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Abstract

In this paper, we consider the travel time tomography problem for conformal
metrics on a bounded domain, which seeks to determine the conformal factor
of the metric from the lengths of geodesics joining boundary points. We estab-
lish forward and inverse stability estimates for simple conformal metrics under
some a priori conditions. We then apply the stability estimates to show the
consistency of a Bayesian statistical inversion technique for travel time tomo-
graphy with discrete, noisy measurements.
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1. Introduction

Consider a smooth, bounged, and simply connected domain 2 C R”, with m > 2. Given a
Riemannian metric g on €2, we define the associated boundary distance function I, : 0€) x
082 — [0,00) by

Fg(&n):inf{/dlgl =/ (1)t < 7€ C([0,71,7), 7(0) =&, ’Y(T)=77},

for all £,7 € 0. In other words, I',(¢,n) is the Riemannian distance (with respect to g)
between the boundary points £ and 7. We consider the following inverse problem: can we
recover the metric g in the interior of the domain from the boundary distance function I'y?
This inverse problem, called the boundary rigidity problem in mathematics literature, arose
in geophysics in an attempt to determine the inner structure of the earth, such as the sound
speed or index of refraction, from measurements of travel times of seismic waves on the earth’s
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surface. This is called the inverse kinematic problem or the travel time tomography problem
in seismology [16, 45].

The boundary rigidity problem is not solvable in general. Consider, for example, a unit disk
with a metric whose magnitude is large (and therefore, geodesic speed is low) near the center
of the disk. In such cases, it is possible that all distance minimizing geodesics connecting
boundary points avoid the large metric region, and therefore one can not expect to recover
the metric in this region from the boundary distance function. In view of this restriction, one
needs to impose additional geometric conditions on the metric to be reconstructed. One such
condition is simplicity. A metric g on Q is said to be simple if the boundary O is strictly
convex w.r.t. to g and any two points on  can be joined by a unique distance minimizing
geodesic. Michel conjectured that simple metrics are boundary distance rigid [21], and this
has been proved in dimension two [34]. In dimensions >3, this is known for generic simple
metrics [36]. When caustics appear, a completely new approach was established in [37, 38]
for the boundary rigidity problem in dimensions >3, assuming a convex foliation condition.
Boundary rigidity problems for more general dynamical systems can be found in [2, 10, 17,
32,35, 46, 48]. We also refer to [9, 39] for summaries of recent developments on the boundary
rigidity problem.

The boundary rigidity problem for general Riemannian metrics has a natural gauge: iso-
metries of (£2,g) that preserve 2 will also preserve the boundary distance function. In this
paper, we restrict our attention to the problem of determining metrics from a fixed conformal
class. Let g be a fixed ‘background’ metric on Q which is simple and has C? regularity. For
any positive function n € C*(Q2), define

8n ::nzgv

which is a new Riemannian metric on ) that is conformal to g. Our goal is to recover the
parameter n from the boundary distance function of g,,. In this problem, the gauge of isometries
does not appear, and one expects to be able to uniquely determine the conformal factor n from
Ly,

It is known that simple metrics from the same conformal class are boundary rigid for all
m > 2[25,26,28]. Tobe precise, if ny,n; € 3 (ﬁ) are such that g, , g,, are both simple metrics
on ), then Iy, =T, if and only if ny = ny. To simplify notation, we will henceforth denote
I',, by simply T',,.

1.1. Stability estimates for the deterministic inverse problem

The uniqueness aspect of the boundary rigidity problem for conformal simple metrics has been
quite well understood through the aforementioned studies [25, 26, 28]. The first topic of this
paper is the stability of the boundary rigidity problem, i.e. quantitative lower bounds on the
change in I, corresponding to a change in the parameter n. Stability is important in practice,
as we hope the inversion method for travel time tomography will be stable under perturbations
of the data, e.g. by noise.

Conditional stability estimates for simple metrics can be found in [36, 37, 44], where the
metrics are assumed a priori to be close to a given one. When considering a fixed conformal
class, various stability estimates without the closeness assumption have been established in
[3, 25, 27]. In [25] the following stability result has been proved for the 2D boundary rigidity
problem with the Euclidean background metric:

b

ln1 —na|l2 ) < \/z—ﬂHdg (T = Twy) (€0 [l 2000x00) - (D
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Here, d¢ is the exterior derivative operator with respect to £ and the L? norms are taken with
respect to the standard Euclidean metric. Notice that since the boundary distance function is
symmetric, this estimate essentially says that the L>-norm of n; — n, can be controlled by the
H'-norm of I',, —TI',,. For dimensions >3, there are generalizations [3, 27] of (1) with more
complicated expressions (see also theorem 2.1). However, the estimates of [3, 27] are not in
standard Sobolev or Holder norms, which makes them inconvenient for applications.

In this paper, we establish stability estimates similar to (1) for all dimensions >2, without
any a priori closeness assumptions on np,n,. Before giving the statement of our results, we
need to define some function spaces for the conformal parameter n.

Definition 1.1. Let €y be a smooth, relatively compact subdomain of €2, and let A\, A, ¢, L be
real numbers such that

O0< A< <A, 0</l<L.

We define Ny 4 .¢.2(0) to be the set of all functions n € C*(€2) that satisfy the following
conditions:

(i) The metric g, = n’g is a simple metric on Q.
(i) A<n(x) <Aforallx€ Qandn=10nQ\ Q.
(iii) Let exp,(x,v) denote the exponential map with respect to g, based at x € Q and acting on
v € T, (that is, the tangent space of (2 at x). Then the derivative of exp, (x, ) satisfies

lwlg < |Dyexp, (x,v) (w) g < L|wlg, @)
for all x € 2, v € dom(exp,(x,-)), and w € T, T,Q = T, ().

We also let

N () := U Naaer (o).

A>1,L>0

The class of metrics associated with these function spaces includes any metric with non-
positive sectional curvature that is conformal to g and equal to g in a neighborhood of 9f2.
Indeed, suppose g, = n’g is such a metric. Then (€, g,) is free of conjugate points by the
curvature assumption, and 02 remains strictly convex with respect to g, since g, = g near 0.
Therefore, g, is a simple metric. Moreover, it follows from the Rauch Comparison theorem
that its exponential map exp,, satisfies (2) for sufficiently large L and any ¢ < 1 (see, e.g. [6,
corollary 1.35]).

Remark 1.1 (Notation). Let 7: W; — W, be a linear map between normed vector spaces.
Given real numbers m, M, we will use the notation

m<T<M
as shorthand for
m|wllw, < [[Twllw, < Mlwllw,,
for all w € W;. Using this notation, (2) can be rewritten as

¢ < Dyexp, (x,v) <L. 3)
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We will also use || 71|, to denote the operator norm of T:
1 Tllop := sup{[[Twllw, : we Wi, [lwllw, =1}

Remark 1.2. Let & > 0 be the distance (w.r.t. to g) between 92 and Qp, and let £, 77 € OS2 be any
pair of boundary points such that distz(£,7) < ¢. For any n € Ny ;(£), g, coincides with g
on O\ Qo, and consequently, we have I',,(£,7) = distg (£, ). In particular, T, (€,7) = T\, (€,7)
for all ny,ny € Ny ¢(Q).

We are now ready to state our results on stability estimates for the boundary rigidity prob-
lem. The following ‘inverse stability’ estimate follows from a result of Beylkin [3], combined
with some estimates for metrics with conformal factors n € N ¢(€). The details are presen-
ted in section 2.

Theorem 1.2. Let €2,€), g be as before, and let A\, £ be real numbers such that
0< A<, 0</.

Then there exists a constant Cy(2,$0,2,¢) > 0 such that for all ny,ny € N ¢(),
Iny = 2|2y < CLN ™" ldg (Tay = Ty) (€,1) |2 0025 00) -

Here, the L? norms are taken with respect to the background metric g, and d¢ represents
the exterior derivative operator with respect to £. Please note that the stability constant C; can
blow up as £ — 0. In a sense, as ¢ approaches 0, we allow the metrics in our class to get closer
and closer to potentially having conjugate points, and thus becoming non-simple.

