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A B S T R A C T   

Classroom videos are a common source of data for educational researchers studying classroom interactions as 
well as a resource for teacher education and professional development. Over the last several decades emerging 
technologies have been applied to classroom videos to record, transcribe, and analyze classroom interactions. 
With the rise of machine learning, we report on the development and validation of neural networks to classify 
instructional activities using video signals, without analyzing speech or audio features, from a large corpus of 
nearly 250 h of classroom videos from elementary mathematics and English language arts instruction. Results 
indicated that the neural networks performed fairly-well in detecting instructional activities, at diverse levels of 
complexity, as compared to human raters. For instance, one neural network achieved over 80% accuracy in 
detecting four common activity types: whole class activity, small group activity, individual activity, and tran-
sition. An issue that was not addressed in this study was whether the fine-grained and agnostic instructional 
activities detected by the neural networks could scale up to supply information about features of instructional 
quality. Future applications of these neural networks may enable more efficient cataloguing and analysis of 
classroom videos at scale and the generation of fine-grained data about the classroom environment to inform 
potential implications for teaching and learning.   

Many educational researchers rely on videos to study phenomena 
that occur in classrooms; videos provide several advantages to examine 
classroom interactions for research as well as teacher education and 
professional development (Gaudin & Chaliès, 2015; Janík & Seidel, 
2009; Xu et al., 2018). One advantage is supporting multiple research 
purposes and opportunities for secondary analysis (Andersson & Sørvik, 
2013; Derry et al., 2010; Jacobs et al., 1999; Klette, 2022). Because of 
the video record, one person (or group) can watch a classroom inter-
action multiple times or freeze the frame to attend to several features at 
once. Another added value is the ability to analyze at various timescales 
(Dalland et al., 2020; Derry et al., 2010). 

With the use of video in education, there has been a concurrent 
development of technologies to assist with tasks such as the organization 
and storage of videos, creation of video transcripts, software for video 
annotations, and production of analytic schemes or reports (Derry et al., 
2010; Goldman et al., 2014; Jacobs et al., 1999; Klette, 2022; Pea & 
Hoffert, 2007). Emerging technological advances for videos are a critical 
component of the classroom research agenda and researchers should 
carefully consider how these technologies contribute to the construction 

of data and analysis (Hall, 2000). In recent years, deep learning neural 
networks have emerged as one of the leading approaches for human 
activity recognition in videos due to their robustness for extracting 
video-based features and promising performance for highly complex and 
critical tasks (Beddiar et al., 2020; Gupta et al., 2022). In this paper, we 
contribute to the literature by considering the application of neural 
networks for constructing and analyzing classroom video data and 
consider their potential implications for teaching and learning. 

Transforming video recordings into useful data is a time-consuming 
process (Derry et al., 2010). A growing number of researchers are 
investigating whether machine learning applications, such as neural 
networks, can be efficiently applied to video and audio data to study 
classrooms (e.g., Dale et al., 2022; Demszky & Hill, 2022; Jacobs et al., 
2022; Pang et al., 2023; Sun et al., 2021; Wang et al., 2014). For 
instance, Kelly et al. (2018) developed automated methods to detect 
authentic teacher questions from audio recordings and transcripts in 
secondary English language arts (ELA) lessons. Other fields, such as 
medicine, have found that the application of neural networks to video 
can augment traditional approaches to make them more efficient and 
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cost effective (e.g., Saba et al., 2019). 
Even though there is potential for using machine learning to 

construct and generate data from videos, substantial amounts of anno-
tated classroom video data are needed to develop these machine 
learning algorithms. Unfortunately, large and high-quality annotations 
of classroom video datasets specifically for machine learning develop-
ment are not widely available, although a few attempts have been made 
(Sharma et al., 2021; Sun et al., 2021). In this paper, we describe our 
development of a large and high-quality annotated dataset of classroom 
videos from elementary classrooms in the United States and then we 
examine whether neural networks can detect instructional activities. 
Our goals are to determine whether we can (a) discriminate between 
different classroom instructional activities using neural networks of 
video data (b) rapidly and with accuracy levels comparable to that of 
humans. 

1. Challenges scaling classroom videos in research and practice 

Previous video technologies have aided researchers’ and teachers’ 
analysis of videos; the development of some these technologies arose 
from methodological and practical needs from large-scale classroom 
studies and professional development (Borko et al., 2008; Goldman 
et al., 2014; Jacobs et al., 1999; Klette, 2022; Pea & Hoffert, 2007). 
However, there remain challenges when using videos at scale, whether 
using them for descriptive research, evaluating an intervention, or 
providing feedback to teachers. Next, we highlight a few of these chal-
lenges and describe ways in which automated systems, embedded with 
neural networks, may be able to augment existing practices. 

First, collecting a large dataset (i.e., hundreds of hours) of classroom 
videos presents the practical challenges of storing and cataloguing the 
data. Automated systems could efficiently summarize video content for 
cataloguing and searching large video collections with little to no 
human intervention (Pea & Hoffert, 2007). Second, due to financial and 
time constraints, researchers must strategically choose their unit of 
analysis and consider the feasibility of coordinating analysis at multiple 
timescales (Derry et al., 2010; Stigler et al., 2000). Researchers select 
timescales based on their research questions, theoretical perspective, 
and practical constraints but even minor adjustments in timescale 
analysis could lead to different interpretations (e.g., Dalland et al., 
2020). To help researchers account for these differences, automated 
systems could assist in the extraction of certain timescale features (e.g., 
teacher versus student talk time) while freeing up time and resources for 
researchers to systematically extract features at more complex timescale 
(e.g., quality of student engagement during small group interactions). 

