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A Semantic and Motion-Aware Spatiotemporal
Transformer Network for Action Detection
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Abstract—This paper presents a novel spatiotemporal transformer network that introduces several original components to detect
actions in untrimmed videos. First, the multi-feature selective semantic attention model calculates the correlations between spatial and
motion features to model the spatiotemporal interactions between different action semantics properly. Second, the motion-aware
network encodes the locations of action semantics in video frames utilizing the motion-aware 2D positional encoding algorithm. Such a
motion-aware mechanism memorizes the dynamic spatiotemporal variations in action frames that current methods cannot exploit.
Third, the sequence-based temporal attention model captures the heterogeneous temporal dependencies in action frames. In contrast
to standard temporal attention used in natural language processing, primarily aimed at finding similarities between linguistic words, the
proposed sequence-based temporal attention is designed to determine both the differences and similarities between video frames that
jointly define the meaning of actions. The proposed approach outperforms the state-of-the-art solutions on four spatiotemporal action

datasets: AVA 2.2, AVA 2.1, UCF101-24, and EPIC-Kitchens.

Index Terms—Human action detection, transformer network, spatiotemporal attention, action semantics, positional encoding.

1 INTRODUCTION

PATIOTEMPORAL action detection aims to localize action
S class instances in untrimmed videos in both spatial and
temporal dimensions [1]. However, such a spatiotemporal
action detection faces several challenges, including (1) com-
plex spatiotemporal interactions between action semantics,
(2) dynamic spatiotemporal variations in action semantics,
and (3) heterogeneous temporal dependencies between ac-
tion frames. We will explain our proposed solutions to solve
the challenges above as follows:

The semantics are the meaningful components of actions
that can be categorized into two fundamental types: persons
and objects. [2] is one of the first methods incorporating
action semantics into spatiotemporal action detection. How-
ever, their method was limited to finding the motion tra-
jectory of localized objects over video frames, which alone
might not be enough to model various actions. [3] addressed
such a limitation by including persons and objects that
better represent human actions. Yet, they did not consider
the interactions between semantics, which are crucial parts
of actions. To solve this issue, [4] proposed a video action
transformer network that captures the correlations between
a central person and the surrounding pixels. However, they
did not explicitly model the interactions between all the
action semantics in video frames. However, many actions
are defined based on the spatiotemporal interactions be-
tween action semantics. For example, the action “kicking
a ball” is characterized by the interaction between a “per-
son” and a moving “ball”, in both spatial and temporal
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domains. These domains are associated with the spatial
and motion properties of action semantics, respectively.
More examples will be illustrated in Fig. 3. To address this
issue, we propose a multi-feature semantic attention model
that enables the transformer network to selectively capture
the spatiotemporal interactions between action semantics
based on the correlations between their motion and spa-
tial features. More details about the multi-feature selective
attention model are explained in Section 3.3.2.

The positional encoding of the transformer network
extends its capability to encode the order information in
the data [5]. As an alternative to the sequential connection
in RNN and LSTM, the positional encoding allows the
transformer network to process sequential data more effec-
tively and efficiently. The positional encoding was initially
proposed to represent 1D temporal order information in
linguistic words [6]. It is also used to encode spatial order
information in computer vision [7], [8] recently. Two main
strategies to incorporate positional information in computer
vision have been ordered pixels [7] and patches of pixels [8].

Nevertheless, the current positional encoding strategies
have two issues when dealing with video frames: First, they
are still based on standard 1D temporal positional encoding
designed for linguistic words, which might not work well
for images due to their 2D nature. Furthermore, existing
positional encoding algorithms are limited to static spatial
order, which cannot accurately represent dynamic action
semantics. Specifically, the positional information of action
semantics changes based on their spatiotemporal variations
caused by the dynamic movements of action semantics in
videos. These spatiotemporal variations will be illustrated
later in Fig. 2. Hence, we propose a motion-aware 2D
positional encoding algorithm, which is more effective than
the standard methods in modeling the positions of action
semantics considering their spatiotemporal variations. The
motion-aware 2D positional encoding will be discussed in
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more detail in Section 3.3.1.

Temporal order information is essential in modeling
actions since human action is a sequential process over
different times. Human actions are, however, temporally
heterogeneous, making modeling the temporal dependen-
cies between action frames challenging. For example, in
some actions such as “running”, the temporal dependencies
between similar and adjacent frames are essential. On the
other hand, in many actions such as “jumping”, the critical
temporal dependencies are between distinctive and non-
adjacent frames, so-called keyframes such as “start”, “mid-
dle”, and “end” of the jump.

Traditional sequential methods such as Recurrent Neural
Network (RNN) encounter difficulty computing heteroge-
neous temporal dependencies in actions because of limited
temporal receptive fields and bias toward adjacent action
frames. A better way to model temporal dependencies in
actions is using a transformer network, which can more
effectively process non-adjacent frames due to a larger tem-
poral receptive field. However, the standard transformer
network was initially designed for natural language pro-
cessing in which the highest temporal dependencies are
between the exact linguistic words, followed by words from
similar categories [6]. Hence, while the transformer net-
work can include the temporal dependencies between non-
adjacent frames, it is still heavily biased toward similar and
often adjacent action frames. Consequently, the transformer
network struggles to capture the heterogeneous temporal
dependencies between distinctive and non-adjacent frames.
Therefore, to resolve this issue, we propose a sequence-
based temporal attention model to capture heterogeneous
temporal dependencies within the transformer network ef-
fectively. More details about the above are discussed in
Section 3.3.4.

In summary, the main contributions of this paper are as
follows:

e A novel spatiotemporal transformer network is pro-
posed that includes several original components to
detect actions in untrimmed videos by properly
modeling the action semantics, their interactions, and
movements. The new design solves the fundamental
issues of the standard transformer network in ac-
tion modeling and understanding. To do this, the
transformer network and the attention mechanism
are renovated in both spatial and temporal domains.

o We are the first to develop a multi-feature selective
semantic attention model to capture the important
spatiotemporal interactions between action seman-
tics based on the correlations between their spa-
tial and motion properties. The multi-feature atten-
tion handles the issue of the standard self-attention,
which is restricted to a single feature space. The
proposed transformer also uses a selective attention
model, which, by selecting informative inputs, is
more effective and efficient than the standard self-
attention in modeling action semantics.

e A novel motion-aware 2D positional encoding is
introduced that uses a 2D motion memory module to
model dynamic spatiotemporal semantic variations
in action frames. This overcomes the drawback of the
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standard 1D positional encoding, which is limited
to static spatial positions, making it ineffective in
dealing with 2D images and movements in videos.

e A sequence-based temporal attention model is sug-
gested that, along with the sequence-based temporal
positional encoding, can effectively capture heteroge-
neous temporal dependencies in action frames that
might exist in distinctive and often non-adjacent
frames. This eliminates the limitations of traditional
temporal attention, which is biased towards tem-
poral dependencies between similar and commonly
adjacent frames in action videos.

e The proposed method outperforms state-of-the-art
methods on four public spatiotemporal action bench-
marks, AVA (V2.2 and V2.1), UCF101-24, and EPIC-
Kitchens.

2 RELATED WORK

There are three relevant topics covered in this section, in-
cluding methods based on (1) action semantics, (2) multiple
features for action modeling, (3) spatiotemporal action de-
tection.

2.1 Action Semantics

To represent action semantics, earlier approaches used
handcrafted features, such as shape descriptors extracted
from human silhouettes [9] and local binary patterns cap-
tured from human parts [10]. With advances in deep learn-
ing, action semantics can now be analyzed more effectively.
Several studies in the literature used deep networks for
action semantics that focus either on persons [11] or objects
[12]. In [11], a convolutional feature-based action tubelet
detector is presented for modeling persons over different
time periods. [12] suggested an object-centric feature align-
ment mechanism to signify critical objects in action videos.
However, various actions in the wild rely on complex in-
teractions between persons and objects. To accommodate
this complexity, [13] introduced a transformer network to
compute the interactions between persons and objects based
on their spatial features. As of yet, no effective strategy has
been developed to capture the spatiotemporal relationship
between action semantics based on spatial and motion fea-
tures.

