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Abstract 

Given the fundamental role of working memory (WM) in all domains of cognition, a central 

question has been whether WM domain-general. However, the term “domain-general” has been 

used in different, and sometimes misleading, ways. By reviewing recent evidence and biologically 

plausible models of WM, we show that the level of domain-generality varies substantially between 

three facets of WM: in terms of computations, WM is largely domain-general. In terms of neural 

correlates, it contains both domain-general and domain-specific elements. Finally, in terms of 

application, it is mostly domain-specific. This variance encourages a shift of focus towards 

uncovering domain-general computational principles and away from domain-general approaches 

to the analysis of individual differences and WM training, favoring newer perspectives, such as 

training-as-skill-learning. 

 

Keywords 

Working memory, domain-generality, brain training, resource models, neural correlates  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

The question of domain-generality of WM 

Working memory (WM) is the ability to maintain information over short periods of time, usually 

in the service of an ongoing task. Since different kinds of information may need to be temporarily 

maintained before they are acted upon, it is not surprising that the question of domain-generality 

has come up in various accounts of WM. For example, the classic Baddeley and Hitch (1974) [1] 

model comprised a mixture of domain-specific visual and verbal components and a domain-

general “central executive”. Later, some researchers adopted a mostly domain-general account [2], 

whereas others proposed a mostly domain-specific account [3]. However many such accounts do 

not address neural findings and lack computational specificity, or the versions that have 

computational implementations focus on specific aspects of WM or tasks [4,5], leaving the larger 

debate on domain-generality unsettled. Aside from theoretical models, the assumption of domain-

generality is behind many practices in current psychological studies and interventions. Two 

prominent examples are the analysis of individual differences and brain training. When one WM 

task is used to predict (analysis of individual differences) or enhance (brain training) performance 

on a range of tasks that are hypothesized to tap WM, domain-generality of WM is tacitly assumed. 

It is, thus, of both theoretical and applied interest to verify the assumption of domain-generality of 

WM.   

The goal of this paper is not to give a comprehensive overview of the perspectives adopted on 

domain-generality/specificity of WM over the years, as such overviews exist elsewhere [6]. Rather, 

the paper aims to propose a more useful taxonomy for studying domain-generality, comprising (a) 

domain-generality in computations, (b) domain-generality in neural substrates, and (c) domain-

generality in application. The tenet of this work is that logical relations such as a → b and b → c 

(and consequently, ¬b → ¬a and ¬c → ¬b) do not necessarily hold between these three 

components. For example, the same computations could be carried out by different neural 

populations, or the same neural population could carry out different computations. Starting with 

this logic, the next three sections examine domain-generality or specificity of WM in each 

component. The first section examines a computational principle with high plausibility for domain-

specificity and shows that it is indeed domain-general. The second section demonstrates that 

potentially domain-general neural regions in WM can have a mixture of domain-general and 
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domain-specific functions. Finally, the third section uses a state-of-the-art neural model to show 

that domain-generality in neural correlates does not translate into domain-generality of application.  

Domain-generality in computations 

Principles of resource division in WM 

The key question here is: If a set of computations can be domain-general, are they indeed domain-

general or not? This question naturally excludes operations that are tied to domain-specific 

representations. For example, “verbal rehearsal” is clearly tied to phonological representations, so 

even if it is used for memorizing visual objects, it is still mediated through verbal labels, and is 

thus not a suitable candidate for examining domain-generality. A good test case for this purpose is 

the principle of resource division, because (a) limited capacity is one of the least disputed 

properties of human WM [7–9], (b) detailed models have been proposed to explain resource 

division (Fig. 1a-d), and (c) at least some of these models have neurobiological plausibility and 

directly link resource division to attention, which is another widely accepted process relevant to 

WM [10,11]. 

Two major classes of theories have been proposed to explain capacity limitations of WM, discrete 

and continuous models [7,9,12]. Discrete models were based on a clever observation in early 

studies, namely that the number, and not the complexity, of stimuli determined WM capacity [9]. 

Correspondingly, it was proposed that WM has a fixed capacity, defined as k slots, within which 

items are stored perfectly and beyond which performance is at chance (Fig1a). However, the 

introduction of continuous reproduction paradigms [13,14], which allowed for measuring the 

precision of a memory, revealed a decline in precision even from 1 to 3 items, i.e., below k. To 

account for this finding, the slot-plus-averaging (SA) model was proposed [14] (Fig. 1b). Although 

SA maintains the notion of slots by assuming that WM resource is divided into discrete quanta, 

these slots can be combined and shared between items, allowing for higher precision for items 

below k. The idea of slots-plus-averaging was later adopted by more models [15], but also received 

criticism [16–18]. 