Lastly, analyzing large-scale classroom video datasets presents the 
financial and time burdens of training humans to generate useful data 
(Hiebert et al., 2003; Stigler et al., 2000). For instance, human raters 
may need to complete frequent calibration sessions to ensure they are 
not diverging from accepted coding procedures (e.g., Walkowiak et al., 
2014). Despite all these efforts to train human raters to create useful 
data, some studies suggest that humans may be the greatest source of 
error (Casabianca et al., 2015; Hill et al., 2012; Kelly et al., 2020; Klette, 
2022). Automated systems could assist with some of these burdens by 
supplementing human efforts. For instance, some observation protocols 
capture the frequency of instructional activities (i.e., quantity) and 
describe their qualities. Automated systems may prove capable of 
summarizing the frequency of instructional activities efficiently and 
accurately; this offloading would enable more concentrated focus on 
instructional quality. 

2. Conceptual framing: agnostic and fine-grained classroom 
observation measures aligned with ambitious instruction 

Classroom videos offer rich records for studying human activities 
such as gestures, eye gaze, speech, tone of voice, and use of physical 
artifacts (Barron, 2003). These human activities occur along a spectrum; 

they can range from simple and short in duration to interactively com-
plex and longer in duration. From least to most complex, these action 
classes are simple (e.g., raising a hand), interaction (e.g., reading a book), 
group (e.g., teacher supporting multiple students), and event (e.g., 
whole-class discussion). 

To focus our selection of instructional activities from the classroom 
videos, we took a “fine-grained” and “agnostic” approach (Kelly, 2023) 
while also acknowledging the neural network models would not be able 
to use any audio or speech features from the classroom videos. 
Fine-grained analysis typically lends itself to binary labeling and can be 
applied exhaustively to the data; for instance, labeling whether students 
are raising their hands in videoframes. At the point of selecting 
instructional activities, we were agnostic regarding whether the 
instructional activities aligned with effective instruction. For example, a 
teacher transitioning students to a new instructional format may be 
considered effective or ineffective. We were inclusive of instructional 
activities that, at the point of labeling in the video, one could suspend 
evaluation of the activity. However, this approach does not mean we 
would be unable to evaluate instructional activities in the future. As in 
the case of the teacher guiding the transition, noting whether the tran-
sition was under 2 min lends itself to some evaluation of the transition’s 
efficiency. In addition, any fine-grained and agnostic instructional ac-
tivities had to be identifiable by manual annotation without the use of 
audio signals or speech data from the classroom video. 

Two reliable and validated classroom observation instruments, the 
Mathematics-Scan (M-Scan; Berry et al., 2013; Walkowiak et al., 2014) 
and the Protocol for Language Arts Observations (PLATO; Corr, 2011; 
Grossman et al., 2013) guided our conceptualization of instructional 
activities. M-Scan and PLATO have been informed by many years of 
classroom-based research (see Section 2.1). These classroom observa-
tion instruments can be operationalized in fine-grained and agnostic 
ways. While Kelly (2023) only argued PLATO could be applied in 
fine-grained and agnostic ways, his argument could similarly be applied 
to M-Scan as well. M-Scan and PLATO measure features of ambitious 
instruction (Grossman et al., 2014; Walkowiak et al., 2018). Ambitious 
instruction seeks to foster conceptually rich understanding of disci-
plinary content (Franke et al., 2007; Newmann & Associates, 1996; 
Thompson et al., 2013). 

2.1. Instructional activity labels 

Our fine-grained and agnostic instructional activity labels are orga-
nized under 6 parent-level labels: activity type, teacher location, student 
location, teacher supporting, discourse, and representing content (see 
Table 1). Next, we provide an overview and rationale for our video- 
based instructional activities and summarize research related to these 
instructional activities. 

2.1.1. Activity type 
Activity type labels are the instructional formats the teacher engages 

in with students. These labels included whole class activity, individual 
activity, small group activity, and transition. We included these labels 
for three reasons. First, there is evidence to suggest a positive relation-
ship between instructional time and student achievement (Baker et al., 
2004; Bodovski & Farkas, 2007; Borg, 1980; Brophy & Good, 1984; 
Carroll, 1989; Gettinger, 1984; Stallings, 1980; Wiley & Harnischfeger, 
1974) and some argue that certain activity types may (or may not) have 
implications for student engagement (see Kelly & Turner, 2009). Sec-
ond, activity types have been manually labeled in many video studies (e. 
g., Hiebert et al., 2003). Previous research investigating the capabilities 
of neural networks to detect features in classroom videos has not focused 
on activity types (e.g., Ahuja et al., 2019; Sharma et al., 2021; Sun et al., 
2021). Therefore, developing a neural network capable of detecting 
activity type may provide an efficient means for labeling this 
fine-grained measure. Third, we are interested in whether these 
fine-grained and agnostic measures may scale up for global observation 
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protocols like M-Scan and PLATO. For example, some researchers have 
suggested that the primary activity type in a lesson was linked to ratings 
for certain dimensions of PLATO (Luoto et al., 2023). 

Previous research provided some perspective on the frequency and 
duration of the activity types we would likely observe in our dataset. The 
Beginning Teacher Evaluation Study was a relevant example of this 
research (Rosenshine, 1981). It was an observational study on how time 
was spent in elementary classrooms in the United States. The study 
revealed that in grade 2 students spent 35 min and 90 min in mathe-
matics and ELA lessons each day, respectively, and in grade 5 students 
spent 45 min and 110 min in mathematics and ELA, respectively. A 
recent survey of elementary teachers’ self-reported time spent in 
mathematics and ELA instruction reported comparable results (Bani-
lower et al., 2018). 

Burns (1984) provided a comprehensive review of research on time 
allocation in elementary classrooms; he found notable differences in 
instructional time and engagement in activity types. For instance, in one 
study he reviewed, small group activities accounted for 73% of the time 
a second grader spent in ELA but, by the fifth grade, only 55% of ELA 
instruction was spent in small group activities; in comparison, small 
group instruction in mathematics was 40% and 34%, respectively 
(Lambert & Hartsough, 1976). Rosenshine (1981) reported that 
elementary students spent most of their time working on independent 
seatwork, 66% of their ELA instruction time and 75% of their mathe-
matics instruction time. More recent studies have noted great variability 
across classrooms in how students spend their time in mathematics and 
ELA instruction (Hiebert et al., 2003; Phelps et al., 2012; Pianta et al., 
2007). 