2.2 Multi-feature Networks in Action Modeling

[14] introduced one of the first deep networks that used
both RGB images and optical flow fields to extract spatial
and motion features for action modeling and recognition.
[15] redesigned its architecture, including softmax and pool-
ing layers, in order to improve a multi-feature network.
Despite taking advantage of multiple features in [14], [15],
they did not suggest any explicit solution to employ mul-
tiple features effectively in action recognition. Therefore,
[16] proposed directly enhancing the individual and hybrid
representations of multiple features via a spatiotemporal
pyramid pooling and a fusion mechanism, respectively.
[17] improved this multi-feature representation by using
region proposals rather than the whole frames suggested
in [14], [15], [16], to emphasize more informative parts of
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the optical flow and RGB images. [18] further strengthened
the joint representation of multiple features by computing
the relationship between feature vectors with a self-attention
mechanism. Still, calculating the relationship between action
semantics based on the correlations between their spatial
and motion features remains unresolved.

2.3 Spatiotemporal Action Detection

In one of the earliest spatiotemporal action detection ap-
proaches, [1] proposed codebooks in which one codeword
represented spatial and temporal information about each
action class. A major weakness of [1] is its inability to
successfully detect actions in complex backgrounds due
to using handcrafted features. This shortcoming was ad-
dressed by [3] by developing a deep CNN that could
more accurately detect spatiotemporal action instances in
complex background environments. [19] enhanced such as
a deep network in [3] by detecting multiple spatial action
instances per frame with a more efficient single-shot multi-
box detector. Before now, each action proposal was based
on a fixed model, accumulating the error over time. In
[20], this issue was tackled by proposing a progressive
learning framework that adapts to new relevant action
contexts as they arise. As an extension of the previous work,
[21] used the track-of-interest alignment technique to cope
with large spatial variations of in-the-wild action videos.
A more effective strategy to tackle both large spatial and
temporal variations is the transformer network, which has
increasingly been used for action detection and recognition.

3 METHODOLOGY
3.1 Method Overview

Fig. 1 shows the overview of the proposed pipeline for
action detection. Given a sequence of RGB frames, I RGB —
{179 ¢ REXWx3 ¢ — 0,1,...,7}, the goal is to find the
action class scores, f/, and the start of the end of action,
ts and t., respectively. Here, 7 is the length of the action
sequence; and H and W indicate the size of the full image
(height and width). The suggested pipeline includes two
main stages: preprocessing (Section 3.2), in which the in-
put data are prepared, and the spatiotemporal transformer
network (Section 3.3), which models and detects the action
sequence.

In the prepossessing stage, the spatial action semantics
S¢ = {Z% 0%} are detected that includes the geometries
of persons Z¢ = {2} € Rhixwix3i = 0,1,..,N} and
objects O¢ = {o! € REXwix3 ;= 0,1,...,N'}, where
N, N’, 09, and 29 are the numbers of persons, number of
objects, individual detected persons, and detected objects in
an action frame, respectively. h; and w; indicate the sub-
image size of the detected persons; and h; and w), shows
the sub-image size of the detected objects. Note that the
spatial action semantics represent the spatial information of
persons and objects in RGB images. We used [7] to detect
the action semantics, including persons and objects. Apart
from the spatial features, motion features also are impor-
tant properties of action semantics. So, to incorporate the
motion features, the optical flow fields I7EOW = {[f"* ¢
RHXWX3 i = 0,1, ...,7}, are computed using [22], a highly
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efficient optical flow extraction algorithm. The optical flow
fields result from converting 2D optical flow motion vectors
to three-channel images to enable computing the multi-
feature attention between spatial and motion features (more
details are in Section 3.3.2). Then, for each frame, the motion
semantics M = {ZM OM} e [/'" including the motions
of persons ZM = {zm € Rh>wix3 j = (,1,..., N} and ob-
jects OM = {o/" € RM*wix3 j = (,1,..., N’} are enhanced
and segmented to make it invariant to camera movements
(Section 3.2.1). The bounding boxes B€, obtained from
the semantic detection algorithm [7], are used for motion
segmentation. Here BY = {B%, B9}, where BZ = {b? ¢
R%,i = 0,1,..., N} and B® = {b¢ € R*i = 0,1,...,N'};
and 0P and b° are the corresponding bounding boxes for
each motion semantic.

The proposed spatiotemporal transformer network in-
cludes several modules to model the spatial and motion
semantics obtained from the preprocessing step and detect
the action sequence. The multi-feature selective semantic
attention model (Section 3.3.2) captures the critical relation-
ship between action semantics based on the correlations
between their spatial and motion features. To handle the
spatiotemporal variations in action semantics, the motion
memory module (Section 3.3.1) utilizes the semantic motion
vectors (SY) and updates the semantic positional encoding
of the transformer network using the 2D horizontal and
vertical semantic motion memory offsets Ap? € AP¥ and
Ap? € APY,ie€ {0,1,,,,,N + N'}. Here, SV is computed
from the optical flow motion vectors before conversion to
images (more details are in Section 3.2.1).

The motion memory module also outputs the 2D se-
mantic motion memory features Fjv and F};. The output
of the multi-feature selective attention is the multi-head
semantic attention, A, which represents the most infor-
mative selection of correlative patterns between spatial and
motion semantics extracted by the heads of the transformer
networks. The multi-feature fusion module (Section 3.3.3)
combines the motion memory and the multi-feature seman-
tic features and directs the dataflow in multiple layers of
the deep network. The output of the multi-feature fusion
module is the final set of semantic features, f{, that are
captured in different frames to form the sequence of final
semantic , X, = {ff,t = 0,1,...,7}. Subsequently, X is
processed in the sequence-based temporal attention model
(Section 3.3.4) to extract the heterogeneous temporal depen-
dencies between different frames, f;. The sequence-based
temporal attention values, A, proceed to the classification
and regression stages to detect the action sequence. The
implementation details of the proposed pipeline are in Sec-
tion 4.1. We will discuss the aforementioned components of
the proposed method thoroughly in the following sections.
Our algorithm summary is shown in Table 1. The extended
version of the algorithm summary is in the Supplementary
Material.

3.2 Preprocessing

In the proposed pipeline, the preprocessing stage includes
semantic detection, optical flow extraction, motion enhance-
ment, and segmentation to prepare the inputs for the
transformer network. We exploited [7], a well-established
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Fig. 1. The pipeline for the proposed method includes the preprocessing stage and the transformer network. Given the sequence of RGB images,
first, the spatial semantics and optical flow fields are extracted in the preprocessing stage. The motion enhancement and segmentation algorithm
extracts the motion semantics that are invariant to camera movement. The multi-feature selective attention model captures the correlative patterns
between spatial and motion semantics. The motion memory module updates the semantic positional encoding (S-positional encoding) of the
transformer network and makes it semantically motion-aware. The multi-feature fusion combines the extracted features and directs them to the
deep network. The sequence-based temporal attention model captures the heterogeneous temporal dependencies between different times that are
then used to detect the action sequence in the classification and regression stage.

TABLE 1
Pipeline algorithm summary in a hierarchical order indicating each
phase (in bold), the summary of each phase, and the inputs and
outputs of each phase.

