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ABSTRACT

Deer surveys play an important role in the estimation of local ecological balance. In the Chitwan National Park of
Nepal, the dense tree canopies and tall vegetation often obscure the presence of wild deer, which has a negative
effect on the accurate population surveys of wild deer. UAVs equipped with infrared sensors have been
increasingly used to monitor wild deer by capturing a lot of images. How to automatically recognize and obtain
the number of deer objects from thermal images is becoming an important research topic. Due to the difference
between thermal images and true-color images, as well as the variations in deer object sizes in these two types of
images, current ready-to-use object detection models, designed for true-color imagery, are ill-suited for the task
of detecting small deer objects within thermal imagery. In this paper, an enhanced Faster R-CNN was constructed
to detect small deer objects from thermal images, in which a Feature Pyramid Network (FPN) based on a residual
network is used to improve feature extraction for small deer objects and multi-scale feature map constrution for
the subsequent region proposals searching, bounding box regression, and regions of interest (Rols) classification.
In addition, small-scaled anchor boxes and a multi-scale feature map selection criterion are devised to improve
the detection accuracy of small objects. Finally, based on Faster R-CNN, FPN, and different residual networks
including ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152, we constructed five object detection
models, and evaluated their detection performance by using COCO evaluation matrix. Under the condition of
IoU > 0.5, the integration of Faster R-CNN, FPN, and ResNet18 demonstrated to perform better than others.
Specifically, The COCO evaluation results revealed an Average Precision (AP) score of 91.6% for all deer objects.
Small deer objects (area < 200 pixels) achieved an AP score of 73.6%, medium deer objects (200 < area < 400
pixels) demonstrated an AP score of 93.4%, and large deer objects (area > 400 pixels) achieved the highest AP
score of 94.3%. Our research is helpful for effective wild deer monitoring and conservation and can be a valuable
reference for the exploration of small object detection from low-resolution thermal images.

1. Introduction

understanding of the distribution of deer population, but also provide an
important barometer for the local ecological balance of an ecosystem

Deer survey refers to the process of determining the number of deer
and their distribution in a specific area or habitat (Bengsen et al., 2022a;
Schwarz and Seber, 1999). Deer surveys are often conducted within a
particular ecosystem, such as a forest, a wildlife reserve, or a national
park. By accurately estimating the number of deer in a given area,
wildlife authorities and conservationists not only can have a better
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based on the interactions of deer with other species (Forsyth et al.,
2022). When deer population decreases a lot in a specific area, it often
signals an increase in carnivorous animals or rampant poaching.
Conversely, a surge in deer population may indicate a decline in
carnivorous species or an overabundance of deer. Therefore, accurate,
detailed, and up-to-date wild deer surveys are of great benefit to wildlife
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management and conservation.

Traditional wild deer surveys were often conducted using ground-
based counting by field investigators who observe wild animals at
close range. For example, the population of wild deer is estimated by
tracking and counting deer and their pellets (Lautenschlager, 2021).
Ground-based counting is an arduous and exhausting work for field in-
spectors, and the survey may not be accurate due to deer’s elusive
behavior, dense vegetation, varied landscape, and presence of
dangerous carnivorous species. Wild deer is known for being very alert
and tend to avoid human presence, making it very difficult for surveyors
to get close enough for clear observations (Freeman et al., 2022). Tall
grass and thick tree branches and canopies often obscure visibility and
make it hard to spot and count deer. Deer may be distributed in grass-
lands, wetlands, and forests, each with their unique challenges to access.
Additionally, various dangerous carnivorous species in these landscapes
are potential risks to surveyors.

Camera trapping is also a popular method used in wild deer surveys.
Camera traps are strategically placed in various locations, such as trails,
watering holes, and other areas where deer are likely to pass. Fig. 1 (a)
shows a deer captured by a camera trapping when it passed by the trap.
Camera trapping can generate a lot of images and automatic object
detection models can be used to alleviate the task of reviewing images.
Four deer species were surveyed with camera trappings in the state of
Queensland, New South Wales, and Victoria, eastern Australia, and a
detection model was used to count the number of deer in the camera
trapping images, and to estimate the density of wild deer (Bengsen et al.,
2022b). Compared to ground-based counting, camera trapping allows
researchers to study wildlife without direct human presence, reducing
disturbance to the animals, and can operate for extended periods.
However, camera traps are stationary devices, and their deployed lo-
cations are often chosen based on human subjective judgement or prior
knowledge. This can introduce bias, resulting in certain areas or species
to be overrepresented, while others underrepresented or missed entirely.

In recent years, remote sensing technologies have been embraced in
wild deer surveys, offering a powerful and efficient means to observe
and monitor wild deer populations and their habitats over large
geographic areas. Remote sensing-based surveys may be conducted with
manned aircraft census and satellite monitoring. For example, a manned
helicopter was used to monitor and estimate the population of wild deer
in the Sierra Nevada as shown in Fig. 1 (b) (Conner and McKeever,
2020). While manned aircraft surveys offer flexibility regarding survey
timing and area, they also come with a relatively high cost to pay for not
only the aircraft but also the qualified and skilled pilots, and may exert
disturbance to the animals due to noise imposed by the flying aircraft
(Petso et al., 2021). Satellite-based wildlife monitoring, capable of
counting wild animals from space, primarily relies on very-high-
resolution (<1 m) satellite imagery. For instance, the population of
Weddell seals in the coast of Antarctica was estimated using high-
resolution satellite images . These methods offer extensive observation
coverage, short revisit intervals, and minimal disturbance to the ani-
mals. Nonetheless, it’s necessary to note that even with very-high-
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resolution satellite imagery, these techniques are only effective in
recognizing larger individual animals (such as wildebeests shown in
Fig. 1 (c)), but not smaller animals such as wild deer.

With the recent advancement of drone technology and the
decreasing of the equipment costs, unmanned aerial vehicles (UAVs)
have emerged as a promising alternative for conducting wildlife surveys.
Unlike manned aircraft requiring highly skilled pilots, UAV surveys can
be operated by average researchers with moderate training and there-
fore is much cost-effective (Nazir and Kaleem, 2021). Furthermore,
UAVs offer greater flexibility in revisiting survey areas at any specific
time, compared to the fixed date and time of satellite remote sensing
data acquisition. Additionally, UAVs can be configured or customized
with different types of sensors, allowing them to capture not only very
high-resolution true-color imagery but also thermal imagery, enhancing
the versatility to perform wildlife surveys at the landscapes covered by
dense forest and tall vegetation. Fig. 2 shows two images simultaneously
captured by a UAV in an area with 8 wild deer using two different
sensors. Fig. 2 (a) is a true-color image with a resolution of 8000 x 6000
pixels, with 4 deer in the open space near the road (labeled by green
rectangles) easily seen, two deer between the tree canopies (labeled by
yellow rectangles) visible and not easily be detected, and two deer
covered partially or completely by tree canopies (labeled by red rect-
angles) not visible. Fig. 2 (b) is a thermal image with a resolution of 640
x 512 pixels, with 8 wild deer all visible, even the two deer beneath the
tree canopies, attributing to their body temperature being higher than
the ambient background. Therefore, UAVs are increasingly employed for
wildlife monitoring and counting, and researchers have begun to adopt
thermal sensors for wild deer surveys (Preston et al., 2021). The focus of
study is to monitor wild deer in the Chitwan National Park of Nepal.
Most parts in the park are covered by trees and tall grasses, which make
it difficult for true-color sensors to detect wild deer due to the occlusion
of vegetation canopies as shown in Fig. 2 (a). Therefore, thermal cam-
eras onboard the Mavic 2 Enterprise Advanced DJI Drones are used as
the primary sensors for wild deer survey in this research.

