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Abstract
In this paper, we consider the travel time tomography problem for conformal
metrics on a bounded domain, which seeks to determine the conformal factor
of the metric from the lengths of geodesics joining boundary points. We estab-
lish forward and inverse stability estimates for simple conformal metrics under
some a priori conditions. We then apply the stability estimates to show the
consistency of a Bayesian statistical inversion technique for travel time tomo-
graphy with discrete, noisy measurements.
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1. Introduction

Consider a smooth, bounded, and simply connected domain Ω⊆ R
m, with m⩾ 2. Given a

Riemannian metric g on Ω, we de昀椀ne the associated boundary distance function Γg : ∂Ω×
∂Ω→ [0,∞) by

Γg (ξ,η) = inf

{
ˆ

µ

d|g| :=
ˆ T

0
|γ̇ (t) |g dt : γ ∈ C1

(
[0,T] ,Ω

)
, γ (0) = ξ, γ (T) = η

}
,

for all ξ,η ∈ ∂Ω. In other words, Γg(ξ,η) is the Riemannian distance (with respect to g)
between the boundary points ξ and η. We consider the following inverse problem: can we
recover the metric g in the interior of the domain from the boundary distance function Γg?

This inverse problem, called the boundary rigidity problem in mathematics literature, arose
in geophysics in an attempt to determine the inner structure of the earth, such as the sound
speed or index of refraction, frommeasurements of travel times of seismic waves on the earth’s
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surface. This is called the inverse kinematic problem or the travel time tomography problem
in seismology [16, 45].

The boundary rigidity problem is not solvable in general. Consider, for example, a unit disk
with a metric whose magnitude is large (and therefore, geodesic speed is low) near the center
of the disk. In such cases, it is possible that all distance minimizing geodesics connecting
boundary points avoid the large metric region, and therefore one can not expect to recover
the metric in this region from the boundary distance function. In view of this restriction, one
needs to impose additional geometric conditions on the metric to be reconstructed. One such
condition is simplicity. A metric g on Ω is said to be simple if the boundary ∂Ω is strictly
convex w.r.t. to g and any two points on Ω can be joined by a unique distance minimizing
geodesic. Michel conjectured that simple metrics are boundary distance rigid [21], and this
has been proved in dimension two [34]. In dimensions ⩾3, this is known for generic simple
metrics [36]. When caustics appear, a completely new approach was established in [37, 38]
for the boundary rigidity problem in dimensions ⩾3, assuming a convex foliation condition.
Boundary rigidity problems for more general dynamical systems can be found in [2, 10, 17,
32, 35, 46, 48]. We also refer to [9, 39] for summaries of recent developments on the boundary
rigidity problem.

The boundary rigidity problem for general Riemannian metrics has a natural gauge: iso-
metries of (Ω,g) that preserve ∂Ω will also preserve the boundary distance function. In this
paper, we restrict our attention to the problem of determining metrics from a 昀椀xed conformal
class. Let ḡ be a 昀椀xed ‘background’ metric on Ω which is simple and has C3 regularity. For
any positive function n ∈ C3(Ω), de昀椀ne

gn := n2ḡ,

which is a new Riemannian metric on Ω that is conformal to ḡ. Our goal is to recover the
parameter n from the boundary distance function of gn. In this problem, the gauge of isometries
does not appear, and one expects to be able to uniquely determine the conformal factor n from
Γgn .

It is known that simple metrics from the same conformal class are boundary rigid for all
m⩾ 2 [25, 26, 28]. To be precise, if n1,n2 ∈ C3(Ω) are such that gn1 ,gn2 are both simplemetrics
on Ω, then Γgn1 = Γgn2 if and only if n1 = n2. To simplify notation, we will henceforth denote
Γgn by simply Γn.

1.1. Stability estimates for the deterministic inverse problem

The uniqueness aspect of the boundary rigidity problem for conformal simple metrics has been
quite well understood through the aforementioned studies [25, 26, 28]. The 昀椀rst topic of this
paper is the stability of the boundary rigidity problem, i.e. quantitative lower bounds on the
change in Γn corresponding to a change in the parameter n. Stability is important in practice,
as we hope the inversion method for travel time tomography will be stable under perturbations
of the data, e.g. by noise.

Conditional stability estimates for simple metrics can be found in [36, 37, 44], where the
metrics are assumed a priori to be close to a given one. When considering a 昀椀xed conformal
class, various stability estimates without the closeness assumption have been established in
[3, 25, 27]. In [25] the following stability result has been proved for the 2D boundary rigidity
problem with the Euclidean background metric:

‖n1 − n2‖L2(Ω) ⩽
1√
2π

‖dξ (Γn1 −Γn2)(ξ,η)‖L2(∂Ω×∂Ω). (1)
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Here, dξ is the exterior derivative operator with respect to ξ and the L2 norms are taken with
respect to the standard Euclidean metric. Notice that since the boundary distance function is
symmetric, this estimate essentially says that the L2-norm of n1 − n2 can be controlled by the
H1-norm of Γn1 −Γn2 . For dimensions ⩾3, there are generalizations [3, 27] of (1) with more
complicated expressions (see also theorem 2.1). However, the estimates of [3, 27] are not in
standard Sobolev or Hölder norms, which makes them inconvenient for applications.

In this paper, we establish stability estimates similar to (1) for all dimensions ⩾2, without
any a priori closeness assumptions on n1,n2. Before giving the statement of our results, we
need to de昀椀ne some function spaces for the conformal parameter n.

Definition 1.1. Let Ω0 be a smooth, relatively compact subdomain of Ω, and let λ,Λ, `,L be
real numbers such that

0< λ < 1< Λ, 0< ` < L.

We de昀椀ne Nλ,Λ,ℓ,L(Ω0) to be the set of all functions n ∈ C3(Ω) that satisfy the following
conditions:

(i) The metric gn = n2ḡ is a simple metric on Ω.
(ii) λ < n(x)< Λ for all x ∈ Ω and n≡ 1 on Ω \Ω0.
(iii) Let expn(x,v) denote the exponential map with respect to gn based at x ∈ Ω and acting on

v ∈ TxΩ (that is, the tangent space of Ω at x). Then the derivative of expn(x, ·) satis昀椀es

`|w|ḡ < |Dv expn (x,v)(w) |ḡ < L|w|ḡ, (2)

for all x ∈ Ω, v ∈ dom(expn(x, ·)), and w ∈ TvTxΩ∼= TxΩ.

We also let

Nλ,ℓ (Ω0) :=
⋃

Λ>1,L>0

Nλ,Λ,ℓ,L (Ω0) .

The class of metrics associated with these function spaces includes any metric with non-
positive sectional curvature that is conformal to ḡ and equal to ḡ in a neighborhood of ∂Ω.
Indeed, suppose gn = n2ḡ is such a metric. Then (Ω,gn) is free of conjugate points by the
curvature assumption, and ∂Ω remains strictly convex with respect to gn since gn ≡ ḡ near ∂Ω.
Therefore, gn is a simple metric. Moreover, it follows from the Rauch Comparison theorem
that its exponential map expn satis昀椀es (2) for suf昀椀ciently large L and any ` < 1 (see, e.g. [6,
corollary 1.35]).

Remark 1.1 (Notation). Let T :W1 →W2 be a linear map between normed vector spaces.
Given real numbers m,M, we will use the notation

m≺ T≺M

as shorthand for

m‖w‖W1 < ‖Tw‖W2 <M‖w‖W1 ,

for all w ∈W1. Using this notation, (2) can be rewritten as

`≺ Dv expn (x,v)≺ L. (3)
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We will also use ‖T‖op to denote the operator norm of T:

‖T‖op := sup{‖Tw‖W2 : w ∈W1, ‖w‖W1 = 1} .

Remark 1.2. Let δ > 0 be the distance (w.r.t. to ḡ) between ∂Ω andΩ0, and let ξ,η ∈ ∂Ω be any
pair of boundary points such that distḡ(ξ,η)< δ. For any n ∈Nλ,ℓ(Ω0), gn coincides with ḡ
onΩ \Ω0, and consequently, we haveΓn(ξ,η) = distḡ(ξ,η). In particular,Γn1(ξ,η) = Γn2(ξ,η)
for all n1,n2 ∈Nλ,ℓ(Ω0).

We are now ready to state our results on stability estimates for the boundary rigidity prob-
lem. The following ‘inverse stability’ estimate follows from a result of Beylkin [3], combined
with some estimates for metrics with conformal factors n ∈Nλ,ℓ(Ω0). The details are presen-
ted in section 2.

Theorem 1.2. Let Ω,Ω0, ḡ be as before, and let λ,` be real numbers such that

0< λ < 1, 0< `.

Then there exists a constant C1(Ω,Ω0, ḡ, `)> 0 such that for all n1,n2 ∈Nλ,ℓ(Ω0),

‖n1 − n2‖L2(Ω) ⩽ C1λ
2−m‖dξ (Γn1 −Γn2)(ξ,η)‖L2(∂Ω×∂Ω).

Here, the L2 norms are taken with respect to the background metric ḡ, and dξ represents
the exterior derivative operator with respect to ξ. Please note that the stability constant C1 can
blow up as `→ 0. In a sense, as ` approaches 0, we allow the metrics in our class to get closer
and closer to potentially having conjugate points, and thus becoming non-simple.

Wewill apply the above stability estimate to study a statistical inversion technique for travel
time tomography. For this purpose, we also need the following continuity (or ‘forward sta-
bility’) estimate of Γn. To the best of our knowledge, no such continuity estimate has been
published before. The key idea in the proof is to apply the change of variables formula and use
the upper bounds on det(Dv expnj) to control ‖Γn1 −Γn2‖L2 in terms of ‖n1 − n2‖L2 .

Theorem 1.3. Let Ω,Ω0, ḡ be as before, and let λ,Λ, `,L be real numbers such that

0< λ < 1< Λ, 0< ` < L.

Then there exists a constant C2(Ω,Ω0, ḡ, `,L)> 0 such that for all n1,n2 ∈Nλ,Λ,ℓ,L(Ω0),

‖Γn1 −Γn2‖L2(∂Ω×∂Ω) ⩽ C2
Λm/2

λ
‖n1 − n2‖L2(Ω).

As with theorem 1.2, the constant C2 can blow up as `→ 0. The same happens as L→∞,
since this allows det(Dv expnj) to blow up. The details are again postponed to section 2.