Phase/Summary Inputs Outputs
Semantic Detection RGB G
: . I S
extracts action semantics
Optical Flow Extraction RGB M oV
. I sM, s
extracts optical flow
] Motion Enhfincement BG, IV SM gV
improves motion features
Featur.e Embedding SG, gM XG, xM
extract spatiotemporal features
Mqtlon Memory Modul.e qv APX APY
provides motion information
MA ZD Positional Encoding APX APY PX, pY
for motion-aware transformer AT A
MF Semantic Attention a oM H
S ) S<, 8 A
for correlations in multi-features
Multi-Feature Fusion AH ¥
combines features in layers s
SB Temporal Attention X i
computes temporal relations i
Classification and Regression i Voto te

classifies actions and frames

state-of-the-art object/person detection algorithm, to extract
spatial (RGB) action semantics, including persons and ob-
jects for each frame as S¢ = {ZF, OF}. In this stage, the
corresponding bounding boxes for persons and objects are
BE = {B7,BP} € RIN+TN)x4,

The optical flow fields are estimated from RGB images
utilizing [22], a highly efficient state-of-the-art optical flow
estimation algorithm. Optical flow is a powerful and popu-
lar modality to represent motions in actions. However, op-
tical flow is sensitive to camera movement, a common issue

in videos captured in the wild. In other words, the camera
movements can remarkably distort the motion information
depicted in the optical flow fields. To address this problem, a
semantic motion enhancement and segmentation algorithm
is developed to effectively use semantic motion vectors in
the transformer network.

3.2.1 Semantic Motion Enhancement and Segmentation

Given the semantic bounding boxes BY = {BZ BY}
obtained from the semantic detection algorithm, the dis-
torted optical flow fields I/'“(z,y) (affected by cam-
era movements) and the corresponding motion vectors,
IV(u,v) € REXWX2 the goal of the semantic motion
enhancement and segmentation algorithm is to extract the
enhanced motion semantics including persons and objects
SM = {ZM OM}; and the corresponding semantic motion
vectors, SV = {ZV,0V}, which are invariant to camera
movements. Here, u and v are scalar units that define the
motion displacement between the image pixels in the time
t,as (), y®), and the time ¢ 4 w, as (z(*+) y(t+)) The
semantic motion enhancement and segmentation algorithm
is designed based on the dominant motions of persons in
action frames. Consequently, we consider persons as the
foreground and the remaining portions of the frame as the
background, affected mainly by camera movements. The
semantic motion enhancement and segmentation algorithm
consists of two steps: motion modeling and motion restora-
tion, which are explained in the Supplementary Material.

3.3 Semantic and Motion-Aware
Transformer Network

Spatiotemporal

Before delivering the action semantics to the transformer
network, they are embedded in the feature space. To do
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such, first, the outputs of the prepossessing step, includ-
ing each spatia} action semantic, sf € SC, are resized as
Rhixwix3 _ Rhx®x2 and each motion semantic, s* € S
as RM*xwix3 _y Rhxwx2 Here h and represent the fixed
image size. So, the resized spatial and motion semantics
are S¢ and SM, respectively. Next, the action semantics
are converted to spatial and motion semantic features as
X¢ = {X$,X§} and XM = {X}, X)!}, respectively.
This feature embedding is performed using the convolu-

tional layers, Conv€, and ConvM as:

xG — ConvG(SG7WG) RN xhxwx3 RNxdf’

XM _ Conv]b[(SMJ/VM) RN xhxwx3 RNxdf7 )
where N = N 4+ N’ is the total number of action semantics,
dy is the size of feature embedding, and W& and WM
are the kernel weights. The embedded feature set includes
X¢ and X§, which are the spatial features of persons and
objects; and X gf , and X gf , which are the motion features
of persons and objects, respectively. The aforementioned
feature embedding is illustrated in Fig. 4.

3.3.1 Motion-Aware 2D Positional Encoding.

The transformer is a deep network that has recently be-
come popular in action detection [23], [24]. The transformer
network has several advantages over traditional temporal
networks because of the concurrent processing of inputs.
This reduces processing time, extends the temporal recep-
tive field of the network, and prevents vanishing gradients,
a common issue encountered during the training phase
of transitional sequential networks [6]. The transformer
network is able to process inputs concurrently due to the
positional encoding that adds the order information of the
inputs. As an integral part of the transformer network, posi-
tional encoding was initially designed for natural language
processing, mainly a time-related problem. The standard 1D
temporal positional encoding [6] is illustrated as follows.

P(py,2n) = sin(-2L),
" @
P(p¢,2n+ 1) = cos(— ),
dm

where p;, n, and d,, are the temporal order of the input,
the dimension index of the positional embedding, and the
semantic model size, respectively. i is a large integer as
suggested by the original work [6] to accommodate high-
dimensional embedding features.

The positional encoding was later applied to spatial
problems, such as object detection [7], and spatiotemporal
problems, such as action detection [24], without effective
adaptation to these areas. Two main issues are (1) the 1D na-
ture of the standard positional encoding, which leaves it less
effective in handling 2D images; and (2) its incapability to
handle spatiotemporal variations in spatiotemporal inputs
such as action sequences. The proposed positional encoding
has two characteristics that address the aforementioned
issues. Firstly, the proposed positional encoding is “2D”,
making it more adept in dealing with 2D images. Secondly,
and more importantly, the suggested positional encoding is
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motion-aware, which makes it more effective in handling
spatiotemporal variations in action sequences.

Currently, the most common method for encoding spa-
tial positions in images is to segment them into patches
[8], [25], [26]. In this regard, the current methods treat 2D
images as 1D inputs and assign the positional labels to each
patch following the standard temporal positional encoding
indicated in (2). Nevertheless, the current methods em-
ploy fixed patches that cannot accommodate spatiotemporal
variations in video frames. Fig. 2 shows examples of
such spatiotemporal variations and compares the proposed
motion-aware positional encoding to the standard patch-
based approach in dealing with this issue. In this example,
the image is divided into 18 labeled between p; to p;5. Here,
the red and green basketball players change their positions
when moving from time ¢ (in Fig. 2 (a)) to ¢t + w (in Fig.
2 (b)). So, now, the green player, as a defender, switches
his position with the red player, on offense at position pq;.
Consequently, when spatiotemporal changes occur in action
semantics, the transformer network cannot model the se-
mantic movements at different action frames when using the
standard patch-based positional encoding. By contrast, the
proposed motion-aware 2D positional encoding memorizes
the position changes of each action semantics at different
times and adaptively updates their positional information
within the transformer network as shown in Fig. 2 (c). We
later also numerically compare the proposed motion-aware
2D positional encoding to the standard one in Section 4.4.1
and Table 7. The motion-aware 2D positional encoding is
formulated as follows:

pi + Apf
),

dm

p; + Apf
),

dm

PX (p?,2n) = sin(

@)
PX (v}, 20 + 1) = cos(

pY +Apiy)
2n )

dm

pY +Ap?)
2n 5

dm

PX (p},2n) = sin(

4)
PY (p?,2n +1) = cos(

where p? and p! are initial horizontal and vertical positions
for each action semantics s; € {SY SM}, respectively
that are obtained by the standard patch-base approach [8].
Ap? € APX, and Ap! € APY,i = {0,1,..,N} are
horizontal and vertical semantic motion memory offsets for
each action semantics. APX and APY include the motion
offsets for all the action semantics. w is the duration of
the motion. In this work, we define the index of positional
embedding asn € {0,1,...,ds/2}.

Ap? and Ap! adaptively update the positions of action
semantics according to their motions during the action
sequence. A set of concatenated embedded 2D positional
encoding P4 = {PX, P} is delivered to the transformer
network. To do such, the embedded positional encoding is
added to the inputs as:

XC=Py+ X9 XM =Pyt XM, (5)
where X¢ = {X¢,X§} and XM = {XM XM} are
positional encoded spatial and motion semantic features (for
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persons and objects), respectively. Two new components of
the motion-aware positional encoding, Ap?, and Ap! are
computed using the motion memory module. Details of this
computation are found below.