2.1.2. Discourse 
The discourse labels focused on students’ participation in classroom 

talk. These labels included on task student talking with other students 
and students raising their hand. These labels were included because of 
recent educational reform movements emphasizing providing students 
opportunities to learn disciplinary content through interaction in a 
learning community (National Council of Teachers of English & Inter-
national Reading Association, 1996; National Council of Teachers of 
Mathematics, 2000). Furthermore, studies have shown students 
engaging with other’s ideas leads to positive outcomes such as student 
achievement or performance on disciplinary practices (Applebee et al., 
2003; Barron, 2003; Bishop, 2021; Cobb et al., 1992; Goodwin et al., 
2021; Howe et al., 2019; Murphy et al., 2009; Nussbaum, 2008; Resnick 
et al., 2018; Sedova et al., 2019; Webb et al., 2014, 2021). 

Prior research suggests that certain participation structures exist in 
classrooms. Typically, the teacher is the dominant participant in the 

Table 1 
List of instructional activity labels.  

Instructional Activity Definition Action 
Level 

Activity Type 
Whole class activity All students are involved in one 

activity, with the teacher leading the 
activity (e.g., lecture, presentation, 
carpet time). 

Event 

Individual activity All students privately work (e.g., 
independent practice, reading) at a 
separate desk or in small groups with 
no interaction between students. 

Event 

Small group activity Students working together with 
peers (e.g., think-pair-share, book 
club); this is prioritized when there 
are students interacting or somewhat 
interacting near one another. 

Event 

Transition The students and teacher transition 
from one instructional activity to 
another (e.g., whole class to small 
group). The teacher and students 
move from one spot in the room to 
another (e.g., from the carpet to 
desks). Other than specific 
behavioral directions, no instruction 
or meaningful instructional activity 
is occurring during the transition. 

Event 

Discourse 
On task student talking with 

student 
Students conversing together 
without direct teacher support, 
which may overlap with small group 
activity. This is specific to mouth- 
movements within the parent code 
time interval. 

Group 

Student raising hand A student’s hand is up for more than 
1 s; clearly and purposefully raising 
hand. 

Simple 

Teacher Location 
Teacher sitting Teacher sitting (chair, stool, floor, 

crouching, on desk, kneeling). 
Simple 

Teacher standing Teacher standing in generally the 
same spot to keep the same 
orientation to students. 

Simple 

Teacher walking Teacher walking with purpose to 
change orientation to students. 

Simple 

Student Location 
Student(s) sitting on carpet 

or floor 
Students sitting on floor or carpet. Simple 

Student(s) sitting at group 
tables 

Students sitting at tables. Simple 

Student(s) sitting at desks Students at individual desks. Simple 
Student(s) standing or 

walking 
Students standing up or walking 
around the room. 

Simple 

Teacher Supporting 
Teacher supporting one 

student 
Teacher uses proximity to offer 
assistance to one student; support 
can be verbal or non-verbal. 

Group 

Teacher supporting multiple 
students with student 
interaction 

Teacher uses proximity to offer 
assistance to multiple students; 
support can be verbal or non-verbal. 
Individual students are also 
interacting with one another. 

Group 

Teacher supporting multiple 
students without student 
interaction 

Teacher uses proximity to offer 
assistance to multiple students who 
are engaged in an activity; support 
can be verbal or non-verbal. Students 
are sitting close to one another or in 
a small group, but they are not 
interacting with one another. 

Group 

Representing Content 
Using or holding book A book is used or held by a teacher or 

student. 
Interaction 

Using or holding worksheet A worksheet is used or held by a 
teacher or student. 

Interaction  

Table 1 (continued ) 

Instructional Activity Definition Action 
Level 

Presentation with 
technology 

A interative whiteboard, document 
camera, or projector is used to show 
content. 

Interaction 

Using or holding 
instructional tool 

A tangible object (e.g., ruler, math 
manipulative; anything in someone’s 
hand other than what is already 
listed, but does not include pencil/ 
pen) is used or held by teacher or 
student for instructional purposes. 

Interaction 

Using or holding notebook A notebook is used or held by a 
teacher or student. 

Interaction 

Individual technology Student or teacher using a laptop, 
tablet, etc. 

Interaction 

Teacher writing Teacher inscribing on paper, 
whiteboard, or document camera; 
includes erasing. 

Interaction 

Student writing Student inscribing on paper, 
whiteboard, or document camera; 
includes erasing. 

Interaction  
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classroom talk and there is a recitation pattern of the teacher initiating a 
question, students responding, and then the teacher following up on the 
students’ response or sometimes referred to as IRE/F (Cazden, 1988; 
Edwards & Mercer, 1987; Kawanaka & Stigler, 1999; Mehan, 1979; 
Nystrand & Gamoran, 1997; Sinclair & Coulthard, 1975). Even though 
many discussion-based pedagogies exist to support teachers, this pattern 
is pervasiveness and persistent (Alexander, 2008; Howe & Abedin, 2013; 
Spillane & Zeuli, 1999). As such, student talk is typically less frequent 
with some studies reporting students usually contributing between 4% 
and 25% of classroom talk in the United States (Burns, 1984; Kawanaka 
& Stigler, 1999; Silverman et al., 2014). 

2.1.3. Teacher and student location 
The teacher and student location labels captured details about the 

teachers’ and students’ positions in the classroom or their movements; 
for instance, whether the teacher was standing or sitting and if students 
were sitting at individual desks or at group tables. These labels were 
included given prior research on the organization of classrooms (e.g., 
Fernandes et al., 2011) and spatial pedagogy (Lim et al., 2012), and the 
recent advancements in multimodal learning analytics (e.g., Chan et al., 
2020; D’Mello et al., 2015; Prieto et al., 2018). Patterns in a teacher’s 
position in the classroom and proximity to students may be an influen-
tial factor for student participation and student motivation (Chan et al., 
2020; Hur & Bosch, 2022; Yan et al., 2022). 

