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Classroom videos are a common source of data for educational researchers studying classroom interactions as
well as a resource for teacher education and professional development. Over the last several decades emerging
technologies have been applied to classroom videos to record, transcribe, and analyze classroom interactions.
With the rise of machine learning, we report on the development and validation of neural networks to classify
instructional activities using video signals, without analyzing speech or audio features, from a large corpus of
nearly 250 h of classroom videos from elementary mathematics and English language arts instruction. Results
indicated that the neural networks performed fairly-well in detecting instructional activities, at diverse levels of
complexity, as compared to human raters. For instance, one neural network achieved over 80% accuracy in
detecting four common activity types: whole class activity, small group activity, individual activity, and tran-
sition. An issue that was not addressed in this study was whether the fine-grained and agnostic instructional
activities detected by the neural networks could scale up to supply information about features of instructional
quality. Future applications of these neural networks may enable more efficient cataloguing and analysis of
classroom videos at scale and the generation of fine-grained data about the classroom environment to inform
potential implications for teaching and learning.

Many educational researchers rely on videos to study phenomena
that occur in classrooms; videos provide several advantages to examine
classroom interactions for research as well as teacher education and
professional development (Gaudin & Chalies, 2015; Janik & Seidel,
2009; Xu et al., 2018). One advantage is supporting multiple research
purposes and opportunities for secondary analysis (Andersson & Sgrvik,
2013; Derry et al., 2010; Jacobs et al., 1999; Klette, 2022). Because of
the video record, one person (or group) can watch a classroom inter-
action multiple times or freeze the frame to attend to several features at
once. Another added value is the ability to analyze at various timescales
(Dalland et al., 2020; Derry et al., 2010).

With the use of video in education, there has been a concurrent
development of technologies to assist with tasks such as the organization
and storage of videos, creation of video transcripts, software for video
annotations, and production of analytic schemes or reports (Derry et al.,
2010; Goldman et al., 2014; Jacobs et al., 1999; Klette, 2022; Pea &
Hoffert, 2007). Emerging technological advances for videos are a critical
component of the classroom research agenda and researchers should
carefully consider how these technologies contribute to the construction
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of data and analysis (Hall, 2000). In recent years, deep learning neural
networks have emerged as one of the leading approaches for human
activity recognition in videos due to their robustness for extracting
video-based features and promising performance for highly complex and
critical tasks (Beddiar et al., 2020; Gupta et al., 2022). In this paper, we
contribute to the literature by considering the application of neural
networks for constructing and analyzing classroom video data and
consider their potential implications for teaching and learning.
Transforming video recordings into useful data is a time-consuming
process (Derry et al.,, 2010). A growing number of researchers are
investigating whether machine learning applications, such as neural
networks, can be efficiently applied to video and audio data to study
classrooms (e.g., Dale et al., 2022; Demszky & Hill, 2022; Jacobs et al.,
2022; Pang et al., 2023; Sun et al., 2021; Wang et al., 2014). For
instance, Kelly et al. (2018) developed automated methods to detect
authentic teacher questions from audio recordings and transcripts in
secondary English language arts (ELA) lessons. Other fields, such as
medicine, have found that the application of neural networks to video
can augment traditional approaches to make them more efficient and
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cost effective (e.g., Saba et al., 2019).

Even though there is potential for using machine learning to
construct and generate data from videos, substantial amounts of anno-
tated classroom video data are needed to develop these machine
learning algorithms. Unfortunately, large and high-quality annotations
of classroom video datasets specifically for machine learning develop-
ment are not widely available, although a few attempts have been made
(Sharma et al., 2021; Sun et al., 2021). In this paper, we describe our
development of a large and high-quality annotated dataset of classroom
videos from elementary classrooms in the United States and then we
examine whether neural networks can detect instructional activities.
Our goals are to determine whether we can (a) discriminate between
different classroom instructional activities using neural networks of
video data (b) rapidly and with accuracy levels comparable to that of
humans.

1. Challenges scaling classroom videos in research and practice

Previous video technologies have aided researchers’ and teachers’
analysis of videos; the development of some these technologies arose
from methodological and practical needs from large-scale classroom
studies and professional development (Borko et al., 2008; Goldman
et al., 2014; Jacobs et al., 1999; Klette, 2022; Pea & Hoffert, 2007).
However, there remain challenges when using videos at scale, whether
using them for descriptive research, evaluating an intervention, or
providing feedback to teachers. Next, we highlight a few of these chal-
lenges and describe ways in which automated systems, embedded with
neural networks, may be able to augment existing practices.

First, collecting a large dataset (i.e., hundreds of hours) of classroom
videos presents the practical challenges of storing and cataloguing the
data. Automated systems could efficiently summarize video content for
cataloguing and searching large video collections with little to no
human intervention (Pea & Hoffert, 2007). Second, due to financial and
time constraints, researchers must strategically choose their unit of
analysis and consider the feasibility of coordinating analysis at multiple
timescales (Derry et al., 2010; Stigler et al., 2000). Researchers select
timescales based on their research questions, theoretical perspective,
and practical constraints but even minor adjustments in timescale
analysis could lead to different interpretations (e.g., Dalland et al.,
2020). To help researchers account for these differences, automated
systems could assist in the extraction of certain timescale features (e.g.,
teacher versus student talk time) while freeing up time and resources for
researchers to systematically extract features at more complex timescale
(e.g., quality of student engagement during small group interactions).

Lastly, analyzing large-scale classroom video datasets presents the
financial and time burdens of training humans to generate useful data
(Hiebert et al., 2003; Stigler et al., 2000). For instance, human raters
may need to complete frequent calibration sessions to ensure they are
not diverging from accepted coding procedures (e.g., Walkowiak et al.,
2014). Despite all these efforts to train human raters to create useful
data, some studies suggest that humans may be the greatest source of
error (Casabianca et al., 2015; Hill et al., 2012; Kelly et al., 2020; Klette,
2022). Automated systems could assist with some of these burdens by
supplementing human efforts. For instance, some observation protocols
capture the frequency of instructional activities (i.e., quantity) and
describe their qualities. Automated systems may prove capable of
summarizing the frequency of instructional activities efficiently and
accurately; this offloading would enable more concentrated focus on
instructional quality.

