𝑖,𝑘 ≠ 0; and

(4) 𝐷𝑖,𝑘 (𝛼) = dres(𝑓𝑖 , 𝜔 (𝛼), 𝑘) for each root 𝛼 ∈ K of 𝐵.

for 𝑖 = 1..𝑛 do
(𝑓𝑖,1, . . . , 𝑓𝑖,𝑚𝑖

) ← HermiteList(𝑓𝑖 );
end for;
𝑚 ← max{𝑚1, . . . ,𝑚𝑛};
for 𝑖 = 1..𝑛 do

for 𝑘 = 1..𝑚 do
if 𝑘 > 𝑚𝑖 then

𝑓𝑖,𝑘 ← 0;

end if;
end for;

end for;
f ← (𝑓𝑖,𝑘 | 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑘 ≤ 𝑚)
¯f ← SimpleReduction+ (f);
return FirstResidues+ (¯f).

Proof. For each v ∈ K𝑛 and 𝛼 ∈ K such that 𝐵(𝛼) = 0,

dres

(
⟨v · f⟩, 𝜔 (𝛼), 𝑘

)
=

𝑛∑︁
𝑖=1

𝑣𝑖𝐷𝑖,𝑘 (𝛼) (7.4)

by the correctness of Algorithm 6 proved in Corollary 7.3. Moreover,

since deg(𝐷𝑖,𝑘 ) < deg(𝐵) (whenever 𝐷𝑖,𝑘 ≠ 0) and 𝐵 is squarefree,

we see that for each given 1 ≤ 𝑘 ≤ 𝑚 the expression (7.4) is zero

for every root 𝛼 of 𝐵 if and only if the polynomial

∑
𝑖 𝑣𝑖𝐷𝑖,𝑘 ≡ 0

identically. We conclude by Proposition 3.2. □

Remark 7.5. One can produce without too much additional ef-

fort a variant of Proposition 7.4 that computes more generally the

K-vector space of solutions to the creative telescoping problem

obtained by replacing the unknown coefficients 𝑣𝑖 ∈ K in (1.2) with

unknown linear differential operators L𝑖 ∈ K
[
𝑑
𝑑𝑥

]
.

8 CONNECTIONS WITH GALOIS THEORY
Our interest in computing the vector space 𝑉 (f) in (7.1) is due to

the fact that it is isomorphic to the difference Galois group of the

block-diagonal difference system 𝜎 (𝑌 ) = (𝐴1 ⊕ · · · ⊕ 𝐴𝑛)𝑌 with

diagonal blocks 𝐴𝑖 =

(
1 𝑓𝑖
0 1

)
. Indeed, this difference Galois group

consists of block-diagonal matrices 𝐺 (v) = 𝐺 (𝑣1) ⊕ · · · ⊕ 𝐺 (𝑣𝑛)
with diagonal blocks 𝐺 (𝑣𝑖 ) :=

(
1 𝑣𝑖
0 1

)
for v = (𝑣1, . . . , 𝑣𝑛) ∈ 𝑉 (f)

(cf. [Har08, Prop. 2.1]).

Another application of the procedures developed here to Galois

theory of difference equations arises from the consideration of

7

71



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Carlos E. Arreche and Hari P. Sitaula

diagonal systems

𝜎 (𝑌 ) = diag(𝑟1, . . . , 𝑟𝑛)𝑌, where 𝑟1, . . . , 𝑟𝑛 ∈ K(𝑥)× (8.1)

As shown in [vdPS97, §2.2], the difference Galois group of (8.1) is

Γ :=

{
(𝛾1, . . . , 𝛾𝑛) ∈

(
K
× )𝑛 ��� 𝛾𝑒1

1
· · ·𝛾𝑒𝑛𝑛 = 1 for e ∈ 𝐸

}
,

where 𝐸 ⊆ Z𝑛 is the subgroup of e = (𝑒1, . . . , 𝑒𝑛) such that

𝑟
𝑒1
1
· · · 𝑟𝑒𝑛𝑛 = 𝜎 (𝑝e)/𝑝e (8.2)

for some 𝑝e ∈ K(𝑥)× . Now suppose (8.2) holds, and let us write

𝑓𝑖 :=
𝑑
𝑑𝑥
(𝑟𝑖 )/𝑟𝑖 for each 𝑖 = 1, . . . , 𝑛 and 𝑔e := 𝑑

𝑑𝑥
(𝑝e)/𝑝e, so that

we have

𝑒1 𝑓1 + · · · + 𝑒𝑛 𝑓𝑛 = 𝜎 (𝑔e) − 𝑔e . (8.3)

At first glance, this looks like a version of problem (1.2), but it is

even more special because the 𝑓𝑖 have only first-order residues, all

in Z. So we can compute the Q-vector space 𝑉 of solutions to (8.3)

using SimpleReduction+ (𝑓1, . . . , 𝑓𝑛), just as in Proposition 7.4, as

a preliminary step. Then we can compute a Z-basis e1, . . . , e𝑠 of
the free abelian group 𝐸 := 𝑉 ∩ Z𝑛 . Since each 𝑔e𝑗 has only simple

poles with integer residues, one can compute explicitly 𝑝e𝑗 ∈ K(𝑥)
such that

𝑑
𝑑𝑥

𝑝e𝑗 = 𝑔e𝑗 𝑝e𝑗 , and thence constants 𝛾 𝑗 ∈ K× such

that re𝑗 = 𝛾 𝑗 . This reduces the computation of 𝐸 from the defin-

ing multiplicative condition (8.2) in K(𝑥)× modulo the subgroup

{𝜎 (𝑝)/𝑝 | 𝑝 ∈ K(𝑥)×} to the equivalent defining condition in K× :

𝐸 =


𝑠∑︁
𝑗=1

𝑚 𝑗e𝑗 ∈ 𝐸

������ 𝑠∏
𝑗=1

𝛾
𝑚 𝑗

𝑗
= 1

.
9 EXAMPLE
Let us conclude by illustrating some of our procedures on the fol-

lowing example considered in both [PS95, MS95]. In order to make

the computations easier for the human reader to follow, we have

allowed ourselves to write down explicitly in this small example

the irreducible factorizations of denominators. We emphasize and

insist upon the fact that none of our procedures performs any such

factorization.