We will apply the above stability estimate to study a statistical inversion technique for travel
time tomography. For this purpose, we also need the following continuity (or ‘forward sta-
bility’) estimate of I',,. To the best of our knowledge, no such continuity estimate has been
published before. The key idea in the proof is to apply the change of variables formula and use
the upper bounds on det(Dy exp,, ) to control |[I';, — I, || in terms of [[n) — na|| 2.

Theorem 1.3. Let §2,9, g be as before, and let \, A, L, L be real numbers such that
0< A< <A, 0<fi<L.
Then there exists a constant C>(2,$,2,¢,L) > 0 such that for all ny,ny € N a ¢..(S0),

Am/2
1T — T ll2002x00) < Ca 3 71 = na2l 2 (q)-

As with theorem 1.2, the constant C, can blow up as £ — 0. The same happens as L — oo,
since this allows det(D, expnl_) to blow up. The details are again postponed to section 2.

1.2. The statistical inverse problem

The boundary rigidity problem is nonlinear, and geodesics are curved in general, so it is hard to
derive explicit inversion formulas. Some reconstruction algorithms and numerical implement-
ations based on theoretical analyses can be found in [7, 8, 47]. Typically, inversion methods
in travel time tomography take an optimization approach with appropriate regularization. This
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is a deterministic approach which seeks to minimize some mismatch functional that quanti-
fies the difference between the observations and the forecasts (synthetic data). However, this
approach generally does not work well for non-convex problems. Moreover, various approx-
imations in numerical methods can introduce systematic (random) error to the reconstruction
procedure.

In this paper, we apply the above stability estimates (theorems 1.2 and 1.3) to study a
Bayesian inversion technique for the travel time tomography problem. The Bayesian inver-
sion technique provides a reasonable solution for ill-posed inverse problems when the number
of available observations is limited, which is a common scenario in practice. Applications
of Bayesian inversion to seismology can be found in [20, 41], which are based on the gen-
eral paradigm of infinite dimensional Bayesian inverse problems developed by Stuart [40].
However, most studies in the literature are concerned with waveform inversion, which is more
PDE-based. On the other hand, there are very few results on statistical guarantees for the
Bayesian approach to seismic inverse problems. These motivate us to apply Stuart’s Bayesian
inversion framework to produce a rigorous statistical analysis of the problem of recovering the
wave speed from the (noisy) travel time measurements.

For statistical inversion, it is convenient to rewrite the conformal factor n using an
exponential parameter: For any § > 3, let Cg () denote the closure in the Holder space
CLA1B=181(Qyp) of the subspace of all smooth functions compactly supported in €. Given
any function ¢ € CS(QO), we define the corresponding conformal factor n. by

. - “)
1 leGQ\Qo.

{edx) if x € Oy,
ne (x) =

It is easy to see that n. is a positive C* function on Q. To simplify notation, we will denote
the corresponding boundary distance function I';,, by simply I'..

Our goal is to reconstruct the exponential parameter ¢ from error-prone measurements of I'.
on finitely many pairs of boundary points (X;,Y¥;),i = 1,...,N. Following the general paradigm
of Bayesian inverse problems, we assume that ¢ arises from a prior probability distribution II
on C3(€p). We will construct II so that it is supported in a subset of C3(€2) of the following
form:

Definition 1.4. Let £,M > 0 and 3 > 3. We define CgM(QO) as the set of all functions ¢ €
Cg () that satisfy the following conditions:

(i) The metric g, = n?g is a simple metric on Q.
(ii) The derivative of exp, (x,-) satisfies

Dy exp, (x,w) = ¢,

for all x € Q and w € dom(exp,, (x,-)).
(i) [lellciar.p-1m @) < M-

We will show in section 2 thatif ¢ € Cf 11(€Q0), the corresponding conformal parameter n. €
N ae,.(€0) for appropriate choices of A, A and L. The precise construction of IT is described
in section 3.

Remark 1.3 (Notation). Henceforth, we will denote CL?)-8~L8] by simply C”.

5
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Remark 1.4. Itis known that small perturbations of simple metrics are again simple. Therefore,
CZM(QO) is an open subset of C{f(Qo).

The pairs of boundary points (X;,Y;) between which the distance measurements are to be
made are chosen according to the rule
iid.
(X, Y;) ~ p,

where 1 is the uniform probability measure on 92 x 92 induced by the background metric g.
The actual distance measurements between these points are assumed to be of the form

1—‘i == eeiFC (Xi7 Yl) )

where ¢; are i.i.d. N(0,0?) normal random variables (o > 0 is fixed) that are also independent
of (X;, Yj)szl- For simplicity, we will henceforth assume that o = 1 without loss of generality.
Define

Z. =logl’,
andfori =1,...,N,

Z,' = IOgFi
=7 (X;,Y;) + €.

All of our measurements can be summarized using the data vector
Dy = (X, Y1, Z))"_, € (99 x 99 x R)". (5)

For convenience, let us define X = 00 x 90 x R. .
Next, let P denote the probability law of Dy|c. It is easy to see that PY = xf-vzle"), where

foreachi € {1,...,N}, PY is equal to the probability law of (X;,Y;,Z;). More explicitly, for
eachie {1,...,N},

dPY (x,y,2) = pedp (x,y) dz,

where

Pc(X,)HZ): \/lz?exp{—;(z—zc(xa)’))2}~

We denote the posterior distribution of ¢|Dy by II(:|Dy). By corollary 2.7, the map
(¢, (x,,2)) = pe(x,y,z) is jointly Borel-measurable from C3 () x & to R. So it follows from
standard arguments (see [14, p 7] ) that the posterior distribution is well-defined and takes the
form

_ [T, pe (Xi, Y3, Z;)dII (c)

I1(A|Dy) = [T, pe (X, Yi, Zi)dII (c)

for any Borel set A C C3(£2). Our posterior estimator for ¢ will be the posterior mean

CcN = EH [C'DN] . (6)
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Theorem 1.5. Suppose that the true parameter co is smooth and compactly supported in Q,
and is such that g, is a simple metric on Q. Then there is a well defined prior distribution 11

on C3(Qo) such that the posterior mean cy satisfies
llexy — collr2) — 0

in Pﬁ(’)— probability, as N — oo.

A more precise version of this result is stated in theorem 3.1 in section 3, which in fact
requires significantly weaker regularity assumptions on cy. It also specifies an explicit N~
rate of convergence, where w is a positive constant that can be made arbitrarily close to 1/4.

To prove theorem 1.5, we apply the analytic techniques developed in recent consistency
studies of statistical inversion of the geodesic x-ray transform [22] and related non-linear
problem arising in polarimetric neutron tomography [23, 24]. The forward and inverse sta-
bility estimates for the measurement operators (like the ones in theorems 1.2 and 1.3) play a
key role in the arguments of these references.

The analysis of theoretical guarantees for statistical inverse problems is currently a very
active topic. Recent progress for various linear and non-linear inverse problems include [1, 4,
5,11, 12,22-24, 29, 31]. See also the recent lecture notes [30].

The paper is structured as follows. In section 2, we establish the forward and inverse stability
estimates for the boundary distance function. Section 3 is devoted to proving the statistical
consistency of Bayesian inversion for the boundary rigidity problem.

2. Forward and Inverse continuity estimates

In order to prove the statistical consistency of the proposed Bayesian estimator, we need to
establish quantitative upper and lower bounds on the magnitude of change in the boundary
distance function I';, corresponding to a change in the conformal parameter n of the metric.
This is the content of theorems 1.2 and 1.3, which we will prove in this section. We will also
use these estimates to establish similar bounds for the map ¢ +— Z, =logI'., when ¢ belongs
to the parameter space Cg 11(€0) defined in definition 1.4.