1.2. The statistical inverse problem

The boundary rigidity problem is nonlinear, and geodesics are curved in general, so it is hard to
derive explicit inversion formulas. Some reconstruction algorithms and numerical implement-
ations based on theoretical analyses can be found in [7, 8, 47]. Typically, inversion methods
in travel time tomography take an optimization approach with appropriate regularization. This

4



Inverse Problems 40 (2024) 075003 A Tarikere and H Zhou

is a deterministic approach which seeks to minimize some mismatch functional that quanti-
昀椀es the difference between the observations and the forecasts (synthetic data). However, this
approach generally does not work well for non-convex problems. Moreover, various approx-
imations in numerical methods can introduce systematic (random) error to the reconstruction
procedure.

In this paper, we apply the above stability estimates (theorems 1.2 and 1.3) to study a
Bayesian inversion technique for the travel time tomography problem. The Bayesian inver-
sion technique provides a reasonable solution for ill-posed inverse problems when the number
of available observations is limited, which is a common scenario in practice. Applications
of Bayesian inversion to seismology can be found in [20, 41], which are based on the gen-
eral paradigm of in昀椀nite dimensional Bayesian inverse problems developed by Stuart [40].
However, most studies in the literature are concerned with waveform inversion, which is more
PDE-based. On the other hand, there are very few results on statistical guarantees for the
Bayesian approach to seismic inverse problems. These motivate us to apply Stuart’s Bayesian
inversion framework to produce a rigorous statistical analysis of the problem of recovering the
wave speed from the (noisy) travel time measurements.

For statistical inversion, it is convenient to rewrite the conformal factor n using an
exponential parameter: For any β ⩾ 3, let C´

0 (Ω0) denote the closure in the Hölder space
C⌊´⌋,´−⌊´⌋(Ω0) of the subspace of all smooth functions compactly supported in Ω0. Given
any function c ∈ C3

0(Ω0), we de昀椀ne the corresponding conformal factor nc by

nc (x) =

{
ec(x) if x ∈ Ω0,

1 if x ∈ Ω \Ω0.
(4)

It is easy to see that nc is a positive C3 function on Ω. To simplify notation, we will denote
the corresponding boundary distance function Γnc by simply Γc.

Our goal is to reconstruct the exponential parameter c from error-prone measurements of Γc
on 昀椀nitelymany pairs of boundary points (Xi,Yi), i = 1, . . . ,N. Following the general paradigm
of Bayesian inverse problems, we assume that c arises from a prior probability distribution Π
on C3

0(Ω0). We will construct Π so that it is supported in a subset of C3
0(Ω0) of the following

form:

Definition 1.4. Let `,M> 0 and β ⩾ 3. We de昀椀ne C´
ℓ,M(Ω0) as the set of all functions c ∈

C´
0 (Ω0) that satisfy the following conditions:

(i) The metric gnc = n2c ḡ is a simple metric on Ω.
(ii) The derivative of expnc(x, ·) satis昀椀es

Dw expnc (x,w)� `,

for all x ∈ Ω and w ∈ dom(expnc(x, ·)).
(iii) ‖c‖C⌊β⌋,β−⌊β⌋(Ω0)

<M.

We will show in section 2 that if c ∈ C´
ℓ,M(Ω0), the corresponding conformal parameter nc ∈

Nλ,Λ,ℓ,L(Ω0) for appropriate choices of λ,Λ and L. The precise construction ofΠ is described
in section 3.

Remark 1.3 (Notation). Henceforth, we will denote C⌊´⌋,´−⌊´⌋ by simply C´ .
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Remark 1.4. It is known that small perturbations of simplemetrics are again simple. Therefore,
C´
ℓ,M(Ω0) is an open subset of C´

0 (Ω0).

The pairs of boundary points (Xi,Yi) between which the distance measurements are to be
made are chosen according to the rule

(Xi,Yi)
i.i.d.∼ µ,

where µ is the uniform probability measure on ∂Ω× ∂Ω induced by the background metric ḡ.
The actual distance measurements between these points are assumed to be of the form

Γi = eϵiΓc (Xi,Yi) ,

where εi are i.i.d. N(0,σ2) normal random variables (σ > 0 is 昀椀xed) that are also independent
of (Xj,Yj)Nj=1. For simplicity, we will henceforth assume that σ= 1 without loss of generality.
De昀椀ne

Zc = logΓc,

and for i = 1, . . . ,N,

Zi = logΓi
= Zc (Xi,Yi)+ εi.

All of our measurements can be summarized using the data vector

DN = (Xi,Yi,Zi)
N
i=1 ∈ (∂Ω× ∂Ω×R)

N
. (5)

For convenience, let us de昀椀ne X = ∂Ω× ∂Ω×R.
Next, let PNc denote the probability law ofDN|c. It is easy to see that PNc =×N

i=1P
(i)
c , where

for each i ∈ {1, . . . ,N}, P(i)
c is equal to the probability law of (Xi,Yi,Zi). More explicitly, for

each i ∈ {1, . . . ,N},

dP(i)
c (x,y,z) = pcdµ(x,y)dz,

where

pc (x,y,z) =
1√
2π

exp

{
−1

2
(z− Zc (x,y))

2
}
.

We denote the posterior distribution of c|DN by Π(·|DN). By corollary 2.7, the map
(c,(x,y,z)) 7→ pc(x,y,z) is jointly Borel-measurable fromC3

0(Ω0)×X toR. So it follows from
standard arguments (see [14, p 7] ) that the posterior distribution is well-de昀椀ned and takes the
form

Π(A|DN) =

´

A

∏N
i=1 pc (Xi,Yi,Zi)dΠ(c)

´ ∏N
i=1 pc (Xi,Yi,Zi)dΠ(c)

for any Borel set A⊆ C3
0(Ω0). Our posterior estimator for c will be the posterior mean

cN = E
Π [c|DN] . (6)

6



Inverse Problems 40 (2024) 075003 A Tarikere and H Zhou

Theorem 1.5. Suppose that the true parameter c0 is smooth and compactly supported in Ω0,
and is such that gnc0 is a simple metric on Ω. Then there is a well de昀椀ned prior distribution Π
on C3

0(Ω0) such that the posterior mean cN satis昀椀es

‖cN− c0‖L2(Ω) → 0

in PNc0- probability, as N→∞.

A more precise version of this result is stated in theorem 3.1 in section 3, which in fact
requires signi昀椀cantly weaker regularity assumptions on c0. It also speci昀椀es an explicit N−ω

rate of convergence, where ω is a positive constant that can be made arbitrarily close to 1/4.
To prove theorem 1.5, we apply the analytic techniques developed in recent consistency

studies of statistical inversion of the geodesic x-ray transform [22] and related non-linear
problem arising in polarimetric neutron tomography [23, 24]. The forward and inverse sta-
bility estimates for the measurement operators (like the ones in theorems 1.2 and 1.3) play a
key role in the arguments of these references.

The analysis of theoretical guarantees for statistical inverse problems is currently a very
active topic. Recent progress for various linear and non-linear inverse problems include [1, 4,
5, 11, 12, 22–24, 29, 31]. See also the recent lecture notes [30].

The paper is structured as follows. In section 2, we establish the forward and inverse stability
estimates for the boundary distance function. Section 3 is devoted to proving the statistical
consistency of Bayesian inversion for the boundary rigidity problem.

2. Forward and Inverse continuity estimates

In order to prove the statistical consistency of the proposed Bayesian estimator, we need to
establish quantitative upper and lower bounds on the magnitude of change in the boundary
distance function Γn corresponding to a change in the conformal parameter n of the metric.
This is the content of theorems 1.2 and 1.3, which we will prove in this section. We will also
use these estimates to establish similar bounds for the map c 7→ Zc = logΓc, when c belongs
to the parameter space C´

ℓ,M(Ω0) de昀椀ned in de昀椀nition 1.4.

2.1. Stability estimates

We begin with the proof of theorem 1.2. As we noted in the introduction, such an estimate has
already been proved for dimensionm= 2 byMukhometov in [25]. For generalm⩾ 2, we have
the following result by Beylkin [3]. Also see [27, lemma 4].

Theorem 2.1 ([3]). Let n1,n2 ∈ C3(Ω) be such that gn1 ,gn2 are simple metrics on Ω. Then
ˆ

Ω

(n1 − n2)
(

nm−1
1 − nm−1

2

)

dVolḡ

⩽ Cm

ˆ

∂Ωξ×∂Ωη

∑

a+b=m−2

dξ (Γn1 −Γn2)∧ dη (Γn1 −Γn2)∧ (dξ dηΓn1)
a ∧ (dξ dηΓn2)

b
,

(7)

where dVolḡ is the Riemannian volume form induced by ḡ, and dξ and dη represent the exter-
ior derivative operators on ∂Ω with respect to ξ and η respectively. Given local coordin-
ates (ξ1, . . . , ξm−1) for ξ and (η1, . . . ,ηm−1) for η, we have dξ = dξi ∂

∂ξi , dη = dηj ∂
∂ηj , and

dξ dη = dξi ∧ dηj ∂2

∂ξi ∂ηj . The constant
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Cm =
(−1)

(m−1)(m−2)
2 Γ(m/2)

2πm/2 (m− 1)!
,

depends only on the dimension m.

We will show that when n1,n2 ∈Nλ,ℓ(Ω0), the inequality (7) leads to the desired stability
estimate.

Lemma 2.2. Let n ∈Nλ,ℓ(Ω0). Then the corresponding boundary distance function Γn
satis昀椀es

|dξΓn (ξ,η) |ḡ ⩽ 1, |dηΓn (ξ,η) |ḡ ⩽ 1,

and

|∇ξ∇ηΓn (ξ,η) |ḡ ⩽
(
1+ `−1

)

λ
distḡ (ξ,η)

−1

for all ξ,η ∈ ∂Ω with ξ 6= η. Here, ∇ξ,∇η denote the covariant derivative operators with
respect to ξ and η respectively, and distḡ(ξ,η) is the distance from ξ to η with respect to the
metric ḡ.

Proof. Given ξ,η ∈ ∂Ω with ξ 6= η, let v(ξ,η) denote the unit vector (with respect to gn) at
η tangent to the geodesic from ξ to η. It follows from the 昀椀rst variation formula (see [18],
theorem 6.3) that the gradient (with respect to gn) of Γn(ξ, ·) is given by

gradηΓn (ξ,η) = Πηv(ξ,η) , (8)

whereΠη : TηΩ→ Tη∂Ω is the orthogonal projectionmap onto the tangent space of the bound-
ary. Since gn = ḡ on ∂Ω, it follows immediately that

|dηΓn (ξ,η) |ḡ = |gradηΓn (ξ,η) |gn = |Πηv(ξ,η)|gn ⩽ |v(ξ,η) |gn = 1.