Motion Memory Module. The input to the motion
memory module is the sequence of semantic motion vectors
as S, = {SY,t = 0,1,...,7}. The outputs are (1) the
semantic motion memory offsets, APX and APY, that are
used for our motion-aware 2D positional encoding; and (2)
2D semantic motion memory features, Fy; = {Fiy, Fi; } uti-
lized in the multi-feature fusion stage to enrich the feature
representation. The motion memory module is activated
when there is a notable change in movement. This makes the
pipeline more efficient and reduces the noise caused by ran-
dom movements. The motion memory module memorizes
the changes in semantic motion vectors using the motion
memory network as follows:

update : 2y = o(W?xy + U?hy_g),
reset: 1y =Wz + U hi_g),
ng = tanh(Whaz; +r, © UMh;_s),
he =20 © hy—g + (1-2¢) © ny,

(6)

current :

output :

where z; is the input, © represents the element-wise mul-
tiplication, and o is a sigmoid function. z;, r;, ns, and hy
are the update gate, reset gate, current gate, and output,
respectively. W#, W7, and Wh e RNbxdg. and U=, UT,
and U" € R%*4s are parameter matrices, where d,, is the
state size. The above formulation is inspired by the learning
steps of the gated recurrent unit [27]. Moreover, @ is a
dilated temporal value that represents the time when there
exists significant motion in the action sequence based on a
threshold value, T},. Given the inputs that are horizontal
and vertical components of the semantic motion vectors,
SY,and SY, the memorized horizontal and vertical outputs
of the networks are h*X and hY, respectively. The motion
memory networks memorize the movements of action se-
mantics during action sequences. As a result, the motion
memory networks update the positional encoding, making
it motion-aware. The final outputs of the motion memory
networks are computed by using an averaging pooling layer
(AvPool) as:

APX = AvPool(hX) : RN*ds — RN

A . @)
APY = AvPool(hY) : RN*ds — RV,

The motion memory module also outputs the semantic
motion memory features, Fiy = {Fiv, Fi;}, as:

F¥ = ConvX (hy , W), Fiy = Conv¥ (hy,WY). (8)

Note that Conv™X and ConvY : RV*ds — RN*ds and
WX and WY are the kernel weights. Only the part of the
network outputs corresponding to persons as h, and h} €
RN *ds are selected in the feature selection. This is due to the
fact that in action sequences, persons” movements are more
critical than objects” movements. F; is used in the multi-
feature fusion module to improve the feature representation
of actions.

3.3.2 Multi-feature Selective Semantic Attention

Based on their spatial and motion features, many actions
are characterized by spatiotemporal interactions between
their semantics, including persons and objects. Transformer
networks are designed to capture the interactions between
different inputs using an attention mechanism [6]. There-
fore, we propose a multi-feature selective attention model
to extract such interactions between action semantics. There
are three differences between the proposed multi-feature
attention and the standard “cross-attention” mechanism.
First, the proposed attention is selective, meaning only
informative queries are considered. Second, as opposed to
the existing methods that include the whole frame/input,
the suggested strategy focuses only on action semantics.
Finally, four multi-feature attention types are introduced to
enrich the action feature representation.

In our view, four types of multi-feature semantic inter-
actions occur in human actions, which are illustrated in
Fig. 3. The first scenario happens when all the interacting
action semantics are stationary, such as the “person” and
“cake/candle” in the action “blowing a candle” in Fig. 3 (a).
As a result, the spatial-to-spatial attention, AGG, represents
such a stationary-only interaction between action semantics.
In the second case, the entire action semantics are in motion,
such as the “person” and the “jet ski” in the action “jet
skiing” illustrated in Fig. 3 (b). Consequently, the motion-
to-motion attention, AMM  serves such motion-only interac-
tions between action semantics. As for the third scenario, the
spatial-to-motion attention, AGM provides the interaction
between the moving semantics, the “person pitching the
ball”, and the stationary one, the “person waiting for the
ball” in Fig. 3 (c). Finally, the motion-to-spatial attention,
AME  represents the interactions between moving and sta-
tionary semantics, in this example, basketball “player” and
“net”, respectively (shown in Fig. 3 (d)). Among the above
multi-feature attentions types, A““ and AMM are intra-
feature attention, while ASM and AMC are inter-feature
attention. In the aforementioned examples, the action se-
mantics are highlighted by bounding boxes. The motion
semantics are visualized by the green motion vectors, which
are obtained from optical flow fields.

The architecture of the multi-feature selective seman-
tic attention model is illustrated in Fig. 4. The attention
mechanism is to find the correlations between the query
(@) and keys (K) and then map them to wvalues (V). The
four suggested attention types to represent the correlations
between spatial and motion semantic features are shown in
Fig. 4 and are formulated as:

QEKM)T s
NG W,
QM (K"
Vdy,
QM(K)”
Vv,
QM (KM)T
Vdp,

The multi-feature semantic queries, keys, and values are
illustrated as follows:

ACM — Softmax(
AME = So ftmazx( we,

&)
A%C = Softmaz( we,

AMM — So ftmax( WM,
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Fig. 2. The motion-aware positional encoding, (c), compared to the standard one, (a) and (b), in dealing with spatiotemporal action semantic
variations: two basketball players, red and green, change their positions from time ¢, (a) to ¢t + 7, (b). So the red player (p11 as the offensive player)
switched his position to the green player (now p;; the defender). The proposed motion-aware positional encoding, (c), can memorize the position
changes of two basketball players using the motion memory offsets, Apgrecen and Ap,..q. The green and red arrows show the motion vectors
obtained from the optical flow fields.

Fig. 3. Some examples of our multi-feature attention types that capture the spatiotemporal semantic interactions in action samples. (a): spatial-
to-spatial attention between the “sitting person” and the “stationary cake” ; (b): motion-to-motion attention between the “moving person” and the
“moving jet ski” ; (c): spatial-to-motion attention between the “stationary waiting player” and the “moving pitching player”; (d): motion-to-spatial
attention between the “moving jumping player” and the “stationary net“. The green arrows show the motion vectors obtained from the optical flow
fields. The action samples are collected from the UCF101 dataset [28].

multi-feature selective A€ — —_—
semantic attention

|I
!
motion memory ::
ap¥] [ap1 ! N multi-head
h
II
II
II
II
|I
|I
|I

f T foneat D |

2D Positional AGM AMG AGG AMM
encoding
________________________________________________________ ! l MatMuI ' MatMuI ] ' MatMul ] ' MatMul ]
e aln ke ety e inF shtateinbalnlir iol! o tyioie T
M feature embeddlngi PPy softmax ] [ B ] m
l MatMuI ] l MatMul ] m
KM vM M VG fG fc Ve fM KM M

Fig. 4. The proposed transformer network includes several modules to capture the multi-feature semantic features. The feature embedding converts
the motion and spatial semantics to features. The motion memory module memorizes the semantic position changes and includes them as the
motion-aware positional encoding in the semantic multi-feature extraction. The multi-feature selective attention represents the correlations between
persons with other persons and the most relevant objects. In this action example, “teacher using an instructional tool”, these correlations represent
the interactions between the “teacher” and the ‘students”, and the“teacher” and relevant objects such as the “handheld whiteboard.”
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QY = XGW§, K¢ = XWg, v¥ = XW, (10)
QM = XJWh, KM = XMW vM = XMW
where WG7WC§W € RV*dsxdn and WS, WM WG WM ¢
RV >drxdn are projecting weights. d, = df /N" is the size of
attention head, N" is number of attention heads, and T is a
transpose operation.