UAV surveys and camera trapping can easily capture thousands of
images, resulting in huge image datasets that require careful examina-
tion for the identification of wild animals. Manual recognition and
counting of animals from the imagery is relatively accurate and reliable.
For example, white-tailed deer in two United States National Parks
(Harpers Ferry National Historic Park and Monocacy National Battle-
field) surveyed by UAVs equipped with thermal sensors were enumer-
ated manually in order to estimate their density (Preston et al., 2021).
However, manual recognition and counting requires great effort to re-
view a massive number of images, which is a labor-intensive and time-
consuming task (Greenberg et al., 2019). To overcome this difficulty,
automatic or semi-automatic methods based on artificial intelligence
have been used to detect animals from images. Deep learning models
characterized by convolutional neural networks (CNNs) are being
increasingly used to automate the animal recognition and counting
tasks, and their performance is continuously improved with the intro-
duction of enhanced architecture (Kaur and Singh, 2022). For example,

(b) | )

Fig. 1. (a) a deer was captured by a camera trapping; (b) a deer was monitored by a helicopter; (c) wildebeest migration captured by GeoEye-1 Satellite (Copyright:
MAXXAR www.satimagingcorp.com/).
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Fig. 2. Two wild deer were not seen on the 8 K true-color image (left) due to canopy cover, but they were visible on the thermal image (right) due to their higher

body temperature.

a deep neural network architecture based on ResNet 50 was employed to
detect wild animals from the Snapshot Serengeti true-color imagery
captured by camera trapping in Africa, and achieved a detection accu-
racy of 93.8% (Norouzzadeh et al., 2018). A model based on Feature
Pyramid Network (FPN) and ResNet50 was applied to detect elephants,
giraffes, and zebras from high-resolution true-color UAV images
captured over an open savanna in the Tsavo National Park of Kenya, and
achieved a detection accuracy of 95% for elephant, 91% for giraffes, and
90% for zebras (Fikelboom et al., 2019). However, their method de-
pends on using a fix-size sliding window to scan images for object
detection. As the window slides across an image, the same region of the
image may be evaluated multiple times with slight positional variations,
leading to prolonged processing time, especially for large images. In
addition, when dealing with objects of varying sizes using a fix-size
sliding window, the detection precision for objects smaller than the
window size tends to decline (Fikelboom et al., 2019). To address these
problems, object detection architecture with varied window sizes such
as Faster R-CNN and YOLO have been adopted to detect objects. For
example, a pre-trained Faster RCNN + InceptionResNetV2 model was
utilized to detect European mammals from camera trapping imagery and
achieved a detection accuracy of 94% (Carl et al., 2020). A RetinaNet
and a Faster R-CNN + ResNet50 were utilized to detect ungulate animals
including deer and boars from camera trapping imagery (Vecvanags
et al., 2022). However, there is a relative scarcity of research employing
these improved models for detecting animals from UAV images, with an
exception by (Peng et al., 2020) who employed Faster R-CNN to detect
kiang objects from true-color drone images with a resolution of 6000 x
4000 pixels, achieved an overall precision of approximately 90%.

To the best of our knowledge, detecting small wild animals like deer
from UAV thermal images using these improved object detection models
has not been found in the literature. One possible reason is likely that the
size of deer objects in pixels in a UAV thermal image is much smaller
than that in a high-resolution true-color image. The size of deer objects
in pixels in a true-color image (Fig. 2 (a)) and those in a thermal image

(Fig. 2 (b)) are listed in Table 1. On average, the total image size of deer
objects in the thermal image is about 100 times smaller than that in the
true-color image, providing very limited feature information to repre-
sent deer objects. Despite their outstanding performance for animal
detection in true-color imagery, current ready-to-use models designed
for true-color camera trapping or UAV imagery could not be directly
applied to UAV thermal images for deer detection. Therefore, custom-
izing the improved deep learning structure and finding optimal model
configuration suitable for detecting small objects such as deer from UAV
thermal images is worthy of further investigation, which comprises the
main purpose of this study.

For deep learning-based object detection, two fundamental elements,
feature maps and anchor boxes, play critical roles. Feature maps are
extracted from original images and utilized to identify potential objects
of interest and locate their rough positions within an image. Subse-
quently, anchor boxes come into play for generating regions of interest
(Rols) and facilitating bounding box regression, which enables the
refinement of Rols to better match the bounding box of the objects of
interest. In the general definition of CNNs, the CNN layers that are closer
to the input layer are called shallower layers, while deeper layers are
those more distant from the input layer. In the architecture of object
detection, various CNNs—such as ResNetl8, ResNet34, ResNet50,
ResNet101, and ResNet152—differ in the overall depth of their layers.
These CNNs are used to extract feature maps from the original imagery.
Deeper layers derive additional features from the output of shallower
layers through progressive downscaling. Consequently, feature maps
from shallower layers contain more spatial feature information due to
higher resolution, while those from deeper layers have more bands and
may provide more abstract semantic feature information. However,
when dealing with small objects containing only a limited number of
pixels, the vital spatial information about these objects can potentially
be lost in the deeper layers as part of the downsizing process, which may
not only fail to contribute to detection process but can also diminish
detection precision. Additionally, to ensure that the predicted Rols align

Table 1
the size of deer objects (Width, Height) in Fig. 2.
Deer 1 Deer 2 Deer 3 Deer 4 Deer 5 Deer 6 Deer 7 Deer 8
True Color (230,314) (211,216) (240,245) (230,314) (309,343) (220,314) (323,300) (265,260)
Thermal (23,30) (20,21) (23,24) (23,28) (30,34) (19,31) (31,30) (26,22)
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well with the bounding boxes of objects of various sizes, it is essential
that anchor box sizes are not fixed but instead set to be comparable to
those of the objects of interest. For small object detection, an anchor box
that is too large may introduce unwanted background information,
while one that is too small may only encompass part of the object, both
of which can negatively impact the process of object identification and
bounding box regression.

The purpose of this research is to address the above-mentioned
problems of small object detection based on deep learning and to ach-
ieve optimal model structures and configurations for deer surveys using
UAV thermal images. For this purpose, an enhanced Faster R-CNN based
on FPN + ResNets was constructed, and the following three objectives
will be achieved in this paper. Firstly, Feature Pyramid Network (FPN)
and residual networks are used to construct multi-scale feature maps.
Specifically, residual networks are utilized to extract feature informa-
tion from original imagery. The features obtained from both shallower
and deeper layers are subsequently fused by FPN to generate diverse
feature maps with different resolutions. Secondly, customized anchor
boxes that match with deer of different sizes in the UAV thermal images
are adopted to improve the precision of small object detection. Thirdly,
the multiscale feature map selection criterion is defined, allowing the
model to generate Rols. These Rols draw upon feature information from
the respective multiscale feature maps based on their sizes, which can
contribute to the efficiency of object identification and facilitate precise
bounding box regression. Finally, the model proposed in this paper was
tested in UAV thermal imagery including 2278 thermal images and
13,509 deer instance annotations. Based on the COCO evaluation ma-
trix, the model obtained an Average Precision (AP) score of 91.6% for all
deer objects. Specifically, small deer objects (area < 200 pixels) ach-
ieved an AP score of 73.6%, medium deer objects (200 < area < 400
pixels) demonstrated an AP score of 93.4%, and large deer objects (area
> 400 pixels) achieved the highest AP score of 94.3%.