Similar arguments show that |dξΓn(ξ,η)|ḡ ⩽ 1 as well.
Next, let (ξ1, . . . , ξm−1) and (η1, . . . ,ηm−1) be local coordinates for ∂Ω around ξ and

η respectively. We can extend these coordinate charts to boundary normal coordinates
(ξ1, . . . , ξm) and (η1, . . . ,ηm) by taking ξm and ηm to be the corresponding distance functions
from the boundary. With respect to these coordinates, we may rewrite (8) as

gradηΓn (ξ,η) =
m−1∑

j=1

vj (ξ,η)
∂

∂ηj
. (9)

We can extend both sides of this equality to (1, 0)-tensor 昀椀elds on ∂Ωξ × ∂Ωη , while main-
taining the equality. Taking covariant derivatives of both sides with respect to ξ, we get

∇ξ gradηΓn (ξ,η) =
m−1∑

i,j=1

∂vj

∂ξi
(ξ,η)

∂

∂ηj
⊗ dξi. (10)

Here, we have used the fact that the product connection on ∂Ωξ × ∂Ωη satis昀椀es ∇∂ξi
∂ηj = 0

for all i, j. Recall that gn is a simple metric, and its exponential map expn(x, ·) at any x ∈ Ω is a

8
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diffeomorphism onto Ω. Let w(x, ·) : Ω→ TxΩ denote its inverse map. Since Dv expn(x,v)� `
for all v in the domain of expn(x, ·), we have

‖Dyw(x,y)‖op < `−1 for all y ∈ Ω. (11)

Now observe that we have the identity

v(ξ,η) =− w(η,ξ)

Γn (ξ,η)
.

So by (9) and (10),

∇ξ gradη Γn (ξ,η) =−

m−1∑

i,j=1

{
1

Γn (ξ,η)

∂wj (η,ξ)
∂ξi

−
wj (η,ξ)

Γn (ξ,η)
2
∂Γn (ξ,η)

∂ξi

}
∂

∂ηj
⊗ dξi

=−
1

Γn (ξ,η)





m−1∑

i,j=1

∂wj (η,ξ)
∂ξi

∂

∂ηj
⊗ dξi



+

1
Γn (ξ,η)

v(ξ,η)⊗ dξ Γn (ξ,η) .

(12)

Observe that
∑m−1

i,j=1
∂wj(η,ξ)

∂ξi
∂
∂ηj ⊗ dξi is precisely the tensor form of the linear map

Πη ◦Dyw(η,y)
∣∣
y=ξ

◦Πξ,

whereΠξ andΠη are, as before, orthogonal projections from TξΩ→ Tξ ∂Ω and TηΩ→ Tη∂Ω
respectively. Therefore,

∣∣∣∣∣∣

m−1∑

i,j=1

∂wj (η,ξ)
∂ξi

∂

∂ηj
⊗ dξi

∣∣∣∣∣∣
ḡ

⩽
∥∥∥Dyw(η,y)

∣∣
y=ξ

∥∥∥
op
< `−1.

Combining this with (12), we get

|∇ξ dηΓn (ξ,η) |ḡ = |∇ξ gradηΓn (ξ,η) |ḡ

⩽
`−1

Γn (ξ,η)
+

|v(ξ,η) |ḡ|dξΓn (ξ,η) |ḡ
Γn (ξ,η)

⩽

(
1+ `−1

)

Γn (ξ,η)
.

Finally, applying the simple estimate

distḡ (ξ,η)⩽
1
λ
Γn (ξ,η) ,

we get

|∇ξ∇ηΓn (ξ,η) |ḡ = |∇ξ dηΓn (ξ,η) |ḡ ⩽
(
1+ `−1

)

λ
distḡ (ξ,η)

−1
.

This completes the proof.

With these estimates in hand, we are now ready to prove theorem 1.2.
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Proof of theorem 1.2. Consider the inequality (7) from theorem 2.1. For n1,n2 ∈Nλ,ℓ(Ω0),
the left hand side becomes
ˆ

Ω

(n1 − n2)
2 (nm−2

1 + nm−3
1 n2 + · · ·+ nm−2

2

)
dVolḡ ⩾ (m− 1)λm−2‖n1 − n2‖2L2(Ω). (13)

Now consider the right hand side of (7). By lemma 2.2,

|dξ dηΓn|ḡ =
∣∣Alt

(
∇ξ∇ηΓn

)∣∣
ḡ
⩽

(
1+ `−1

)

λ
distḡ (ξ,η)

−1
.

Therefore, the right hand side of (7) is bounded above by

|Cm|
ˆ

∂Ω×∂Ω

|dξ (Γn1 −Γn2) |ḡ|dη (Γn1 −Γn2) |ḡ
∑

a+b=m−2

|dξdηΓn1 |
a
ḡ|dξdηΓn2 |

b
ḡ dσḡ

⩽ (m− 1) |Cm|

(
1+ ℓ−1)m−2

λm−2

ˆ

∂Ω×∂Ω

|dξ (Γn1 −Γn2) |ḡ|dη (Γn1 −Γn2) |ḡ|distḡ (ξ,η) |
2−m dσḡ,

where dσḡ is the surface measure on ∂Ω× ∂Ω induced by ḡ. Observe that by remark 1.2, we
have (Γn1 −Γn2)(ξ,η) = 0 for all ξ,η ∈ ∂Ω with distḡ(ξ,η)< δ. Therefore, the above expres-
sion is further bounded above by

(m− 1) |Cm|
(
1+ `−1

)m−2

λm−2
δ2−m

ˆ

∂Ω×∂Ω

|dξ (Γn1 −Γn2) |ḡ|dη (Γn1 −Γn2) |ḡ|dσḡ.

≲m,¶,ℓ λ
2−m

(
‖dξ (Γn1 −Γn2)‖2L2(∂Ω×∂Ω) + ‖dη (Γn1 −Γn2)‖2L2(∂Ω×∂Ω)

)

≲m,¶,ℓ λ
2−m‖dξ (Γn1 −Γn2)‖2L2(∂Ω×∂Ω)

since ‖dξ(Γn1 −Γn2)‖L2 = ‖dη(Γn1 −Γn2)‖L2 by symmetry. Combining this with (13), we get

‖n1 − n2‖2L2(Ω) ≲m,¶,ℓ λ
2(2−m)‖dξ (Γn1 −Γn2)‖2L2(∂Ω×∂Ω)

and the theorem follows.

Recall that we parametrized the conformal parameter n of the metric gn by a function c
belonging to the parameter space C´

ℓ,M(Ω0), as de昀椀ned in (4). We assumed that our input data
consists of 昀椀nitely many measurements of the function Zc = logΓc. In the following corollary,
we translate theorem 1.2 into stability estimates for the map c 7→ Zc using simple Lipschitz
estimates for the exponential function: For all x,y ∈ [M1,M2],

eM1 |x− y|⩽ |ex− ey|⩽ eM2 |x− y|. (14)

This immediately implies that for all c1,c2 ∈ C´
ℓ,M(Ω0),

e−M‖c1 − c2‖L2(Ω0) ⩽ ‖nc1 − nc2‖L2(Ω) ⩽ eM‖c1 − c2‖L2(Ω0). (15)

Corollary 2.3. For any M> 0, there exists a constant C ′
1 = C ′

1(Ω,Ω0, ḡ, `,M)> 0 such that

‖c1 − c2‖L2(Ω0) ⩽ C ′
1‖Zc1 − Zc2‖H1(∂Ω×∂Ω)

for all c1,c2 ∈ C3
ℓ,M(Ω0).

10
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Proof. Let c1,c2 ∈ C3
ℓ,M(Ω0). Then nc1 ,nc2 ∈Nλ,ℓ(Ω0) for λ= e−M. So it follows from the-

orem 1.2 that

‖nc1 − nc2‖L2(Ω) ⩽ C1e
(m−2)M‖dξ (Γc1 −Γc2)‖L2(∂Ω×∂Ω). (16)

By (15), the left hand side of the above equation is bounded below by e−M‖c1 − c2‖L2(Ω0).
Now, rewrite dξ(Γc1 −Γc2) as

dξ (Γc1 −Γc2) = dξ
(
eZc1 − eZc2

)

= eZc1dξZc1 − eZc2dξZc2
= eZc1dξ (Zc1 − Zc2)+

(
eZc1 − eZc2

)
dξ Zc2 .

It follows from remark 1.2 that if (ξ,η) ∈ supp(Γc1 −Γc2), we have distḡ(ξ,η)⩾ δ, and con-
sequently,

e−Mδ ⩽ Γcj (ξ,η)⩽ eM diamḡ (Ω) , j = 1,2.

Therefore, by applying (14) along with the fact that |dξΓcj |ḡ ⩽ 1 by lemma 2.2, we get

|dξ (Γc1 −Γc2) |ḡ ⩽ |Γc1 ||dξ (Zc1 − Zc2) |ḡ+ |Γc1 −Γc2 ||dξΓc2 |ḡ/|Γc2 |

⩽ eM diamḡ (Ω) |dξ (Zc1 − Zc2) |ḡ+
|eZc1 − eZc2 |
e−Mδ

⩽ eM diamḡ (Ω) |dξ (Zc1 − Zc2) |ḡ+
eM diamḡ (Ω)

e−Mδ
|Zc1 − Zc2 |,

where diamḡ(Ω) denotes the diameter of Ω with respect to the metric ḡ. This further implies

‖dξ (Γc1 −Γc2)‖L2(∂Ω×∂Ω) ≲Ω,ḡ,¶,ℓ,M ‖Zc1 − Zc2‖H1(∂Ω×∂Ω).

Combining this with (15) and (16), we get

‖c1 − c2‖L2(Ω0) ≲Ω,ḡ,¶,ℓ,M ‖Zc1 − Zc2‖H1(∂Ω×∂Ω).

This completes the proof.

2.2. Forward continuity estimates

We now move on to the proof of theorem 1.3. The key idea is to use upper bounds on
Dv expnj(x,v) to control ‖Γn1 −Γn2‖L2 with respect to ‖n1 − n2‖L2 .

We begin by introducing some notation. Let SΩ denote the unit sphere bundle on Ω, that is,

SΩ=
{
(x,v) ∈ TΩ : |v|ḡ = 1

}
.

The boundary of SΩ consists of unit tangent vectors at ∂Ω. Speci昀椀cally,

∂SΩ=
{
(x,v) ∈ SΩ : x ∈ ∂Ω

}
.