2. Conceptual framing: agnostic and fine-grained classroom
observation measures aligned with ambitious instruction

Classroom videos offer rich records for studying human activities
such as gestures, eye gaze, speech, tone of voice, and use of physical
artifacts (Barron, 2003). These human activities occur along a spectrum;
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they can range from simple and short in duration to interactively com-
plex and longer in duration. From least to most complex, these action
classes are simple (e.g., raising a hand), interaction (e.g., reading a book),
group (e.g., teacher supporting multiple students), and event (e.g.,
whole-class discussion).

To focus our selection of instructional activities from the classroom
videos, we took a “fine-grained” and “agnostic” approach (Kelly, 2023)
while also acknowledging the neural network models would not be able
to use any audio or speech features from the classroom videos.
Fine-grained analysis typically lends itself to binary labeling and can be
applied exhaustively to the data; for instance, labeling whether students
are raising their hands in videoframes. At the point of selecting
instructional activities, we were agnostic regarding whether the
instructional activities aligned with effective instruction. For example, a
teacher transitioning students to a new instructional format may be
considered effective or ineffective. We were inclusive of instructional
activities that, at the point of labeling in the video, one could suspend
evaluation of the activity. However, this approach does not mean we
would be unable to evaluate instructional activities in the future. As in
the case of the teacher guiding the transition, noting whether the tran-
sition was under 2 min lends itself to some evaluation of the transition’s
efficiency. In addition, any fine-grained and agnostic instructional ac-
tivities had to be identifiable by manual annotation without the use of
audio signals or speech data from the classroom video.

Two reliable and validated classroom observation instruments, the
Mathematics-Scan (M-Scan; Berry et al., 2013; Walkowiak et al., 2014)
and the Protocol for Language Arts Observations (PLATO; Corr, 2011;
Grossman et al., 2013) guided our conceptualization of instructional
activities. M-Scan and PLATO have been informed by many years of
classroom-based research (see Section 2.1). These classroom observa-
tion instruments can be operationalized in fine-grained and agnostic
ways. While Kelly (2023) only argued PLATO could be applied in
fine-grained and agnostic ways, his argument could similarly be applied
to M-Scan as well. M-Scan and PLATO measure features of ambitious
instruction (Grossman et al., 2014; Walkowiak et al., 2018). Ambitious
instruction seeks to foster conceptually rich understanding of disci-
plinary content (Franke et al., 2007; Newmann & Associates, 1996;
Thompson et al., 2013).

2.1. Instructional activity labels

Our fine-grained and agnostic instructional activity labels are orga-
nized under 6 parent-level labels: activity type, teacher location, student
location, teacher supporting, discourse, and representing content (see
Table 1). Next, we provide an overview and rationale for our video-
based instructional activities and summarize research related to these
instructional activities.

2.1.1. Activity type

Activity type labels are the instructional formats the teacher engages
in with students. These labels included whole class activity, individual
activity, small group activity, and transition. We included these labels
for three reasons. First, there is evidence to suggest a positive relation-
ship between instructional time and student achievement (Baker et al.,
2004; Bodovski & Farkas, 2007; Borg, 1980; Brophy & Good, 1984;
Carroll, 1989; Gettinger, 1984; Stallings, 1980; Wiley & Harnischfeger,
1974) and some argue that certain activity types may (or may not) have
implications for student engagement (see Kelly & Turner, 2009). Sec-
ond, activity types have been manually labeled in many video studies (e.
g., Hiebert et al., 2003). Previous research investigating the capabilities
of neural networks to detect features in classroom videos has not focused
on activity types (e.g., Ahuja et al., 2019; Sharma et al., 2021; Sun et al.,
2021). Therefore, developing a neural network capable of detecting
activity type may provide an efficient means for labeling this
fine-grained measure. Third, we are interested in whether these
fine-grained and agnostic measures may scale up for global observation
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Table 1
List of instructional activity labels.
Instructional Activity Definition Action
Level
Activity Type
Whole class activity All students are involved in one Event
activity, with the teacher leading the
activity (e.g., lecture, presentation,
carpet time).
Individual activity All students privately work (e.g., Event
independent practice, reading) at a
separate desk or in small groups with
no interaction between students.
Small group activity Students working together with Event
peers (e.g., think-pair-share, book
club); this is prioritized when there
are students interacting or somewhat
interacting near one another.
Transition The students and teacher transition Event
from one instructional activity to
another (e.g., whole class to small
group). The teacher and students
move from one spot in the room to
another (e.g., from the carpet to
desks). Other than specific
behavioral directions, no instruction
or meaningful instructional activity
is occurring during the transition.
Discourse
On task student talking with Students conversing together Group
student without direct teacher support,
which may overlap with small group
activity. This is specific to mouth-
movements within the parent code
time interval.
Student raising hand A student’s hand is up for more than ~ Simple
1 s; clearly and purposefully raising
hand.
Teacher Location
Teacher sitting Teacher sitting (chair, stool, floor, Simple
crouching, on desk, kneeling).
Teacher standing Teacher standing in generally the Simple
same spot to keep the same
orientation to students.
Teacher walking Teacher walking with purpose to Simple
change orientation to students.
Student Location
Student(s) sitting on carpet Students sitting on floor or carpet. Simple
or floor
Student(s) sitting at group Students sitting at tables. Simple
tables
Student(s) sitting at desks Students at individual desks. Simple
Student(s) standing or Students standing up or walking Simple
walking around the room.
Teacher Supporting
Teacher supporting one Teacher uses proximity to offer Group
student assistance to one student; support
can be verbal or non-verbal.
Teacher supporting multiple Teacher uses proximity to offer Group
students with student assistance to multiple students;
interaction support can be verbal or non-verbal.
Individual students are also
interacting with one another.
Teacher supporting multiple Teacher uses proximity to offer Group
students without student assistance to multiple students who
interaction are engaged in an activity; support
can be verbal or non-verbal. Students
are sitting close to one another or in
a small group, but they are not
interacting with one another.
Representing Content
Using or holding book Abook is used or held by a teacheror  Interaction
student.
Using or holding worksheet A worksheet is used or held by a Interaction

teacher or student.
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Table 1 (continued)

