
Instructional Activity Detection Using Deep Neural
Networks

Matthew Korban
School of Electrical and
Computer Engineering
University of Virginia

Charlottesville, Virginia 22903
Email: acw6ze@virginia.edu

Peter Youngs
Department of Curriculum,

Instruction, and Special Education
University of Virginia

Charlottesville, Virginia 22903
Email: pay2n@virginia.edu

Scott T. Acton
School of Electrical and
Computer Engineering
University of Virginia

Charlottesville, Virginia 22903
Email: acton@virginia.edu

Abstract—Analyzing instructional videos via computer vision

and machine learning holds promise for several tasks, such as

assessing teacher performance and classroom climate, evaluating

student engagement, and identifying racial bias in instruction.

The traditional way of evaluating instructional videos depends on

manual observation with human raters, which is time-consuming

and requires a trained labor force. Therefore, this paper tests

several deep network architectures in the automation of instruc-

tional video analysis, where the networks are tailored to recognize

classroom activity. Our experimental setup includes a set of 250

hours of primary and middle school videos that are annotated

by expert human raters. We present several strategies to handle

varying length of instructional activities, a major challenge in

the detection of instructional activity. Based on the proposed

strategies, we enhance and compare different deep networks for

detecting instructional activity.

I. INTRODUCTION

Evaluation of classroom activities is essential for instruc-
tors to revise and improve their teaching skills [1]. As a result,
accurate feedback from classroom evaluation drastically affects
students’ classroom engagement and enhances the quality of
education [2]. Traditionally, providing such feedback requires
considerable labor and manual rating from trained experts,
which is expensive and time-consuming. Using deep learning
models is an efficient and effective solution to this issue as
they can automate the evaluation of teacher activities, reducing
manual labor work and errors caused by humans [3]. There-
fore, this paper compares several deep network architectures
based on their ability to detect instructional activities. Several
strategies have also been presented to enhance the effectiveness
of deep models in detecting instructional activities. The new
strategies include: (1) an adaptive sampling algorithm for
selecting critical frames in classroom videos; (2) a new loss
function incorporating frame-level and sequence-level predic-
tion; (3) a post-processing algorithm for detecting the start
and end frames of long actions; (4) a motion enhancement
algorithm to make the motion features insensitive to camera
movements. The first three strategies address the issue of vary-
ing lengths of instructional activities, a significant challenge
in detecting instructional activities. The fourth strategy makes
the pipeline more reliable under camera movements during
capturing instructional videos.

II. RELATED WORK

Earlier methods used hand-crafted features such as dense
trajectory features [4] and bag-of-words (BOW) histogram of
motion tubelests [5] combined with traditional classification
algorithms including fisher kernels [4] and Support Vector Ma-
chine (SVM) [5] to detect actions in untrimmed videos. With
new advances in deep learning, detecting action has become
more effective. [6] p suggested an algorithm to localize actions
based on the maximum sum of frame-wise classification scores
in different temporal segments that are processed through a
deep Convolutional Neural Network (CNN). [7] improved it by
adding a recurrent mechanism that can better than CNN model
the temporal dependencies in action frames. [8] proposed a
more effective approach than [6], [7] using a long-short term
transformer that can process longer videos without any bias
against older temporal inputs.

There have been several approaches to detect activities
in classroom videos. [9] suggested using hand-crafted fea-
tures including elbow angles and movements in the face and
hands combined with Primitive-based Coupled Hidden Markov
Model (PCHMM) to recognize seven teacher activities. [1]
presented a more effective deep model with a multimodal
attention layer to capture long-term semantic dependencies
in instructional videos. [10] suggested that skeleton pose is
a more effective modality than RGB images used by others,
as the skeleton pose better represents teacher and students’
actions in classrooms.

III. METHODS

Fig. 1 shows the overall pipeline of our instructional action
detection. Given a sequence of RGB frames, I
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, t = 0, 1, ..., T}, the goal is to find the action class

scores, P̂ , and the start of the end of action, � and ✏, respec-
tively. Here, T is the size of the action sequence; and H and
W are the height and width of the image, respectively. We first
select the keyframes I
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, t = 0, 1, ..., T 0},
which include important frames in the sequence. Here, T
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is the number of keyframes. Next, the optical flow fields,
I
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, t = 0, 1, ..., T 0}, are extracted using a
state-of-the-art optical flow estimation algorithm [11]. Using
the motion enhancement algorithm, the optical flow fields are
enhanced, making them insensitive to camera movements. The
enhanced optical flow fields then are converted to optical flow



images I
K

0
= {Ik0

t
2 RH⇥W⇥3

, t = 0, 1, ..., T 0} using a
color-coding technique [12]. IK and I
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are then converted to
RGB features, IF = {If
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, t = 0, 1, ..., T 0} and motion
features I
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, t = 0, 1, ..., T 0}, using a pre-
trained I3D network [13], a widely used model for action
recognition. Here, m is the size of features. The enhanced
baseline model with a revised loss function process IF and I

F
0

produces the action class prediction scores. A post-processing
algorithm is also utilized to generate the start and end of action
instances.