2.1. Stability estimates

We begin with the proof of theorem 1.2. As we noted in the introduction, such an estimate has
already been proved for dimension m = 2 by Mukhometov in [25]. For general m > 2, we have
the following result by Beylkin [3]. Also see [27, lemma 4].

Theorem 2.1 ([3]). Let ny,ny € C3(Q) be such that 8n,»&n, are simple metrics on Q. Then

/Q(nl —m) (n'I"*l fn;'l*l) dVolg

< c,,,/ > de (Do, =T) Ady (Tn, = Tuy) A (ded T )* A (de dnT'n,)”
6QE X0y at+b=m—2
(N

where dVolg is the Riemannian volume form induced by g, and d¢ and d,, represent the exter-
ior derivative operators on 0S) with respect to & and 1 respectively. Given local coordin-
ates (§',...,6" ") for & and (n',...,n"") for m, we have dg :dfi%, d, :dni%, and

ded, =de' A dﬂ%ﬁw. The constant
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(=) T (m)2)

C =
" 2mm/2(m—1)!

depends only on the dimension m.

We will show that when ny,n, € Ny 4(£), the inequality (7) leads to the desired stability
estimate.

Lemma 2.2. Let n € N ¢(Q). Then the corresponding boundary distance function T,

satisfies

[deln (§m)[e <1, [dy L (§m) e < 1,

and

14¢71 . —1
[VEVIT, (€m) [g < %dmg (&n)
for all £,m € O with € # . Here, V¢,V denote the covariant derivative operators with
respect to & and 1 respectively, and distz(&,m) is the distance from & to 1) with respect to the
metric g.

Proof. Given £,n € 99 with & # 1), let v(£,n) denote the unit vector (with respect to g,) at
7 tangent to the geodesic from £ to 7. It follows from the first variation formula (see [18],
theorem 6.3) that the gradient (with respect to g,) of I',(&, ) is given by

grad, I'; (&) =TLv(§,m), ®)

where IT,, : T,,Q2 — T,,0Q is the orthogonal projection map onto the tangent space of the bound-
ary. Since g, = g on 02, it follows immediately that

|y T (€,m) |5 = | grad, T (§,m) [g, = [Ty (§,m)],, < [v(Em) g, =1

Similar arguments show that |d:I",(€,7)]z < 1 as well.

Next, let (£',...,6"=1) and (n',...,n™"') be local coordinates for d€2 around ¢ and
n respectively. We can extend these coordinate charts to boundary normal coordinates
(€',...,&m) and (n',...,n") by taking £” and 1™ to be the corresponding distance functions
from the boundary. With respect to these coordinates, we may rewrite (8) as

0
gradnl“n(&n):ZV’(f,n)afn, ©)

We can extend both sides of this equality to (1, 0)-tensor fields on 0€2¢ x 0€2,, while main-
taining the equality. Taking covariant derivatives of both sides with respect to &, we get

V* grad, T (€,1) Z 65, ®d§’ (10)

ij=1

Here, we have used the fact that the product connection on 9€¢ x 95, satisfies Vo, 0, =0
for all i,j. Recall that g,, is a simple metric, and its exponential map exp,, (x, ) atany x € Q is a

8
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diffeomorphism onto Q. Let w(x, -) : Q — T, denote its inverse map. Since D, exp,, (x,v) > ¢
for all v in the domain of exp, (x, -), we have

1 Dyw (x,) [|op < €7 for all y € Q. (11)

Now observe that we have the identity

So by (9) and (10),
m—1 i
¢ _ 1L ow(n& wWneg alu(én)
V> grad, I'n (§,m) = —WZZ:I { T, (En) 06 ey 06 } oy ®d¢’

___1 8W’(n W (n.6) 9 1
(12)

Observe that Z:’I 11 8“/6(2, £) 2 oy @ d¢' is precisely the tensor form of the linear map

I1,, o Dyw (n,y) ‘yzg ollg,

where I1¢ and II,, are, as before, orthogonal projections from T¢ Q — T¢ 9Q and T,,Q2 — T,,09
respectively. Therefore,

Z‘l awa(g 8) 0 5 € HDyw(n,y) nyEHOP sy
=

Combining this with (12), we get

IVEd, T (&) [z = |V* grad, Ty (€,1) |5

o v(Em) [elde T (6,m) g
Fﬂ (5,77) 1_‘n (5377)
-+
ST

Finally, applying the simple estimate

1
dlstg (6777) < XFH (£777) )

we get

14671 _
[VEVIL, (6,n) |3 =VEdy L (€m) |5 < (>\)d15tg En "

This completes the proof. O

With these estimates in hand, we are now ready to prove theorem 1.2.

9
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Proof of theorem 1.2. Consider the inequality (7) from theorem 2.1. For ny,n; € N ¢(€),
the left hand side becomes

/Q (ny —m)? (M2 + 0]y 4 40y ?) dVolg = (m— 1) X" 2 |[ny — n2||%2(9). (13)
Now consider the right hand side of (7). By lemma 2.2,

1+ . -1
[de dyTalg = ALt (VS VT, | < S distg (Em)
Therefore, the right hand side of (7) is bounded above by

|Cm‘/ ‘df (Fnl - Fnz) |§\dn (Fnl - Fnz) |§ Z |d5d7,1“,,1 |g‘d£dnrnz‘§d0§
IQUx 0N a2
(146"

< (m_ ])|Cm‘TAQ 20 |d§ (F”l _F’12)|§|d77 (F”l _F’12)|§|di5t§ (6777)|2_md‘7§7
X

where doy is the surface measure on 9€) x Jf2 induced by g. Observe that by remark 1.2, we
have (I, —T,,)(&,m) = 0 for all £, € 9Q with distz(£,n) < 6. Therefore, the above expres-
sion is further bounded above by

140"
()\m_z)(sz 1/ |dE (Fnl - Fnz) |§‘dn (F’ll - F"z) |§|d0§"
o0 x 0N

f,m,é,f AF (Hdi (rnl - Fnz) ||22(BQ><69) + ”dn (Fm - F"z) HiZ(BQ><89)>

Smse X" de (P, = L) 22 002x00)

(m—1)[Cul

since ||dg(Ty, — Ty |lz2 = ||dyy (T, — Ty ) ||z by symmetry. Combining this with (13), we get

||nl - 7’l2||iz(Q) Sm,é,é AZE=m) ||d€ (Fnl - Fﬂz) H%Z({)QX@Q)
and the theorem follows. O

Recall that we parametrized the conformal parameter n of the metric g, by a function ¢
belonging to the parameter space C f 1(€0), as defined in (4). We assumed that our input data
consists of finitely many measurements of the function Z. = logTI’.. In the following corollary,
we translate theorem 1.2 into stability estimates for the map ¢ — Z, using simple Lipschitz
estimates for the exponential function: For all x,y € [M},M,],

Mix—y| <l — & <eMx—yl. (14)
This immediately implies that for all ¢y,¢; € C f w(Q0),

e Mler — eallrziay) < e — ne, i) < €”ller — eallizay)- 15)
Corollary 2.3. For any M > 0, there exists a constant C{ = C{(2,Q0,8,¢,M) > 0 such that

ller = eallzqay) < CillZe, = Zoy |l (002 <00

forallcy,c; € CZM(QO).
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Proof. Let cj,cr € CzM(QO). Then 1,7, € Ny¢(Qo) for A =eM. So it follows from the-
orem 1.2 that

l[ne, — ”Q”LZ(Q) < Cle(miz)M”dE (L'e, = T¢,) ||L2(8Q><aﬂ)- (16)

By (15), the left hand side of the above equation is bounded below by e~ ||c; — ¢2[|12(qy)-
Now, rewrite d¢(I';, — I'c,) as

de (Do, —T,) = dg (%1 — &%)
=" 1d¢Z:, — "2 d¢Z,
= le] d§ (ch _ Zc‘z) + (ezr] _ eZ(-2> dg ZC2.