Again, the review by Burns (1984) provided some insights into 
teacher and student locations. For instance, in one of the studies 
reviewed (Lambert & Hartsough, 1976), second-grade teachers in 
mathematics were observed on average spending about 12% of their 
time circulating around the room, but in reading, the teachers spent 
about 5% of their time circulating around the room. There were also 
grade level differences in some aspects of the teacher’s location. 
Second-grade teachers spent on average between 0.40% and 0.45% of 
the lesson time sitting at their desk in reading and mathematics lessons, 
but fifth-grade teachers spent on average between 5.65% and 5.93% of 
the lesson time at their desk, respectively. In another study reviewed by 
Burns, students spent 9% and 5% of their class time sitting and walking, 
respectively (Good & Beckerman, 1978). 

2.1.4. Teacher supporting 
The teacher supporting labels were instances when the teacher aided 

students while engaged in an academic task. Sometimes this support 
could be verbal such as offering spoken feedback to students or non- 
verbal such as looking over students’ shoulders to monitor their prog-
ress. Research suggests links between teacher support and student fac-
tors such as engagement and achievement (Dietrich et al., 2015; Hattie 
& Timperley, 2007; Klem & Connell, 2004; Marks, 2000; Roorda et al., 
2011). 

Large-scale observation studies of classrooms in the United States 
have found considerable variation in the nature, quality, and quantity of 
teachers’ interactions with students (e.g., Burchinal et al., 2008; Pianta 
et al., 2007). Generally, elementary students have few opportunities to 
extensively interact with their teacher. Some process-product research 
studies reported the duration of interactions between a teacher and 
students ranging between 7% and 46% of the class time and some 
reporting more teacher-student interactions in reading instruction than 
mathematics (Burns, 1984). 

2.1.5. Representing content 
Many instructional resources exist in classrooms, ranging from 

teacher-created worksheets, to commercially produced texts, to web- 
based tools, software, and videos. The representing content labels 
included occasions when the teacher or students were holding or 
interacting with instructional resources (e.g., book, worksheet, or 
instructional tool), generating content such as through their writing, or 
displaying content such as on an interactive whiteboard or projector 
screen. Accessibility to high-quality instructional resources is essential 

to students’ opportunities to learn (Chiu & Khoo, 2005; Oakes & Saun-
ders, 2004). Standards documents explicitly recommend that students 
have access to instructional tools during instruction (e.g., National 
Council of Teachers of Mathematics, 2000). 

Some classroom observation studies and teacher survey studies 
provided some insights into duration or frequency of representing con-
tent. In one study, it was found that elementary students spent most of 
their time writing or reading, on average about 22% of their time writing 
and 12% of their time reading (Good & Beckerman, 1978). Hiebert and 
Stigler (2000) reported that “reform” mathematics teachers in the 
United States were less likely to use a textbook during lessons in com-
parison to their non-reformed peers. A more recent teacher survey study 
suggests that most elementary teachers reported having adequate 
instructional resources (e.g., instructional technology, measurement 
tools, manipulatives, etc.; see Banilower et al., 2018). From that same 
survey, 35% of elementary teachers reported that their school provided 
a student with a laptop or tablet and 89% reported having access to a 
classroom set of laptops or tablets. When asked about their most recent 
mathematics lesson, 65% of elementary teachers reported students used 
manipulatives and 77% reported students completed textbook/work-
sheet problems. 

2.2. Related automated efforts in classrooms 

Efforts to automatically detect instructional activities in classroom 
videos has emerged as an area of research. Several researchers have been 
successful in detecting activities occurring in audio signals or transcripts 
from classroom videos such as teacher questioning and feedback (Dale 
et al., 2022; Kelly et al., 2018), revoicing or taking up student contri-
butions (Dale et al., 2022; Demszky & Hill, 2022; Jacobs et al., 2022), 
and activity type (Wang et al., 2014). Even though these previous 
studies use slightly different approaches, they all have reported models 
with high accuracy rates. For instance, Wang et al. (2014) reported that 
their automated system correctly matched human performance to detect 
the activity type about 80% of the time. 

Other scholars have explored detecting activities occurring in the 
video signals, rather than audio or transcripts, from classroom videos. 
These efforts have primarily focused on building annotated video 
datasets for computer vision techniques. The EduNet (Sharma et al., 
2021) and Student Class Behavior Dataset (Sun et al., 2021) are two 
examples of efforts to build annotated video datasets from classroom 
videos. EduNet uses an annotation labeling scheme that is teacher- and 
student-centric. For example, writing on the board and holding a book 
are two teacher-focused labels; raising hand and sitting at desk are two 
student-focused labels. Training a two-stream I3D-ResNet-50 model on 
the EduNet dataset, Sharma and colleagues found an overall accuracy 
rating of 72.3%. Student Class Behavior Dataset features a 
student-centric annotation scheme (e.g., listening, using a computer, 
and raising hand). Sun and colleagues found an overall accuracy rating 
of 73.5% using the spatial stream of ResNet-101. 

To date, EduSense is the only real-time video automation deployable 
system for the classroom (Ahuja et al., 2019). Using two wall-mounted 
cameras, one teacher-facing camera in the back of the room and one 
student-facing camera in the front of the room, the system can detect 
such instructional activities such as whether the student or teacher is 
standing or sitting, whether students are raising their hands, and the 
facial features and body pose of students and teachers. Testing EduSense 
in real university classrooms, the developers found high levels of accu-
racy. For instance, EduSense was able to detect with over 90% accuracy 
whether the university instructor was sitting or standing. 

The findings from these studies using the EduNet, Student Class 
Behavior Dataset, and EduSense suggest the feasibility of video-based 
automation methods for detecting classroom-based activities. Further-
more, these studies acknowledged detecting complex activities and ac-
tivities of lengthy duration is still a challenge. It is also important to 
consider these studies’ limitations. First, the video datasets are small. 
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Most video datasets for developing automated systems are hundreds of 
hours (Beddiar et al., 2020). Second, the activities are mostly 
student-centric and are primarily simple in nature and short in duration 
(e.g., student raising hand). The datasets did not contain complex ac-
tivities or activities that were longer in duration and thus presented a 
challenge for neural network model development. 