The rest of the paper is organized as follows. In Section 2, an over-
view of using deep learning to detect objects in wild animal surveys is
introduced. This section offers insights into the existing research in this
domain. Section 3 delves into the detailed description of our small deer
object detection model based on Faster R-CNN, FPN, and ResNets. This
section outlines the modifications made to the original model and
highlights the novel techniques employed to improve the detection of
small deer objects in low-resolution thermal images. In Section 4, the
experimental results and analysis are presented. These experiments can
provide evidence to support the efficacy of our approaches. Finally,
Section 6 concludes the paper, summarizing the key findings and con-
tributions. This section also discusses some future work in this field.

2. Related work

Wildlife surveys, crucial for understanding biodiversity and popu-
lation trends, often involve the collection of a vast number of images.
This abundance of visual data presents a significant challenge as the
manual review and identification of animals within these images are
labor-intensive and time-consuming. To address this issue, various
automatic and semiautomatic methods were proposed to detect animals
from images. From the perspective of techniques, these methods can be
categorized into two classes: pixel-based classification using machine
learning and region-based classification using deep learning.

Pixel-based classification methods, such as supervised classification,
unsupervised classification, and threshold setting, are the most common
methods for detecting animals in remote sensing images (Peng et al.,
2020). For example, threshold setting is a simple and widely used
approach in wildlife detection from images. The idea behind this method
is to apply a threshold value to a specific image feature, such as color,
intensity, or texture, and then consider all regions or pixels that surpass
this threshold as potential animal regions. In (Jobin et al., 2008), a pixel-
based classification method was proposed to classify pixels based on
their spectral characteristics and compare them to predefined threshold
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to find the regions including animals. While these approaches work well
for targets with distinct gray values that significantly differ from the
background, they often exhibit limited accuracy in complex environ-
ments where animals blend with their surroundings. Subsequently, more
stable hand-crafted features, such as Histogram of Oriented Gradients
(HOG) and Haar-like features, along with classifiers like Support Vector
Machines (SVMs) were used to detect animals from the images captured
from complex environments (Rangdal and Hanchate, 2014). (Torney
et al., 2016) introduced a method that combined rotation-invariant
object descriptors with machine learning algorithms to detect wilde-
beests from aerial images. This approach yielded better results
compared to manual operations. (Rey et al., 2017) proposed a semi-
automatic system for detecting large mammals in UAV imagery with a
high recall rate. But these methods often lacked robustness and still
struggled with complex backgrounds.

Recently, with the breakthrough in deep learning, particularly the
development of CNNs has revolutionized the field of animal detection.
With CNNs, feature extraction became more automated, enabling the
models to learn hierarchical representations from raw image data. One
of the most popular methods was to use image classification CNNs to
find potential areas containing animals by using the sliding window
approach across the image. In (Barbedo et al., 2019; Barbedo et al.,
2020), famous models, such as VGG, ResNet, AlexNet, GoogleNet,
DenseNet, and NASNet, were used to detect cattle from 4 K-resolution
images. (Kellenberger et al., 2018) constructed a CNN model based on
Resnet-18 to detect large mammals from a dataset acquired over the
Kuzikus wildlife reserve in eastern Namibia and got a high recall up to
90%. However, this method is very time-consuming and computation-
ally expensive. Later, the methods using the sliding window techniques
were replaced by object detection models based on deep learning, such
as R-CNN (Bharati and Pramanik, 2020), Fast R-CNN (Girshick, 2015),
Faster R-CNN (Ren et al., 2016), YOLO (Bochkovskiy et al., 2020), and
RetinaNet (Lin et al., 2018). These models combined region proposal
techniques with deep CNNs, significantly improving detection accuracy
and efficiency. Researchers started applying these models to animal
detection tasks. (Eikelboom et al., 2019) utilized RetinaNet to detect
elephants, giraffes, and zebras from aerial images in Kenya, and they
obtained the accurate ratio of 95% for elephants, 91% for giraffes and
90% for zebras. (Aburasain et al., 2021) used a single-pass deep CNN
known as YOLOV3 to detect cattle from drone images and got a F-score
of 0.93. In (Popek et al., 2023), a Faster R-CNN model was used to detect
deer from the images from camera traps, and got an accuracy of 0.87.
Even though these models significantly improve the effectiveness and
efficiency of animal detection, the detection accuracy is not stable,
especially when dealing with imagery containing objects of varying sizes
or objects vary significantly in size within an image. Feature Pyramid
Network (FPN) proposed by (Lin et al., 2016) was used to address this
problem. The key idea is to leverage the inherent multi-scale, pyramidal
hierarchy of deep convolutional neural networks (DCNNSs) to construct
feature pyramids, which are used to detect objects at different scales.
Based on different DCNNSs, various FPNs have been constructed. In the
research area of animal detection, FPN based on ResNet50
(ResNet50FPN) is widely used as the backbone of object detection
models for wildlife surveys (Nazir and Kaleem, 2021). For example,
ResNet50FPN was used to remotely detect sick chicken from a poultry
farm and obtained a detection accuracy of 93.7% (Zhang and Chen,
2020). A Faster R-CNN integrating ResNet50FPN was constructed to
detect big animals from Google Open Images and COCO datasets, such as
Bear, Fox, Dog, Horse, Goat, Sheep, Cow, Zebra, Elephant, and Giraffe.
They got a mean average precision of 0.81(Yudin et al., 2019). In
(Delplanque et al., 2022), FPN based on ResNet101 was used to generate
feature maps for object detection models to to detect six types of African
mammals of Topi, Buffalo, Kob, Warthog, Waterbuck, and Elephant, and
got a mean average precision of 0.82.

Currently, most above research mainly focuses on detecting larger
objects from high-resolution true-color images, and some models have
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obtained the outstanding performance of animal detection. However,
the research of detecting small objects in thermal imagery remains
relatively unexplored. Small objects in thermal images captured by
drones may appear at varying distances from the drone camera, often
leading to size variations in the captured images. For example, the deer
objects in the UAV thermal imagery used in this paper exhibit a size
variation ranging from 15 x 15 pixels to 65 x 65 pixels. It is relatively
difficult for current ready-to-use models trained on true-color imagery to
be directly applied to detect small objects from UAV thermal images due
to the distinct context difference between thermal images and true-color
images, as well as limited pixels for representing small objects in UAV
thermal images. In addition, ResNet50 has been used to extract feature
maps for object detection models by default in many papers. However,
as an image progresses through DCNNs, down sampling operations such
as pooling reduce the spatial dimensions of the feature maps. This
reduction in spatial information is beneficial for capturing larger objects
but can be detrimental to the representation of small objects, which
leads to the disappearance of fine-grained details, particularly in small
objects. Therefore, in this paper, Apart from ResNet50, ResNetl8,
ResNet34, ResNet101, and ResNet152 are all tested to extract features
from UAV thermal images in order to find optimal model structures and
configurations for deer survey using UAV thermal images.