Consider the rational function

𝑓 :=
1

𝑥3 (𝑥 + 2)3 (𝑥 + 3) (𝑥2 + 1) (𝑥2 + 4𝑥 + 5)2
. (9.1)

We first compute HermiteList(𝑓 ) = (𝑓1, 𝑓2, 𝑓3) with

𝑓1 =
787𝑥5 + 4803𝑥4 + 9659𝑥3 + 9721𝑥2 + 9502𝑥 + 5008

18000(𝑥2 + 1) (𝑥 + 3) (𝑥2 + 4𝑥 + 5) (𝑥 + 2)𝑥
;

𝑓2 = −
787𝑥3 + 3372𝑥2 + 4696𝑥 + 1030
18000(𝑥2 + 4𝑥 + 5)𝑥 (𝑥 + 2)

; and 𝑓3 := −
7𝑥 − 1

300(𝑥 + 2)𝑥 ;

using Algorithm 1. We apply the remaining procedures to 𝑓1 only –

the remaining 𝑓2 and 𝑓3 are similar, and easier. Denoting

𝑏 := (𝑥2 + 1) (𝑥 + 3) (𝑥2 + 4𝑥 + 5) (𝑥 + 2)𝑥

the monic denominator of 𝑓1, we compute with Algorithm 2 (or

see by inspection) that ShiftSet(𝑏) = {1, 2, 3}. The factorization
𝑏 = 𝑏0𝑏1𝑏2𝑏3 computed within Algorithm 3 is given by

𝑏0 = (𝑥 + 3) (𝑥2 + 4𝑥 + 5); 𝑏1 = gcd(𝜎−1 (𝑏0), 𝑏) = 𝑥 + 2;
𝑏2 = gcd(𝜎−2 (𝑏0), 𝑏) = 𝑥2 + 1; 𝑏3 = gcd(𝜎−3 (𝑏0), 𝑏) = 𝑥 .

The individual summands in the partial fraction decomposition of

𝑓1 with respect to this factorization are given by

𝑎0

𝑏0
= − 13391𝑥2 + 37742𝑥 − 9293

1080000(𝑥 + 3) (𝑥2 + 4𝑥 + 5)
;

𝑎1

𝑏1
=

1

250(𝑥 + 2) ;
𝑎2

𝑏2
=
−7𝑥 − 1

8000(𝑥2 + 1)
;

𝑎3

𝑏3
=

313

33750𝑥
.

The reduced form
¯𝑓1 =

𝑎0
𝑏0
+ 𝜎

(
𝑎1
𝑏1

)
+ 𝜎2

(
𝑎2
𝑏2

)
+ 𝜎3

(
𝑎3
𝑏3

)
is given by

¯𝑓1 =
273𝑥 + 1387

20000(𝑥 + 3) (𝑥2 + 4𝑥 + 5)
.

The first pair of polynomials (𝐵1, 𝐷1) ∈ K[𝑥] computed by Algo-

rithm 4 is given by

𝐵1 = (𝑥+3) (𝑥2+4𝑥+5) and 𝐷1 =
59

16000

𝑥2+ 33

40000

𝑥− 1321

80000

.

Let us compare this output (𝐵1, 𝐷1) with the discrete residues

dres(𝑓 , 𝜔, 1) of 𝑓 according to the Definition 3.1 in terms of classical

residues. We see from the factorization of the denominator of 𝑓 in

(9.1) that its set of poles is{
−3,−2, 0,

√
−1 − 2,

√
−1,−

√
−1,−

√
−1 − 2

}
,

and that each of these poles belongs to one of the three orbits

𝜔 (0) = Z and 𝜔
(
±
√
−1

)
= ±
√
−1 + Z.

Therefore, 𝑓 has no discrete residues outside of these orbits, and

we verify that the set of roots {−3,
√
−1 − 2,−

√
−1 − 2} of the

polynomial 𝐵1 correctly contains precisely one representative from

each of these orbits (subject to our verification below that the first-

order discrete residues of 𝑓 at these orbits are actually non-zero!).

We can compute directly in this small example that the classical

first-order residues of 𝑓 at the poles in 𝜔 (0) are given by

Res1 (𝑓 , 0) = 313

33750
; Res1 (𝑓 ,−2) = 1

250
; Res1 (𝑓 ,−3) = 1

1080
;

and at the poles in 𝜔
(
±
√
−1

)
are given by

Res1

(
𝑓 ,±
√
−1

)
=
±
√
−1 − 7

16000

; and

Res1

(
𝑓 ,±
√
−1 − 2

)
=
∓1119

√
−1 − 533

80000

.

Finally we can verify directly that the polynomial 𝐷1 correctly

computes the first-order discrete residues of 𝑓 at all three orbits

𝜔 (0) and 𝜔
(
±
√
−1

)
according to Definition 3.1:

dres(𝑓 , 𝜔 (0), 1) = 313

33750
+ 1

250
+ 1

1080
= 71

5000
= 𝐷1 (−3);

and

dres

(
𝑓 , 𝜔

(
±
√
−1

)
, 1

)
=
±
√
−1 − 7

16000

+ ∓1119
√
−1 − 533

80000

=

=
∓557
√
−1 − 284

40000

= 𝐷
(
±
√
−1 − 2

)
.
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