Complex and long-duration activities could be more informative for 
teachers (e.g., providing insights into how much time in a lesson is taken 
up by transitions between activities). Furthermore, the emphasis on 
student-centric labels limits potential future applications of the auto-
mation that examines instructional quality. For instance, those re-
searchers developing automated methods from transcripts have found 
that certain features in teachers’ speech are correlated with certain 
classroom observation scores and student learning outcomes (e.g., 
Demszky & Hill, 2022). And in the case of EduSense system, the 
requirement of two, high-mounted video recordings may be limiting for 
some settings. 

Given these related automated efforts in classrooms, we hypothe-
sized the following outcomes for our study: (1) The more complex 
instructional activities in our annotation scheme would be harder to 
detect by the neural networks; (2) The more prevalent an instructional 
activity was across the dataset then the more likely the neural networks 
would perform accurately in detecting that instructional activity; and 
(3) The more frequent an instructional activity then the more likely the 
neural network would perform accurately in detecting that instructional 
activity. 

3. Methods 

3.1. Video dataset 

The dataset came from a prior research project: the Developing 
Ambitious Instruction (DAI) project (Youngs et al., 2022). The DAI fol-
lowed 83 graduates from five elementary teacher preparation programs 
into their first two to three of elementary (K-5) teaching. Up to 3 
mathematics lessons and 3 ELA lessons were recorded for each teacher 
for every year of observation. The DAI dataset resulted in approximately 
1000 h of video recordings. 

From the DAI dataset, we selected a subset of approximately 244 h of 
video recordings from 80 graduates which yielded 279 lessons. Of those 
lessons, 140 were ELA lessons and 139 were mathematics lessons. On 
average, the videos were about 54 min in duration. The ELA videos had 
more variability in their duration than mathematics (see Fig. 1). Few 
lessons recordings were less than 25 min, and most lesson recordings 
were between 25 and 75 min. There were a few ELA videos greater than 

90 min. 

3.2. Human annotation of video dataset 

To develop a large, annotated video dataset, we used a part-to-whole 
deductive approach (Erickson, 2006). Human annotators exhaustively 
identified and annotated every second in which an instructional activity 
occurred. Instructional activities less than a second in duration were 
excluded. Annotations were created using a free and open-source com-
puter software called ELAN (ELAN, 2021), a software capable of tiered 
multi-label annotations of videos. ELAN has been used in video-based 
research studies across disciplines (Wittenburg et al., 2006), including 
education (de Freitas et al., 2017). 

Fig. 2 is an example of the ELAN interface. A video player displays 
video in the top left with video playback controls to the right. Below the 
video player and playback controls there is a video timeline with a tiered 
multilabel system for an annotator to select start and stop time for each 
instructional activity. As the video plays, a red vertical bar runs along 
the timeline. For instance, in the videoframe in Fig. 2, we see the teacher 
sitting in a chair and students sitting on the carpet during a whole class 
lesson; in the annotation timeline, the red vertical line overlaps with the 
labels of whole class activity under activity types, sitting under teacher 
location, and sitting on the carpet/floor under student location. 

3.3. Descriptive summary of DAI-244 dataset 

The classroom videos were collected in elementary classrooms with 
instructional activities as they naturally occurred. Videos were anno-
tated in their entirety without alternation or sampling of specific ac-
tivities. Therefore, the classes of instructional activities in the annotated 
dataset are imbalanced, but typical of instructional activities in 
elementary classrooms in the United States. Fig. 3 lists the most frequent 
instructional activity, in terms of duration, from the top (i.e., teacher 
sitting at 120 h) to the bottom (i.e., on task student talking with student 
at 8 h). 

Many of the instructional activities (13 of 24) were prevalent across 
the dataset; that is, appearing in at least 70% of the 279 lesson videos 
(see Table 2). A considerable minority of the instructional activities (9 of 
24) were somewhat prevalent across lesson videos appearing in at least 
40% but less than 70% of the lesson videos. Only two instructional ac-
tivities (on task student talking with student and using or holding 
notebook) appeared in just under 40% of the lesson videos. 

The duration of the instructional activities varied to some degree 
across videos. All instructional activity labels appeared in some lesson 
videos where they had a cumulative duration of less than 1 min and 
some videos with cumulative durations of up to 90 min. For instance, 
consider the individual activity label in the violin plot for instructional 
activity type in Fig. 4. Most individual activity durations ranged be-
tween 0 and 10 min and some continued for 20 min, but few lesson 
videos with individual activity persisted longer than 20 min. 

3.4. Inherent challenges in the DAI-244 dataset 

As our goal is to develop a dataset for training neural network models 
to detect instructional activities in elementary classrooms regardless of 
condition of the environment, we recognized the imbalance of the an-
notated dataset presented challenges as neural networks favor majority 
labels. One example of this imbalance is seen with the teacher location 
labels as shown in Fig. 3. Teacher sitting, on average, was almost seven 
times the size of teacher walking. Therefore, the neural networks may 
systematically under select those instructional activity labels with fewer 
hours (i.e., less than 50 h). 

Another potential challenge for neural network models was how 
prevalent the instructional activities were across lesson videos. If a 
particular instructional activity only came from a limited selection of 
lessons, then the dataset may not be robust enough for training the Fig. 1. Violin plot for lesson duration for ELA and mathematics lessons.  
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neural networks to detect instructional activities across a range of 
classroom videos. For instance, neural networks may infer instructional 
activities from similar environments or actors rather than the instruc-
tional activity of interest. This is a potential concern in the case of using 
or holding a notebook as the activity appeared in a little less than 40% of 
the classroom video lessons. Neural networks may systematically under 
select those instructional activity labels appearing less prevalent across 
lesson videos. 

3.5. Neural network models 

Next, we describe the neural networks and the approach used to 
evaluate their performance to detect the 24 instructional activities given 
the challenges of the imbalanced dataset and the complexity inherently 
found in classroom videos. 