3. Methodology
3.1. Overview

Generally, an object detection model takes images as input, and a
DCNN, served as the backbone network, is used to construct feature
maps. Subsequently, a region proposal network comes into play, and
generates region proposals, assigning a probability for containing an
object to each region. The derived region proposals are reshaped by a
pooling layer to generate Regions of Interest (Rols). Finally, classifica-
tion and bounding box regression is engaged to predict both the pres-
ence and location of objects within the original images. These types of
models are commonly called ‘two-stage detectors’ due to their two-step
process (Goyal et al., 2023).

Faster R-CNN is a two-stage detector widely recognized for its
effectiveness in object detection from images. It comprises two main
components: (1) a Region Proposal Network (RPN), responsible for
generating a set of region proposals; and (2) a Fast R-CNN (Girshick,
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2015) module, which classifies all regions into objects or background
and refines the boundaries of the objects. Notably, these two model
components share common parameters in the convolution layers used
for feature extraction, enabling the two components to be trained at the
same time to achieve competitive object detection performance. Fig. 3
shows our Faster R-CNN model designed to detect small deer objects
from thermal images. In the Faster R-CNN model, feature maps extracted
from images play a crucial role because they provide essential spatial
and semantic feature information for the RPN to predict Rols, and some
of these predicted Rols may correspond to background regions. Specif-
ically, according to their positions within original images, the corre-
sponding feature information of the Rols is obtained from feature maps.
Then the classifier based on Fast R-CNN utilizes this feature information
to classify the Rols into deer objects and backgrounds.

The significance of feature maps in object detection is well-
acknowledged, but equally important are anchor boxes. Anchor boxes
serve as reference templates at different scales and aspect ratios, guiding
the object detection process to precisely locate and classify objects of
different sizes and shapes. By aligning the predicted bounding boxes
with the anchor boxes, the model can detect objects effectively, espe-
cially the small ones that may otherwise be overlooked. Inaccurate an-
chor boxes can impede the model’s capability to detect small objects,
potentially causing them to be entirely missed during the detection
process. Properly selected anchor boxes are indispensable for the sub-
sequent bounding box regression, which refines initial predicted
bounding boxes to better fit the objects’ actual locations, thus signifi-
cantly enhancing the model’s precision. Anchor boxes also play a role in
hard negative mining, which focuses on challenging negative examples
during the training process. By selectively mining hard negative exam-
ples, the model can learn to better distinguish between objects and
background regions, leading to improved overall performance.

3.2. Multi-scale feature map construction

Feature maps are generated by applying a convolutional layer to the
input image or the feature map output of the prior layers. For an object
detection model, feature maps are utilized to locate the positions of
objects and classify them into specific classes. The original Faster R-CNN
in (Ren et al., 2016) adopted VGG16 (Simonyan and Zisserman, 2015) as
its backbone network to extract feature information from input images.
Specifically, the output of a convolutional layer within the VGG16 was
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Fig. 3. The structure and flowchart of an enhanced Faster R-CNN in this paper.
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utilized as a feature map for further analysis and processing. According
to the description of feature maps in (Ren et al., 2016), a thermal image
with a resolution of 640 x 512 would result in a feature map with a
resolution of 40 x 32. The average small object size in thermal images in
this paper is around 30 x 30 pixels. Through the process of feature map
extraction, its feature information is condensed to 2 x 2 pixels, resulting
in a significant deficiency of spatial feature information necessary for
accurate detection of small objects in thermal images. To address this
problem, one commonly employed approach is to select a convolutional
layer in a CNN model that can produce high-resolution feature maps.
However, high spatial feature information in a feature map often
pocesses low semantic feature information. A feature map with low se-
mantic features has negative effects on bounding box regression and
object classification. To overcome this issue, Feature Pyramid Network
(FPN) was used to fuse feature information extracted from different CNN
layers. Compared with VGG16, Residual networks exhibit superior ca-
pabilities in feature extraction and hierarchical feature representation.
Residual networks can effectively generate feature maps at various
scales, contributing to a more nuanced and comprehensive under-
standing of the feature information of small objects. Therefore, the
integration of FPN and residual neural networks is used in this paper.
Specifically, residual neural networks are used to generate feature maps
in different scales. Then FPN is used to combine low-resolution,
semantically strong features with high-resolution, semantically weak
features via a top-down pathway and lateral connections across the
feature maps.

The family of residual neural networks includes ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152 according to their number of CNN
layers. “Stage” is an important term in the context of residual neural
networks, which refers to a specific set of convolution layers that output
feature maps with different resolutions. Take ResNet152 as an example
in (Fig. 4), it consists of five stages (Conv1, Layerl, Layer2, Layer3, and
Layer4) and each stage can produce a feature map. The spatial resolution
of each feature map is progressively reduced by a factor of 2, while the
number of bands is simutanously increased by a factor of 2. Usually, the
traditional FPN neglects the feature maps from Convl, Layerl and Layer
2 and only incorporates the two feature maps from Layer 3 and Layer 4.
For the detection of large objects from high-resolution true-color im-
ages, this may work well. However, for the small objects in UAV thermal
images, the spatial feature information left in the two feature maps
produced by Layer 3 and Layer 4 may be deficient for accurate detection
of small objects. Therefore, all five feature maps produced by Convl,
Layerl, Layer2, Layer3, and Layer4 are utilized in the creation of the
final multi-scale feature maps through FPN in this research. Notably, the
feature maps extracted from Convl and Layerl exhibit higher spatial
resolution and retain more valuable information related to small objects
compared to the other feature maps. The inclusion of the feature maps
from Convl, Layerl, and Layer2 allows the model to obtain additional
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spatial information from their outputs, enhancing the accuracy of small
object detection in thermal images.

For example, the structure of FPN based on ResNetl152
(ResNet152FPN) is shown in Fig. 5. The bottom-up pathway involes
generateing output feature maps from various stages of the network (Lin
et al., 2016), which are denoted as {Ci,Cz,Cs, C4,Cs}. To merge fea-
tures extracted from different stages along top-down pathway, the C;(i =
1,2,3,4) map undergoes an upsampling process, increasing its resolu-
tion by a factor of 2. The upsampled output is then combined with the
corresponding bottom-up feature map C;(j = 2,3,4,5) using element-
wise addition. This merging operation allows for the integration of
high-resolution details from the upsampled map with the existing fea-
tures. In order to mitigate the potential aliasing artifacts resulting from
the merging operation, a 3 x 3 convolutional operation is applied to
each merged map to generate the final feature map. For example, Cs is
the output of Layer4 and is upsampled by a factor of 2 denoted by Ds.
The output of Layer3 undergoes a 1 x 1 convolutional layer to reduce its
channel dimensions to be same with Cs denoted by E4. By element-wise
addition, M4 is generated and satisfies with the equation of My = Ds +
E4. Then, by a 3 x 3 convolutional operation, the feature map P4 is
created. Then, M, is downsampled by a factor of 2 to be D4. The output
of Layer2 undergoes a 1 x 1 convolutional layer to generate E3. By
element-wise addition, M3 is generated and satisfies with the equation of
M3 = D4+ Es. Similarly, M, and M; can be generated and satisfy the
following equations: My = D3 + E; and M; = D, + E;. Subsequently, by
3 x 3 convolutional operations, M;, My, M3, and M, are used to generate
four feature maps denoted by P;, P,, P3, and P4. Finally, Ps is generated
by downsampling P,. Five feature maps are resulted and denoted as
{P1,P3,P3,P4,Ps}. These feature maps are then respectively inputted
into RPN to generate region proposals and perform bounding boxes
regression.