Instructional Activity Definition Action
Level
Presentation with A interative whiteboard, document Interaction
technology camera, or projector is used to show
content.
Using or holding A tangible object (e.g., ruler, math Interaction
instructional tool manipulative; anything in someone’s
hand other than what is already
listed, but does not include pencil/
pen) is used or held by teacher or
student for instructional purposes.
Using or holding notebook A notebook is used or held by a Interaction
teacher or student.
Individual technology Student or teacher using a laptop, Interaction
tablet, etc.
Teacher writing Teacher inscribing on paper, Interaction
whiteboard, or document camera;
includes erasing.
Student writing Student inscribing on paper, Interaction

whiteboard, or document camera;
includes erasing.

protocols like M-Scan and PLATO. For example, some researchers have
suggested that the primary activity type in a lesson was linked to ratings
for certain dimensions of PLATO (Luoto et al., 2023).

Previous research provided some perspective on the frequency and
duration of the activity types we would likely observe in our dataset. The
Beginning Teacher Evaluation Study was a relevant example of this
research (Rosenshine, 1981). It was an observational study on how time
was spent in elementary classrooms in the United States. The study
revealed that in grade 2 students spent 35 min and 90 min in mathe-
matics and ELA lessons each day, respectively, and in grade 5 students
spent 45 min and 110 min in mathematics and ELA, respectively. A
recent survey of elementary teachers’ self-reported time spent in
mathematics and ELA instruction reported comparable results (Bani-
lower et al., 2018).

Burns (1984) provided a comprehensive review of research on time
allocation in elementary classrooms; he found notable differences in
instructional time and engagement in activity types. For instance, in one
study he reviewed, small group activities accounted for 73% of the time
a second grader spent in ELA but, by the fifth grade, only 55% of ELA
instruction was spent in small group activities; in comparison, small
group instruction in mathematics was 40% and 34%, respectively
(Lambert & Hartsough, 1976). Rosenshine (1981) reported that
elementary students spent most of their time working on independent
seatwork, 66% of their ELA instruction time and 75% of their mathe-
matics instruction time. More recent studies have noted great variability
across classrooms in how students spend their time in mathematics and
ELA instruction (Hiebert et al., 2003; Phelps et al., 2012; Pianta et al.,
2007).

2.1.2. Discourse

The discourse labels focused on students’ participation in classroom
talk. These labels included on task student talking with other students
and students raising their hand. These labels were included because of
recent educational reform movements emphasizing providing students
opportunities to learn disciplinary content through interaction in a
learning community (National Council of Teachers of English & Inter-
national Reading Association, 1996; National Council of Teachers of
Mathematics, 2000). Furthermore, studies have shown students
engaging with other’s ideas leads to positive outcomes such as student
achievement or performance on disciplinary practices (Applebee et al.,
2003; Barron, 2003; Bishop, 2021; Cobb et al., 1992; Goodwin et al.,
2021; Howe et al., 2019; Murphy et al., 2009; Nussbaum, 2008; Resnick
et al., 2018; Sedova et al., 2019; Webb et al., 2014, 2021).

Prior research suggests that certain participation structures exist in
classrooms. Typically, the teacher is the dominant participant in the
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classroom talk and there is a recitation pattern of the teacher initiating a
question, students responding, and then the teacher following up on the
students’ response or sometimes referred to as IRE/F (Cazden, 1988;
Edwards & Mercer, 1987; Kawanaka & Stigler, 1999; Mehan, 1979;
Nystrand & Gamoran, 1997; Sinclair & Coulthard, 1975). Even though
many discussion-based pedagogies exist to support teachers, this pattern
is pervasiveness and persistent (Alexander, 2008; Howe & Abedin, 2013;
Spillane & Zeuli, 1999). As such, student talk is typically less frequent
with some studies reporting students usually contributing between 4%
and 25% of classroom talk in the United States (Burns, 1984; Kawanaka
& Stigler, 1999; Silverman et al., 2014).

2.1.3. Teacher and student location

The teacher and student location labels captured details about the
teachers’ and students’ positions in the classroom or their movements;
for instance, whether the teacher was standing or sitting and if students
were sitting at individual desks or at group tables. These labels were
included given prior research on the organization of classrooms (e.g.,
Fernandes et al., 2011) and spatial pedagogy (Lim et al., 2012), and the
recent advancements in multimodal learning analytics (e.g., Chan et al.,
2020; D'Mello et al., 2015; Prieto et al., 2018). Patterns in a teacher’s
position in the classroom and proximity to students may be an influen-
tial factor for student participation and student motivation (Chan et al.,
2020; Hur & Bosch, 2022; Yan et al., 2022).

Again, the review by Burns (1984) provided some insights into
teacher and student locations. For instance, in one of the studies
reviewed (Lambert & Hartsough, 1976), second-grade teachers in
mathematics were observed on average spending about 12% of their
time circulating around the room, but in reading, the teachers spent
about 5% of their time circulating around the room. There were also
grade level differences in some aspects of the teacher’s location.
Second-grade teachers spent on average between 0.40% and 0.45% of
the lesson time sitting at their desk in reading and mathematics lessons,
but fifth-grade teachers spent on average between 5.65% and 5.93% of
the lesson time at their desk, respectively. In another study reviewed by
Burns, students spent 9% and 5% of their class time sitting and walking,
respectively (Good & Beckerman, 1978).