It follows from remark 1.2 that if (£,7) € supp(I', —I'c,), we have distz(£,7) > 6, and con-
sequently,

e M5 < I, (&mn) < e diamg (), j=12.
Therefore, by applying (14) along with the fact that [d¢[',|; < 1 by lemma 2.2, we get

‘dﬁ (Fcl - Fc'z) |§ < ‘FCI ||d€ (ZCI - Zcz) ‘g + |FC1 - F62||d§F02|§/|F62‘

e % — |
< e diamg () [de (Z, — Zc,) [ + =T
) eM diamg ()
< eMdlamg (Q) |d£ (ch —Z ) |§ + ﬁuq - Zc'z |v

where diamg (§2) denotes the diameter of 2 with respect to the metric g. This further implies
lde (Te, = Tey) [l200x00) Sa.g.6.6m 1Ze, — Ze, | i (902x09) -

Combining this with (15) and (16), we get
ler = eall2 o) Seuz.b.em 1Zey = Zey |11 (002 09) -

This completes the proof. O

2.2. Forward continuity estimates

We now move on to the proof of theorem 1.3. The key idea is to use upper bounds on
Dyexp,, (x,v) to control |[I'y, — Iy, |2 with respect to [|ny — na|| 2.

We begin by introducing some notation. Let SQ denote the unit sphere bundle on ), that is,
SU={(x,v) €TQ : |v|g=1}.
The boundary of SQ consists of unit tangent vectors at I€2. Specifically,

080 ={(x,v) €SQ : x€0}.

1
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Let v denote the inward unit normal vector field along 02 with respect to the metric g. We
define the bundles of inward pointing and outward pointing unit tangent vectors on 0f2 as
follows:

.80 :={(&v) €0SQ : (v,1¢)z >0}, and
0_8Q:={(&v) €0SQ : (v,ve)3 <0},

We also set
8050 = 9, 50N D_ST.

This coincides with SOS2, the unit sphere bundle on 0f).

Next, let n € Ny ¢(Qo). For (&,v) € 9,59, we let v,(&,v,1) = exp,(£,tv) denote the unit
speed geodesic (with respect to g,) starting at £ with initial direction v at time t = 0. We define
7.(€,) to be the time at which 7, (&,v,-) exits Q. It is known (see [33]) that for simple man-

ifolds, 7, is a C! function of 9,59, and 7,,(£,v) = 0 if and only if v € S¢ 0. We also define
7. (&,v) and u, (&, v) as the point and direction at which ~, (&, v,-) exits 2. In other words,

T (&V) =" (57"’7-" (€,V)) , and

un (S’V) = /s/ﬂ (£’v7 Tn (é”v)) *
Lemma 2.4. Letn € Ny p,0..(Q). Then for all (€,v) € 9,59,
Tu (&,v) o LA diamg (Q)

||Dan (57") HOP <L <V7u>g = <I/, M>g

where v = vy, ¢,y and u = u,(§,v).

Proof. Let p € C'(Q2) be such that p~1(0) =90 and p(x) = distg(x,0) for x near O.
Consider the function

f(t’v) = p(expn (f,tv)).

Observe that

of

Dty = (€100 e n (€)= (v,
On the other hand,

va(t7 V) = Dpexpn(f,tv) o (tDw eXp, (ng) |w:tv)
= Dvﬂ (ra(€)y) — Tn (V)11 oDy exp, (§,w) |w:7',,(§,v)v7

where 11" is the linear map given by
IY (w) = (r,w);  forallwe T, ()<
Now differentiating the identity f(7,(&,v),v) = 0 with respect to v, we get

of
0= ot (Tn(E,V),v)Dan (&) JrDvﬂ(fn(ﬁ,V),v)

= (v,u)gDy7, (&,v) + 7, (§,v) IV 0 Dy exp, (&, w) |W:T,,(5,v)v'

12
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Therefore,
7a (§:V)
Dy, (E,v) = — I oD ,
A T P "
7 (€,v)
= 1Dy (6,7) o < |Puexp, (&,
107 (€ llop < " {[Pwexea (€W, e,
<L [T”( "’)} :
<V7 u>§
as required. Now the lemma follows by observing that
7 (€§,v) < diamg, () < Adiamg (),
for all (&,v) € 9,.5. O

We are now ready to prove theorem 1.3. Recall that the notation f,y fd|g| denotes the integral
of a function f along the curve v with respect to the arc-length metric induced by g.

Proof of theorem 1.3. Fix £ € 012, and define the sets

B (&) :={ned: T, (&n)
By(&) :={nedQ : Ty, (&n)

—

np (57 77)
m (§5m)

)

T
I

NN

—

Suppose 1 € By (&), and let v, (£,7) denote the unit speed geodesic with respect to g, from &
to n). Clearly, ', (§,7) = f'n € nyd|g|, whereas T, (€,7) < )n2d|g|. So we have

7(&m
_ ny —n
Co-Tu)Een< [ (m-mdel= [ 22,
7(&m) 7 (&m) m
This implies
2 (ny —m)’
(Fnz - F”l) (577)) < F"l (5777) € T‘”é’m ‘ (by CauChy'SChwarZ)
71(&,M 1

T, (€,m) )2
= Fm (5777)/0 M (71 (57"77 t)) dr

ny
Ty (€,m)
< W/ (nz — I’l])2 (eXpm (g,t\}nl (5577))) dt’
0

where vy, (§,1) = 4, (€,1,0), that is, the unit tangent vector at £ that points towards 7. This
implies

Adiamg

Q T, (&m)
[ s (exp, (€t (€.00))
JOo2J0

Adiamg (2)
e

015:Q

/ (T — T ) (€, d <
JB (&)

Ty (§,9)
/ (np — n1)2 (expn1 (f,tv)) | det[Dymn, (€,v)] dedy.
0

a7
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by the change of variables formula. (Here, d7 is the surface measure on 7 € 02 with respect
to g.) We now find an upper bound for | det[D,7,, ]| on the support of the integrand. Recall that
by definition,

Tny (§,v) = €Xpy, (EaTm (f,V) v)'
With the canonical identification of T',S¢( with a subspace of T¢ 2, we get

W="Ty, (Ev)v © Dv (Tnl (f, V) V)
) © (Tnl (ga V) id+v ®Dan1 (57 V)) .

w=Ty, (§,v)v

Dy, (57‘)) = Dwexpnl (ng) |
= Dwexpnl (ng) |

Here, v ® D, 7y, (£, v) should be interpreted as the map
weT,SeQCTQ  — [DuT, | ey (W)] v € Te
So we have

oy 7 (EV) D7, (€:9) op)

LA diamg (©)
(¥ (1 (€,v)) s 4ny (V)5

10,1, (€.9) lap < ||Duex,, (6, |

w=Ty, (€,v)v

<L (Adiamg Q)+

by lemma 2.4. Now since () is a relatively compact subset of (2, there exists an € € 0,1)
such that if (v(n,, (§,v)),un, (§,v))z <€, the geodesic 7, (§,v,-) lies entirely within Q\ Qo,
and therefore,

(ny—ny)? (exp,, (£,1v)) =0 forall 7 € [0, 7, (§,V)].
Therefore, on the support of the integrand in the right hand side of (17), we have the bounds

LA diamg (Q2)

1, (629 oy < I i () =25

) Sa.aeL s
and consequently

|det[Dy (1, (€9 Se.050 A"

Applying this bound to the right hand side of (17), we get

2 A Tnl(g"’) 2
[omentemans Sy [ [ e (e, (€) dray
Bi(£) 4+5:9Jo

A (n2—m)* (exp,, (&,w))

~— — dw
A2 dom(exp”1 (§,~)) |W|g’ !

Again by remark 1.2, we have (n, —n;)?(exp,, (£,w)) = 0 for all w € dom(exp, (£,-)) with
|w|z < 6. Therefore, we get

A" 5
(T~ T (€ ) d) S o / (my — m)? (expy, (€,w)) dw.
/Bl(@ X201 Jqom(exp,, (€.))