11
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Let ν denote the inward unit normal vector 昀椀eld along ∂Ω with respect to the metric ḡ. We
de昀椀ne the bundles of inward pointing and outward pointing unit tangent vectors on ∂Ω as
follows:

∂+SΩ :=
{
(ξ,v) ∈ ∂SΩ : 〈v,νξ〉ḡ ⩾ 0

}
, and

∂−SΩ :=
{
(ξ,v) ∈ ∂SΩ : 〈v,νξ〉ḡ ⩽ 0

}
.

We also set

∂0SΩ := ∂+SΩ∩ ∂−SΩ.

This coincides with S∂Ω, the unit sphere bundle on ∂Ω.
Next, let n ∈ Nλ,ℓ(Ω0). For (ξ,v) ∈ ∂+SΩ, we let γn(ξ,v, t) = expn(ξ, tv) denote the unit

speed geodesic (with respect to gn) starting at ξ with initial direction v at time t= 0. We de昀椀ne
τn(ξ,v) to be the time at which γn(ξ,v, ·) exits Ω. It is known (see [33]) that for simple man-
ifolds, τ n is a C1 function of ∂+SΩ, and τn(ξ,v) = 0 if and only if v ∈ Sξ ∂Ω. We also de昀椀ne
ηn(ξ,v) and un(ξ,v) as the point and direction at which γn(ξ,v, ·) exits Ω. In other words,

ηn (ξ,v) := γn (ξ,v, τn (ξ,v)) , and

un (ξ,v) := γ̇n (ξ,v, τn (ξ,v)) .

Lemma 2.4. Let n ∈Nλ,Λ,ℓ,L(Ω0). Then for all (ξ,v) ∈ ∂+SΩ,

‖Dvτn (ξ,v)‖op ⩽ L
τn (ξ,v)
〈ν,u〉ḡ

⩽
LΛdiamḡ (Ω)

〈ν,u〉ḡ
,

where ν = νηn(ξ,v) and u= un(ξ,v).

Proof. Let ρ ∈ C1(Ω) be such that ρ−1(0) = ∂Ω and ρ(x) = distḡ(x,∂Ω) for x near ∂Ω.
Consider the function

f(t,v) = ρ(expn (ξ, tv)) .

Observe that

∂f
∂t

∣∣∣
t=τn(ξ,v)

=
〈
(gradρ)ηn(ξ,v) ,un (ξ,v)

〉
ḡ
= 〈ν,u〉ḡ.

On the other hand,

Dvf(t,v) = Dρexpn(ξ,tv) ◦
(
tDw expn (ξ,w)

∣∣
w=tv

)

⇒ Dvf
∣∣
(τn(ξ,v),v)

= τn (ξ,v)Π
ν ◦Dw expn (ξ,w)

∣∣
w=τn(ξ,v)v

,

where Πν is the linear map given by

Πν (w) = 〈ν,w〉ḡ for all w ∈ Tηn(ξ,v)Ω.

Now differentiating the identity f(τn(ξ,v),v) = 0 with respect to v, we get

0=
∂f
∂t

∣∣∣
(τn(ξ,v),v)

Dvτn (ξ,v)+Dvf
∣∣
(τn(ξ,v),v)

= 〈ν,u〉ḡDvτn (ξ,v)+ τn (ξ,v)Π
ν ◦Dw expn (ξ,w)

∣∣
w=τn(ξ,v)v

.

12
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Therefore,

Dvτn (ξ,v) =−τn (ξ,v)
〈ν,u〉ḡ

Πν ◦Dw expn (ξ,w)
∣∣
w=τn(ξ,v)v

⇒‖Dvτn (ξ,v)‖op ⩽
τn (ξ,v)
〈ν,u〉ḡ

∥∥∥Dw expn (ξ,w)
∣∣
w=τn(ξ,v)v

∥∥∥
op

⩽ L

[
τn (ξ,v)
〈ν,u〉ḡ

]
,

as required. Now the lemma follows by observing that

τn (ξ,v)⩽ diamgn (Ω)⩽ Λdiamḡ (Ω) ,

for all (ξ,v) ∈ ∂+SΩ.

We are now ready to prove theorem 1.3. Recall that the notation
´

µ
fd|g| denotes the integral

of a function f along the curve γ with respect to the arc-length metric induced by g.

Proof of theorem 1.3. Fix ξ ∈ ∂Ω, and de昀椀ne the sets

B1 (ξ) := {η ∈ ∂Ω : Γn1 (ξ,η)⩽ Γn2 (ξ,η)} ,
B2 (ξ) := {η ∈ ∂Ω : Γn2 (ξ,η)⩽ Γn1 (ξ,η)} .

Suppose η ∈ B1(ξ), and let γ1(ξ,η) denote the unit speed geodesic with respect to gn1 from ξ
to η. Clearly, Γn1(ξ,η) =

´

µ1(ξ,η)
n1d|ḡ|, whereas Γn2(ξ,η)⩽

´

µ1(ξ,η)
n2d|ḡ|. So we have

(Γn2 −Γn1)(ξ,η)⩽

ˆ

µ1(ξ,η)

(n2 − n1)d|ḡ|=
ˆ

µ1(ξ,η)

(n2 − n1)
n1

d|gn1 |.

This implies

(Γn2 −Γn1)
2
(ξ,η)⩽ Γn1 (ξ,η)

ˆ

µ1(ξ,η)

(n2 − n1)
2

n21
d|gn1 | (by Cauchy-Schwarz)

= Γn1 (ξ,η)

ˆ Γn1 (ξ,η)

0

(n2 − n1)
2

n21
(γ1 (ξ,η, t))dt

⩽
Γn1 (ξ,η)

λ2

ˆ Γn1 (ξ,η)

0
(n2 − n1)

2 (expn1 (ξ, tvn1 (ξ,η))
)
dt,

where vn1(ξ,η) = γ̇n1(ξ,η,0), that is, the unit tangent vector at ξ that points towards η. This
implies

ˆ

B1(ξ)

(Γn2 −Γn1 )
2 (ξ,η)dη ⩽

Λdiamḡ (Ω)

λ2

ˆ

∂Ω

ˆ Γn1 (ξ,η)

0
(n2 − n1)

2 (expn1 (ξ, tvn1 (ξ,η))
)

dtdη

=
Λdiamḡ (Ω)

λ2

ˆ

∂+SξΩ

ˆ τn1 (ξ,v)

0
(n2 − n1)

2 (expn1 (ξ, tv)
)

|det [Dvηn1 (ξ,v)]dtdv.

(17)

13
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by the change of variables formula. (Here, dη is the surface measure on η ∈ ∂Ω with respect
to ḡ.) We now 昀椀nd an upper bound for |det[Dvηn1 ]| on the support of the integrand. Recall that
by de昀椀nition,

ηn1 (ξ,v) = expn1 (ξ,τn1 (ξ,v)v) .

With the canonical identi昀椀cation of TvSξΩ with a subspace of TξΩ, we get

Dvηn1 (ξ,v) = Dw expn1 (ξ,w)
∣∣
w=τn1 (ξ,v)v

◦Dv (τn1 (ξ,v)v)

= Dw expn1 (ξ,w)
∣∣
w=τn1 (ξ,v)v

◦ (τn1 (ξ,v) id+v⊗Dvτn1 (ξ,v)) .

Here, v⊗Dvτn1(ξ,v) should be interpreted as the map

w ∈ TvSξΩ⊆ TξΩ 7→
[
Dvτn1 |(ξ,v) (w)

]
v ∈ TξΩ.

So we have

‖Dvηn1 (ξ,v)‖op ⩽
∥∥∥Dw expn1 (ξ,w)

∣∣
w=τn1 (ξ,v)v

∥∥∥
op
(τn1 (ξ,v)+ ‖Dvτn1 (ξ,v)‖op)

⩽ L

(
Λdiamḡ (Ω)+

LΛdiamḡ (Ω)

〈ν (ηn1 (ξ,v)) ,un1 (ξ,v)〉ḡ

)

by lemma 2.4. Now since Ω0 is a relatively compact subset of Ω, there exists an ε ∈ (0,1)
such that if 〈ν(ηn1(ξ,v)),un1(ξ,v)〉ḡ < ε, the geodesic γn1(ξ,v, ·) lies entirely within Ω \Ω0,
and therefore,

(n2 − n1)
2 (expn1 (ξ, tv)

)
= 0 for all t ∈ [0, τn1 (ξ,v)] .

Therefore, on the support of the integrand in the right hand side of (17), we have the bounds

‖Dvηn1 (ξ,v)‖op ⩽ L

(
Λdiamḡ (Ω)+

LΛdiamḡ (Ω)

ε

)
≲Ω,Ω0,ḡ,L Λ,

and consequently

|det [Dv (ηn1 (ξ,v))] |≲Ω,Ω0,ḡ,L Λ
m−1.

Applying this bound to the right hand side of (17), we get

ˆ

B1(ξ)

(Γn1 −Γn2)
2
(ξ,η)dη ≲

Λm

λ2

ˆ

∂+SξΩ

ˆ τn1 (ξ,v)

0
(n2 − n1)

2 (expn1 (ξ, tv)
)
dtdv

∼ Λm

λ2

ˆ

dom(expn1 (ξ,·))

(n2 − n1)
2 (expn1 (ξ,w)

)

|w|m−1
ḡ

dw

Again by remark 1.2, we have (n2 − n1)2(expn1(ξ,w)) = 0 for all w ∈ dom(expn1(ξ, ·)) with
|w|ḡ ⩽ δ. Therefore, we get
ˆ

B1(ξ)

(Γn1 −Γn2)
2
(ξ,η)dη ≲

Λm

λ2δm−1

ˆ

dom(expn1 (ξ,·))
(n2 − n1)

2 (expn1 (ξ,w)
)
dw.

14
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We now make the change of variable x= expn1(ξ,w). The assumption that Dw expn1(ξ,w)�
` implies that the inverse wn1(ξ, ·) of expn1(ξ, ·) satis昀椀es ‖Dxwn1(ξ,x)‖op < `−1, and con-
sequently,

|det(Dxwn1 (ξ,x)) |< `−m.

Therefore,
ˆ

B1(ξ)

(Γn1 −Γn2)
2
(ξ,η)dη ≲

Λm

λ2

ˆ

Ω

(n2 − n1)
2
(x) |det(Dxwn1 (ξ,x)) |dVolḡ (x)

≲
Λm

λ2`m

ˆ

Ω

(n2 − n1)
2
(x)dVolḡ (x) .

By analogous arguments, we also have
ˆ

B2(ξ)

(Γn1 −Γn2)
2
(ξ,η)dη ≲

Λm

λ2`m

ˆ

Ω

(n2 − n1)
2
(x)dVolḡ (x) .