2.1.4. Teacher supporting

The teacher supporting labels were instances when the teacher aided
students while engaged in an academic task. Sometimes this support
could be verbal such as offering spoken feedback to students or non-
verbal such as looking over students’ shoulders to monitor their prog-
ress. Research suggests links between teacher support and student fac-
tors such as engagement and achievement (Dietrich et al., 2015; Hattie
& Timperley, 2007; Klem & Connell, 2004; Marks, 2000; Roorda et al.,
2011).

Large-scale observation studies of classrooms in the United States
have found considerable variation in the nature, quality, and quantity of
teachers’ interactions with students (e.g., Burchinal et al., 2008; Pianta
et al., 2007). Generally, elementary students have few opportunities to
extensively interact with their teacher. Some process-product research
studies reported the duration of interactions between a teacher and
students ranging between 7% and 46% of the class time and some
reporting more teacher-student interactions in reading instruction than
mathematics (Burns, 1984).

2.1.5. Representing content

Many instructional resources exist in classrooms, ranging from
teacher-created worksheets, to commercially produced texts, to web-
based tools, software, and videos. The representing content labels
included occasions when the teacher or students were holding or
interacting with instructional resources (e.g., book, worksheet, or
instructional tool), generating content such as through their writing, or
displaying content such as on an interactive whiteboard or projector
screen. Accessibility to high-quality instructional resources is essential
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to students’ opportunities to learn (Chiu & Khoo, 2005; Oakes & Saun-
ders, 2004). Standards documents explicitly recommend that students
have access to instructional tools during instruction (e.g., National
Council of Teachers of Mathematics, 2000).

Some classroom observation studies and teacher survey studies
provided some insights into duration or frequency of representing con-
tent. In one study, it was found that elementary students spent most of
their time writing or reading, on average about 22% of their time writing
and 12% of their time reading (Good & Beckerman, 1978). Hiebert and
Stigler (2000) reported that “reform” mathematics teachers in the
United States were less likely to use a textbook during lessons in com-
parison to their non-reformed peers. A more recent teacher survey study
suggests that most elementary teachers reported having adequate
instructional resources (e.g., instructional technology, measurement
tools, manipulatives, etc.; see Banilower et al., 2018). From that same
survey, 35% of elementary teachers reported that their school provided
a student with a laptop or tablet and 89% reported having access to a
classroom set of laptops or tablets. When asked about their most recent
mathematics lesson, 65% of elementary teachers reported students used
manipulatives and 77% reported students completed textbook/work-
sheet problems.

2.2. Related automated efforts in classrooms

Efforts to automatically detect instructional activities in classroom
videos has emerged as an area of research. Several researchers have been
successful in detecting activities occurring in audio signals or transcripts
from classroom videos such as teacher questioning and feedback (Dale
et al., 2022; Kelly et al., 2018), revoicing or taking up student contri-
butions (Dale et al., 2022; Demszky & Hill, 2022; Jacobs et al., 2022),
and activity type (Wang et al., 2014). Even though these previous
studies use slightly different approaches, they all have reported models
with high accuracy rates. For instance, Wang et al. (2014) reported that
their automated system correctly matched human performance to detect
the activity type about 80% of the time.

Other scholars have explored detecting activities occurring in the
video signals, rather than audio or transcripts, from classroom videos.
These efforts have primarily focused on building annotated video
datasets for computer vision techniques. The EduNet (Sharma et al.,
2021) and Student Class Behavior Dataset (Sun et al., 2021) are two
examples of efforts to build annotated video datasets from classroom
videos. EduNet uses an annotation labeling scheme that is teacher- and
student-centric. For example, writing on the board and holding a book
are two teacher-focused labels; raising hand and sitting at desk are two
student-focused labels. Training a two-stream I3D-ResNet-50 model on
the EduNet dataset, Sharma and colleagues found an overall accuracy
rating of 72.3%. Student Class Behavior Dataset features a
student-centric annotation scheme (e.g., listening, using a computer,
and raising hand). Sun and colleagues found an overall accuracy rating
of 73.5% using the spatial stream of ResNet-101.

To date, EduSense is the only real-time video automation deployable
system for the classroom (Ahuja et al., 2019). Using two wall-mounted
cameras, one teacher-facing camera in the back of the room and one
student-facing camera in the front of the room, the system can detect
such instructional activities such as whether the student or teacher is
standing or sitting, whether students are raising their hands, and the
facial features and body pose of students and teachers. Testing EduSense
in real university classrooms, the developers found high levels of accu-
racy. For instance, EduSense was able to detect with over 90% accuracy
whether the university instructor was sitting or standing.

The findings from these studies using the EduNet, Student Class
Behavior Dataset, and EduSense suggest the feasibility of video-based
automation methods for detecting classroom-based activities. Further-
more, these studies acknowledged detecting complex activities and ac-
tivities of lengthy duration is still a challenge. It is also important to
consider these studies’ limitations. First, the video datasets are small.
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Most video datasets for developing automated systems are hundreds of
hours (Beddiar et al., 2020). Second, the activities are mostly
student-centric and are primarily simple in nature and short in duration
(e.g., student raising hand). The datasets did not contain complex ac-
tivities or activities that were longer in duration and thus presented a
challenge for neural network model development.

Complex and long-duration activities could be more informative for
teachers (e.g., providing insights into how much time in a lesson is taken
up by transitions between activities). Furthermore, the emphasis on
student-centric labels limits potential future applications of the auto-
mation that examines instructional quality. For instance, those re-
searchers developing automated methods from transcripts have found
that certain features in teachers’ speech are correlated with certain
classroom observation scores and student learning outcomes (e.g.,
Demszky & Hill, 2022). And in the case of EduSense system, the
requirement of two, high-mounted video recordings may be limiting for
some settings.