The success of the SA model, which flexed the notion of fixed slots, gave rise to continuous 

resource models that assume WM to be a continuous resource with no upper bound k [12,19]. As 

the number of items increases, the precision with which they are encoded decreases. Thus, these 
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models can account for the data using a single process of continuous resource division, although 

such division may be equal (Fig.1c) or unequal (Fig. 1d) among items, the latter representing 

variable-precision resource models [17,19–21]. In continuous resource models, guessing is simply 

the extreme end of the continuous process of resource division, where an item receives little to no 

resources. Opposing this view are dual-process mixed-state models, which view pure guessing as 

a process qualitatively distinct from recall [22] (see underlying distributions in Fig.1a-d, and [23] 

for a unifying view).  

Although both SA and variable-precision continuous resource models capture the error 

distributions well, continuous resource models are biologically more plausible [24]. While the 

notion of k slots is difficult to define neurally,  resource limitation in continuous resource models 

is simply defined as neural gain, i.e., the amplitude of activation at the level of a neural population 

that has encoded a probability distribution over a given feature [23–26]. Higher gain means higher 

precision. Moreover, defining resource limitation as neural gain provides a natural link between 

WM and attention, which corroborates the close correspondence between the two at the level of 

brain [11] and behavior [27,28]. 

We must also note that a large body of research has examined the limits of memory by focusing 

on interference [29,30] and time [4,31] as two critical factors, but these models are not direct 

competitors of resource models, and are hence not discussed here. To summarize, despite some of 

the ongoing debates, the bulk of the evidence supports continuous resource models. However, most 

of the evidence comes from visual WM paradigms. Can the same principle be applied to verbal 

WM?  

Extending continuous resource division from vision to language 

Historically, visual and verbal WM have been assumed to be separate [32]. Empirically too, 

performance on visual and verbal domains are dissociable [33,34]. This dissociation is 

understandable given the very different nature of representations in these two domains. For one 

thing, visual stimuli are spread in space, whereas verbal stimuli are spread in time. Moreover, 

while the influence of category (color or phoneme labels) on perception has been reported in both 

domains [35,36], cf., [37,38], this influence is much stronger in the verbal domain. This is called 

categorical perception [36]; when presented with a series of artificially created stimuli between 

two phonemes, such as /b/ and /d/, participants do not experience them as a smooth continuum, 
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but as either /d/ or /b/. Categorical perception is a desirable property of speech processing, as 

differentiating between minimal pairs such as /beer/ and /deer/ critically depends on the 

identification of the right phoneme and not its acoustic details. 

The continuous nature of visual representations makes a continuous resource model an intuitive 

model of visual WM, whereas the categorical nature of speech representations makes slot-based 

models a prime candidate for verbal WM (see Box 1). However, if the same principles operate 

across domains, continuous resource models should be able to account for the data in verbal WM. 

This proposition is not unreasonable, given that despite categorical perception, listeners are 

sensitive to subtle changes in the distribution of statistical information in acoustic dimensions even 

when the information does not flip the category [39,40], and such sensitivity is powerful enough 

to change production [41]. 

 

[Figure 1 about here] 

 

To test this, the continuous reproduction paradigm was adapted to the auditory domain [42]. Four 

continua (/bɑ/–/dɑ/, /kɑ/–/ɡɑ/, /ɹɑ/–/lɑ/, and /sɑ/–/ʃɑ/) were created, each manipulating one 

acoustic property of the pair to generate seven equally-spaced. In the baseline phase, participants 

heard a single syllable and moved a continuous slider to mark the position of the syllable (Fig. 1e). 

This allowed for the calculation of a “deviation score” between the actual and the indicated 

position of the syllable, to measure precision. The results (Fig. 1e) showed that while the effect of 

category was not eliminated, participants were able to hear intermediate syllables. The authors 

then played 1, 2, or 4 syllables, sequentially, from different continua on each trial and probed one 

continuum at the end of the trial. After accounting for positional differences, the pattern was similar 

to that uncovered in visual WM paradigms, with a gradual increase in the deviation score as a 

function of increased set size even from 1 to 2 (Fig. 1f; see also [42] but see [43], for the criticism 

of their methodology).  

Two follow-up experiments investigated the interaction between attention and WM, by using 

probabilistic cues. In the pre-cue condition, a number was presented before the sequence was 

played, indicating the position in the sequence where the syllable had the highest chance of being 
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probed. In the retro-cue condition, the same cue was presented but only after the syllables had 

been heard (Fig. 1g). The results showed that, for both pre- and retro-cues, deviation scores for the 

uncued items (i.e., those with a lower chance of being probed on a cued trial) were significantly 

higher than a baseline with no cueing. On the other hand, only pre-cues were successful at 

significantly decreasing deviation scores of the cued items (Fig.1h). Collectively, these 

experiments showed that the cued-item advantage was due to more precise encoding, whereas the 

uncued-item disadvantage was likely due to the release of the uncued items during maintenance. 