3.3. Customigzed anchor boxes

The concept of anchor boxes was initially introduced by (Ren et al.,
2016). Anchor boxes can be defined as a set of bounding boxes with
predefined scales and aspect ratios. These anchor boxes are evenly
distributed across a feature map, strategically covering different posi-
tions. During the object detection process, each anchor box, is projected
back onto the original image for comparison with the ground-truth
bounding boxes, which define the true object locations. By establish-
ing a set of anchor boxes with various scales and aspect ratios, an object
detection model can gain flexibility in capturing objects of various sizes
and shapes within the image. These anchor boxes serve as reference
templates that provide spatial context to guide the subsequent detection
process.

The intersection of union (IoU) between an anchor box and a ground-
truth bounding box is used to estimate whether the anchor’s position is
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Fig. 4. The structure of ResNet152 Feature Extractor.
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Fig. 5. The structure of FPN based on ResNet152.

the target’s position. Suppose that A denotes an anchor box and B de-
notes a ground-truth bounding box, the algorithm of IoU is given by the
following equation.

ANB

ou =202 1
Y TAUB M

Fig. 6. An example of using anchors to detect deer. The red rectangle is a
ground-truth bounding box, and the green rectangles are the anchors generated
by three scales (12822562 512%) and three aspect ratios (0.5,1,2.) (For
interpretation of the references to colour in this figure legend the reader is
referred to the web version of this article.)

The IoU between an anchor box and a ground-truth box serves as a
primary measure of their proximity. Intuitively, with the increasing of
the IoU, object A becomes more like object B. Generally, the IoU
threshold is typically set to 0.5. When the IoU of an anchor box is <0.5, it
is considered not to enclose the target. Conversely, if the IoU is equal to
or >0.5, the anchor box is selected as a RolI for the subsequent bounding
box regression. In original Faster R-CNN (Ren et al., 2016), three scales
(128%,2562,5122) and three aspect ratios (0.5,1,2) are used to yield 9
anchor boxes for each sliding. However, the animal objects in UAV
thermal images are small and the average size is approximate to be 30 x
30 pixels, as shown in Fig. 6. When employing the anchor boxes defined
in (Ren et al., 2016), the IoU values of anchor boxes tend to be <0.5.
Therefore, these anchor boxes will be discarded, causing many small
deer objects to be missed by the original Faster R-CNN. To address this
problem, two tactics are employed in this paper. Firstly, the sizes of
anchor boxes are systematically reduced. Secondly, the number of an-
chor boxes is increased at each position. Specifically, the anchor box
scales are customized to be (4%, 8% 162,322 64%), while keeping the
aspect ratios the same. Therefore, at each position in a feature map, 15
different region proposals can be created. As shown in Fig. 7, the new
strategies can ensure that at least one of the 15 region proposals in-
tersects the ground-true bounding box and the corresponding IoU value
is >0.5, enhancing the ability of the proposed model to capture and
detect small objects from UAV thermal images.

Additionally, the bounding box regression in this paper is defined as
the following.

_ G- A

Iy
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(Ax,Ay) and (Gx,Gy ) are the centers of a predicted anchor A and a
ground-truth bounding box G respectively, and (Ay,,Ap) and (Gw,Gp)
denote the width and height of a Rol A and a ground-truth bounding box
G respectively. Strictly speaking, the transformation equation (Eq. (2))
exhibits non-linearity. However, when a Rol is similar enough to its
corresponding ground-true box, Eq. (2) can be treated as a linear
regression. Conversely, when a Rol and its ground-true box are signifi-
cantly different, Eq. (2) poses a complex non-linear regression problem,
making it very difficult to align a Rol with a ground-truth bounding box
accurately. For example, as shown in Fig. 7, the red rectangle represents
a ground-true box including a deer object. The green rectangles denote
the customized anchor boxes. Among these, there is at least one anchor
box, and its IoU value with the red rectangle is >0.5, which means
proximity in shape, location, and size to a ground-truth box. In this case,
Eq. (2) can be conceptualized as bounding-box regression from an an-
chor box to a nearby ground-truth box. Based on ty, ty, t,, and t;, a loss
function can be defined to facilitate the adjustment of an anchor box,
aligning it with its corresponding ground-truth box (depicted as the red
rectangle in Fig. 7). The adjustment is achieved through the process of
backpropagation within a neural network. The loss function is instru-
mental in quantifying the disparity between the predicted and actual
bounding box. By minimizing this disparity during training through
backpropagation, the neural network learns to improve the accuracy of
predicting anchor box positions. This iterative optimization process
ensures that the model adapts its anchor boxes to closely match the
ground-truth boxes, enhancing the overall precision of object detection

Fig. 7. An example of using 15 anchors to detect deer in this paper. The red
rectangle is a ground-truth bounding box, and the green rectangles are the
anchors generated by three scales (4%,8%,162,32%,64%) and three aspect ratios
(0.5,1, 2) (For interpretation of the references to colour in this figure legend the
reader is referred to the web version of this article.)
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in the training phase.
3.4. Criterion for multi-scale feature map selection

In the original Faster R-CNN, only a single feature map is utilized,
and all Rols acquire their feature information from this common source.
Thus, there is no ambiguity in feature map selection. However, utilizing
a FPN built upon a residual neural network, it becomes possible to
extract five feature maps with different resolutions from a thermal
image captured by a UAV. Based on the small anchor boxes defined in
Section 3.3, RPN can utilize these multi-scale feature maps to predict
Rols with various aspect ratios, leading to improved detection perfor-
mance of small objects. However, when utilizing Fast R-CNN, as illus-
trated in Fig. 3 (b), for classifying these Rols, a question arises: for a
given Rol, which feature map should be selected to provide the feature
information? Normally, the criterion is mainly based on the scale, size,
and spatial characteristics of each Rol. In general, a larger Rol is
assigned to a smaller-scale feature map, while a smaller Rol is assigned
to a larger-scale feature map.

As shown on the top of Fig. 8, a feature map extractor based on FPN
and ResNetl52 extracted five feature maps from the original UAV
thermal image, and they each has different resolutions, including 256 x
320, 128 x 160, 64 x 80, 32 x 40, and 16 x 20. The region proposal
network can utilize the five feature maps to generate four Rols with
different sizes, which are respectively colored by purple, red, green and
yellow from left to right in the middle-right of Fig. 8. The size of the
purple Rol is the largest, and the model assigns a feature map with the
resolution of 32 x 40 to it. On the contrary, the red Rol is the smallest,
and the model selects the feature map with highest spatial resolution for
it. Similarly, the green and yellow Rols are assigned corresponding
feature maps according to their respective sizes. The selection of large
feature maps means the number of parameters is increasing and needs
more time for training and detection, while the selection of small feature
maps implies reducing the number of parameters and having faster
detection speed. By this means, the model in this paper is allowed for a
trade-off between detection accuracy and performance.