Given these related automated efforts in classrooms, we hypothe-
sized the following outcomes for our study: (1) The more complex
instructional activities in our annotation scheme would be harder to
detect by the neural networks; (2) The more prevalent an instructional
activity was across the dataset then the more likely the neural networks
would perform accurately in detecting that instructional activity; and
(3) The more frequent an instructional activity then the more likely the
neural network would perform accurately in detecting that instructional
activity.

3. Methods
3.1. Video dataset

The dataset came from a prior research project: the Developing
Ambitious Instruction (DAI) project (Youngs et al., 2022). The DAI fol-
lowed 83 graduates from five elementary teacher preparation programs
into their first two to three of elementary (K-5) teaching. Up to 3
mathematics lessons and 3 ELA lessons were recorded for each teacher
for every year of observation. The DAI dataset resulted in approximately
1000 h of video recordings.

From the DAI dataset, we selected a subset of approximately 244 h of
video recordings from 80 graduates which yielded 279 lessons. Of those
lessons, 140 were ELA lessons and 139 were mathematics lessons. On
average, the videos were about 54 min in duration. The ELA videos had
more variability in their duration than mathematics (see Fig. 1). Few
lessons recordings were less than 25 min, and most lesson recordings
were between 25 and 75 min. There were a few ELA videos greater than

Math -

ELA -

0 25 50 75 100
Lesson Duration (mins)

Fig. 1. Violin plot for lesson duration for ELA and mathematics lessons.
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90 min.
3.2. Human annotation of video dataset

To develop a large, annotated video dataset, we used a part-to-whole
deductive approach (Erickson, 2006). Human annotators exhaustively
identified and annotated every second in which an instructional activity
occurred. Instructional activities less than a second in duration were
excluded. Annotations were created using a free and open-source com-
puter software called ELAN (ELAN, 2021), a software capable of tiered
multi-label annotations of videos. ELAN has been used in video-based
research studies across disciplines (Wittenburg et al., 2006), including
education (de Freitas et al., 2017).

Fig. 2 is an example of the ELAN interface. A video player displays
video in the top left with video playback controls to the right. Below the
video player and playback controls there is a video timeline with a tiered
multilabel system for an annotator to select start and stop time for each
instructional activity. As the video plays, a red vertical bar runs along
the timeline. For instance, in the videoframe in Fig. 2, we see the teacher
sitting in a chair and students sitting on the carpet during a whole class
lesson; in the annotation timeline, the red vertical line overlaps with the
labels of whole class activity under activity types, sitting under teacher
location, and sitting on the carpet/floor under student location.

3.3. Descriptive summary of DAI-244 dataset

The classroom videos were collected in elementary classrooms with
instructional activities as they naturally occurred. Videos were anno-
tated in their entirety without alternation or sampling of specific ac-
tivities. Therefore, the classes of instructional activities in the annotated
dataset are imbalanced, but typical of instructional activities in
elementary classrooms in the United States. Fig. 3 lists the most frequent
instructional activity, in terms of duration, from the top (i.e., teacher
sitting at 120 h) to the bottom (i.e., on task student talking with student
at 8 h).

Many of the instructional activities (13 of 24) were prevalent across
the dataset; that is, appearing in at least 70% of the 279 lesson videos
(see Table 2). A considerable minority of the instructional activities (9 of
24) were somewhat prevalent across lesson videos appearing in at least
40% but less than 70% of the lesson videos. Only two instructional ac-
tivities (on task student talking with student and using or holding
notebook) appeared in just under 40% of the lesson videos.

The duration of the instructional activities varied to some degree
across videos. All instructional activity labels appeared in some lesson
videos where they had a cumulative duration of less than 1 min and
some videos with cumulative durations of up to 90 min. For instance,
consider the individual activity label in the violin plot for instructional
activity type in Fig. 4. Most individual activity durations ranged be-
tween 0 and 10 min and some continued for 20 min, but few lesson
videos with individual activity persisted longer than 20 min.

3.4. Inherent challenges in the DAI-244 dataset

As our goal is to develop a dataset for training neural network models
to detect instructional activities in elementary classrooms regardless of
condition of the environment, we recognized the imbalance of the an-
notated dataset presented challenges as neural networks favor majority
labels. One example of this imbalance is seen with the teacher location
labels as shown in Fig. 3. Teacher sitting, on average, was almost seven
times the size of teacher walking. Therefore, the neural networks may
systematically under select those instructional activity labels with fewer
hours (i.e., less than 50 h).

Another potential challenge for neural network models was how
prevalent the instructional activities were across lesson videos. If a
particular instructional activity only came from a limited selection of
lessons, then the dataset may not be robust enough for training the
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Fig. 3. Cumulative hours of instructional activities in the ETPP-244 dataset.

neural networks to detect instructional activities across a range of
classroom videos. For instance, neural networks may infer instructional
activities from similar environments or actors rather than the instruc-
tional activity of interest. This is a potential concern in the case of using
or holding a notebook as the activity appeared in a little less than 40% of
the classroom video lessons. Neural networks may systematically under
select those instructional activity labels appearing less prevalent across
lesson videos.

3.5. Neural network models

Next, we describe the neural networks and the approach used to
evaluate their performance to detect the 24 instructional activities given
the challenges of the imbalanced dataset and the complexity inherently
found in classroom videos.