Importantly, this pattern was very similar to that reported for visual WM [29]. 

To summarize, when WM in speech perception is probed using a continuous reproduction 

paradigm, the results look strikingly similar to visual WM. This pattern is compatible with a 

continuous resource model, but, in theory, also with a mixed-state model that combines a discrete 

slot model with a pure guessing process. To minimize the chance of guessing, in another study, the 

framework was applied to speech production [44] (see Box 1, and Fig. 1i). Using a case-series 

approach, phonological errors were analyzed from four individuals with aphasia [44]. The 

precision of an error was defined as the distance between the target and error phoneme in the 

articulatory-phonetic space, weighted more heavily for features more diagnostic of minimal pairs, 

using ALINE ([45]; Fig. 1g). WM load was simply word length (3-9 letters; see Box 1). If 

phonological WM stores phonemes as discrete units, one would expect an increased probability of 

committing a phonological error with increasing word length, but there would be no reason to 

expect that such errors show a gradual increase in deviation from the target. Conversely, if 

phonemes in the phonological buffer have a graded representation, one would expect a continuous 

increase in deviation scores as a function of word length, as predicted by continuous resource 

models. This was indeed what was found (Fig. 1k). These findings match those reported for verbal 

WM in perception, as well as visual WM. Moreover, since phoneme selection within a word is 

unlikely to be driven by pure guessing (see Box 1), this pattern of results endorses the applicability 

of continuous resource models to verbal WM, despite the much greater utility of discrete 

categorical representations in speech vs. vision, pointing to domain-generality in a core principle 

of processing.  

[Box 1 about here] 
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Domain-generality in neural substrates 

A general framework has emerged in which WM is argued to be implemented in a network 

comprising sensory and fronto-parietal regions, with contributions from cerebellum, as well as 

subcortical regions including hippocampus, thalamus and basal ganglia [46–55]. Comprehensive 

reviews of the role of these regions exist elsewhere [49,56]. Rather, our goal here is to examine 

the existing evidence as it relates to domain-generality or specificity of the neural correlates of 

WM. The target of such investigation will, obviously, not be the sensory cortex, as domain-

specificity is undisputed in those areas. Rather, the focus will be on regions that are not clearly 

specialized to process a certain type of sensory information, such as the frontoparietal regions.  

Although parietal regions have been implicated in both visual and verbal WM, different parts of 

the parietal lobe have been identified in these two domains. Specifically, the bulk of evidence in 

visual WM points to posterior parietal and intraparietal sulcus (IPS), whereas verbal WM studies 

often implicate the supramarginal gyrus (SMG) [57–65]. Even within the domain of language 

processing, researchers have identified separable neural correlates for semantic and phonological 

WM [66]. For example, [64] used representational similarity analysis (Fig. 3c) on data from 

participants judging either the phonological or semantic similarity of a memory item to a probe 

item (Fig. 3a, b).  For the phonological task, they were able to decode phonological representations 

in superior temporal gyrus (STG, the speech perception region [67]) during encoding but not 

during maintenance across a delay period (Fig. 3d), whereas in the SMG, the opposite was the case 

(Fig. 3e; see also [63,65] for similar evidence using multi-voxel pattern analysis (MVPA) and 

transcranial magnetic stimulation (TMS)). On the other hand, semantic representations could not 

be decoded in either STG or SMG during either encoding or maintenance, showing the specificity 

of these regions for phonological WM. In contrast, both types of information could be decoded 

from angular gyrus (AG; Fig. 3f), although in a task-specific manner, e.g., phonological 

information could only be decoded in the phonological task but not in the semantic task.  

Also informative about the neural correlates of WM are studies using lesion-symptom mapping 

(LSM) techniques, which examine the relationship between lesions and behavioral deficits in 

individuals with brain damage. Although several studies have examined the neural correlates of 
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WM using this method [68–70], very few studies have compared the neural regions involved in 

semantic and phonological processing within the same participants in tasks with comparable 

demands. In one such study [71], 94 participants were studied at the acute stage (within one week) 

of stroke, ruling out reorganization of function. To tap phonological WM, a digit matching task 

was used in which participants judged whether two lists were the same or different, and to tap 

semantic WM, a category probe task was used in which participants heard a word list and judged 

whether a probe word was in the same semantic category as any list word. For both tasks, WM 

load was manipulated by presenting lists of increasing length. Appropriate control measures were 

employed to identify regions specific to either semantic or phonological WM. In keeping with the 

neuroimaging results, the largest number of voxels relevant to phonological WM were in SMG 

(see also [72]). Several frontal and subcortical regions were also identified, all of which could 

plausibly be involved in articulatory rehearsal.  In contrast, the largest regions related to semantic 

WM were in AG and a region spanning the opercular portion of the inferior frontal gyrus and the 

insula [73,74]. The next largest region was in the posterior superior temporal sulcus – a region 

often thought to link phonological with semantic representations [75]. These results show a clear 

double dissociation in neural correlates of semantic and phonological WM.   