3.5.1. Background suppression network 
Classroom scenes are often crowded with distracting details. In 

classroom videos, the foreground typically provides valuable 

information while the background is often irrelevant. As an example, 
Fig. 5 highlights regions in the foreground that include the teacher and 
student sitting at a group table examining a clock but ignores back-
ground scene information such as the backpacks and coats hanging on 
the wall. From an earlier pilot study, we found The Background Sup-
pression Network (BaS-Net; Lee et al., 2020) performed better than other 
state-of-the-art neural network models (Korban et al., 2023). The 
BaS-Net emphasizes the foreground over the background for each vid-
eoframe. Given the initial positive outcomes of BaS-Net in detecting 

Fig. 2. ELAN annotation tool interface.  

Fig. 3. Cumulative hours of instructional activities in the ETPP-244 dataset.  

Table 2 
Frequency and typical duration of the instructional activities in the dataset.  

Instructional Activity Label # 
Lessons 

Mean 
Duration 

Max 
Duration 

Activity Type 
Whole class activity 238 22 min 62 min 
Individual activity 149 8 min 64 min 
Small group activity 188 19 min 75 min 
Transition 250 3 min 12 min 

Discourse 
On task student talking with student 109 2 min 36 min 
Student raising hand 263 5 min 24 min 

Teacher Location 
Teacher sitting 261 26 min 89 min 
Teacher standing 262 17 min 79 min 
Teacher walking 258 4 min 27 min 

Student Location 
Student(s) sitting on carpet or floor 209 16 min 83 min 
Student(s) sitting at group tables 204 22 min 77 min 
Student(s) sitting at desks 169 17 min 81 min 
Student(s) standing or walking 270 17 min 58 min 

Teacher Supporting 
One student 199 4 min 43 min 
Multiple students with student 
interaction 

156 11 min 76 min 

Multiple students without student 
interaction 

134 8 min 69 min 

Representing Content 
Using or holding book 154 12 min 79 min 
Using or holding worksheet 220 19 min 70 min 
Presentation with technology 189 17 min 90 min 
Using or holding instructional tool 177 12 min 59 min 
Using or holding notebook 106 6 min 75 min 
Individual technology 165 6 min 73 min 
Teacher writing 241 2 min 12 min 
Student writing 248 11 min 49 min  
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instructional activities in the pilot, we decided to further evaluate the 
performance of BaS-Net on a larger dataset. 

3.5.2. Enhancing background suppression network for improved classroom 
detection 

After evaluating the performance of BaS-Net on a larger dataset (see 
Section 4.1), we decided to enhance BaS-Net for classroom videos. These 
enhancements included three components (see Korban et al., 2023 for 
more details). First, we added a new loss function that covers both 
frame- and sequence-level predictions. Such a loss function is essential 
to model short and lengthy instructional activities. Second, an adaptive 
frame sampling based on important keyframes was included to remove 
irrelevant temporal dependencies between non-important frames. This 
adaptive frame sampling is particularly useful for processing long 
instructional activities in videos by making it more efficient. Third, a 
motion enhancement algorithm was included to boost the quality of 
motion features in the classroom videos due to camera movements, 
which occurred with some frequency across the dataset, that can reduce 
the quality of the video data. 

3.6. Procedure and evaluation metrics 

In our experimental setup, the proportions of training and testing sets 
were 80% and 20%, respectively. For the improved background sup-
pression model, six convolutional layers were used. The learning rate 
was 0.00001 which was decayed by 0.1, for every 1500 iterations (from 
the total number of 7500 iterations). All the experiments were 

conducted using PyTorch 1.7 on a PC with dual Nvidia RTX 3090 GPUs 
(24 GB VRAM), AMD Ryzen Threadripper 3990X 64-Core Processor, and 
256 GB of RAM. 

To evaluate the two neural networks, we used accuracy and F1 
measurements. Accuracy is the percentage of correct predictions relative 
to the total number of videoframes. The advantage of accuracy is that it 
is easily interpreted but does not provide a robust measurement for 
imbalanced datasets. F1 measures the precision and robustness of the 
classification; it is the harmonic mean of precision and recall. F1 as a 
performance measurement has some advantages over accuracy when 
the dataset is imbalanced. For accuracy and F1, the closer the mea-
surement is to 1, the better the performance and the closer to 0, the 
worse the performance. To further explicate the performance of the two 
neural networks, we provide a comparison of the starting and ending 
frames for activity types from one classroom video. 

4. Results 

We present our results in three parts. First, we describe the perfor-
mance of a baseline neural network, BaS-Net. Second, we describe the 
performance of our improvements to the baseline neural network, which 
we call BaS-Net+. Finally, we illustrate the boost in performance be-
tween BaS-Net and BaS-Net+ with a video example. 

4.1. Performance of the background suppression network 

The overall performance of the BaS-Net is shown in Fig. 6. The un-
weighted average F1-scores across the instructional activity labels was 
0.47. The average F1-scores by parent-level instructional activity were 
as follows: activity type 0.42, discourse 0.24, representing content 0.41, 
student location 0.68, teacher location 0.57, and teacher supporting 
0.40. Next, we further explicate the results for each instructional activity 
by parent-level activity. 

4.1.1. Activity type 
BaS-Net performed somewhat well in detecting the activity type in a 

classroom video with an average unweighted F1-score of 0.42. This was 
somewhat expected given the complexity of the activity (i.e., hypothesis 
1). However, comparing the F1-scores for each activity type label reveals 
some differences. Small group activity was the only activity format label 
for which BaS-Net achieved an F1-score greater than 0.4. The F1-score 
for whole class activity is somewhat surprising considering it was the 
second most frequent activity with over 100 h; we expected BaS-Net to 
be somewhat biased towards it (i.e., hypothesis 3). BaS-Net performed 
similarly in detecting individual activity and transition, even though the 
duration of these activities was low. This suggests BaS-Net may struggle 
with detecting complex activities that can be relatively short and long in 

Fig. 4. Violin plot for activity format durations for ELA and mathe-
matics lessons. 

Fig. 5. Example foreground highlighted in a classroom scene.  
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duration (e.g., transition and whole class activity). 