14
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We now make the change of variable x = exp,, (§,w). The assumption that D, exp,, ({,w) =
¢ implies that the inverse wy, (£,-) of exp, (£,-) satisfies ||Dywy, (€,x)lop < ¢!, and con-
sequently,

|det (Dywy, (§,x))] < €.

Therefore,
Am
[ @D Eman S 5 [ (=m0 det (Do, (6.6 14 Vol ()
Bi(€) Q

<Am

S |, (na —nl)2 (x)dVolg (x).

By analogous arguments, we also have

Al‘ﬂ
[ @ =T €ndn s sz [ - m)? @ dVoly ).
B(©) A Ja

Adding the last two inequalities, we get
A™
(F”l - nZ) (f n) dT} ~ )\2£m ||n1 n2||L2(Q)

-/ / Ty = D) (€) . S sa it — malfy

Am/2
= |Tn, = Ty l200x00) Se.08.60 —— i\ 1 —n2ll2()-

This completes the proof. O

Next, we derive the analogous continuity estimate for the map ¢ — Z.. The key step is to
show that for any M > 0, the operator norm of the derivative of exp,, (x,v) is uniformly bounded
for all ¢ € C} ,,(Q) and (x,v) € dom(exp,, ). We begin with a simple lemma.

Lemma 2.5. Let (M, g) be a Riemannian manifold whose curvature tensor R satisfies
|IR|| = sup{|R (u,v) w|g : u,v,w € SM} < 0.

Then any Jacobi field J along a unit speed geodesic -y : [0, T] — M satisfies the norm bounds
(@) 2+1T(0) 2 < MR (17 0) 2+ 17(0)2)  forallte[0,T].

Proof. Set f(r) = |J(t)[; + () |- Since J is a Jacobi field, it satisfies the equation
J(0) + R (1),%(1) 5 (1) =0.

Therefore,

£ =20 (8), T () + 200 (1), T (1))
=2(J, D¢ +2(J,—R(J,%)¥)¢
< 2o lg + 2071 [IRI el 2
<L+ IR (1)
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So it follows that
f(6) < eUFIRDE0)  forallre0,7].

O

Next, let us recall the definition of the canonical metric on the tangent bundle of a
Riemannian manifold, also called the Sasaki metric. Let (M, g) be a Riemannian manifold,
(x,w) € TM, and V1, Vs € T(,,,)TM. Then we may choose curves o;(s) = (a;(s),v;(s)) in
TM, defined on (—¢,¢), such that

a; (0) = (x,w), &; (0) =V, forj =1,2.
The inner product of V;, V, with respect to the Sasaki metric is defined to be

(V1,Va)g := (61(0),62(0)) + (71 (0), 72 (0))s,

where V;(s) represents the covariant derivative of v;(s) along the curve o;(s). Note that we are
using the same notation for the Sasaki metric as for the original metric g. Now, for any C! map
F: TM — M, the operator norm of the total derivative of F at (x,w) € TM is given by

|DF (x,w)||op := sup{\DF(x,w) W) g : VET () TM, V] = 1}.

We will show that if ¢ € C} ,(€), the total derivative of exp,_ is bounded above in the
operator norm.

Proposition 2.6. For any M > 0, there exists L = L(M) > 0 such that for all ¢ € C; ,,(Q), the
total derivative of the exponential map of g, satisfies

[Dexp,, (x,w) [lop <L

for all x € Q2 and w € dom(exp, (x,-)). In particular, n. € N ¢,.(Q0).

Proof. Suppose ¢ € CzM(QO). Fix (x,w) € dom(exp,, ), and let V € T, ,,TQ. It suffices to
show that

[Dexp,, (x,w) (V) [g < L|Vlg.

Choose a curve a(s) = (o(s),v(s)) in TQ, defined on (—¢,e), such that «(0) = (x,w) and
@(0) = V. Consider the family of geodesics @ : (—¢,¢) x [0,1] — 2 defined by

D (s,1) = exp, (o (s),tv(s)).
The variation field of this family of geodesics is

J (1) = Oyexp,, (0 (s),1v(5)) |y
which is a Jacobi field along ~(7) := ®(0,). Observe that

J(1) = Osexp, (0 (s),v(s)) |,y = Dexp, (x,w)(V),
which is precisely the quantity whose norm we want to estimate.

16
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Let R be the Riemann curvature tensor of (£, g, ), and let R}k, denote its tensor coefficients

with respect to a fixed global coordinate chart on Q. Then we have
Ry = 0Ty = O + Ty, U = T, T,

Im

where

1
Tie = 312 28" (0 (né8em) + O (m2Zim) — O (n8x)) -

This implies that for any x € €,
- -2 4
max Ry ()| S 1+ e (x) Incllé < ™ (1+M)".

Therefore, for any x € 2 and unit tangent vectors u,v,w € S,(),

IR (u,v)w

S neo) (max Rl 0101 ) 14 b0’

= R < Ce™M (1 +M)*
for some C > 0. Taking L? > exp(1 + C’e>™(1 + M)*) and applying lemma 2.5, we get
)
8ne

=22(l6 () P+ [p(0)F ) = L2 VE2.

2

[Dexp, (x,w) (V) one

2 =1I(1)

<2 (O, + 10

This completes the proof. O

Corollary 2.7. There exists a constant C5 = C5(§2,$0,8,¢,M) > 0 such that for all ¢i,c; €
7 ().

1Ze, = Zo,ll 2 (00x00) < Caller = e2lli2(y)-
Proof. We know from theorem 1.3, proposition 2.6, and equation (15) that
ITe, = Teyl200x00) S.00.z.6m lle1 — c2ll2(0y)-

Now consider

? dedn.

(1S / | — oo
0N x0N

Recall that there exists 6 > 0 such that Z, (£,1) = Z, (§,n) whenever distz(£,7) < d. On the
set {distz(£,n) > 6},

e™M5 < T, (€,n) < " diamg ()
= —M +1logd < Z (&,m) < M +log|diamg (2) |. (18)

So by (14),

& = D] 2 e Mo\Z, ()~ 2 (€11)

17
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for all (§,7n) € 9§ x 0N). Consequently,

2 _
ITe, = Te 7200 x00) = / |71 — %" dgdn > e 2M52/|Zcl —Z,|* dédn.

So we conclude that
1Ze, = Ze, Iz S Te) = Teollzz S ller — eal 2

O

We conclude this section with a technical result that will be necessary for the proof of
theorem 3.7 in section 3.

Theorem 2.8. Given M > 0, there exists a constant Cj = C}(£2,Q0,8,¢,M) > 0 such that for
all c,cy € CZM(QQ),

1Ze, = Zey |l 12 002x 60) < C3-
Proof. We know from theorem 1.3 that
1Ze, = Ze, |2 S ller — eall 2 S 2M.

Next, let £,n € 9. It follows from remark 1.2 that if dists(£,17) < 0, then Z,, — Z., and all
its derivatives are identically 0 in a neighborhood of (£, 7). On the other hand, if distz (£, 7) > 6,
lemma 2.2 implies

|d5 FCI (577)) ‘g’ |df FCz (5777) |§ ﬁ
FCI (577]) Fcz (5,77) ~ '

|de (Ze, — Zey) (§,m) |g <

This shows that ||d¢ (Z., — Z,)||z2 is uniformly bounded for ¢;,¢; € Cz 1(Q0). By symmetry,
ldy(Ze, — Zc,)|| 12 is also uniformly bounded.