Fig. 1. .The pipeline of the presented instructional activity detection
algorithm.

A. Keyframe selection

The instructional videos are long and often the important
events occur sparsely. So, a keyframe selection algorithm
is presented the choose the important frames, making the
proposed pipeline more efficient and effective in handling long
videos. The keyframes are selected when there is a desirable
change in videos that are evaluated by measuring the difference
between two consecutive frames as follows:
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where Tr is a threshold value.

B. Motion enhancement

Camera movement is inevitable in videos captured from
classrooms. Such camera movements distort the optical flow
fields and reduce the quality of motion features. To solve
this we utilize a motion enhancement algorithm. To do such,
first Gaussian mixture models (GMMs) are used to model
the background motion as P (�) =

P
K

k=1 ⇡kN(�|µk,⌃k),
where N(�|µk,⌃k) is a Gaussian density; µk, ⌃m, ⇡k, and
K are mean. covariance, mixing coefficient, and the number
of distributions, respectively. The background is modeled by
optimizing the GMMs parameters using maximum likelihood

estimation [14]. With the assumption that the background is
only affected by the camera movements, the camera-insensitive
foreground then is recovered by subtracting from the cor-
responding background parts with respect to the Gaussian
models.

C. Baselines

Three baselines are selected in this paper, including the
background suppression network [15], multi-label action de-
pendencies [16], and long short-term transformer [8]. All of
these networks performed exceptionally well on the THU-
MOUS [17] and ActivityNet [18] datasets. Our instructional
activity datasets share several characteristics with these two
datasets, including (1) videos that are long in length; (2) videos
are continuous streams, which means they are not segmented;
(3) several instances of class labeling can occur simultane-
ously with co-occurring labels in the annotation data. The
background suppression network produces weighted scores for
background and foreground frames. Such a weighting strategy
handles the crowded scenes in classroom videos that may
include a significant amount of irrelevant information. The
multi-label action dependencies model captures the multi-class
dependencies between different action classes. This is useful
in our experimental setup since multiple instructional activities
may co-occur. The long short-term transformer can capture
short and long-term dependencies in action videos. This will
help to include the critical temporal dependencies regardless of
their temporal distances. This is important in classroom activity
detection, where the temporal locations of critical frames may
vary based on the size of video sequences.

D. Enhanced loss function

The instructional videos include both long and short action
instances, such as “teacher sitting” and “student raising hand”,
respectively. To accommodate the videos with varying lengths,
we suggest adding a new loss function to enhance the baseline
models:
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where y, ŷ, Y , and Ŷ are the ground truth per frame, predicted
values per action frame, ground truth per action sequence, and
predicted values per action sequence, respectively. Moreover,
c, C, ↵, and � are predicted class, the number of classes,
and the loss adjustment parameters for frame-level, and loss
adjustment parameters for sequence-level, respectively.

E. Post-processing

Many instructional activities such as “teaching sitting” are
significantly longer than standard actions. So, they cannot be
entirely processed within the standard deep learning models
to regress the start and end frames as these deep models
have limited temporal receive fields. So, we propose a post-
processing algorithm to find the start and end frames of action
instances after the frame-level prediction stage.

Given the action detection scores Ŷ 2 RT⇥C , the
goal is to find the start and end frames of action instances,
{�, E} = {�c

m
, ✏

c

m
, c = 0, 1, ...C;m = 0, 1...,M}, where M



is the number of class instances. Our post-processing algorithm
consists of two phases of action scores thresholding and the
start and end frames detection as shown in Algorithm 1. We
used our post-processing algorithm to visualize the start and
end of actions for teachers based on a developed teacher
dashboard.