3.5.1. Background suppression network
Classroom scenes are often crowded with distracting details. In
classroom videos, the foreground typically provides valuable

Table 2
Frequency and typical duration of the instructional activities in the dataset.
Instructional Activity Label # Mean Max
Lessons Duration Duration
Activity Type
Whole class activity 238 22 min 62 min
Individual activity 149 8 min 64 min
Small group activity 188 19 min 75 min
Transition 250 3 min 12 min
Discourse
On task student talking with student 109 2 min 36 min
Student raising hand 263 5 min 24 min
Teacher Location
Teacher sitting 261 26 min 89 min
Teacher standing 262 17 min 79 min
Teacher walking 258 4 min 27 min
Student Location
Student(s) sitting on carpet or floor 209 16 min 83 min
Student(s) sitting at group tables 204 22 min 77 min
Student(s) sitting at desks 169 17 min 81 min
Student(s) standing or walking 270 17 min 58 min
Teacher Supporting
One student 199 4 min 43 min
Multiple students with student 156 11 min 76 min
interaction
Multiple students without student 134 8 min 69 min
interaction
Representing Content
Using or holding book 154 12 min 79 min
Using or holding worksheet 220 19 min 70 min
Presentation with technology 189 17 min 90 min
Using or holding instructional tool 177 12 min 59 min
Using or holding notebook 106 6 min 75 min
Individual technology 165 6 min 73 min
Teacher writing 241 2 min 12 min
Student writing 248 11 min 49 min

information while the background is often irrelevant. As an example,
Fig. 5 highlights regions in the foreground that include the teacher and
student sitting at a group table examining a clock but ignores back-
ground scene information such as the backpacks and coats hanging on
the wall. From an earlier pilot study, we found The Background Sup-
pression Network (BaS-Net; Lee et al., 2020) performed better than other
state-of-the-art neural network models (Korban et al., 2023). The
BaS-Net emphasizes the foreground over the background for each vid-
eoframe. Given the initial positive outcomes of BaS-Net in detecting
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instructional activities in the pilot, we decided to further evaluate the
performance of BaS-Net on a larger dataset.

3.5.2. Enhancing background suppression network for improved classroom
detection

After evaluating the performance of BaS-Net on a larger dataset (see
Section 4.1), we decided to enhance BaS-Net for classroom videos. These
enhancements included three components (see Korban et al., 2023 for
more details). First, we added a new loss function that covers both
frame- and sequence-level predictions. Such a loss function is essential
to model short and lengthy instructional activities. Second, an adaptive
frame sampling based on important keyframes was included to remove
irrelevant temporal dependencies between non-important frames. This
adaptive frame sampling is particularly useful for processing long
instructional activities in videos by making it more efficient. Third, a
motion enhancement algorithm was included to boost the quality of
motion features in the classroom videos due to camera movements,
which occurred with some frequency across the dataset, that can reduce
the quality of the video data.

3.6. Procedure and evaluation metrics

In our experimental setup, the proportions of training and testing sets
were 80% and 20%, respectively. For the improved background sup-
pression model, six convolutional layers were used. The learning rate
was 0.00001 which was decayed by 0.1, for every 1500 iterations (from
the total number of 7500 iterations). All the experiments were
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conducted using PyTorch 1.7 on a PC with dual Nvidia RTX 3090 GPUs
(24 GB VRAM), AMD Ryzen Threadripper 3990X 64-Core Processor, and
256 GB of RAM.

To evaluate the two neural networks, we used accuracy and F1
measurements. Accuracy is the percentage of correct predictions relative
to the total number of videoframes. The advantage of accuracy is that it
is easily interpreted but does not provide a robust measurement for
imbalanced datasets. F1 measures the precision and robustness of the
classification; it is the harmonic mean of precision and recall. F1 as a
performance measurement has some advantages over accuracy when
the dataset is imbalanced. For accuracy and F1, the closer the mea-
surement is to 1, the better the performance and the closer to 0, the
worse the performance. To further explicate the performance of the two
neural networks, we provide a comparison of the starting and ending
frames for activity types from one classroom video.

4. Results

We present our results in three parts. First, we describe the perfor-
mance of a baseline neural network, BaS-Net. Second, we describe the
performance of our improvements to the baseline neural network, which
we call BaS-Net+. Finally, we illustrate the boost in performance be-
tween BaS-Net and BaS-Net+ with a video example.

4.1. Performance of the background suppression network

The overall performance of the BaS-Net is shown in Fig. 6. The un-
weighted average F1-scores across the instructional activity labels was
0.47. The average F1-scores by parent-level instructional activity were
as follows: activity type 0.42, discourse 0.24, representing content 0.41,
student location 0.68, teacher location 0.57, and teacher supporting
0.40. Next, we further explicate the results for each instructional activity
by parent-level activity.

4.1.1. Activity type

BaS-Net performed somewhat well in detecting the activity type in a
classroom video with an average unweighted F1-score of 0.42. This was
somewhat expected given the complexity of the activity (i.e., hypothesis
1). However, comparing the F1-scores for each activity type label reveals
some differences. Small group activity was the only activity format label
for which BaS-Net achieved an F1-score greater than 0.4. The Fl-score
for whole class activity is somewhat surprising considering it was the
second most frequent activity with over 100 h; we expected BaS-Net to
be somewhat biased towards it (i.e., hypothesis 3). BaS-Net performed
similarly in detecting individual activity and transition, even though the
duration of these activities was low. This suggests BaS-Net may struggle
with detecting complex activities that can be relatively short and long in

~. Foreground

Foreground

Fig. 5. Example foreground highlighted in a classroom scene.
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Fig. 6. Fl-scores by instructional activity labels for BaS-Net.

duration (e.g., transition and whole class activity).

4.1.2. Discourse

BaS-Net performed poorly for the discourse labels. On task student
talking with student and raising hand received F1-scores of 0.12 and
0.36, respectively. These results were somewhat expected given the
occurrences of these labels were less than 25 h (i.e., hypothesis 3). Given
student talking to another student was less prevalent (i.e., hypothesis 2)
and the complexity of this action (i.e., hypothesis 1), the fact that BaS-
Net performed the worst for that label matched expectations.