So it only remains to consider the Hessian tensor of Z. —Z.,. Let V denote the Levi-
Civita connection on 9§ x 9%, and let & : 9 x I, — Q¢ and 77 : IQe x O, —
05, denote the canonical projection maps. We may decompose V as V¢ 4 V7, where V¢
and V" are the covariant derivative operations with respect to £ and 7 respectively. More pre-
cisely, given any tensor field F on 0€2¢ x 052, and any tangent vector v € T(9€2¢ x 0f),,), we
have

VEF: V(ﬂ-ﬁ)*v&Fa VIF = V(TI’")*VWF?

where (v¢,vy) is the image of v under the canonical isomorphism from T(9€2¢ x 0€2,) to
(TOSYe) x (TOQ,). Correspondingly, the Hessian operator on 9€¢ x OS2, can be decomposed
as
Hess = V2 = (V& 4+ V") (VE+ V)
=VEVE 4 VEVT 4+ VIVE + VIV
= Hess¢ +V°V" + VV* + Hess,),

where Hess¢ and Hess,, are the Hessian operators with respect to £ and 7 respectively. Now
let £,n € OS2 be such that distz(£,n) > 6. Then forj = 1,2,

18
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VEVIZ,, (§,m) = VEVlogT, (€,7)

VEVIT,.  deT. ®d,T,.
— i e ® n-q (g’n).
T, 2

G

By lemma 2.2, this implies

‘ngnz (f 77) |7 < ‘ngnrc/‘ (f»ﬂ) |§ |d€ FC,‘ (5777) |§‘d77FCj (5777) ‘g’
Cj ) g

L, (€,m) Iz (&m)
1+¢71 1
< ___ _
ST e

This implies that | V¢V"(Z,, — Z.,)|| ;2 is uniformly bounded as well. Finally, consider the fact
[43] that

—1
Hesse L, (6,1) = (Dwexp, (6w(&m)) (D exp, (€w(Em)).
where w(¢, ) is the inverse of exp,, ({, ) as in lemma 2.2. Therefore, by proposition 2.6,
[Hesse T, (€,1) [g S €' L(M).
Writing Z, = logI',,, we get

Hess¢ Z,, (€, 1) = Hess¢ log L, (&m)

HeS85F. dgl“.®d§1“.
= ( F CI - CIFZ CI (§777)7

which implies

|H€SS§ FC_,‘ (5777) ‘E |d£1—‘(‘j (£a77> E’
L (&m) I'? (€ eta)
—1

< (L1

SISV

|Hesse Z, (§,1) |5 <

So we conclude that ||Hess¢(Z., — Z,)||2, and by similar arguments, || Hess, (Z., — Z,)|| 12,
are both uniformly bounded on Cf (£0) as well. This proves the result. O

3. Statistical Inversion through the Bayesian framework

As discussed in the Introduction, we will be using the posterior mean of ¢ given finitely many
measurements Dy = (X;, Y,-7Z,-)§V:1, as an estimator for the true metric parameter cy. Let us
begin by describing the prior distribution II for ¢ € C3(€). We will assume that II arises
from a centered Gaussian probability distribution IT on the Banach space C(£2p) that satisfies
the following conditions.

Condition 3.1. Let >3 and a > $+ 5. We assume that II is a centered Gaussian Borel

probability measure on C(£)) that is supported in a separable subspace of Cg (€20). Moreover,
its Reproducing Kernel Hilbert space (RKHS) (1, || - || ) must be continuously embedded in
the Sobolev space H* ().
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We refer the reader to [14, chapter 11] or [15, sections 2.1 and 2.6] for basic facts about
Gaussian probability measures and their Reproducing Kernel Hilbert Spaces.
We now define the prior II to be the restriction of 1I to C f 1(€0) in the sense that

o [ (ANCfy (%)) "
(e ()

for all Borel sets A C C3(£2). We will see in lemma 3.5 that C®-balls have positive II-measure.
This together with the fact that Cf (€0) is an open subset of Cg () (cf remark 1.4) implies

that ﬁ(Cg 1(€0)) > 0. Therefore, (19) yields a well-defined probability distribution on C3(£2y).

Theorem 3.1. Let I1 be a prior distribution on C?)(Qo) defined by (19). Assume that the true

parameter ¢y € C?,M(QO) N H, and let Ty be the mean (6) of the posterior distribution I1(-|Dy)
arising from observations (5). Then there exists w € (0,1/4) such that

PY (llew — collizgoy > N7%) =0 as N — .

Moreover, w can be made arbitrarily close to 1/4 for «, 3 large enough.

Remark 3.1. The assumption that ¢ € Cﬁ (Q0) N'H is weaker than in theorem 1.5, where
we assumed that ¢y is smooth, compactly supported in €, and that g, is simple. Indeed,

if g, is a smooth simple metric, ¢o necessarily belongs to Cg (o) for appropriate values

of ¢,M, and any /3. Moreover, given any ¢y € Hy (), it is possible to choose II so that its
RKHS H contains co. Indeed, let (f(x) : x € Q) be the so-called Matérn-Whittle process of
regularity o (see [14, example 11.8]), whose corresponding RKHS is H* (). It follows from
lemma 1.4 in [14] that the sample paths of this process belong almost surely to C?(£2y). Now
choose a cut-off function ¢ € C>(Qp) such that >0 on €, o and all its partial derivatives
vanish on 9, and ¢ ¢y € H* (). Define I to be the probability law of (¢ (x)f(x) : x € Q).
ThenH = {pf : f € H*() }, which contains cy. Therefore, theorem 3.1 is a more general and
precise version of theorem 1.5.

3.1 A general contraction theorem

Our proof of theorem 3.1 will follow the same general strategy as in [23], with some modific-
ations necessitated by the fact that our prior II is not in itself a Gaussian probability measure,
but rather the restriction of such a measure to C f 1(€Q0). We begin with a general posterior con-
traction result (theorem 3.2). This is a simpliﬁeél version of [23, theorem 5.13], which suffices
for us since our prior II independent of N. Before stating the result, we need to introduce some
notation. Recall that for ¢ € Cf: (€Q0), we defined p, as the probability density function

1 1
petrrd) = Jep{ -3 -2} forall g e,

where X = 090 x 002 x R. Given cy,¢; € CE,M(QO)’ let

Hene)= (/X (Voo = vpe) du(x.y) dz)l/2

20
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denote the Hellinger distance between p., and p,,,

K(c1,02) :=E,, 10g<pcl) :/log (IM)PcldM(x,)’)dZ
L i X

P (&) 2

the Kullback-Leibler divergence, and

- 12
V(cy,ca) :=E,, |log <I;”> )

Also, forany F C C f (o) and 6 > 0, we let N'(F, h,6) denote the minimum number of 4-balls
of radius ¢ needed to cover F.

Theorem 3.2. Let 11 be a Borel probability measure on C3(Q) supported on CfM(Qo). Let
co € CEM(QO) be fixed, and let O be a sequence of positive numbers such that 6y — 0 and
V/Néy — 00 as N — oo. Assume that the following two conditions hold:

(1) There exists C > 0 such that for all N € N,
I ({c € Cf:M (Qo) : K(c,c0) < 63, V(c,c) < 5,%,}) > ¢~ N0y, (20)
(2) There exists C > 0 such that

log ' (ch(QO) ,h,cSN) < CN&2. 1)

Now suppose that we make i.i.d. observations Dy = (X;, Y;, Zi)"_| ~ ch\f). Then for some
k> 0 large enough, we have

Py <ﬁ ({c € CEM(QQ) th(c,c0) < kéN} |DN> <1- e_(c+3)N5§/> -0 (22)

o

as N — oc.

Proof. Define

By = {c € CgM (Qo) : K (c,c0) <03, V(c,c0) < 5,%,}, NeN. (23)
By condition (1) and [15, lemma 7.3.2], we have that for any ¢ > 0 and any probability measure
m on BN,
N

1
Py / Pe x. v, 7)) din(c) < e 1OV | < .
(e zanc aNT

In particular, choosing ¢ = 1 and taking m to be the restriction of I to By followed by normal-
ization, we get that

N
c -~ . 1 00
Py (/ Hp— (X;,Y;,Z:)dII (¢) < TI(By) e—2N5ﬁ> < — 0.