The compound semantic attention head, A“, is defined
by combining the four multi-feature attention types and
then applying a convolutional operation as:

AC" = Concat®(ACM, AMG ACE AMM)

A% = Comv® (A%, W©), a
where Conv® : R¥*NXdn _y RNXdn  Coneat® is a con-
catenation operator that stacks the inputs as Concat®
4 x RNVXdn — RAXNXdn 17C g the kernel weights, and AC’
is the concatenated head. To extract features more effectively
through different heads of the transformer network, the
multi-head semantic attention, A € RV*4/ is computed
by concatenating each of the N* compound semantic atten-
tion heads as:

A = Concat™ (AS i = {0,1,..., N"}), (12)
where Concat™ : N' x RN*dn _, RNXN"xdn — RNxdy
Selective Attention. As shown in Fig. 4 and (10), in
the proposed attention model, the queries and keys/values
are defined differently. The queries are only persons, Xz,
while the keys/values include both persons and objects,
X = {Xz,Xo}. However, in the standard self-attention
model, queries and keys/values are derived from the same
source. We argue that the proposed selective attention
model is more effective and efficient than the standard self-
attention in modeling action semantics. In particular, the se-
lective attention model computes the interactive correlations
between persons-to-persons and persons-to-objects, which
are essential to a variety of actions. Therefore, we exclude
the computation of correlations between objects-to-objects,
which are often irrelevant to actions, thereby reducing the
expressive power of action features. Specifically, among a
large number of background objects in action videos, only
a few are relevant to the action. An example is shown in
Fig. 4, where the most relevant object is the “Handheld
whiteboard” in the action “teacher using an instructional
tool”. By contrast, the “teacher” is correlated with all the
other persons, ”students”, in this activity. We will later nu-
merically compare the performance of the selective attention
model to the standard one in Section 4.4.3 and Table 9.
Moreover, by excluding the objects from the queries, the
selective attention is now RY*4n  that compared to the
standard self-attention RNTN)%dr  requires fewer number
of computations.

3.3.3 Multi-feature Fusion

The proposed transformer network consists of multiple
layers with a defined relationship between the successive
layers [ — 1 and [, as illustrated as follows:

Bh = MFSSABG ')+ By, 1€{2,..,L},

l N N (13)
BL = MLP(Norm(BY)+ B!,  1e€{2,..,L},

where M FSSA is the multi-feature selective semantic at-
tention, Bp is the layer output, Bp is the intermediate
layer output, L is the number of layers, and Norm is a
normalization layer.

For the first layer, the relation between the inputs and
output is shown as follows:

BY = MFSSA(XE, XM) 4 pMA, (14)

FJV[.A

where € RV*dn ig our motion-aware features defined

as:

FMA = Conv?(Concat™ (XS, XY F¥, FY), W4). (15)

where Conv? RAXNxdy  _y RNXds  Concat? 4 x
RVxds 5 RIXNXd; and WA are the kernel weights.
Here, MFSSA(XS, XM) = AH. To properly update the
projecting weights for the keys and values in the layers
[ > 2 during the training, the selected inputs for the multi-
feature keys and values are converted to their original size
of the first layer as RV*4s. The final output of the multi-
feature fusion for frame ¢ is the final semantic features, f; is
illustrated as:

fi = Conv™ (B, WO) : RN*ds 5 R, (16)
where WO are the kernel weights. The sequence of f; is
used as the multi-feature representation of semantics for
each action frame in the sequence-based temporal attention
model.

3.3.4 Sequence-based Temporal Attention

Given the sequence of final semantic features for different
frames, X, = {f7,t = 0,1, ..., 7}, the goal of the sequence-
based temporal attention model, A € R™% is to compute
the temporal dependencies between semantic features in
different frames ¢t € 7, effectively. Temporal attention is
capable of modeling long sequences without discriminating
against older data, which makes it suitable for processing
long, untrimmed action sequences. Nevertheless, the stan-
dard temporal attention was designed for neural language
processing, specifically for modeling linguistic words [6].
Accordingly, the standard temporal attention tends to assign
the highest attention to words themselves and followed
by words from similar categories. [29]. However, such a
homogeneous attention model is unsuitable for model-
ing heterogeneous temporal dependencies between action
frames. There are many actions in which the temporal de-
pendencies between distinctive frames, so-called keyframes,
provide essential information. For example, in the action
sequence “triple jump” the temporal dependencies between
the three distinctive steps “hop”, “step”, and “jump” define
the meaning of the action. The standard homogeneous tem-
poral attention, however, mainly focuses on the temporal
dependencies between similar and often adjacent frames,
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discarding essential temporal dependencies between dis-
tinctive frames. To illustrate the above, we will show some
examples in Section 4.4.4, and in Fig. 5.

On the other hand, the proposed sequence-based tempo-
ral attention model can compute the heterogeneous tempo-
ral dependencies between action frames without discrim-
inating on the basis of their similarity. It is because the
sequence-based temporal attention model focuses on the
temporal dependencies that are relevant for actions, rather
than individual frames themselves. Some conceptual poof
is provided in the supplementary material. We will later
numerically compare the sequence-based temporal attention
to the standard one in Section 4.4.4 and Table 10.

Some researchers suggested using a probabilistic ap-
proach to enhance the standard attention mechanism. [30]
proposed exploiting a mixture model whose parameters are
updated following the observed queries. [31] presented a
mixture of Gaussian keys as an effective replacement for
redundant heads in a transformer network. These methods,
however, are based on Expectation Maximization (EM),
which has several issues, especially when used in a deep
learning framework. This includes high computational cost,
sensitivity to initialization, model complexity, and slow
convergence [32]. On the other hand, our sequence-based
temporal attention is simple yet effective and does not
require any complex and iterative optimization algorithms
such as EM.

The standard temporal attention [6] is shown as:

QrK¥

Vs

where the temporal queries, keys, and values are Qr,
Kr, and Vo € R7%%; and 7 is the number of frames.
A (Qr, Kr) = QrK{ € R7*" is the temporal atten-
tion correlation matrix that indicates the frame-by-frame
temporal dependencies. In the standard approach, Qr =
(Xs+P)Wq, Kr = (X5 + P)Wk, and V1 = (X, + P)Wy,
where Wqg, Wk, and Wg € R7%4 are the temporal
projecting weights. P is the temporal positional encoding
following (2) that is added to the input sequence, X, to
include the temporal order information. So, let’s start with
the definition of the standard temporal attention correlation
matrix, A" (Qr, V), that only focuses on the relationship
between individual inputs (queries and keys):

A(Qr, Kr, Vr) = Softmax(

Ve, 17)

A" (Qr, Kr) = (X + P)Wo(Xs + P)TWE,  (18)
The above can be rewritten as:
(a) (b)
A" (Qr, Kr) = X WoXTWE + PWoPTWE + 19)

X WoPTWE+PWoXIWE,
(e) ()

We argue that in the above, the expressions (¢) and (d)
do not contain useful information. This is because, during
the learning process, they do not lead to meaningful gra-
dient updates since they are the results of multiplying the
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input sequence and the position information. §o, a more ef-
ficient temporal attention correlation matrix A" (Qr, Kr)
can be shown as follows:

A" (Qr, K1) = X WoXTWE + PWoPTWE, (20
The above can be rewritten as:
A (Qr, Kr) = QrEK{ + PoPi. (1)

Consequently, the following defines the efficient tempo-
ral attention:

Acorr

Vs
Until now, the temporal dependencies between Qr and
Kt are calculated between individual frames without in-
cluding their relation to the action sequence. To resolve
this issue, the sequence-based temporal attention correlation
matrix, A", revises (21) to provide the temporal depen-
dencies between the inputs, Qr and Kt with respect to the
distribution of the action sequence, X, as shown as:

A = Softmaz(

)Vr (22)

ACOTT(QDKNXS) =1I-
(Qr — K1)Sx' (Qr — Kr)" /Nx—
(Pq — Px)Sx'(Pq — Px)" /Np,

(23)

where Sy € R%*dr is the covariance matrix of the dis-
tribution X, and I, € R™*" is matrix of ones. Ny and
Np are normalizing terms. The above also presents a more
effective sequence-based temporal positional encoding than
the original Py and Py. (23) is based on the intuition of the
Mahalanobis distance that is explained in Supplementary
Material. Finally, the sequence-based temporal attention is
computed as follows:

A= Softmaxr(—==)Vr,

Vs

3.3.5 Classification and Regression

The final stage of the proposed pipeline is classification
and regression. The multi-label classification layer includes
two frame-level and sequence-level predictions shown as
follows:

(24)

Y9 = Softmax(Conv® (AT, W*)),

YF = Softmaz(Convf (AT, WY)), 29
where Y5, and YT are the sequence and frame predic-
tion scores, respectively. Conv® : R™*¥ — R, Conv/ :
R™>4 — R™C and W* and W/ are the kernel weights.
Note that (] is the number of classes. The set of class scores
can be defined as Y = {Y®,YF}. Finally, the regression
layer calculates the start and end of the action sequence, 5,
and ¢., for a given class c so that the selected time interval
satisfies: (ts,t.;c) = arginax(% Zt(ﬁitc) + f@ste)

The loss function of the proposed network is shown as
follows:
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T Cl Cl
L=->"5 4%0gg? —a>S Y ©ogy©,  (26)
t=1c=1 c=1

where y and § are the ground truth and predicted values
for each frame t of class ¢ at time t. Y and Y are the
ground truth and predicted values for each action sequence,
respectively. Note that « is a loss adjustment parameter.

4 EXPERIMENTAL RESULTS
4.1 Implementation Details

The implementation details of the proposed pipeline are
summarized in Table 2. In this table, all the hyperparam-
eters mentioned in the paper are described. The Model
Zoo with the DETR architecture [7] and R101 backbone
is used for object/person detection to balance efficiency
and performance. The object/person detection threshold is
0.5. The optical flow is extracted by the FastFlowNet [22]
fine-tuned on FlyingThings3D [33] with using 320 x 448
patches during data augmentation. The learnable semantic
and temporal projecting weights W, WM, W&, WM, W,
Wk, and Wy, are initialized with random values. For the
EPIC-Kitchens [34] dataset, only the classification layer is
used. The network weights are initialized from the Kinetics
pre-trained model. The focal loss [35] was used during the
training.

SV are required to update our motion-aware positional
encoding, which is also 2D. On the other hand, S M helps
calculate multi-feature attention between motion and spatial
features that are also derived from images. Moreover, the
motion feature embedding in our pipeline is computed by a
convolutional layer requiring images as the inputs.

All the experiments are conducted using PyTorch 1.7
on a server PC with dual Nvidia RTX 3090 GPUs (24GB
VRAM), AMD Ryzen Threadripper 3990X 64-Core Proces-
sor, and 256GB of RAM.

TABLE 2
Implementation details of the proposed pipeline with corresponding
sections.
Parameter Value Section
Semantic detection confidence threshold 0.5 321
Number of GMM distributions (K) 16 321
Number of action semantic (V) 10 33

Semantic image size (h x ) 128 x 128 3.3

Size of feature embedding (d) 2048 3.3
Positional encoding integer () let 3.3.1
Duration of motion (7) 32 3.3.1

Size of motion network state (dg) 1024 3.3.1
Motion memory module threshold (7}) 2.35 331
Number of attention heads (N") 4 332
Size of attention head (dy,) 512 3.3.2
Number of multi-feature layers (L) 6 3.3.3
Input normalizing term (Nx ) le3 334
Position normalizing term (Np) 2¢3 3.3.4
Loss adjustment parameter (o) 2.4 3.3.5
Optimizer SGD 3.3.5
Number of training epochs 100 3.35
Number of videos per batch 16 3.35
Learning rate le—4 3.3.5
Learning rate decay (every 30 epochs) 0.1 3.35
Weight decay le=6 335
Multi-label classification threshold 0.5 3.3.5
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4.2 Datasets

The proposed pipeline is evaluated using four public
spatiotemporal action datasets, AVA (version 2.1 and 2.2)
[36], UCF101-24 [28], and EPIC-Kitchens [34]. Short descrip-
tions of these datasets are given in the following.

AVA dataset consists of 15-minute video segments of 80
action classes. The AVA dataset is suitable for evaluating
our proposed pipeline as it covers a notable variety of
interactions between action semantics, including person-to-
person and person-to-object interactions. Both AVA versions
(v2.1 and v2.2) include 235 videos for training and 64 videos
for validation. The annotations for bounding boxes and class
labels are provided for every second of the video segments.
AVA 2.2 revises the label annotation by adding more frame-
level labels. Following the instruction of the benchmark,
[36] and the previous studies [13], [37], [38], we used 60
action classes with the measurement metrics of mean Average
Precision (mAP) with an IoU threshold of 0.5.

UCF101-24 is a subset of the UCF101 dataset [28] that
includes 3207 untrimmed videos from 24 action classes. As
a part of THUMOS Challenge 2015, this dataset includes the
annotation for bounding boxes and frames. It covers a va-
riety of spatial and temporal action instances in each video,
which is well-suited for our experiments. For evaluation, an
mAP with an IoU threshold of 0.5 is used on the first split
of the data following the previous work [13], [37].

EPIC-Kitchens comprises 55 hours of daily activities,
primarily focusing on the interaction between persons and
objects. This dataset features the most diverse objects among
spatiotemporal action benchmarks, making it suitable to
test the effectiveness of the proposed pipeline in modeling
action semantics. Following a standard setting [37], [39], we
used 22’675 videos for training and 5’886 videos for testing.
According to the literature [40], [41], [42], the top-1 accuracy
metric is adopted to evaluate the suggested method on
the EPIC-Kitchens dataset on “action”, “noun”, and “verb”
classes. A top-1 accuracy is obtained by comparing the
highest predicted results with the ground truth.

4.3 Comparative Results

The comparative results of four public benchmarks are as
follows.

4.3.1 Results on AVA 2.2

Table 3 illustrates the comparison between our method,
SMAST, and the state-of-the-art approaches on the AVA
2.2 dataset. In [43], a video-masked autoencoder using
pre-trained models achieved the highest transfer learning
performance when using Kinetic-700. Overall, our pro-
posed pipeline (SMAST) outperforms the state-of-the-art
approaches on the AVA 2.2 dataset. Specifically, with the
mAP@0.5 of 40.2%, the suggested method surpasses the best
current benchmark [43] by 0.9.

4.3.2 Results on AVA 2.1

Table 4 compares The proposed method, SMAST, to the
state-of-the-art strategies on the AVA 2.1 dataset. In con-
clusion, the proposed SMAST surpassed the state-of-the-art
methods previously used on the AVA 2.1 dataset with the
mAP@0.5 of 33.1%, exceeding the highest existing bench-
mark [49] by 1.1%.
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TABLE 3
Comparison of our proposed method (SMAST) with the state-of-the-art
strategies on the AVA 2.2 dataset.
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TABLE 6
Comparative results on the EPIC-Kitchens dataset showing top-1
accuracy (%) for different classes of action, noun, and verb.