Adding the last two inequalities, we get
ˆ

∂Ω

(Γn1 −Γn2)
2
(ξ,η)dη ≲

Λm

λ2`m
‖n1 − n2‖2L2(Ω)

⇒
ˆ

∂Ω

ˆ

∂Ω

(Γn1 −Γn2)
2
(ξ,η)dηdξ ≲

Λm

λ2`m
‖n1 − n2‖2L2(Ω)

⇒‖Γn1 −Γn2‖L2(∂Ω×∂Ω) ≲Ω,Ω0,ḡ,ℓ,L
Λm/2

λ
‖n1 − n2‖L2(Ω).

This completes the proof.

Next, we derive the analogous continuity estimate for the map c 7→ Zc. The key step is to
show that for anyM> 0, the operator norm of the derivative of expnc(x,v) is uniformly bounded
for all c ∈ C3

ℓ,M(Ω0) and (x,v) ∈ dom(expnc). We begin with a simple lemma.

Lemma 2.5. Let (M,g) be a Riemannian manifold whose curvature tensor R satis昀椀es

‖R‖= sup{|R(u,v)w|g : u,v,w ∈ SM}<∞.

Then any Jacobi 昀椀eld J along a unit speed geodesic γ : [0,T]→M satis昀椀es the norm bounds

|J(t) |2g+ |J̇(t) |2g ⩽ e(1+∥R∥)t
(
|J(0) |2g+ |J̇(0) |2g

)
for all t ∈ [0,T] .

Proof. Set f(t) = |J(t)|2g+ |J̇(t)|2g. Since J is a Jacobi 昀椀eld, it satis昀椀es the equation

J̈(t)+R(J(t) , γ̇ (t)) γ̇ (t) = 0.

Therefore,

f ′ (t) = 2〈J(t) , J̇(t)〉g+ 2〈J̇(t) , J̈(t)〉g
= 2〈J, J̇〉g+ 2〈J̇,−R(J, γ̇) γ̇〉g
⩽ 2|J|g|J̇|g+ 2|J̇|g‖R‖|J|g|γ̇|2g
⩽ (1+ ‖R‖) f(t) .
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So it follows that

f(t)⩽ e(1+∥R∥)tf(0) for all t ∈ [0,T] .

Next, let us recall the de昀椀nition of the canonical metric on the tangent bundle of a
Riemannian manifold, also called the Sasaki metric. Let (M,g) be a Riemannian manifold,
(x,w) ∈ TM, and V1,V2 ∈ T(x,w)TM. Then we may choose curves αj(s) = (σj(s),vj(s)) in
TM, de昀椀ned on (−ε,ε), such that

αj (0) = (x,w) , α̇j (0) = Vj, for j = 1,2.

The inner product of V1,V2 with respect to the Sasaki metric is de昀椀ned to be

〈V1,V2〉g := 〈σ̇1 (0) , σ̇2 (0)〉g+ 〈v̇1 (0) , v̇2 (0)〉g,

where v̇j(s) represents the covariant derivative of vj(s) along the curve σj(s). Note that we are
using the same notation for the Sasaki metric as for the original metric g. Now, for any C1 map
F : TM→M, the operator norm of the total derivative of F at (x,w) ∈ TM is given by

‖DF(x,w)‖op := sup
{
|DF(x,w)(V) |g : V ∈ T(x,w)TM, |V|g = 1

}
.

We will show that if c ∈ C3
ℓ,M(Ω0), the total derivative of expnc is bounded above in the

operator norm.

Proposition 2.6. For any M> 0, there exists L= L(M)> 0 such that for all c ∈ C3
ℓ,M(Ω0), the

total derivative of the exponential map of gnc satis昀椀es

‖Dexpnc (x,w)‖op < L

for all x ∈ Ω and w ∈ dom(expnc(x, ·)). In particular, nc ∈Nλ,Λ,ℓ,L(Ω0).

Proof. Suppose c ∈ C3
ℓ,M(Ω0). Fix (x,w) ∈ dom(expnc), and let V ∈ T(x,w)TΩ. It suf昀椀ces to

show that

|Dexpnc (x,w)(V) |ḡ < L|V|ḡ.

Choose a curve α(s) = (σ(s),v(s)) in TΩ, de昀椀ned on (−ε,ε), such that α(0) = (x,w) and
α̇(0) = V. Consider the family of geodesics Φ : (−ε,ε)× [0,1]→ Ω de昀椀ned by

Φ(s, t) = expnc (σ (s) , tv(s)) .

The variation 昀椀eld of this family of geodesics is

J(t) := ∂s expnc (σ (s) , tv(s))
∣∣
s=0

,

which is a Jacobi 昀椀eld along γ(t) := Φ(0, t). Observe that

J(1) = ∂s expnc (σ (s) ,v(s))
∣∣
s=0

= Dexpnc (x,w)(V) ,

which is precisely the quantity whose norm we want to estimate.
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Let R be the Riemann curvature tensor of (Ω,gnc), and let Rijkl denote its tensor coef昀椀cients

with respect to a 昀椀xed global coordinate chart on Ω. Then we have

Rijkl = ∂kΓ
i
lj− ∂lΓ

i
kj+ΓikmΓ

m
lj −ΓilmΓ

m
kj,

where

Γljk =
1
2
n−2
c ḡlm

(
∂j
(
n2c ḡkm

)
+ ∂k

(
n2c ḡjm

)
− ∂m

(
n2c ḡjk

))
.

This implies that for any x ∈ Ω,

max
ijkl

|Rijkl (x) |≲ḡ 1+ nc (x)
−2 ‖nc‖2C2 ≲ e4M (1+M)

4
.

Therefore, for any x ∈ Ω and unit tangent vectors u,v,w ∈ SxΩ,

|R(u,v)w|gc ≲ nc (x)

(
max
ijkl

|Rijkl (x)ujvkwl|
)
≲ e5M (1+M)

4

⇒‖R‖⩽ Ce5M (1+M)
4

for some C> 0. Taking L2 > exp(1+C ′e5M(1+M)4) and applying lemma 2.5, we get

|Dexpc (x,w)(V) |2gc = |J(1) |2gnc < L2
(
|J(0) |2gnc + |J̇(0) |2gnc

)

= L2
(
|σ̇ (0) |2 + |v̇(0)|2

)
= L2|V|2ḡ.

This completes the proof.

Corollary 2.7. There exists a constant C ′
2 = C ′

2(Ω,Ω0, ḡ, `,M)> 0 such that for all c1,c2 ∈
C3
ℓ,M(Ω0),

‖Zc1 − Zc2‖L2(∂Ω×∂Ω) ⩽ C ′
2‖c1 − c2‖L2(Ω0).

Proof. We know from theorem 1.3, proposition 2.6, and equation (15) that

‖Γc1 −Γc2‖L2(∂Ω×∂Ω) ≲Ω,Ω0,ḡ,ℓ,M ‖c1 − c2‖L2(Ω0).

Now consider

‖Γc1 −Γc2‖2L2(∂Ω×∂Ω) =

ˆ

∂Ω×∂Ω

∣∣eZc1 − eZc2
∣∣2 dξ dη.

Recall that there exists δ > 0 such that Zc1(ξ,η) = Zc2(ξ,η) whenever distḡ(ξ,η)< δ. On the
set {distḡ(ξ,η)⩾ δ},

e−Mδ ⩽ Γcj (ξ,η)⩽ eM diamḡ (Ω)

⇒−M+ logδ ⩽ Zcj (ξ,η)⩽M+ log |diamḡ (Ω) |. (18)

So by (14),

|eZc1 (ξ,η) − eZc2 (ξ,η)|⩾ e−Mδ|Zc1 (ξ,η)− Zc2 (ξ,η) |

17
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for all (ξ,η) ∈ ∂Ω× ∂Ω. Consequently,

‖Γc1 −Γc2‖2L2(∂Ω×∂Ω) =

ˆ ∣∣eZc1 − eZc2
∣∣2 dξ dη ⩾ e−2Mδ2

ˆ

|Zc1 − Zc2 |2 dξ dη.

So we conclude that

‖Zc1 − Zc2‖L2 ≲ ‖Γc1 −Γc2‖L2 ≲ ‖c1 − c2‖L2 .

We conclude this section with a technical result that will be necessary for the proof of
theorem 3.7 in section 3.

Theorem 2.8. Given M> 0, there exists a constant C ′
3 = C ′

3(Ω,Ω0, ḡ, `,M)> 0 such that for
all c1,c2 ∈ C3

ℓ,M(Ω0),

‖Zc1 − Zc2‖H2(∂Ω×∂Ω) ⩽ C ′
3.

Proof. We know from theorem 1.3 that

‖Zc1 − Zc2‖L2 ≲ ‖c1 − c2‖L2 ≲ 2M.

Next, let ξ,η ∈ ∂Ω. It follows from remark 1.2 that if distḡ(ξ,η)< δ, then Zc1 − Zc2 and all
its derivatives are identically 0 in a neighborhood of (ξ,η). On the other hand, if distḡ(ξ,η)> δ,
lemma 2.2 implies

|dξ (Zc1 − Zc2)(ξ,η) |ḡ ⩽
|dξΓc1 (ξ,η) |ḡ

Γc1 (ξ,η)
+

|dξΓc2 (ξ,η) |ḡ
Γc2 (ξ,η)

≲
eM

δ
.

This shows that ‖dξ(Zc1 − Zc2)‖L2 is uniformly bounded for c1,c2 ∈ C3
ℓ,M(Ω0). By symmetry,

‖dη(Zc1 − Zc2)‖L2 is also uniformly bounded.
So it only remains to consider the Hessian tensor of Zc1 − Zc2 . Let ∇ denote the Levi–

Civita connection on ∂Ωξ × ∂Ωη , and let πξ : ∂Ωξ × ∂Ωη → ∂Ωξ and πη : ∂Ωξ × ∂Ωη →
∂Ωη denote the canonical projection maps. We may decompose ∇ as ∇ξ +∇η , where ∇ξ

and ∇η are the covariant derivative operations with respect to ξ and η respectively. More pre-
cisely, given any tensor 昀椀eld F on ∂Ωξ × ∂Ωη , and any tangent vector v ∈ T(∂Ωξ × ∂Ωη), we
have

∇ξ
vF=∇(πξ)∗vξ

F, ∇η
vF=∇(πη)∗vη

F,

where (vξ,vη) is the image of v under the canonical isomorphism from T(∂Ωξ × ∂Ωη) to
(T∂Ωξ)× (T∂Ωη). Correspondingly, the Hessian operator on ∂Ωξ × ∂Ωη can be decomposed
as

Hess=∇2 =
(
∇ξ +∇η

)(
∇ξ +∇η

)

=∇ξ∇ξ +∇ξ∇η +∇η∇ξ +∇η∇η

= Hessξ +∇ξ∇η +∇η∇ξ +Hessη,

where Hessξ and Hessη are the Hessian operators with respect to ξ and η respectively. Now
let ξ,η ∈ ∂Ω be such that distḡ(ξ,η)> δ. Then for j = 1,2,

18
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∇ξ∇ηZcj (ξ,η) =∇ξ∇η logΓcj (ξ,η)

=

(
∇ξ∇ηΓcj

Γcj
− dξΓcj ⊗ dηΓcj

Γ2
cj

)
(ξ,η) .