Based on the number of feature maps k, the Rol width w, and the Rol
height h, a multi-scale feature map assignment criterion is expressed by
the following equation:

index = floor (k-‘r logs (\/m//l) )

FVvwxh> A Vwxh=21 3

index is an integer value ranging from 1 to k, which denotes the index of
the chosen feature map. For instance, the resolutions of the five feature
maps on the top of Fig. 8 are 256 x 320, 128 x 160, 64 x 80, 32 x 40,
and 16 x 20 respectively, and their indices are 1, 2, 3, 4, and 5
respectively. A in Eq. (3) is a canonical adjustment parameter introduced
in (Lin et al., 2016, 2018). When the square root of a Rol area is equal to
or more than J, it is regarded as a big object and assigned to the feature
map with low spatial resolution. For example, the canonical pre-training
size of the ImageNet Dataset is 224 pixels, therefore, most of the object
detection models trained by the ImageNet dataset or true-color imagery
usually set the value of 1 to be 224. However, 1 = 224 is not suitable for
the detection of small objects in the UAV thermal images. 1 is a empir-
ically determined threshold. Therefore, 1 in this paper was set to be 320
based on trials and errors.

4. Experiment

Based on different residual networks, five different FPNs were con-
structed, which are respectively named ResNet18FPN, ResNet34FPN,
ResNet50FPN, ResNet101FPN, and ResNet152FPN. Each FPN serves as a
backbone network to generate multi-scale feature maps. By the five
FPNs, five different object detection models based on Faster R-CNN are
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Fig. 8. The process that multiple-scale feature maps are assigned to the Rols based on their resolutions.

constructed, and they are respectively named as FRC_ResNet18FPN,
FRC_ResNet34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN, and
FRC_ResNet152FPN. In this section, we utilized the same thermal im-
agery dataset collected in the Chitwan National Park of Nepal to indi-
vidually train each of the five object detection models. Subsequently, we
conducted a comprehensive comparison of their performance of small
deer object detection based on the COCO detection evaluation matrix
(Padilla, Netto, and da Silva 2020). This evaluation aims to identify the
most effective object detection model for wild deer surveys from UAV
thermal images.

4.1. Data allocation

The wild deer survey in this paper was conducted in several con-
servation areas for wild deer in the Chitwan National Park of Nepal. The
study areas are covered by riverine mixed forests and riparian grass-
lands, and the average temperature stays stable in a year ranging from
18 to 36C. Mavic 2 Enterprise Advanced DJI Drones, equipped with a
thermal camera and a true-color camera fully stabilized by a 3-axis
gimbal, were used to monitor wild deer. A total of 22,478 thermal im-
ages were captured, but not all these images contain wild deer. In order
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The histogram of number of deer instances in the dataset. The number of bins is 20.

Fig. 10. An example of deer annotation. There are 72 deer in the left image. The 72 deer are annotated by ImageLab as shown in the right image.

to construct a UAV thermal image dataset for the training and validating
the object detection models, 5000 thermal images that are likely to
contain wild deer were manually soughted and each deer object was
annotated by rectangles. Although this task was both time-consuming
and labor-intensive, it is an indispensable process to build an auto-
matic model for estimating the population of wild deer in the future. To
ensure the precision of the annotations, two experienced scientists from
the Center for Complex Human-Environment Systems in San Diego State
University, along with two students from the University of Texas at
Dallas, were employed. At first, the two scientists independently filtered
the images by meticulously identifying the images including deer.
Subsequently, the two students utilized ‘ImageLab,” a freely available
online image annotation tool, to label the precise locations of deer ob-
jects . Secondly, the two scientists then double checked all the annota-
tions, cross-verifying against each other to determine whether an
annotation should be considered as a ground truth or should be
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discarded. This verification process aims to prevent subjective biases
and ensure the accuracy and reliability of the annotations. As a result, a
comprehensive dataset consisting of 2278 thermal images and 13,509
deer instance annotations was constructed. The entire process took
approximately seven days, with the two scientists and two students each
dedicating four hours each day to complete the task.

The number of deer instances in each image varies, ranging from 1 to
72. The frequency histogram illustrating this distribution is depicted in
Fig. 9, and an example image containing 72 deer annotations is dis-
played in Fig. 10. According to Fig. 9, it is evident that the distribution of
deer numbers across the different images in the dataset is unbalanced,
which may raise concerns if the dataset is randomly divided into
training, validation, and testing subsets. To address this issue, the
dataset is initially divided into separate subsets based on the number of
deer in each image. Within each subset, the images are further parti-
tioned into three sections using a ratio of 75:15:15. Subsequently, the
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Fig. 11. The area histogram of the bounding boxes of deer objects in our dataset. The number of bins is 100.

images from different sections are combined to form three distinct
datasets, which are respectively allocated for training, validation, and
testing. By employing this approach, we ensure that each data set
maintains a balanced distribution of deer instances.

4.2. Model evaluation criterion

To ensure a comprehensive assessment of the performance of models
in this study, COCO detection evaluation matrix is adopted, and Average
Precision (AP) and Average Recall (AR) are used to estimate the per-
formance of different models (Padilla et al., 2020). AP and AR are
computed based on the IoU thresholds ranging from 0.5 to 0.95 with a
step size of 0.05, which accounts for varying levels of overlap between
predicted and ground truth bounding boxes. AP provides a measure of
the model’s accuracy in positive predictions, focusing on the avoidance
of false positives. It assesses how well the model’s positive predictions
align with the ground truth. On the other hand, AR measures the model’s
ability to correctly identify all positive instances, emphasizing the
avoidance of false negatives. It evaluates how well the model captures
all objects of interest. The AP and AR can offer insights into the model’s
precision and recall trade-offs, providing a method to assess the overall
effectiveness of a model.

According to COCO detection evaluation matrix, all objects are
categorized into three levels based on their sizes, including Large, Me-
dium, and Small. The distribution of bounding box areas within the UAV
image dataset in this paper is shown in Fig. 11. In fact, there is not a
strict definition for Small Object, Medium Object, and Large Object. The
criteria introduced in (Chen et al., 2017; Tong et al., 2020; Zhu et al.,
2016) are widely accepted and are also adopted in this research. Based
on the criteria, small objects are characterized by bounding boxes with
an area range from 0 to 200 pixels. Medium objects are characterized by

Table 2
The categorization criteria for deer objects based on their bounding boxes.
Level name Range of area Number Ratio
Small Objects 100-200 3575 26.5%
Medium Objects 200-400 6721 49.8%
Large Objects 400-100,000 3213 23.7%
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bounding boxes with an area range from 200 to 400 pixels. Large objects
are characterized by bounding boxes with an area exceeding 400 pixels.
The details on the number and ratio of Small Object, Medium Object,
and Large Object in the UAV imagery in this paper are shown in Table 2.
In Fig. 12, three example images are provided to show what small,
medium, and large deer objects are like.

4.3. Experiment results analysis

By utilizing the five FPNs and small-scale anchor boxes
(4%,82,162,322,64%), we constructed five deer object detection models
based on Faster R-CNN, namely FRC_ResNet18FPN, FRC_ResNet34FPN,
FRC_ResNet50FPN, FRC_ResNet101FPN, and FRC_ResNet152FPN. For
short, we also used M1, M2, M3, M4, and M5 to denote these five object
detection models respectively in Table 3. The 13,509 deer objects were
divided into the training set (9,115 objects), testing set (2,197 objects)
and validation set (2197 objects). The average precision for small, me-
dium, and large objects based on the test set as shown in Table 3.