Team Method Pub/Year mAP@0.5 (%) Team Method Pub/Year action verb noun
Tang et al. [37] AIA ECCV 2020 34.4 Tang et al. [37] ATA ECCV 2020 27.7 60.0 37.2
Feichten al. [44] MoCo CVPR 2021 20.3 Nagrani et al. [62] MBT NIPS 2021 434 64.8 58.0
Fan et al. [45] MVT ICCV 2021 273 Arnab et al. [63] Vivit ICCV 2021 44.0 66.4 56.8
Feichten al. [46] X3D CVPR 2022 27.4 Patrick et al. [64] Mformer NIPS 2021 445 67.0 58.5
Chen et al. [47] WOO ICCV 2021 28.3 Kondrat et al. [65]  Movinets  CVPR 2021 47.7 72.2 57.3
Wu et al. [48] TLVU CVPR 2021 31.0 Liu et al. [42] ORVT CVPR 2022 45.7 68.4 58.7
Pan et al. [13] ACARNet CVPR 2021 31.7 Wu et al. [41] MeMViT CVPR 2022 48.4 71.4 60.3
Liu et al. [42] ORVT CVPR 2022 26.6 Girdhar et al. [40] Omnivore CVPR 2022 499 69.5 61.7
Zhao et al. [49] Tuber CVPR 2022 33.6 Yan et al. [66] MVT CVPR 2022 50.5 69.9 63.9
Wu et al. [41] MeMViT CVPR 2022 35.4 Korban et al. SMAST ~ ----- 50.9 70.1 64.8
Wei et al. [50] MaskFeat CVPR 2022 38.8
Tong et al. [43]  VideoMAE NIPS 2022 39.3
Faure et al. [51] HIT WCACV 2023 32.6 .
Korban et al. SMAST ----- 40.2 4.4 Ablation StUdy
In this section, we present an ablation study that evaluates
TABLE 4 the impact of each module in the proposed action detection

Comparison of our suggested method (SMAST) with the
state-of-the-art approaches on the AVA 2.1 dataset.

Team Method Pub/Year mAP@0.5 (%)

Sun et al. [52] ACRN ECCV 2018 17.4
Girdhar et al. [4] VT CVPR 2019 27.6
Wu et al. [38] LTFB CVPR 2019 27.7
Stroud et al. [53] D3D CVPR 2020 23.0
Tang et al. [37] ATA ECCV 2020 31.2
Wau et al. [48] TLVU CVPR 2021 27.8
Chen et al. [47] WOO ICCV 2021 28.0
Pan et al. [13] ACARNet CVPR 2021 30.0
Shah et al. [54] PGA CVPR 2022 28.4
Zhao et al. [49] TubeR CVPR 2022 32.0
Korban et al. SMAST  ----- 33.1

4.3.3 Results on UCF101-24

Table 5 illustrates the comparative results on the UCF101-
24 benchmark. SMAST, outperformed the other strategies
on the UCF101-24 benchmark with the mAP@0.5 of 85.5%,
exceeding the highest performance [51] by 0.7.

TABLE 5
Comparison of our pipeline (SMAST) with the state-of-the-art methods
on the UCF101-24 dataset.

Team Method Pub/Year mAP@0.5 (%)
Song et al. [55] Tacnet CVPR 2019 72.1
Pramono et al. [56] HSAN CVPR 2019 73.7
Yang et al. [20] STEP CVPR 2019 75.0
Zhang et al. [57] ASM CVPR 2019 77.9
Tang et al. [37] ATA ECCV 2020 78.8
Li et al. [58] MOC ECCV 2020 78.0
Su et al. [17] PCSC PAMI 2020 79.2
Liu et al [59] ACDnet PRL 2021 70.9
Pan et al. [13] ACARNet CVPR 2021 84.3
Kumar et al. [60] ESSL CVPR 2022 69.9
Lietal. [61] DSRM SIVP 2022 81.2
Zhao et al. [49] TubeR CVPR 2022 81.3
Faure et al. [51] HIT WCACYV 2023 84.8
Korban et al. SMAST  ----- 85.5

4.3.4 Results on EPIC-Kitchens

6 shows the comparison between the proposed pipeline,
SMAST, and state-of-the-art methods on the EPIC-Kitchens
benchmark. Our proposed method outperformed the exist-
ing approaches with the top-1 accuracy for “action”, “verb”,

and “noun” of 50.9%, 70.1%, and 64.8%, respectively.

solution.

4.4.1 Motion-Aware 2D Positional Encoding and Motion
Enhancement

Table 7 indicates the impact of the proposed motion-aware
(MA) 2D positional encoding and the proposed motion
enhancement algorithm on the overall action detection per-
formance. Our findings show that the MA 2D positional
encoding is ineffective without the motion enhancement
algorithm. Specifically, it only boosted the overall perfor-
mance by 0.1 % (from 30.9 % to 31.0%). The reason is that,
without motion enhancement, the motion awareness of 2D
positional encoding is impacted by the camera movement,
a common issue in action videos captured in the wild.
Notably, the camera movement causes incorrect extraction
of motion vectors, resulting in imprecise calculations of the
motion memory offsets, APX and APY, in the 2D posi-
tional encoding. In contrast, when the motion enhancement
algorithm is used, the MA 2D positional encoding increases
the overall performance by 2.2% (from 30.9% to 33.1%). The
1D positional encoding is computed following [8].

TABLE 7
The impact of the motion-aware (MA) 2D positional encoding and
motion enhancement algorithm on the overall action detection
performance. The evaluation is conducted on the AVA 2.1 benchmark.

Scenario mAP@0.5
Standard 1D positional encoding 30.9
MA 2D positional encoding (no motion enhancement) 31.0
MA 2D positional encoding (with motion enhancement) 33.1

4.4.2 Multi-Feature Semantic Attention

Table 8 illustrates the impact of various multi-feature atten-
tion types, and their combinations, on the overall action de-
tection performance (tested on the AVA 2.1 dataset). When
a single attention type is used, the highest performance
is achieved by the intra-feature attention types, including
AGC with a mAP@0.5 of 26.5% followed by AMM with a
mAP@Q.5 of 25.6%. The inter-feature attention types, AMG,
and ASM  alone did not result in competitive performance.
However, combined with ASG and AMM | the inter-feature
attention types, AMG and ASM | boosted the overall ac-
tion detection performance. The results show that although
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many actions can still be effectively modeled independently,
many of them are dependent on the interaction between
spatial and motion features. The highest performance is
obtained when all the multi-feature attention types, AGG,
AMM - AGM - and AMC are used, yielding a mAP@0.5 of
33.1%.

TABLE 8
The impact of different multi-feature (MF) attention types, AGC
(spatial-to-spatial), AMM (motion-to-motion), ASM (spatial-to-motion),
and AMG (motion-to-spatial) on the overall action detection
performance. Different attention types represent standard one-stream
and two-stream baselines and our Single, double, combined, and full
MF attentions.

Attention type mAP@0.5 (%)
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PTPE, yielded the maximum performance with a mAP@0.5
of 33.1.

TABLE 10
The comparison between standard temporal attention, efficient
temporal attention, and the proposed sequence-based temporal
attention. Different types of positional encodings are the standard
temporal positional encoding (TPE), efficient temporal positional
encoding (ETPE), and the proposed sequence-based temporal
positional encoding (PTPE).

Modules mAP@0.5 (%)
Standard temporal attention (A) + TPE (baseline [6]) 30.4
Efficient temporal attention (4) + ETPE 30.9
sequence-based temporal attention (A) + ETPE 325
sequence-based temporal attention (A) + PTPE 33.1

AGG (one-stream RGB baseline) 26.5

AMM (one-stream FLLOW baseline) 25.6
AGM (single MF attention) 24.7

AMG (single MF attention) 244

AGG 4 AMM (tyo-stream RGB+FLOW baseline) 28.0
AGM . AMG (double MF attention) 27.1
AGG L AMM 4 AGM (combined MF attention) 31.8
AGG 4 AMM ¢ AMG (combined MF attention) 30.9
AGG f AMM 4 AGM | AMG (fy]] model) 33.1

4.4.3 Selective Attention

Table 9 compares various forms of self-attention and the
proposed selective attention model characterized by two
types of action semantics, persons (Z) and objects (O).
The lowest performance is due to the self-attention mech-
anism that defined queries and keys as objects (mnAP@0.5 of
24.3%). In contrast, the maximum performance among the
self-attention types is achieved with the queries and keys
specified as persons + objects (Z 4+ O) with a mAP@0.5 of
31.8%. Overall, the proposed selective attention model with
the queries defined as persons (Z) and the keys as persons
+ objects (Z + O) yields a mAP@0.5 of 33.1%.