By lemma 2.2, this implies

|∇ξ∇ηZcj (ξ,η) |ḡ ⩽
|∇ξ∇ηΓcj (ξ,η) |ḡ

Γcj (ξ,η)
+

|dξΓcj (ξ,η) |ḡ|dηΓcj (ξ,η) |ḡ
Γ2
cj (ξ,η)

≲
1+ `−1

λδ2
+

1
δ2

.

This implies that ‖∇ξ∇η(Zc1 − Zc2)‖L2 is uniformly bounded as well. Finally, consider the fact
[43] that

Hessξ Γcj (ξ,η) =
(
Dw expcj (ξ,w(ξ,η))

)−1(
Dξ expcj (ξ,w(ξ,η))

)
,

where w(ξ, ·) is the inverse of expcj(ξ, ·) as in lemma 2.2. Therefore, by proposition 2.6,

|Hessξ Γcj (ξ,η) |ḡ ≲ `−1L(M) .

Writing Zcj = logΓcj , we get

Hessξ Zcj (ξ,η) = Hessξ logΓcj (ξ,η)

=

(
Hessξ Γcj

Γcj
− dξΓcj ⊗ dξΓcj

Γ2
cj

)
(ξ,η) ,

which implies

|Hessξ Zcj (ξ,η) |ḡ ⩽
|Hessξ Γcj (ξ,η) |ḡ

Γcj (ξ,η)
+

|dξΓcj (ξ,η) |2ḡ
Γ2
cj (ξ,eta)

≲
`−1L
λδ2

+
1
δ2

.

So we conclude that ‖Hessξ(Zc1 − Zc2)‖L2 , and by similar arguments, ‖Hessη(Zc1 − Zc2)‖L2 ,
are both uniformly bounded on C´

ℓ,M(Ω0) as well. This proves the result.

3. Statistical Inversion through the Bayesian framework

As discussed in the Introduction, we will be using the posterior mean of c given 昀椀nitely many
measurements DN = (Xi,Yi,Zi)Ni=1, as an estimator for the true metric parameter c0. Let us
begin by describing the prior distribution Π for c ∈ C3

0(Ω0). We will assume that Π arises
from a centered Gaussian probability distribution Π̃ on the Banach space C(Ω0) that satis昀椀es
the following conditions.

Condition 3.1. Let β ⩾ 3 and α > β+ m
2 . We assume that Π̃ is a centered Gaussian Borel

probability measure on C(Ω0) that is supported in a separable subspace of C´
0 (Ω0). Moreover,

its Reproducing Kernel Hilbert space (RKHS) (H,‖ · ‖H) must be continuously embedded in
the Sobolev space H³(Ω0).

19
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We refer the reader to [14, chapter 11] or [15, sections 2.1 and 2.6] for basic facts about
Gaussian probability measures and their Reproducing Kernel Hilbert Spaces.

We now de昀椀ne the prior Π to be the restriction of Π̃ to C´
ℓ,M(Ω0) in the sense that

Π(A) =
Π̃
(
A∩C´

ℓ,M (Ω0)
)

Π̃
(
C´
ℓ,M (Ω0)

) (19)

for all Borel sets A⊆ C3
0(Ω0). Wewill see in lemma 3.5 thatC´-balls have positive Π̃-measure.

This together with the fact that C´
ℓ,M(Ω0) is an open subset of C´

0 (Ω0) (cf remark 1.4) implies

that Π̃(C´
ℓ,M(Ω0))> 0. Therefore, (19) yields awell-de昀椀ned probability distribution onC3

0(Ω0).

Theorem 3.1. Let Π be a prior distribution on C3
0(Ω0) de昀椀ned by (19). Assume that the true

parameter c0 ∈ C´
ℓ,M(Ω0)∩H, and let cN be the mean (6) of the posterior distributionΠ(·|DN)

arising from observations (5). Then there exists ω ∈ (0,1/4) such that

PNc0
(
‖cN− c0‖L2(Ω0) > N−ω

)
→ 0 as N→∞.

Moreover, ω can be made arbitrarily close to 1/4 for α, β large enough.

Remark 3.1. The assumption that c0 ∈ C´
ℓ,M(Ω0)∩H is weaker than in theorem 1.5, where

we assumed that c0 is smooth, compactly supported in Ω0, and that gnc0 is simple. Indeed,

if gnc0 is a smooth simple metric, c0 necessarily belongs to C´
ℓ,M(Ω0) for appropriate values

of `,M, and any β. Moreover, given any c0 ∈ H³
0 (Ω0), it is possible to choose Π̃ so that its

RKHS H contains c0. Indeed, let ( f(x) : x ∈ Ω0) be the so-called Matérn-Whittle process of
regularity α (see [14, example 11.8]), whose corresponding RKHS is H³(Ω0). It follows from
lemma I.4 in [14] that the sample paths of this process belong almost surely to C´(Ω0). Now
choose a cut-off function ϕ ∈ C∞(Ω0) such that ϕ> 0 on Ω0, ϕ and all its partial derivatives
vanish on ∂Ω0, andϕ−1c0 ∈ H³(Ω0). De昀椀ne Π̃ to be the probability law of (ϕ(x)f(x) : x ∈ Ω0).
ThenH= {ϕ f : f ∈ H³(Ω0)}, which contains c0. Therefore, theorem 3.1 is amore general and
precise version of theorem 1.5.

3.1. A general contraction theorem

Our proof of theorem 3.1 will follow the same general strategy as in [23], with some modi昀椀c-
ations necessitated by the fact that our prior Π is not in itself a Gaussian probability measure,
but rather the restriction of such a measure to C´

ℓ,M(Ω0). We begin with a general posterior con-
traction result (theorem 3.2). This is a simpli昀椀ed version of [23, theorem 5.13], which suf昀椀ces
for us since our priorΠ independent of N. Before stating the result, we need to introduce some
notation. Recall that for c ∈ C´

ℓ,M(Ω0), we de昀椀ned pc as the probability density function

pc (x,y,z) =
1√
2π

exp

{
−1

2
(z− Zc (x,y))

2
}

for all (x,y,z) ∈ X ,

where X = ∂Ω× ∂Ω×R. Given c1,c2 ∈ C´
ℓ,M(Ω0), let

h(c1,c2) :=

(
ˆ

X

(√
pc1 −

√
pc2
)2

dµ(x,y) dz

)1/2

20
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denote the Hellinger distance between pc1 and pc2 ,

K(c1,c2) := Ec1

[
log

(
pc1
pc2

)]
=

ˆ

X

log

(
pc1
pc2

)
pc1dµ(x,y) dz

the Kullback-Leibler divergence, and

V(c1,c2) := Ec1

[
log

(
pc1
pc2

)]2
.

Also, for anyF⊆ C´
ℓ,M(Ω0) and δ > 0, we letN (F,h, δ) denote the minimum number of h-balls

of radius δ needed to cover F.

Theorem 3.2. Let Π̂ be a Borel probability measure on C3
0(Ω0) supported on C´

ℓ,M(Ω0). Let

c0 ∈ C´
ℓ,M(Ω0) be 昀椀xed, and let δN be a sequence of positive numbers such that δN → 0 and√

NδN →∞ as N→∞. Assume that the following two conditions hold:

(1) There exists C> 0 such that for all N ∈ N,

Π̂
({

c ∈ C´
ℓ,M (Ω0) : K(c,c0)⩽ δ2N,V(c,c0)⩽ δ2N

})
⩾ e−CN¶2

N . (20)

(2) There exists C̃> 0 such that

logN
(
C´
ℓ,M (Ω0) ,h, δN

)
⩽ C̃Nδ2N. (21)

Now suppose that we make i.i.d. observations DN = (Xi,Yi,Zi)Ni=1 ∼ PNc0 . Then for some
k> 0 large enough, we have

PNc0

(
Π̂
({

c ∈ C´
ℓ,M (Ω0) : h(c,c0)⩽ kδN

}
|DN

)
⩽ 1− e−(C+3)N¶2

N

)
→ 0 (22)

as N→∞.

Proof. De昀椀ne

BN =
{
c ∈ C´

ℓ,M (Ω0) : K(c,c0)⩽ δ2N,V(c,c0)⩽ δ2N

}
, N ∈ N. (23)

By condition (1) and [15, lemma 7.3.2], we have that for any ζ > 0 and any probability measure
m̃ on BN,

PNc0

(
ˆ

BN

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dm̃(c)⩽ e−(1+ζ)N¶2
N

)
⩽

1
ζ2Nδ2N

.

In particular, choosing ζ = 1 and taking m̃ to be the restriction of Π̂ to BN followed by normal-
ization, we get that

PNc0

(
ˆ

BN

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ̂(c)⩽ Π̂(BN)e
−2N¶2

N

)
⩽

1
Nδ2N

N→∞−−−−→ 0.
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Set

AN =

{
ˆ

BN

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ̂(c)⩾ e−(2+C)N¶2
N

}
,

where C is as in condition (1). It is clear that AN ⊇
{
´

BN

∏N
i=1

pc
pc0

dΠ̂(c)⩾ Π̂(BN)e−2N¶2
N

}
, and

therefore, PNc0(AN)→ 1 as N→∞.
Next, we consider condition (2). Let k> k ′ > 0 be numbers to be determined later. Fix N

and de昀椀ne the function N(ε) = eC̃N¶
2
N for all ε > ε0 = k ′δN. It follows from condition (2) that

for any ε > ε0,

N
(
C´
ℓ,M (Ω0) ,h, ε/4

)
⩽N

(
C´
ℓ,M (Ω0) ,h,k

′δN/4
)
⩽ eC̃N¶

2
N = N(ε) .

Therefore, by [15, theorem 7.1.4], there exist test functions ΨN =ΨN(DN) such that for some
K> 0,

PNc0 [ΨN = 1]⩽
N(ε)

K
e−KNε2

; sup
c:h(c,c0)>ε

E
N
c [1−ΨN]⩽ e−KNε2

.