BNi:1 Peo N(S]%]

21
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Set
_ Pc —(2+C)N&?
Ay = / (X:,Y;,Z:)dI (c) > e vy
{ BNll:[lP
where C is as in condition (1). It is clear that Ay D {fB A lp’" dIi(c) > ﬁ(BN)e—zNézzv}, and
0

therefore, P (Ay) — 1 as N — oc.
Next, we consider condition (2). Let k > k' > 0 be numbers to be determined later. Fix N

and define the function N(g) = N for all & > €9 = k'dy. It follows from condition (2) that
for any € > ¢,

N (CFu () e /4) SN (CFay (90) 1K' /4) < €% =N (e).

Therefore, by [15, theorem 7.1.4], there exist test functions ¥y = Wy (Dy) such that for some
K>0,

N
Pl y=1]< ﬁe_Kst ; sup  EN[1 -y < o KN
K c:h(c,c0)>e

Now let / > C be arbitrary. Setting k = /I/K and ¢ = kdy, we can see that this implies

PY[Wy=1]—>0asN o0 ; sup EN[1—Wy] < e ™Moy, (24)
c:h(c,co) >kdy

Now define
Fy= {c €CF () : hic,co) < chN}
which is the event whose probability we want to bound. Then by (24),
Py (TL(FyIDy) > e—<c+3>N5ﬂ)
S TI ) = (X3, Y3, Z2) AL (c)

= Py, lp —(C+3)N6;, -
— N .
o JTLZ) 2 (X Yz dT () - , Uv=0, Ay | +o(1)

P, ((1—\1’1\/)/1“ T2 (X, v1,Z) dll (¢) > e~ CCT9Ne >+0(1)

i1 Peo

Now by Markov’s inequality, this is further bounded above by

N

a wN)/F T2 vz dfi (o)

L2C+S)NG +o(1)
1 Pco
i=1

N
E¢,

N
- / EY | ( H X,,Y,,Z Y di(c) | €®ETIN 1 6(1)  (by Fubini’s Theorem)
Fy i=1
-1/ BN [(1 - ww)]dii (¢) | 2 o (1)
c:h(c,co)>kdy
< ((CH5—DNG +o(l).
Now choosing [ > 2C + 5, the theorem follows. O
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3.2. Propetrties of the prior

In this section, we will verify the assumptions of theorem 3.2 when Il = II. The key ingredient
in the arguments is the forward continuity estimate from corollary 2.7. We begin by observing
that the Hellinger distance between c¢,c; € Cf () is equivalent to the L?(9S2 x 99) dis-
tance between Z;, and Z,. ’

Lemma 3.3. There exists k = k(2,8,M) > 0 such that for all ¢ ,c; € CZBM(QQ),

1
Kl Ze, = Zoy|l72 < (c1,02) < m”zcl —Ze, |7
g

Proof. Consider the ‘Hellinger affinity’ function

1
p(c1,c2) =/ VPePodpp =1~ Ehz (c1,¢2).
X

We have

plene) = E/Xp{i (=2 () + (e~ 2, (x,y»z)}du (6,) dz
N m/mxmexp {_411 (ZCI (x,y)2 +Ze, (x>J’)2)}

[\ﬁ/ ep{ ( zc,+zc }dz

exp ch +Z.,) }dxdy

Volzaﬂf/anxageXP{ g (Ze (603) = Ze, (x, ))}dxdy 25)

Now applying the simple estimate e~* > 1 — ¢ for all # > 0, we get

1 1 2
plcr,c 27/ {1—ZCI—ZC2 ]dxdy
(ene) Volg (09)* Jaaxaoa 8 ( )

1
- 2 ||ZCI
8 Volg (992)

7262”12‘2'

Consequently,

1

— Z = Z,||%.
4Vol. (89)2” 1 2||L2

h2 (C]7C2) = 2(1 — (C],Cz))

Next, we use the fact Z;,,Z., satisfy the uniform bounds (18) on the support of Z, —Z,.
Consequently, for all x,y € 0f2, we have

‘ZCI (xvy) _ZCz (xvy) | < Av (26)

where A = 2M + logdiamg (2) — logd. Set T = A? /8 and observe that for all 7 € [0,7],

_ T
,<1_<1 e )t
T
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1—e T

17— We have

by the convexity of ¢ — e~'. Therefore, for kK =

1 K
exXp {_8 (ZCI (x7y) - Zcz (x?y))z} < - §|ZC1 (xay) _Zcz (x,y) ‘2

for all (x,y) € 992 x 01 Integrating both sides of this inequality with respect to dyu(x,y) and
applying (25), we get

K
§HZL'1 _Ze‘z“iz

= W (c1,02) 2 K| Ze, — Zoy|[72-

pler,e2) <1—

This completes the proof. O

Now let us verify condition (1) of theorem 3.2 for II.

Lemma 3.4. Forcy € CZBM(QO) and t >0, define

By (1) = {c €CP () : [l —colles < 5N/¢} ,

and let By, 11, and 6y be as in theorem 3.2. Then for some t > 0 large enough, By(t) C By for
all N € N. In particular,

II(By) > I1(Bn(1)).

Proof. We need to verify thatif ¢ is large enough, then for any ¢ € By(t), we have K(c, cy) < 6%
and V(c,co) < %. Consider a random observation (X, Y,Z), where (X, Y) is a pair of boundary
points chosen with respect to the uniform probability measure p, and Z = Z,(X,Y) + ¢, with
e ~ N(0, 1) independent of (X, ¥). Observe that for any ¢ € By(1),

logpi: (X,Y,Z) = _% [(Z_ZCO (X, Y))Z —(Z-2Z.(X, Y))Z]
= (2 XY) 2 (X V) — e (Z(X7) ~ Z, (X V). @D)

Since E[e|X, Y] = 0, we have

K(c,co) =E, {log[;;“ (X, Y,Z)}

c

B |5 2.0 -2, k1)’ e

B 1 2
1

- @ @@ ZC -7 2
2Vol (89)* | wllz
Slle— COHiz (by corollary 2.7)
ox
Se 29)
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So it follows that if # is large enough, K(c,co) < % for all ¢ € By(t). Next, consider

2
V(e,co) = Eq [logpco(X7 Y,Z)}

c

2
< 2EH B(ZC — ZCU)Z} +2E* [(Ze — Z,)’Ec [€]]  (by 27))

1

"2 / |Ze — Zo[*dpu(x,y) + 2B* [Z, — Z,, ) (since E[¢’] = 1)
2 Jaaxan

”Zc _ZCUH%OO

S Ve (o 1%~ Zalliz +4K(c.co)
8

by (28). It follows from (26) that ||Z. — Z, ||~ < A, where A > 0 depends only on ,2,4.
Consequently,

V(C,C()) S HZC _ZCOH%,Z +K(C,Co)

< C32Je — col|2 + K (¢, o) (by corollary 2.7)
52
Slle=eollgs +3 by 29)

2
< o
Ntz'

This shows that for # > 0 large enough, we also get V(c,cy) < 6% for all ¢ € By(t). O

Next, we will establish a lower bound for II(By(z)), which will follow from estimates of I1-
measures of sets of the form {c : ||c||cs < £} when € > 0 is small. To this end, it is convenient
to work with Holder-Zygmund spaces C (), with s > 0 (see [42] for a detailed treatment).
If 5 is not an integer, C%(£)) is simply the Holder space C*(£)y). On the other hand, if s is a
positive integer, C%(£)) is a larger space than C*(§)), and is defined by the norm

Z sup [0%f(x) |+ Z |0%f (x + h) + 0°f (x — h) — 2f0° (x) |

su .
XGQO,IZI#O |h|

7

C. () =
\a|<s—1xe 0 la|=s—1

In either case, it is easy to see that ||f]|c; < [|f]|c for all f € C*(Qy). It turns out that C ()
coincides with the Besov space B . (£)y), which allows us to use various embedding and
approximation results from Besov space theory.