4.1.3. Representing content

With the representing content labels, the BaS-Net performed
moderately well by reaching an average, unweighted F1-score of 0.41.
BaS-Net performed particularly well in detecting presentation with
technology with a Fl-score of 0.63 and performed moderately well in
detecting student writing, using or holding a book, using or holding an
instructional tool, using or holding worksheet, and student writing.
However, BaS-Net performed somewhat poorly in detecting individual
technology, teacher writing, and using or holding notebook.

Overall, these results were as expected. Presentation with technology
was only second to using or holding a worksheet in terms of prevalence
and both appeared somewhat often. Thus, it was not too surprising BaS-
Net performed moderately well. However, it was somewhat surprising
that presentation with technology edged out using or holding a work-
sheet given the frequency of using or holding a worksheet (i.e., hy-
pothesis 3). BaS-Net likely struggled to differentiate using or holding a
worksheet from using or holding a book or notebook and was likely
biased towards using or holding worksheet. Given that individual
technology and using or holding notebook were less prevalent (i.e.,
hypothesis 2), it was expected that BaS-Net would likely perform poorly
for those activities.

4.1.4. Teacher and student location

BaS-Net performed better in detecting student location activities
versus teacher location. For all student location activities, BaS-Net
attained F1-scores greater than 0.6. In contrast, BaS-Net attained F1-
scores greater than 0.6 for all activities in teacher location except for
teacher walking. This result is fairly expected given the lesser extent of
teacher walking compared to the other teacher and student locations.
However, given that almost all teacher and student locations labels were

frequent and well represented, we would have expected similar perfor-
mances. A plausible reason for the performances is BaS-Net may have
experienced some difficulty differentiating between the teacher and the
students. For instance, it may have detected when an actor was walking
but not be able to differentiate the actor (i.e., teacher versus student).

4.1.5. Teacher supporting

BaS-Net’s performance was mixed for detecting teacher supporting
activities. It performed moderately well in detecting when the teacher
was supporting multiple students with an average, unweighted F1-score
of 0.47. When detecting if the teacher was supporting one student,
however, the performance was low (0.27). Given that there were
approximately 5 h of video with the teacher supporting multiple stu-
dents for every hour the teacher was supporting one student, the mixed
performance for teacher supporting activities was to be expected (i.e.,
hypothesis 3). Even though teacher supporting was prevalent in the
classroom videos, the complexity of the teacher supporting activities
and their low frequency likely contributed to the middling performance.

4.1.6. Rational for improving the background suppression network

With the high prevalence and frequency across classroom videos for
some instructional activity type labels (e.g., whole class and small
group), we postulated these labels would perform better than others.
However, this outcome was not the case. Due to the potential impact of
the complexity of these activity types, we decided to optimize BaS-Net
for detecting these instructional activity types; we anticipated the per-
formance could be improved by 30% or more. We decided to prioritize
activity type labels because of the positive relationship between
instructional time and student achievement (Baker et al., 2004; Brophy
& Good, 1984), the popularity of manually identifying these labels in
large-scale video studies (e.g., Hiebert et al., 2003), and detecting the
primary activity type may have implications for certain classroom
observation ratings (Luoto et al., 2023).

4.2. Performance of the background suppression network for improved
classroom detection

Next, we describe the performance of our improvements to BaS-Net
(i.e., BaS-Net+) for detecting activity types. Overall, BaS-Net+ per-
formed well in detecting instructional activity types with an average,
unweighted Fl-score of 0.62. It performed exceptionally well at
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detecting small group activity with a F1-score of 0.75. The F1-scores for
whole class activity, individual activity, and transition were 0.57, 0.61,
and 0.53, respectively (see Fig. 7). Using BaS-Net+, the accuracy for
whole class activity, small group activity, individual activity, and tran-
sition was 0.88, 0.84, 0.89, and 0.93, respectively (see Fig. 8). These
accuracy rates are similar to automated methods using classroom audio
recordings (Wang et al., 2014).

4.3. Performance comparison

In comparison to BaS-Net, the improvements made with BaS-Net+
increased the performance, as measured by F1-scores, between 36% and
60% depending on the activity type (see Fig. 7). The most substantial
boosts in performance, by over 50%, were for detecting whole class
activity and individual activity. Thus, the improvements in BaS-Net+
were useful for relatively short activity types (i.e., transitions) and
longer activity types (i.e., whole class activity). Next, we illustrate these
improvements using videoframes from a classroom video of a first-grade
ELA lesson.

Fig. 9 compares the performance of BaS-Net and BaS-Net+ on the
starting and ending frames of three consecutive instructional activity
types in a classroom video as identified by a human annotator. The first
activity type, individual activity, occurs about 3 min into the video and
lasts for about 3 min. Students are pasting a poem into their notebooks
and then circling sight words as they appear in the poem. The teacher is
walking around the classroom monitoring and assisting students. The
second activity format is a transition. Students begin walking over to the
large, carpeted rug and sitting down while the teacher monitors students
and gathers lesson materials. The transition lasts for approximately 2
min. The third activity is a whole class activity that lasts about 15 min.
The teacher begins by reviewing question words with students. Then,
the teacher informs students that they will be reading a short story and
then directs students to discuss with a partner what possible questions
they might ask about the story (e.g., Who are the characters?). After
reading the story, the teacher and students discuss several questions
about the story with the teacher summarizing student responses on the
board.