IoU > 0.5 means that it will be a true positive prediction only when
the IoU value between a predicted bounding box and its corresponding
ground-true bounding box is greater than or equal to 0.5. 0.5 < IoU <
0.95 means ten IoU thresholds ranging from 0.5 to 0.95 with a step size
of 0.05, and ten precisions for different ranges can be calculated, and
then compute the mean of the ten values. This comprehensive evalua-
tion accounts for varying levels of overlap between predicted and
ground truth bounding boxes, which is often used to evaluate how well
the bounding boxes generated by models fit corresponding objects. Ac-
cording to the results in Table 3, the performance of both FRC_Res-
Net18FPN and FRC_ResNet152FPN is very close and surpasses that of
the remaining three models. Under the condition of IoU > 0.5, the AP of
the five models is shown in Fig. 13.

As shown in Table 3, the five models share a common characteristic.
The Average Precision (AP) demonstrates a progressive decrease as the
size of the objects being detected decreases. Generally, the detection of
large deer objects tends to yield higher AP, as these objects are relatively
easier to discern and locate accurately within the thermal images. As the
size of deer objects decreases, the detection task becomes more chal-
lenging, leading to a decrease in the AP for both medium and small deer
objects. In addition, AP is often sensitive to the IoU threshold, and strict



H. Lyu et al.

Ecological Informatics 79 (2024) 102383

(a)

(b)

Fig. 12. (a) an example of small deer objects; (b) an example of medium deer objects; (c) an example of large deer objects.

Table 3

The COCO detection evaluation matrix of the five object detection models. M1 denotes FRC_ResNet18FPN. M2 denotes FRC_ResNet34FPN. M3 denotes FRC_Res-

Net50FPN. M4 denotes FRC_ResNet101FPN. M5 denotes FRC_ResNet152FPN.

IoU Object Size M1 M2 M3 M4 M5
Average Precision IoU > 0.5 All 91.6% 90.2% 90.4% 88.2% 90.4%
Small 73.6% 70.6% 76.3% 68.4% 78.3%
Medium 93.4% 90.3% 90.8% 88.6% 91.1%
Large 94.3% 94.6% 92.6% 93.8% 92.2%
0.5 <IoU < 0.95 All 44.1% 43.4% 44.4% 42.6% 44.2%
Small 33.4% 31.2% 35.8% 30.4% 34.1%
Medium 42.6% 38.7% 41.8% 38.2% 41.1%
Large 47.1% 48.1% 47.6% 48.3% 48.5%
Average Recall 0.5 <IoU < 0.95 All 47.1% 48.2% 47.6% 48.3% 48.5%
Small 50.4% 50.9% 50.4% 44.8% 46.9%
Medium 53.1% 52.3% 53.8% 51.9% 53.7%
Large 54.5% 54.4% 54.7% 54.4% 54.7%

criteria for overlap between predicted and ground true bounding boxes
result in low AP values. Therefore, as the IoU threshold value increases,
the AP of models also demonstrates a decreasing trend. Thus the AP
under the condition of 0.5 < IoU < 0.95 is less than that under the
condition IoU > 0.5. According to Table 3, the FRC_ResNet18FPN ach-
ieves the best detection performance for medium objects (like in Fig. 12
(b)) with an AP of 93.4%, and the model FRC_ResNet34FPN has the best
detection performance for large objects (like in Fig. 12 (c)) with an AP of
94.6%, which is only marginally higher by 0.3% compared to the
FRC_ResNet18FPN, which obtains an AP of 94.3% for large objects.
Generally, in deep convolutional neural networks (CNNs), the spatial
resolution of feature maps typically diminishes with the increasing of
layer depth. For small objects, their spatial features may become highly
compressed, reducing to only a few pixels in deeper CNN layers. For
instance, an object with dimensions of 15 x 15 pixels in a UAV thermal
image might be represented by just 1 pixel in the feature map from Layer
4 of ResNet152 (refer to Fig. 4). The limited spatial resolution can lead to
loss of fine details, making it difficult for the model to distinguish small
objects from the background. Through FPN, different feature maps from
different layers can complement each other, and deeper feature map can
receive some spatial information from shallower layers. However, still
certain spatial features might have been lost during the process of
convolution operations. Consequently, the models of FRC_ResNet18FPN
and FRC_ResNet34FPN can obtain higher AP for medium and large ob-
jects than the remaining models because they have less CNN layers than
others. Notably, the FRC ResNet152FPN obtains the best detection
performance for small objects (Fig. 12 (a)) with an AP of 78.3%, which is
explicitly higher than other models. Specifically, the AP of FRC_Res-
Net152FPN is approximately 5% higher than that of FRC_ResNet18FPN
and 8% higher than that of FRC_ResNet34FPN. According to Table 2 and
Fig. 12 (a), the sizes of small objects in the UAV imagery in this paper are
<200 pixels, and the related spatial information is possibly not enough
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for a model to detect and identify them. Under this condition, more CNN
layers mean that more abstractly semantic information can be extracted.
Therefore, FRC_ResNet152FPN has more advantages than others in this
sense.

For example, as shown in Fig. 14 (a), there are seven large deer
objects in the UAV thermal image. The detection results of FRC_Res-
Net18FPN, FRC_ResNet34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN,
and FRC_ResNet152FPN are depicted in Fig. 14 (b), Fig. 14 (c), Fig. 14
(d), Fig. 14 (e), and Fig. 14 (f) respectively. The five models all suc-
cessfully detect the seven deer object. However, FRC_ResNet18FPN and
FRC_ResNet152FPN stand out by fitting the ground-truth bounding
boxes more accurately compared to the other models. Certainly, there
are also some UAV thermal images that the five models failed to detect
all the objects. For example, as shown in Fig. 15, a thermal image has 17
deer objects. In this case, FRC_ResNet18FPN detects 15 deer objects,
FRC_ResNet34FPN detects 11 deer objects, FRC_ResNet50FPN detects
12 deer objects, FRC_ResNet101FPN detects 14 deer objects, and
FRC_ResNet152FPN detects 16 objects. In addition, as depicted by the
yellow arrows in Fig. 15 a, the two close deer objects were not detected
by all the five models.

In Fig. 16 (a), there are four small deer objects annotated by red
rectangles, and there are also two deer objects that are not annotated
intentionally, as indicated by two arrows. The detection results and
corresponding IoU values generated by FRC_ResNet18FPN, FRC_Res-
Net34FPN, FRC_ResNet50FPN, FRC_ResNet101FPN, and FRC_Res-
Net152FPN are depicted in Fig. 16 (b), Fig. 16 (c), Fig. 16 (d), Fig. 16 (e),
and Fig. 16 (f) respectively. All models can detect the four deer objects.
FRC_ResNet18FPN and FRC_ResNet34FPN can also detect the two un-
labeled deer objects. However, FRC_ResNet34FPN generates three extra
false positive objects. From the perspective of IoU, the bounding boxes
predicted by FRC_ResNet152FPN can fit the objects best. However,
FRC_ResNet18FPN has better generalization ability than others in terms
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Fig. 13. The average precision of M1, M2, M3, M4, and M5. M1 denotes FRC_ResNet18FPN. M2 denotes FRC_ResNet34FPN. M3 denotes FRC_ResNet50FPN. M4

denotes FRC_ResNet101FPN. M5 denotes FRC_ResNet152FPN.

of identifying unseen objects.
In addition, we explore the impact of different scales of anchor boxes:
our customized anchor boxes (42,82,162,322,64%) and the commonly

used big-scale anchor boxes (1282 2562,512%). A thermal image con-
taining 30 deer objects was used as an example. The model FRC_Res-
Net152FPN configured with big-scaled anchor boxes was able to detect
27 out of the 30 deer objects. However, three deer objects were over-
looked, as highlighted by red arrows in Fig. 17 (a). On the contrary, the
model FRC_ResNet152FPN equipped with the small-scaled anchor boxes
exhibited a notably better outcome, successfully identifying and locating
all 30 deer objects present in Fig. 17 (b). The experiment results show
that using customized anchor boxes is helpful for the models to enhance
their abilities of small object detection.