Before proceeding, let us fix v > 0 such that

2
y>max{2(a’;)m’g}’ and define sy =N"/H). (30)

v

It is easy to verify that Sy — 0 and /Ny = N2C2+¥) — 0o as N — oo.

Lemma 3.5. Lef ¢y € CEM(QO) NH, and define §y as in (30). Then for t >0 large enough,
there exists C' = C'(Q,,8,,8,¢,M,co,t) > 0 such that for all N € N,

I1(By(t)) > exp{—C'Noy} .
In particular, there exists C = C(€2,Q0,8,c, 8,¢,M,co) > 0 such that for all N € N,
II(By) > exp {—CNéy } .
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Proof. The sets {b € C3(Q) : ||b]|cs < &} for § > 0 are convex and symmetric. Hence by [15,
corollary 2.6.18],

T (||c — collcs < Ow/) = e 1015/ 2T(||c]| s < dn/1).

Moreover, since ¢y € Cf M(Qo), which is open with respect to the CP? metric, we have for all
sufficiently large ¢ > 0,

T(By (1)) = 11 ([Jc — coll s < d/r) = Llle = Coller < /1)

(], ()
and therefore,
II <
H(BN(I)) 26—“00”%1/2w. 31
I1(C ()
Next, choose a real number ~ such that
m 2m
< yv<oa— —, > —. 32
B<v<a—z,  vrao—— (32)

Alternatively, if 3 is not an integer, we can simply set v = (3. In either case, we have ||f]|¢s <
Ilfllcy for all f € CY ().

Now recall our assumption that the RKHS H of Il is continuously embedded into H*(£2p).
We know from [13, theorem 3.1.2] that the unit ball U of this space satisfies

A (ayfv)
log (U] l.) < (%)

for some fixed A > 0 and all € > 0 small enough. Therefore, by [19, theorem 1.2], there exists
D > 0 such that for all € > 0 small enough,

I T o om
H(HCHcﬁ < 5) > 1I (”CHC;{ < 5) > exp{_Dg 2(a—~y)—m } )

Consequently, (31) implies that for # > 0 large enough,

1 llcoll3 o I
(B 0) > WGXP IOl pyxa=)m g, M0
¢,M \PE0
: leoll3, e
> TGXP B — D=7 =m g (by (30) and (32))
II (Ce,M (Qo)>

leoll3e _ p aamy= nis2
il (CZ,M (QO)>

> exp {—C'N&}}
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- 2m
for C' = log(H(CfM(Qo))) + % + Dt2(e=7)=m Tt now follows from lemma 3.4 that for

t >0 sufficiently large, there exists C >0 such that II(By) > exp{—CNé&%}. This completes
the proof. O

Thus, we have verified condition (1) of theorem 3.2. The next Lemma verifies condition
2).
Lemma 3.6. There exists C = E‘(Q, Q0,8,5,¢) > 0 such that

log ' (CZM () ,h,(SN) < CN&2.
Proof. In order to construct a covering of Cg (o), it suffices to construct such a covering of
the CZ (€2)—ball of radius M centered at 0. Therefore, if U denotes the unit ball of C% (€),
tog 7 (Cy (), 1 2, 6v) < Tog N (MU, |- 12, 6v)

Now applying [13, theorem 3.1.2] to the inclusion C% (€) < L2(Q), we have

8 A7
g7 (€2 (0) - .6v) < ()
N
for some A’ > 0. Since v > m/f3, we get
tog V(€7 (). | ll2,6x ) < by = bNG,

where b > 0. Now, lemma 3.3 and corollary 2.7 imply that an L? ball of radius &y centered at
any ¢ € Cg 11(€0) is contained in the Hellinger ball of radius #2(89)61\, centered at the same

point. Therefore, by suitably rescaling the constant b to E(Q,Qo,g, B,¢,M) >0, we get the
desired complexity bound

log A" (CF, (€20) 1, 6v) < CNGF,

3.3. Posterior convergence
In this section, we will combine the results of sections 3.1 and 3.2 to prove theorem 3.1.

Theorem 3.7. Let I1, o, 3,M,cq be as in theorem 3.1, v,0y as in (30), and C > 0 as in lemma
3.5. Then for k' > 0 large enough, we have

Py (H ({c €/ (Q0) 1 11Ze = Ze 12 < k’5N} |DN) >1- e*<c+3>N5ﬁ) 1 (33)
as N — co. Moreover, for all k'’ > 0 large enough,

Py (H ({c €l () e—colle > k”a}v/z} \DN) > e—(C+3>Néi) ) (34)
as N — oo.
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Proof. Combining lemmas 3.5 and 3.6 with theorem 3.2, we get (33) for all sufficiently large
k' > 0. To get (34), consider the event

EN:{cECZwG%)JB;—meggkﬁN}

By corollary 2.3, for any ¢ € Ey,

lle = collz < CIZe = Zey |
< CNNZe = Zey 3711 Ze — Zeo |1}

by the standard interpolation result for Sobolev spaces. Therefore, by theorem 2.8,
12 s /2
llc = collzz < Ci(C3) "~ (k"0)
Taking k'’ > C|(k'C})"/?, we conclude that
lle = coll2 < k"6

Combining this with (33) gives us (34). O

The final step in the proof of theorem 3.1 is to prove that the posterior contraction rate in
the above Theorem carries over to the posterior mean ¢y = E[c|Dy] as well. Let

We note that w can be made arbitrarily close to 1/4 by choosing «, 8 appropriately. Indeed,
if o and 3 are sufficiently large, (30) allows v to be arbitrarily close to 0. Correspondingly, w
can be made arbitrarily close to 1/4. Next, define

wy = K"6\ = kK'N"TF = o (N¥)

where k'’ > 0 is as in theorem 3.7.

Proof of theorem 3.1. Observe that

l[en — collzz = ||E™ [c|Da] — col|

< E"[|lc — coll;2|Dn]  (by Jensen’s inequality)

< CLJN + EH |:||C - COHLZH{HC*C()HL2>WN} |DN:|

1/2 1/2

<wy+E" e = coll /D] 7 [T (fle — collz> > wn| D))

by Cauchy—Schwarz inequality. Now it suffices to show that the second summand on the right
hand side is stochastically O(wy) as N — cc.
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Arguing as in the proof of theorem 3.2 and applying lemma 3.5, we get that the events

A= {/ H Pe (X,,Yl,z)dn( )>e<2+C>N5ﬁ}
€7 () ;= Pe

satisfy PIC\; (A,’V) — 1 as N — oo. Here, C is as in lemma 3.5. Now, theorem 3.7 implies

PIC\; (E" [llc = col|72Dw] x IL(Jlc — collz2 = wn|Dw) > wy)

2
< PZ) (EH [Hc — COH%z‘DN:I e (CHINGy wlz\,) +o(l),
which is bounded above by

P (o CHMNRET [Jle - co|[5Da] > w},AL) +0(1)

o
—c X:,Y:,Z:)dI (¢

_ —cramay e = ol IS e Q) ) o
[T 1p (X:,Y;,Z;)dI (c)

</||c—co||L2HpC (X;,Y;,Z) dIL(c) > wie >—|—0(1) (35)

using the fact that [T] 1p < (X;,Y;,Z))dII(c) > e~ (CT2N3% on Al Next, using Markov’s
inequality, (35) can be further bounded above by

N
<Y | [lle=alh [T 2 (. rzpdn(e)| +o()

i=11¢

- Nw—z/ucchHLz]E lH Pe (X:.,v:,2))
<e_N‘sfszgz/Hc—CoHide(c)+0(1) (smce EY lH pc] = l)
Peo

< e*N‘Si’w];2 +o(1) §e*N5'2VN2‘” +o(l) = 0as N — oo

dII(c)4+o(1) (by Fubini’s Theorem)

This completes the proof. O
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