Now let l> C̃ be arbitrary. Setting k=
√
l/K and ε= kδN, we can see that this implies

PNc0 [ΨN = 1]→ 0 as N→∞ ; sup
c:h(c,c0)>k¶N

E
N
c [1−ΨN]⩽ e−lN¶2

N . (24)

Now de昀椀ne

FN =
{
c ∈ C´

ℓ,M (Ω0) : h(c,c0)⩽ kδN
}

which is the event whose probability we want to bound. Then by (24),

PNc0

(
Π̂(FcN|DN)⩾ e−(C+3)N¶2

N

)

= PNc0



´

FcN

∏N
i=1

pc
pc0

(Xi,Yi,Zi)dΠ̂(c)
´ ∏N

i=1
pc
pc0

(Xi,Yi,Zi)dΠ̂(c)
⩾ e−(C+3)N¶2

N , ΨN = 0, AN


+ o(1)

⩽ PNc0

(
(1−ΨN)

ˆ

FcN

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ̂(c)⩾ e−(2C+5)N¶2
N

)
+ o(1) .

Now by Markov’s inequality, this is further bounded above by

E
N
c0

[
(1−ΨN)

ˆ

FcN

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ̂(c)

]
e(2C+5)N¶2

N + o(1)

=

[
ˆ

FcN

E
N
c0

[
(1−ΨN)

N∏

i=1

pc
pc0

(Xi,Yi,Zi)

]
dΠ̂(c)

]
e(2C+5)N¶2

N + o(1) (by Fubini’s Theorem)

=

[
ˆ

c:h(c,c0)>k¶N

E
N
c [(1−ΨN)]dΠ̂(c)

]
e(2C+5)N¶2

N + o(1)

⩽ e(2C+5−l)N¶2
N + o(1) .

Now choosing l> 2C+ 5, the theorem follows.
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3.2. Properties of the prior

In this section, we will verify the assumptions of theorem 3.2 when Π̂ = Π. The key ingredient
in the arguments is the forward continuity estimate from corollary 2.7. We begin by observing
that the Hellinger distance between c1,c2 ∈ C´

ℓ,M(Ω0) is equivalent to the L2(∂Ω× ∂Ω) dis-
tance between Zc1 and Zc2 .

Lemma 3.3. There exists κ= κ(Ω, ḡ,M)> 0 such that for all c1,c2 ∈ C´
ℓ,M(Ω0),

κ‖Zc1 − Zc2‖2L2 ⩽ h2 (c1,c2)⩽
1

4Volḡ (∂Ω)
2 ‖Zc1 − Zc2‖2L2 .

Proof. Consider the ‘Hellinger af昀椀nity’ function

ρ(c1,c2) =
ˆ

X

√
pc1pc2dµ= 1− 1

2
h2 (c1,c2) .

We have

ρ(c1,c2) =
1√
2π

ˆ

X

exp

{
−1

4

(
(z− Zc1 (x,y))

2
+(z− Zc2 (x,y))

2
)}

dµ(x,y) dz

=
1

Volḡ (∂Ω× ∂Ω)

ˆ

∂Ω×∂Ω

exp

{
−1

4

(
Zc1 (x,y)

2
+ Zc2 (x,y)

2
)}

×
[

1√
2π

ˆ ∞

−∞

exp

{
−1

2

(
z− Zc1 + Zc2

2

)2
}

dz

]
exp

{
1
8
(Zc1 + Zc2)

2
}
dxdy

=
1

Volḡ (∂Ω)
2

ˆ

∂Ω×∂Ω

exp

{
−1

8
(Zc1 (x,y)− Zc2 (x,y))

2
}
dxdy. (25)

Now applying the simple estimate e−t ⩾ 1− t for all t⩾ 0, we get

ρ(c1,c2)⩾
1

Volḡ (∂Ω)
2

ˆ

∂Ω×∂Ω

[
1− 1

8
(Zc1 − Zc2)

2
]
dxdy

= 1− 1

8Volḡ (∂Ω)
2 ‖Zc1 − Zc2‖2L2 .

Consequently,

h2 (c1,c2) = 2(1− ρ(c1,c2))⩽
1

4Volḡ (∂Ω)
2 ‖Zc1 − Zc2‖2L2 .

Next, we use the fact Zc1 ,Zc2 satisfy the uniform bounds (18) on the support of Zc1 − Zc2 .
Consequently, for all x,y ∈ ∂Ω, we have

|Zc1 (x,y)− Zc2 (x,y) |⩽∆, (26)

where ∆= 2M+ logdiamḡ(Ω)− logδ. Set T=∆2/8 and observe that for all t ∈ [0,T],

e−t ⩽ 1−
(
1− e−T

T

)
t
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by the convexity of t 7→ e−t. Therefore, for κ= 1−e−T

4T , we have

exp

{
−1

8
(Zc1 (x,y)− Zc2 (x,y))

2
}
⩽ 1− κ

2
|Zc1 (x,y)− Zc2 (x,y) |2

for all (x,y) ∈ ∂Ω× ∂Ω. Integrating both sides of this inequality with respect to dµ(x,y) and
applying (25), we get

ρ(c1,c2)⩽ 1− κ

2
‖Zc1 − Zc2‖2L2

⇒ h2 (c1,c2)⩾ κ‖Zc1 − Zc2‖2L2 .

This completes the proof.

Now let us verify condition (1) of theorem 3.2 for Π.

Lemma 3.4. For c0 ∈ C´
ℓ,M(Ω0) and t> 0, de昀椀ne

BN (t) =
{
c ∈ C´

ℓ,M (Ω0) : ‖c− c0‖Cβ ⩽ δN/t
}
,

and let BN,Π, and δN be as in theorem 3.2. Then for some t> 0 large enough, BN(t)⊂ BN for
all N ∈ N. In particular,

Π(BN)⩾Π(BN (t)) .

Proof. Weneed to verify that if t is large enough, then for any c ∈ BN(t), we haveK(c,c0)⩽ δ2N
and V(c,c0)⩽ δ2N. Consider a random observation (X,Y,Z), where (X,Y) is a pair of boundary
points chosen with respect to the uniform probability measure µ, and Z= Zc0(X,Y)+ ε, with
ε∼ N(0,1) independent of (X,Y). Observe that for any c ∈ BN(t),

log
pc0
pc

(X,Y,Z) =−1
2

[
(Z− Zc0 (X,Y))

2 − (Z− Zc (X,Y))
2
]

=
1
2
(Zc (X,Y)− Zc0 (X,Y))

2 − ε(Zc (X,Y)− Zc0 (X,Y)) . (27)

Since E[ε|X,Y] = 0, we have

K(c,c0) = Ec0

[
log

pc0
pc

(X,Y,Z)

]

= E
µ

[
1
2
(Zc (X,Y)− Zc0 (X,Y))

2
]

(28)

=
1

2Volḡ (∂Ω× ∂Ω)

ˆ

∂Ω×∂Ω

(Zc (x,y)− Zc0 (x,y))
2 dxdy

=
1

2Volḡ (∂Ω)
2 ‖Zc− Zc0‖2L2

≲ ‖c− c0‖2L2 (by corollary 2.7)

≲
δ2N
t2
. (29)
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So it follows that if t is large enough, K(c,c0)⩽ δ2N for all c ∈ BN(t). Next, consider

V(c,c0) = Ec0

[
log

pc0
pc

(X,Y,Z)

]2

⩽ 2Eµ

[
1
2
(Zc− Zc0)

2

]2
+ 2Eµ

[
(Zc− Zc0)

2
Eϵ

[
ε2
]]

(by (27))

=
1
2

ˆ

∂Ω×∂Ω

|Zc− Zc0 |4dµ(x,y)+ 2Eµ [Zc− Zc0 ]
2 (since E

[
ε2
]
= 1)

⩽
‖Zc− Zc0‖2L∞
2Volḡ(∂Ω)2

‖Zc− Zc0‖2L2 + 4K(c,c0)

by (28). It follows from (26) that ‖Zc− Zc0‖L∞ <∆, where ∆> 0 depends only on Ω, ḡ, δ.
Consequently,

V(c,c0)≲ ‖Zc− Zc0‖2L2 +K(c,c0)

≲ C ′
22‖c− c0‖2L2 +K(c,c0) (by corollary 2.7)

≲ ‖c− c0‖2Cβ +
δ2N
t2

(by (29))

≲
δ2N
t2
.

This shows that for t> 0 large enough, we also get V(c,c0)⩽ δ2N for all c ∈ BN(t).

Next, we will establish a lower bound forΠ(BN(t)), which will follow from estimates of Π̃-
measures of sets of the form {c : ‖c‖Cβ ⩽ ε} when ε> 0 is small. To this end, it is convenient
to work with Hölder-Zygmund spaces Cs∗(Ω0), with s> 0 (see [42] for a detailed treatment).
If s is not an integer, Cs∗(Ω0) is simply the Hölder space Cs(Ω0). On the other hand, if s is a
positive integer, Cs∗(Ω0) is a larger space than Cs(Ω0), and is de昀椀ned by the norm

‖ f‖Cs∗(Ω0) =
∑

|a|⩽s−1

sup
x∈Ω0

|∂af(x) |+
∑

|a|=s−1

sup
x∈Ω0, h̸=0

|∂af(x+ h)+ ∂af(x− h)− 2f∂a (x) |
|h| .

In either case, it is easy to see that ‖ f‖Cs∗ ⩽ ‖ f‖Cs for all f ∈ Cs(Ω0). It turns out that Cs∗(Ω0)
coincides with the Besov space Bs∞,∞(Ω0), which allows us to use various embedding and
approximation results from Besov space theory.

Before proceeding, let us 昀椀x ν > 0 such that

ν >max

{
2m

2(α−β)−m
,
m
β

}
, and de昀椀ne δN = N−1/(2+ν). (30)

It is easy to verify that δN → 0 and
√
NδN = N

ν
2(2+ν) →∞ as N→∞.

Lemma 3.5. Let c0 ∈ C´
ℓ,M(Ω0)∩H, and de昀椀ne δN as in (30). Then for t> 0 large enough,

there exists C ′ = C ′(Ω,Ω0, ḡ,α,β,`,M,c0, t)> 0 such that for all N ∈ N,

Π(BN (t))⩾ exp
{
−C ′Nδ2N

}
.