4.1.2. Discourse 
BaS-Net performed poorly for the discourse labels. On task student 

talking with student and raising hand received F1-scores of 0.12 and 
0.36, respectively. These results were somewhat expected given the 
occurrences of these labels were less than 25 h (i.e., hypothesis 3). Given 
student talking to another student was less prevalent (i.e., hypothesis 2) 
and the complexity of this action (i.e., hypothesis 1), the fact that BaS- 
Net performed the worst for that label matched expectations. 

4.1.3. Representing content 
With the representing content labels, the BaS-Net performed 

moderately well by reaching an average, unweighted F1-score of 0.41. 
BaS-Net performed particularly well in detecting presentation with 
technology with a F1-score of 0.63 and performed moderately well in 
detecting student writing, using or holding a book, using or holding an 
instructional tool, using or holding worksheet, and student writing. 
However, BaS-Net performed somewhat poorly in detecting individual 
technology, teacher writing, and using or holding notebook. 

Overall, these results were as expected. Presentation with technology 
was only second to using or holding a worksheet in terms of prevalence 
and both appeared somewhat often. Thus, it was not too surprising BaS- 
Net performed moderately well. However, it was somewhat surprising 
that presentation with technology edged out using or holding a work-
sheet given the frequency of using or holding a worksheet (i.e., hy-
pothesis 3). BaS-Net likely struggled to differentiate using or holding a 
worksheet from using or holding a book or notebook and was likely 
biased towards using or holding worksheet. Given that individual 
technology and using or holding notebook were less prevalent (i.e., 
hypothesis 2), it was expected that BaS-Net would likely perform poorly 
for those activities. 

4.1.4. Teacher and student location 
BaS-Net performed better in detecting student location activities 

versus teacher location. For all student location activities, BaS-Net 
attained F1-scores greater than 0.6. In contrast, BaS-Net attained F1- 
scores greater than 0.6 for all activities in teacher location except for 
teacher walking. This result is fairly expected given the lesser extent of 
teacher walking compared to the other teacher and student locations. 
However, given that almost all teacher and student locations labels were 

frequent and well represented, we would have expected similar perfor-
mances. A plausible reason for the performances is BaS-Net may have 
experienced some difficulty differentiating between the teacher and the 
students. For instance, it may have detected when an actor was walking 
but not be able to differentiate the actor (i.e., teacher versus student). 

4.1.5. Teacher supporting 
BaS-Net’s performance was mixed for detecting teacher supporting 

activities. It performed moderately well in detecting when the teacher 
was supporting multiple students with an average, unweighted F1-score 
of 0.47. When detecting if the teacher was supporting one student, 
however, the performance was low (0.27). Given that there were 
approximately 5 h of video with the teacher supporting multiple stu-
dents for every hour the teacher was supporting one student, the mixed 
performance for teacher supporting activities was to be expected (i.e., 
hypothesis 3). Even though teacher supporting was prevalent in the 
classroom videos, the complexity of the teacher supporting activities 
and their low frequency likely contributed to the middling performance. 

4.1.6. Rational for improving the background suppression network 
With the high prevalence and frequency across classroom videos for 

some instructional activity type labels (e.g., whole class and small 
group), we postulated these labels would perform better than others. 
However, this outcome was not the case. Due to the potential impact of 
the complexity of these activity types, we decided to optimize BaS-Net 
for detecting these instructional activity types; we anticipated the per-
formance could be improved by 30% or more. We decided to prioritize 
activity type labels because of the positive relationship between 
instructional time and student achievement (Baker et al., 2004; Brophy 
& Good, 1984), the popularity of manually identifying these labels in 
large-scale video studies (e.g., Hiebert et al., 2003), and detecting the 
primary activity type may have implications for certain classroom 
observation ratings (Luoto et al., 2023). 

4.2. Performance of the background suppression network for improved 
classroom detection 

Next, we describe the performance of our improvements to BaS-Net 
(i.e., BaS-Net+) for detecting activity types. Overall, BaS-Net+ per-
formed well in detecting instructional activity types with an average, 
unweighted F1-score of 0.62. It performed exceptionally well at 

Fig. 6. F1-scores by instructional activity labels for BaS-Net.  
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detecting small group activity with a F1-score of 0.75. The F1-scores for 
whole class activity, individual activity, and transition were 0.57, 0.61, 
and 0.53, respectively (see Fig. 7). Using BaS-Net+, the accuracy for 
whole class activity, small group activity, individual activity, and tran-
sition was 0.88, 0.84, 0.89, and 0.93, respectively (see Fig. 8). These 
accuracy rates are similar to automated methods using classroom audio 
recordings (Wang et al., 2014). 

4.3. Performance comparison 

In comparison to BaS-Net, the improvements made with BaS-Net+
increased the performance, as measured by F1-scores, between 36% and 
60% depending on the activity type (see Fig. 7). The most substantial 
boosts in performance, by over 50%, were for detecting whole class 
activity and individual activity. Thus, the improvements in BaS-Net+
were useful for relatively short activity types (i.e., transitions) and 
longer activity types (i.e., whole class activity). Next, we illustrate these 
improvements using videoframes from a classroom video of a first-grade 
ELA lesson. 

Fig. 9 compares the performance of BaS-Net and BaS-Net+ on the 
starting and ending frames of three consecutive instructional activity 
types in a classroom video as identified by a human annotator. The first 
activity type, individual activity, occurs about 3 min into the video and 
lasts for about 3 min. Students are pasting a poem into their notebooks 
and then circling sight words as they appear in the poem. The teacher is 
walking around the classroom monitoring and assisting students. The 
second activity format is a transition. Students begin walking over to the 
large, carpeted rug and sitting down while the teacher monitors students 
and gathers lesson materials. The transition lasts for approximately 2 
min. The third activity is a whole class activity that lasts about 15 min. 
The teacher begins by reviewing question words with students. Then, 
the teacher informs students that they will be reading a short story and 
then directs students to discuss with a partner what possible questions 
they might ask about the story (e.g., Who are the characters?). After 
reading the story, the teacher and students discuss several questions 
about the story with the teacher summarizing student responses on the 
board. 