TABLE 9
The comparison between different self-attention types and the
proposed selective attention model based on two action semantics,
persons (Z), and objects (O). Here the self-attention follows the
standard attention mechanism in the baseline [6].

Attention category Inputs (Semantics) mAP@0.5 (%)

Self-attention Query (0) , Key (O) 243
Self-attention Query (2) , Key (2) 275
Self-attention Query (Z + O) ,Key (Z + O) 31.8
Selective attention Query (Z), Key (Z + O) 33.1

4.4.4 Sequence-based Temporal Attention

Table 10 compares the suggested sequence-based temporal
attention with the efficient and standard ones on the AVA
2.1 dataset. In this table, the standard temporal positional
encoding (TPE) was presented in (18), the efficient temporal
attention (ETPE) in (21), and the sequence-based temporal
positional encoding (PTPE) in (23). Moreover, A, A, and A
were shown in (17), (22), and (24), respectively.

The results illustrated that the efficient temporal atten-
tion (/1) + ETPE with a mAP@0.5 of 30.9% slightly per-
formed better than the standard temporal attention (A4) +
TPE with a mAP@0.5 of 30.4%. Using sequence-based mod-
els for both temporal attention and positional encoding, A +

Fig. 5 compares the proposed sequence-based temporal
attention correlation and the standard one on an action
sequence, “triple jump”, with 10 sampled frames. Note that
Ao and A" were explained in (18) and (21), respec-
tively. Here, A7%"/" and /Alfﬁrf are the temporal correlation be-
tween the frame ¢ € 7 and j € 7, Investigation of Fig. 5 more
closely indicates that the standard temporal attention model
leans toward producing greater values to similar frames,
suchast =1andt =2ort =4 and t = 5. On the other
hand, The standard temporal attention sets lower values to
distinctive frames, suchas ¢t = 8and ¢t = 9or ¢t = 9 and
t = 10. By contrast, the proposed sequence-based temporal
attention does not discriminate among frames based on sim-
ilarity. In other words, A€ can more effectively provide
the temporal relationship between distinctive frames, such
as the start, middle, and end of thejump att = 8,¢ = 9, and
t = 10 in the sequence of “triple jump”. In many actions,
such distinctive frames, so-called key-frames yield crucial
temporal information. Furthermore, the proposed sequence-
based temporal attention, flc"”", set less importance on the
temporal dependencies between non-critical frames that are
less relevant to the action, such as the running sequence at
t=1andt=2.

4.4.5 Enhancement of the current frameworks

We integrated the proposed selective multi-feature attention
(MFA) into several state-of-the-art spatiotemporal action
detection frameworks based on the transformer network.
This includes the Tublet attention in TubeR [49], actor-
context attention in ACARNet [13], and interaction attention
in AIA [37]. The results for the AVA 2.1 dataset are shown
in Table 11. The outcomes indicated that all the methods
improved when the new MFA was used, with the highest
enhancement of 1.2% for AIA.

TABLE 11
The results of enhancing the state-of-the-art spatiotemporal action
detection frameworks using the proposed selective multi-feature
attention (MFA).

Method mAP@0.5% (baseline) mAP@0.5% (MFA)

ATA [37] 31.2 324
ACARNet [13] 30.0 30.1

TubR [49] 32.0 325
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Fig. 5. An example of action “triple jump” illustrates the comparison between the proposed sequence-based temporal attention correlation, Avcorr,
and the standard temporal attention correlation, A<°". Here, Af°"" and A{°"" represents the temporal correlation between the frame i and j. The
standard temporal attention tends to give higher values to similar frames, sucﬁ ast=1landt=2ort=4andt =5, and lower values to distinctive
frames, suchas ¢t = 8andt = 9 ort = 9 and ¢t = 10. In contrast, the proposed temporal attention does not discriminate against frames based
on their similarities. Hence, A" is more effective than A°°"" in representing the temporal dependencies between distinctive frames such as the
start, middle, and end of the jump at ¢ = 8, ¢ = 9, and ¢ = 10 that are critical in defining the meaning of the action. Additionally, A<°"" places a
lower priority on the relationships between less critical frames, such as the running sequence frames, ¢t = 1 and ¢t = 2, which is less relevant to the

action “triple jump”.

4.4.6 Error Analysis and Failure Cases

Fig. 6 (and Fig. 1 and Fig. 2 in the Supplementary Material)
show some examples of success and failure cases from
three sequences selected from the validation set of the AVA
dataset. The true positives (TP), false positives (FP), and
false negatives (FN) are the correct, incorrect, and missed
action class predictions. Some limitations of the current
pipeline that contributed to failure cases are (1) 2D restriction
of videos is a cause of error. For example, the action “walking
along” was incorrectly detected (FP) as “talk to” or “listen
to” due to the lack of 3D perception of face orientations. (2)
Occlusion between persons and objects can distract the net-
work from detecting the correction relations between action
semantics. For example, a background object occluded with
persons gave the wrong impression (FP) that they “give”
objects to others. On the other hand, the occlusion can also
cause an object to be hidden, preventing it from detecting
(FN) the action class label “carry/hold” an object. (3) The
similarity between different classes also has contributed to
failure cases. For instance, the action “sit” could be confused
with ““bend /bow”.

4.4.7 Computational Efficiency Analysis

Table 12 shows the efficiency analysis of different pipeline
modules, which is based on running our algorithm on 30
frames sampled from 5 seconds of an action video. Further-
more, Table 13 indicates the efficiency analysis of different
combinations of multi-feature attention types.

5 CONCLUSIONS AND FUTURE WORK

This paper presents a novel spatiotemporal transformer
network to model action semantics and their interactions
effectively. In terms of contributed components, we intro-
duce, first, a motion-aware 2D positional encoding that, in
contrast to the standard one, can handle spatiotemporal

TABLE 12
Efficiency analysis of different pipeline modules

Module time (ms)
Action semantic detection 401
Optical Flow extraction 233
Motion Memory Module 106
Multi-feature semantic attention 160
Temporal Attention 41
Classification and Regression 35
Total pre-processing 634
Total network modules 342
Total runtime 976

TABLE 13
Efficiency analysis of different multi-feature attention (MFA) modules
and their combinations

MFA Module time (ms)
AGC 101
AMM 108
AGM | AMG 143
AGG 4 AMM | A\GM | AMG 160

variations in videos, especially geared toward action se-
mantics. Second, a multi-feature attention model captures
complicated multi-feature interactions between action se-
mantics based on their spatial and motion properties. This
model is accompanied by a special-purpose selective atten-
tion mechanism, which is more effective and efficient than
the standard self-attention mechanism. Third, the sequence-
based temporal attention model effectively captures hetero-
geneous temporal dependencies between action frames. In
contrast to the traditional temporal attention mechanism
that focuses on the relationship between individual action
frames, the sequence-based temporal attention model pri-
oritizes the temporal dependencies between frames based
on their contribution to the action sequence. The pro-
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Fig. 6. Examples of success and failure cases on a sequence of the AVA validation set (video id: “7T5GOCmwTPo”). The results show the true
positive (TP), false positive (FP), and false negative (FN) predicted classes with their confidence scores.

posed pipeline outperformed the state-of-the-art methods
on four spatiotemporal action benchmarks, AVA 2.2, AVA
2.1, UCF101-24, and EPIC-Kitchens.

The current pipeline detects action semantics with a pre-
trained network which is not end-to-end. A seamless learn-
ing process within the transformer network that encodes
action semantics directly may be more desirable. The same
criticism could also be levied toward our current method
of encoding optical flow fields. As possible future work, we
suggest extracting or simulating the optical flow fields end-
to-end within the deep network.
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