In particular, there exists C= C(Ω,Ω0, ḡ,α,β,`,M,c0)> 0 such that for all N ∈ N,

Π(BN)⩾ exp
{
−CNδ2N

}
.
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Proof. The sets {b ∈ C3
0(Ω0) : ‖b‖Cβ ⩽ δ} for δ > 0 are convex and symmetric. Hence by [15,

corollary 2.6.18],

Π̃(‖c− c0‖Cβ ⩽ δN/t)⩾ e−∥c0∥
2
H/2Π̃(‖c‖Cβ ⩽ δN/t) .

Moreover, since c0 ∈ C´
ℓ,M(Ω0), which is open with respect to the C´ metric, we have for all

suf昀椀ciently large t> 0,

Π(BN (t)) = Π(‖c− c0‖Cβ ⩽ δN/t) =
Π̃(‖c− c0‖Cβ ⩽ δN/t)

Π̃
(
C´
ℓ,M (Ω0)

) ,

and therefore,

Π(BN (t))⩾ e−∥c0∥
2
H/2 Π̃(‖c‖Cβ ⩽ δN/t)

Π̃
(
C´
ℓ,M (Ω0)

) . (31)

Next, choose a real number γ such that

β < γ < α− m
2
, ν >

2m
2(α− γ)−m

. (32)

Alternatively, if β is not an integer, we can simply set γ = β. In either case, we have ‖ f‖Cβ ⩽

‖ f‖Cγ
∗
for all f ∈ Cµ

∗(Ω0).

Now recall our assumption that the RKHSH of Π̃ is continuously embedded into H³(Ω0).
We know from [13, theorem 3.1.2] that the unit ball U of this space satis昀椀es

logN
(
U,‖ · ‖Cγ

∗
, ε
)
⩽

(
A
ε

) m
(³−µ)

for some 昀椀xed A> 0 and all ε> 0 small enough. Therefore, by [19, theorem 1.2], there exists
D> 0 such that for all ε> 0 small enough,

Π̃(‖c‖Cβ ⩽ ε)⩾ Π̃
(
‖c‖Cγ

∗
⩽ ε
)
⩾ exp

{
−Dε−

2m
2(³−µ)−m

}
.

Consequently, (31) implies that for t> 0 large enough,

Π(BN (t))⩾
1

Π̃
(
C´
ℓ,M (Ω0)

) exp

{
−‖c0‖2H

2
−Dt

2m
2(³−µ)−m δ

−
2m

2(³−µ)−m
N

}

>
1

Π̃
(
C´
ℓ,M (Ω0)

) exp

{
−‖c0‖2H

2
−Dt

2m
2(³−µ)−m δ−ν

N

}
(by (30) and (32))

=
1

Π̃
(
C´
ℓ,M (Ω0)

) exp

{
−‖c0‖2H

2
−Dt

2m
2(³−µ)−mNδ2N

}

⩾ exp
{
−C ′Nδ2N

}
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for C ′ = log(Π̃(C´
ℓ,M(Ω0)))+

∥c0∥
2
H

2 +Dt
2m

2(³−µ)−m . It now follows from lemma 3.4 that for
t> 0 suf昀椀ciently large, there exists C> 0 such that Π(BN)⩾ exp{−CNδ2N}. This completes
the proof.

Thus, we have veri昀椀ed condition (1) of theorem 3.2. The next Lemma veri昀椀es condition
(2).

Lemma 3.6. There exists C̃= C̃(Ω,Ω0, ḡ,β,`)> 0 such that

logN
(
C´
ℓ,M (Ω0) ,h, δN

)
⩽ C̃Nδ2N.

Proof. In order to construct a covering of C´
ℓ,M(Ω0), it suf昀椀ces to construct such a covering of

the C´
∗ (Ω0)—ball of radiusM centered at 0. Therefore, if U´ denotes the unit ball of C´

∗ (Ω0),

logN
(
C´
ℓ,M (Ω0) ,‖ · ‖L2 , δN

)
⩽ logN (MU´ ,‖ · ‖L2 , δN) .

Now applying [13, theorem 3.1.2] to the inclusion C´
∗ (Ω0) ↪→ L2(Ω0), we have

logN
(
C´
ℓ,M (Ω0) ,‖ · ‖L2 , δN

)
⩽

(
A ′

δN

) m
β

for some A ′ > 0. Since ν > m/β, we get

logN
(
C´
ℓ,M (Ω0) ,‖ · ‖L2 , δN

)
⩽ bδ−ν

N = bNδ2N,

where b> 0. Now, lemma 3.3 and corollary 2.7 imply that an L2 ball of radius δN centered at

any c ∈ C´
ℓ,M(Ω0) is contained in the Hellinger ball of radius C ′

2
2Vol̄g(∂Ω)δN centered at the same

point. Therefore, by suitably rescaling the constant b to C̃(Ω,Ω0, ḡ,β,`,M)> 0, we get the
desired complexity bound

logN
(
C´
ℓ,M (Ω0) ,h, δN

)
⩽ C̃Nδ2N.

3.3. Posterior convergence

In this section, we will combine the results of sections 3.1 and 3.2 to prove theorem 3.1.

Theorem 3.7. Let Π,α,β,M,c0 be as in theorem 3.1, ν,δN as in (30), and C> 0 as in lemma
3.5. Then for k ′ > 0 large enough, we have

PNc0

(
Π
({

c ∈ C´
ℓ,M (Ω0) : ‖Zc− Zc0‖L2 ⩽ k ′δN

}
|DN

)
⩾ 1− e−(C+3)N¶2

N

)
→ 1 (33)

as N→∞. Moreover, for all k ′ ′ > 0 large enough,

PNc0

(
Π
({

c ∈ C´
ℓ,M (Ω0) : ‖c− c0‖L2 ⩾ k ′ ′δ1/2N

}
|DN

)
⩾ e−(C+3)N¶2

N

)
→ 0 (34)

as N→∞.
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Proof. Combining lemmas 3.5 and 3.6 with theorem 3.2, we get (33) for all suf昀椀ciently large
k ′ > 0. To get (34), consider the event

EN =
{
c ∈ C´

ℓ,M (Ω0) : ‖Zc− Zc0‖L2 ⩽ k ′δN
}
.

By corollary 2.3, for any c ∈ EN,

‖c− c0‖L2 ⩽ C ′
1‖Zc− Zc0‖H1

⩽ C ′
1‖Zc− Zc0‖1/2L2 ‖Zc− Zc0‖1/2H2

by the standard interpolation result for Sobolev spaces. Therefore, by theorem 2.8,

‖c− c0‖L2 ⩽ C ′
1 (C

′
3)

1/2
(k ′δN)

1/2

Taking k ′ ′ > C ′
1(k

′C ′
3)

1/2, we conclude that

‖c− c0‖L2 ⩽ k ′ ′δ1/2N .

Combining this with (33) gives us (34).

The 昀椀nal step in the proof of theorem 3.1 is to prove that the posterior contraction rate in
the above Theorem carries over to the posterior mean cN = E

Π[c|DN] as well. Let

0< ω <
1

2(2+ ν)
.

We note that ω can be made arbitrarily close to 1/4 by choosing α,β appropriately. Indeed,
if α and β are suf昀椀ciently large, (30) allows ν to be arbitrarily close to 0. Correspondingly, ω
can be made arbitrarily close to 1/4. Next, de昀椀ne

ωN := k ′ ′δ1/2N = k ′ ′N− 1
2(2+ν) = o

(
N−ω

)

where k ′ ′ > 0 is as in theorem 3.7.

Proof of theorem 3.1. Observe that

‖cN− c0‖L2 =
∥∥EΠ [c|DN]− c0

∥∥
L2

⩽ E
Π [‖c− c0‖L2 |DN] (by Jensen’s inequality)

⩽ ωN+E
Π
[
‖c− c0‖L21{∥c−c0∥L2⩾ωN}

∣∣DN

]

⩽ ωN+E
Π
[
‖c− c0‖2L2 |DN

]1/2
[Π(‖c− c0‖L2 ⩾ ωN|DN)]

1/2

by Cauchy–Schwarz inequality. Now it suf昀椀ces to show that the second summand on the right
hand side is stochastically O(ωN) as N→∞.
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Arguing as in the proof of theorem 3.2 and applying lemma 3.5, we get that the events

A ′
N =

{
ˆ

Cβ

ℓ,M(Ω0)

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ(c)⩾ e−(2+C)N¶2
N

}

satisfy PNc0(A
′
N)→ 1 as N→∞. Here, C is as in lemma 3.5. Now, theorem 3.7 implies

PNc0
(
E
Π
[
‖c− c0‖2L2 |DN

]
×Π(‖c− c0‖L2 ⩾ ωN|DN)> ω2

N

)

⩽ PNc0

(
E
Π
[
‖c− c0‖2L2 |DN

]
e−(C+3)N¶2

N > ω2
N

)
+ o(1) ,

which is bounded above by

PNc0

(
e−(C+3)N¶2

NE
Π
[
‖c− c0‖2L2 |DN

]
> ω2

N,A
′
N

)
+ o(1)

= PNc0


e−(C+3)N¶2

N

´

‖c− c0‖2L2

∏N
i=1

pc
pc0

(Xi,Yi,Zi)dΠ(c)
´ ∏N

i=1
pc
pc0

(Xi,Yi,Zi)dΠ(c)
> ω2

N,A
′
N


+ o(1)

⩽ PNc0

(
ˆ

‖c− c0‖2L2

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ(c)> ω2
Ne

N¶2
N

)
+ o(1) (35)

using the fact that
´ ∏N

i=1
pc
pc0

(Xi,Yi,Zi)dΠ(c)⩾ e−(C+2)N¶2
N on A ′

N. Next, using Markov’s

inequality, (35) can be further bounded above by

⩽ e−N¶
2
Nω−2

N E
N
c0

[
ˆ

‖c− c0‖2L2

N∏

i=1

pc
pc0

(Xi,Yi,Zi)dΠ(c)

]
+ o(1)

= e−N¶
2
Nω−2

N

ˆ

‖c− c0‖2L2E
N
c0

[
N∏

1

pc
pc0

(Xi,Yi,Zi)

]
dΠ(c)+ o(1) (by Fubini’s Theorem)

⩽ e−N¶
2
Nω−2

N

ˆ

‖c− c0‖2L2dΠ(c)+ o(1)

(
since EN

c0

[
N∏

1

pc
pc0

]
= 1

)

≲ e−N¶
2
Nω−2

N + o(1)≲ e−N¶2
NN2ω + o(1)→ 0as N→∞

This completes the proof.
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