As shown in Fig. 9, BaS-Net+ outperformed BaS-Net in predicting the
activity type at the starting and ending frames. BaS-Net+ improved the
prediction score of these activity formats at the starting frames. How-
ever, for this video, there were only slight improvements in the pre-
diction scores at the ending frames for individual activity and whole
class activity. In contrast, BaS-Net+ noticeably improved the prediction

Whole class activity

Individual activity

Small group activity

Activity Label

Transition

(=]

0.1 0.2

Computers and Education: Artificial Intelligence 6 (2024) 100207

score at the starting and ending frames for transitions.
5. Discussion

In this study, we examined whether a neural network (BaS-Net) was
able to detect instructional activities during elementary classroom in-
struction captured by video recording with accuracy levels comparable
to that of manual human annotations. We speculated BaS-Net would be
well-situated for classroom videos as classroom scenes often contain
cluttered backgrounds, but we were not optimistic that BaS-Net would
perform well with more complex activities (e.g., teacher support mul-
tiple students and small group activity). Our experiment with BaS-Net
confirmed our hypotheses. Taken from what we learned by applying
BaS-Net, we enhanced it to optimize the performance for detecting ac-
tivity formats (i.e., BaS-Net+), as this agnostic measure has several
practical and methodological implications. We found BaS-Net+ to be an
improvement in detecting all activity types over BaS-Net. The accuracy
of BaS-Net+ to detect activity format is comparable to an automated
method using audio recordings of classrooms (Wang et al., 2014).

Previous studies evaluating automated efforts for classroom video
observations have primarily used audio recordings or transcripts from
videos to detect instructional activities (e.g., Dale et al., 2022; Demszky
& Hill, 2022; Jacobs et al., 2022; Kelly et al., 2018; Wang et al., 2014)
and those studies that used video have primarily focused on simple ac-
tions of students such as students raising their hands (e.g., Ahuja et al.,
2019; Sharma et al., 2021; Sun et al., 2021). A limitation for video
automated efforts has been the absence of large, annotated video data-
sets specifically for machine learning development. As part of this study,
we developed a large, high-quality video annotated dataset with 244 h
of annotated classroom videos with instructional activity labels at
various levels of complexity. This dataset is larger and more compre-
hensive than other similar datasets (Sharma et al., 2021; Sun et al.,
2021).

5.1. Implications for teaching and learning

Our results provide further evidence of the validity of automated
efforts to document instructional activities in classroom videos. In
particular, BaS-Net+ performance was comparable with human anno-
tations for detecting activity formats: whole class activity, small group
activity, individual activity, and transition. As such, the application of
BaS-Net+ to classroom videos could lead to several implications for
teaching and learning. A teacher-facing application using BaS-Net+

03 04 0.5 0.6 0.7 0.8
F1 Score

BaS-Net+ mBaS-Net

Fig. 7. Comparison of BaS-Net and BaS-Net+ performance.



J.K. Foster et al.

Whole class activity

% Individual activity
)
£
IS
3 Small group activity
Transition
0.00 0.25

Computers and Education: Artificial Intelligence 6 (2024) 100207

0.50
Accuracy

1.00

Fig. 8. BaS-Net+ performance.

Individual »‘Activity

Transition
)

Whole Class Activity
]

End Frame Start Frame

Start Frame

Activity Prediction Score

—~e— BaS-Net

Fig. 9.

could process teachers’ classroom videos the same day to provide ana-
lytics on the frequency and duration of activity types in their lessons
without the need for specialized equipment. For instance, teachers
adjusting a routine could receive data whether the adjustment led to
reduced transition time. Second, deploying BaS-Net+ may make future
large-scale video studies more efficient and provide insights into dif-
ferences in instructional time and activity types across contexts such as
in the case of international comparisons (e.g., Hiebert et al., 2003). The
efficiency of BaS-Net+ compared to human annotations could bring
reform and intervention efforts more readily to teachers and their stu-
dents. Relatedly, BaS-Net+ has the potential to support future research
that calls into question whether instructional time and activity types
have implications for teaching and learning such as student engagement
(e.g., Kelly & Turner, 2009) and measuring teaching quality (e.g., Luoto
et al., 2023).

5.2. Contributions to using emerging video technologies in research

Previous investigations have not explored whether video-based
automation endeavors could assist in facilitating data construction and
analysis for educational research. This study suggests that emerging
video technologies (i.e., computer vision and neural networks) can
extract and construct some data near to the level of humans. These
emerging technologies may support large-scale learning analytics
research in classrooms that have been limited by excessive costs and

End Frame I/ Start Frame End Frame

~o- BaS-Net+

10

Comparison of BaS-Net and BaS-Net+ on the starting and ending frames for three consecutive activity formats.

time limitations. For instance, video recordings of classrooms across an
entire school year could be completed and analyzed within that same
year and thus potentially provide valuable insights for educational re-
searchers and teachers. However, there are still some unknown conse-
quences for education with these emerging video technologies.

5.3. Limitations

There are some limitations of the study. First, the neural networks
were applied only to elementary classroom videos of mathematics and
ELA instruction in the United States. It is unknown how these neural
networks may perform on other videos. Second, these neural networks
do not engage with the content of teachers’ or students’ speech. While
the neural networks could accurately provide an estimate for quantity of
instruction time spent in whole class, they could not provide any metrics
about instructional quality. Therefore, the application of these neural
networks should not be used for evaluative purposes. Furthermore, these
instructional activity labels are agnostic, but it is still debatable how and
to what extent these labels scale to qualitative recommendations; for
instance, whether small group instruction is engaging for students (Kelly
& Turner, 2009).

We are therefore cautious in recommending the immediate appli-
cation of these technologies without fully understanding the implica-
tions. Nevertheless, we foresee these emerging video technologies as
part of the history of other video technologies for education research and
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like others (e.g., Goldman et al., 2014; Hennessy et al., 2020; Kelly,
2023) are optimistic about the potential for these tools to aid in our
understanding of teaching and learning.

6. Conclusion

In conclusion, this study reported on the application of neural net-
works to classify instructional activities using video signals from a
collection of classroom videos from elementary mathematics and En-
glish language arts instruction in the United States. The neural networks
detected instructional activities in the classroom videos at a high rate of
accuracy. This result suggests neural networks could become an
important technological tool for contributing to the construction of data
and data analysis for classroom research. Additionally, these data from
neural networks could be useful to efficiently bring classroom analytics
to key communities and support efforts to reform teaching and learning
in classrooms.
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