IV. EXPERIMENTAL RESULTS

A. Implementation details

The size of RGB and motion features in our experiments
for all baselines is 1024. For the background suppression
model, six convolutional layers are used. The learning rate
is 1e�5 which is decayed by 0.1, for every 1500 iterations.
The multi-label dependencies network includes five layers. The
temporal length is 132, and the initial learning rate is 1e�4.
The long-short term transformer consists of four layers and 16
heads. Moreover, the learning rate is increased from zero to
5e�5 for half of the training iterations that took 50 epochs. All
the experiments are conducted using PyTorch 1.7 on a server
PC with dual Nvidia RTX 3090 GPUs (24GB VRAM), AMD
Ryzen Threadripper 3990X 64-Core Processor, and 256GB of
RAM.

B. Dataset.

An elementary school dataset was collected to analyze in-
structional activities. 250 hours of instructional activity videos
were annotated by a team of nine professional annotators. Fig.
2 shows the labels for our 24 instructional activity classes. In
our experiments, 80% of the data is used for training and 20%
for testing.

Fig. 2. The 24 instructional activity class labels in our annotated dataset.

In our experiments, we used the F1 score metric based on
frame-level prediction as

F1 = 2 · precision · recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

(3)

where TP , FP , and FN are true positive, false positive, and
false negative predicted frames, respectively.

C. Comparative Results

Fig. 3 shows the comparative results of our pipeline based
on three baseline models. The average per class performance
for the background impression, multi-label dependencies, and
long-short term transformer models are 0.47, 0.49, and 0.4,
respectively. The average per sample performance for the back-
ground impression, multi-label dependencies, and long-short
term transformer models are 0.52, 0.57, and 0.47, respectively

Algorithm 1 Post-processing

Require: Action detection scores, Ŷ 2 RT⇥C

Ensure: start and end frames of action instances, �, E

Phase 1 – Action Scores thresholding

1: t = 0
2: while t  T do . T is # of frames
3: c = 0
4: while c  C do . C is # of classes
5: if Ŷt,c � ✓ then . ✓ is the detection threshold
6: Ŷt,c = 1
7: else if Ŷt,c < ✓ then

8: Ŷt,c = 0
9: end if

10: c c+ 1
11: end while

12: t t+ 1
13: end while

Phase 2 – Start and end frames detection

14: Y
S = SPLIT (Ŷ ) . splitting Ŷ to N segments

15: Y
S = {yn, n = 1, 2, ..., N}

16: L 2 RN⇥C  0 . initializing labels for each segment
17: n = 0
18: while n  N do

19: c = 0
20: while c  C do

21: if
P

i=Q

i=1 yn,c � Q/2 then . Q = T/N

22: Ln,c = 1
23: else if

P
i=Q

i=1 yn,c < Q/2 then

24: Ln,c = 0
25: end if

26: n n+ 1
27: end while

28: c c+ 1
29: end while

30: L
M = MERGE(L) . merging if Ln,c = Ln+1,c

31: Y
M = RESPLIT (Ŷ ) . re-splitting Ŷ based on L

M

32: n = 0
33: while n  N

0
do . N

0 is # of segments for LM

34: c = 0
35: while c  C do

36: �n,c = START (Y M

n,c
) . first frame if Y M

n,c
= 1

37: ✏n,c = END(Y M

n,c
) . last frame if Y M

n,c
= 1

38: Add �n,c to � . adding the start frame
39: Add ✏n,c to E . adding the end frame
40: n n+ 1
41: end while

42: c c+ 1
43: end while



Fig. 3. Comparative results for three baselines and 21 instructional activity
class labels.

D. Ablation study

Fig. 4 illustrates the impact of our proposed strategies,
Keyframe Selection (KS), Motion Enhancement (MH), and
Enhanced Loss Function (EL) on the total performances of
two baseline models. Using our proposed strategies, the av-
erage performance for background suppression model has a
significant improvement of 0.2, from 0.37 to 0.57. Similarly,
for the long-short term transformer, the performance has been
increased from 0.52 to 0.65.

Fig. 4. The impact of the Keyframe Selection (KS), Motion Enhancement
(MH), and Enhanced Loss Function (EL) on the overall performances of
baseline models on three activity types + transition class labels.

V. CONCLUSION

This paper proposes several strategies to improve the
performance of multiple state-of-the-art action detection net-
works on instructional activity videos. The presented strategies
mainly focus on improving the network in dealing with varying
activity sequences and camera movements. Such a enhanced
deep learning framework will facilitate teachers to receive
feedback more effectively and efficiently than using manual
labor. The experimental results have been promising when
the enhanced deep models are evaluated on 250 hours of our
annotated instructional videos.
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