As shown in Fig. 9, BaS-Net+ outperformed BaS-Net in predicting the 
activity type at the starting and ending frames. BaS-Net+ improved the 
prediction score of these activity formats at the starting frames. How-
ever, for this video, there were only slight improvements in the pre-
diction scores at the ending frames for individual activity and whole 
class activity. In contrast, BaS-Net+ noticeably improved the prediction 

score at the starting and ending frames for transitions. 

5. Discussion 

In this study, we examined whether a neural network (BaS-Net) was 
able to detect instructional activities during elementary classroom in-
struction captured by video recording with accuracy levels comparable 
to that of manual human annotations. We speculated BaS-Net would be 
well-situated for classroom videos as classroom scenes often contain 
cluttered backgrounds, but we were not optimistic that BaS-Net would 
perform well with more complex activities (e.g., teacher support mul-
tiple students and small group activity). Our experiment with BaS-Net 
confirmed our hypotheses. Taken from what we learned by applying 
BaS-Net, we enhanced it to optimize the performance for detecting ac-
tivity formats (i.e., BaS-Net+), as this agnostic measure has several 
practical and methodological implications. We found BaS-Net+ to be an 
improvement in detecting all activity types over BaS-Net. The accuracy 
of BaS-Net+ to detect activity format is comparable to an automated 
method using audio recordings of classrooms (Wang et al., 2014). 

Previous studies evaluating automated efforts for classroom video 
observations have primarily used audio recordings or transcripts from 
videos to detect instructional activities (e.g., Dale et al., 2022; Demszky 
& Hill, 2022; Jacobs et al., 2022; Kelly et al., 2018; Wang et al., 2014) 
and those studies that used video have primarily focused on simple ac-
tions of students such as students raising their hands (e.g., Ahuja et al., 
2019; Sharma et al., 2021; Sun et al., 2021). A limitation for video 
automated efforts has been the absence of large, annotated video data-
sets specifically for machine learning development. As part of this study, 
we developed a large, high-quality video annotated dataset with 244 h 
of annotated classroom videos with instructional activity labels at 
various levels of complexity. This dataset is larger and more compre-
hensive than other similar datasets (Sharma et al., 2021; Sun et al., 
2021). 

5.1. Implications for teaching and learning 

Our results provide further evidence of the validity of automated 
efforts to document instructional activities in classroom videos. In 
particular, BaS-Net+ performance was comparable with human anno-
tations for detecting activity formats: whole class activity, small group 
activity, individual activity, and transition. As such, the application of 
BaS-Net+ to classroom videos could lead to several implications for 
teaching and learning. A teacher-facing application using BaS-Net+

Fig. 7. Comparison of BaS-Net and BaS-Net+ performance.  
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could process teachers’ classroom videos the same day to provide ana-
lytics on the frequency and duration of activity types in their lessons 
without the need for specialized equipment. For instance, teachers 
adjusting a routine could receive data whether the adjustment led to 
reduced transition time. Second, deploying BaS-Net+ may make future 
large-scale video studies more efficient and provide insights into dif-
ferences in instructional time and activity types across contexts such as 
in the case of international comparisons (e.g., Hiebert et al., 2003). The 
efficiency of BaS-Net+ compared to human annotations could bring 
reform and intervention efforts more readily to teachers and their stu-
dents. Relatedly, BaS-Net+ has the potential to support future research 
that calls into question whether instructional time and activity types 
have implications for teaching and learning such as student engagement 
(e.g., Kelly & Turner, 2009) and measuring teaching quality (e.g., Luoto 
et al., 2023). 

5.2. Contributions to using emerging video technologies in research 

Previous investigations have not explored whether video-based 
automation endeavors could assist in facilitating data construction and 
analysis for educational research. This study suggests that emerging 
video technologies (i.e., computer vision and neural networks) can 
extract and construct some data near to the level of humans. These 
emerging technologies may support large-scale learning analytics 
research in classrooms that have been limited by excessive costs and 

time limitations. For instance, video recordings of classrooms across an 
entire school year could be completed and analyzed within that same 
year and thus potentially provide valuable insights for educational re-
searchers and teachers. However, there are still some unknown conse-
quences for education with these emerging video technologies. 

5.3. Limitations 

There are some limitations of the study. First, the neural networks 
were applied only to elementary classroom videos of mathematics and 
ELA instruction in the United States. It is unknown how these neural 
networks may perform on other videos. Second, these neural networks 
do not engage with the content of teachers’ or students’ speech. While 
the neural networks could accurately provide an estimate for quantity of 
instruction time spent in whole class, they could not provide any metrics 
about instructional quality. Therefore, the application of these neural 
networks should not be used for evaluative purposes. Furthermore, these 
instructional activity labels are agnostic, but it is still debatable how and 
to what extent these labels scale to qualitative recommendations; for 
instance, whether small group instruction is engaging for students (Kelly 
& Turner, 2009). 

We are therefore cautious in recommending the immediate appli-
cation of these technologies without fully understanding the implica-
tions. Nevertheless, we foresee these emerging video technologies as 
part of the history of other video technologies for education research and 

Fig. 8. BaS-Net+ performance.  

Fig. 9. Comparison of BaS-Net and BaS-Net+ on the starting and ending frames for three consecutive activity formats.  
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like others (e.g., Goldman et al., 2014; Hennessy et al., 2020; Kelly, 
2023) are optimistic about the potential for these tools to aid in our 
understanding of teaching and learning. 

6. Conclusion 

In conclusion, this study reported on the application of neural net-
works to classify instructional activities using video signals from a 
collection of classroom videos from elementary mathematics and En-
glish language arts instruction in the United States. The neural networks 
detected instructional activities in the classroom videos at a high rate of 
accuracy. This result suggests neural networks could become an 
important technological tool for contributing to the construction of data 
and data analysis for classroom research. Additionally, these data from 
neural networks could be useful to efficiently bring classroom analytics 
to key communities and support efforts to reform teaching and learning 
in classrooms. 
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