5. Discussion
5.1. Contributions
With the development of deep learning, research on object detection

for wild deer surveys from high-resolution and true-color images has
made remarkable progress. However, the research of detecting small
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deer objects in thermal imagery captured by UAVs remains relatively
unexplored. Generally, in an object detection model based on deep
learning, convolutional neural networks (CNNs) are adopted to extract
feature maps from original images. The process of feature map extrac-
tion is through progressively downscaling. For the large deer objects,
their abstract feature information can be kept in the final feature maps.
However, for the small deer objects, their feature information often
disappears during the process of feature map extraction, which is the
main reason that small object detection is always challenging. In this
paper, the integration of Faster R-CNN, FPN and residual networks is
introduced to solve the problem of wild deer surveys from thermal im-
ages. To address the problem that the feature information of small deer
objects disappearing during the process of feature map extraction, a
Feature Pyramid Network (FPN) (Lin et al., 2016; Liu and Wang, 2021)
is used to fuse the spatial feature information, derived from the different
CNN layer of a residual network, to construct multiple feature maps for
the detection of deer objects with different scales. At the same time,
small-scaled anchor boxes were designed to serve as reference templates
to provide more suitable spatial context to guide the detection process of
small objects. Specifically, rather than employing commonly used large
(128%,2562,5122),
(4%,82,162,322,64°) were utilized to generate the regions of interest

anchor boxes customized anchor boxes



H. Lyu et al. Ecological Informatics 79 (2024) 102383

Fig. 14. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN.

Fig. 15. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN.
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(b)

(d)

(e)

®

Fig. 16. (a) denotes the original image with the ground-true bounding boxes marked in red. (b) denotes the output of FRC_ResNet18FPN. (C) denotes the output of
FRC_ResNet34FPN. (d) denotes the output of FRC_ResNet50FPN. (e) denotes the output of FRC_ResNet101FPN. (f) denotes the output of FRC_ResNet152FPN.

(a)

(b)

Fig. 17. (a) The detection results from the model using big-scale anchor boxes. (b) The detection results from the model using small-scale anchor boxes. The three red
arrows point at the objects missed by the model in (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

(Rols) based on feature maps at varying scales, which can enhance our
model’s capability to effectively detect small deer objects within ther-
mal images. Finally, based on Faster R-CNN, FPN, and different residual
networks including ResNet18, ResNet34, ResNet50, ResNet101, and
ResNet152 (Ganesan and Santhanam, 2022; He et al., 2016), we con-
structed five object detection models, and used the dataset to evaluate
their detection performance by the COCO evaluation matrix. Our
research endeavor is helpful for effective wild deer monitoring and
conservation, providing valuable insights into deer populations in the
Chitwan National Park of Nepal. The research outcomes can be a valu-
able reference for the exploration of small object detection from low-
resolution thermal images.
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5.2. Future work

Developing a detection model with the capability to handle various
animal types in thermal imagery is a significant and promising direction
for future research. Currently, our study focused only on deer detection
due to limitations of data coverage. Multiple field research teams, sup-
ported by the same project, are exploring DJI drones images to also
survey wild elephants, buffalos, rhinos, and wild boars in other areas of
Chitwan National Park of Nepal. Wild animals in thermal imagery often
exhibit relatively small sizes and similar shapes, which also pose addi-
tional challenges. Therefore, our future work is to construct an object
detention model to automatically detect different small wildlife objects
from thermal images and identify their species at the same time.
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In addition, it is always important to explore methods to enlarge the
feature information of a thermal image, especially for small animal
objects detection and their species identification. DJI has released ten
professional palettes designed to improve object features with varying
temperatures in thermal images. Therefore, we hope to find some
methods to transform a thermal image to multiple layers of images with
different thermal palettes, and then to fuse feature information from
these layers, which may further improve the performance of small ani-
mal objects detection.

Finally, as depicted by the yellow arrows in Fig. 15 (a), the two
closely located deer objects were not detected by all the five models. For
current object detection models, detecting close objects remains very
challenging. This is due to the limitation of the Non-Maximum Sup-
pression (NNS) algorithm. NMS relies on the Intersection over Union
(IoU) threshold to determine whether two bounding boxes are consid-
ered duplicates or not. When objects are very close to each other, their
bounding boxes may significantly overlap, leading to high IoU values. As
a result, NMS may remove one of the objects, making it challenging for
the model to detect both objects accurately. Therefore, new algorithms
should be developed to solve the problem in the future.

6. Conclusion

Wild deer surveys are essential for wildlife management and con-
servation. By accurately estimating the number of deer, wildlife au-
thorities and conservationists can better understand the health of the
deer population, their interactions with other species, and their impact
on the ecosystem. In the Chitwan National Park of Nepal, the dense
coverage of tall trees and vegetation often obscures the presence of wild
deer, making it very difficult to use normal true-color images to monitor
deer. In our project, UAVs equipped with thermal cameras were used to
monitor deer. However, thermal images have obvious limitations, such
as lack of fine details, reduced spatial resolution, and limited spectral
information. It is difficult to directly apply the traditional Faster R-CNN
to detect deer objects in thermal images. In this paper, an enhanced
Faster R-CNN based on FPN, residual networks and customized anchor
boxes is proposed to detect small objects from UAV thermal images for
wild deer survey in the Chitwan National Park of Nepal.

Specifically, based on Faster R-CNN, FPN, and different residual
networks including ResNet18, ResNet34, ResNet50, ResNet101, and
ResNetl52, five models are constructed. UAV thermal imagery
including 2278 thermal images and 13,509 deer instance annotations
were established to train, validate and test these models. At the same
time, according to the sizes of deer objects, 13,509 deer instances are
further divided into three categories: Small, Medium, and Large. Small
objects are characterized by bounding boxes with an area range from
0 to 200 square pixels. Medium objects are characterized by bounding
boxes with an area range from 200 to 400 square pixels. Large objects
are characterized by bounding boxes with an area exceeding 400 square
pixels. Finally, the COCO object estimation matrix was used to assess the
performance of the five models. The COCO evaluation results revealed
that under the condition of IoU > 0.5, the integration of Faster R-CNN,
FPN, and ResNet18 is proved to be better than others, and achieved an
Average Precision (AP) score of 91.6% for all deer objects. Specifically,
the model obtained an AP score of 73.6% for small deer objects (area <
200 pixels), an AP score of 93.4% for medium deer objects (200 < area
< 400 pixels), and an AP score of 94.3% for large deer objects (area >
400 pixels).
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