To summarize, studies of WM across visual and verbal domains, and even subdomains of language 

processing have implicated largely separable neural correlates for different types of information, 

pointing to domain-specificity in neural correlates. That said, there is also evidence that certain 

regions may be involved in aspects of processing that have a more domain-general flavor. For 

example, transcranial magnetic stimulation (TMS) of SMG affected the maintenance of a sequence 

regardless of the nature of items (verbal, spatial or motor)[76], raising the possibility that the 

sequencing demand of certain WM tasks may also critically involve this region, although this 

finding is not uncontested [64,74]. Similarly, as discussed earlier, both phonological and semantic 

representations could be decoded from AG, although each in a task-specific manner [64]. This 

finding fits well with the role of AG in episodic memory [77], which would predict its involvement 

in processing various kinds of information but each related to a specific context. Finally, there is 

ample evidence for the involvement of prefrontal regions, thalamus and basal ganglia in balancing 

maintenance and updating functions of WM (Box 2). It is reasonable to assume that, in so far as 

balancing these demands is required in WM tasks, the neural correlates involved in these gating 
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processes could be shared between tasks. However, these loops are triggered by sensory-motor 

mapping and task goals, which are, by definition, domain and task-specific.  

[Figure 2 about here] 

[Box 2 + Fig. I about here] 

 

Domain-generality in application 

The assumption of domain-generality has had two important outcomes: the emergence of WM 

training programs, and certain practices for the analysis of individual differences. Given the 

broader impact of the former, we focus on training in this section. However, the latter can also 

impact science in important ways, as discussed in Box 4. The general idea behind training 

programs is that extensive (and usually adaptive) training of WM using a small number of 

(computer-based) tasks will improve WM capacity across a wide array of tasks in real life (i.e., far 

transfer; [78–80]). The efficacy of brain-training methods in general, and WM training in specific, 

has been one of the most hotly debated topics in the past two decades. The reason is that WM is 

considered to underlie a very wide range of cognitive tasks, act as a building block of general 

intelligence [81,82], and be a critical locus of impairment in many neuropsychiatric conditions 

such as schizophrenia and attention-deficit hyperactivity disorder [83,84]. Therefore, it is natural 

that an easy tool for training WM would be highly appealing to both neurotypical and impaired 

populations. In fact, sales in the digital-brain-health market already well exceed $1 billion, with 

more than one case of charges brought up by the Federal Trade Commission against brain-training 

companies for deceptive advertising practices [85].  

There are numerous empirical studies, meta-analyses, and review papers arguing for or against the 

efficacy of WM training [86–90]. Similar disagreements exist about aging effects on WM training, 

with studies ranging from no effect to differential effects of training on some but not other tasks 

[91–93]. As with neural correlates of WM, our goal is not to review this literature but rather to 

examine whether far transfer is predicted by current, biologically plausible, theories of WM. 

Currently, three main theoretical accounts exist for transfer: neuroplasticity [94,95], 

representational overlap [e.g., 94,120], and skill learning accounts [97,98].  
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Proponents of far transfer often cite neuroplasticity as the foundation of their theoretical 

perspective. It is well-established that training WM induces plastic changes in certain brain regions 

(e.g., dorsolateral prefrontal cortex, DLFC) by changing the local field potentials and recruiting a 

greater proportion of neurons with increased firing rates [99], and that such plasticity improves 

performance on trained tasks [94,100]. It is also well-known, as reviewed in the earlier sections, 

that there is some overlap in neural regions involved in WM processes across various tasks and 

domains [95]. Combining these two uncontroversial findings, it has been reasoned that, if there is 

some domain-generality in neural correlates of WM and if such neural regions show plasticity, 

then inducing plastic changes through one task should lead to improved performance in other tasks 

[94,101]. Indeed, single-cell recordings from the DLPFC of rhesus monkeys show that changes 

induced during training are sufficient to benefit near-transfer, i.e., changes to the task parameters 

such as delay period or stimulus location in visual WM paradigms [99], and similar effects have 

been observed in humans [102]. The critical question, however, is whether far-transfer can be 

expected, when there is little or no overlap between stimuli and/or task goals, except for the 

necessity of holding on to information over short periods of time. The answer, according to recent 

neurobiologically plausible computational models of WM is no. Box 3 discusses an example 

model [103]. Critically, the model implements the uncontested assumptions of neuroplasticity and 

the undifferentiated neural space that overlaps across tasks. Nevertheless, while training does 

improve performance on the same task, as well as new stimuli within task [104], far transfer is not 

predicted by these models (see Box 3 for details). 

 

[Box 3 + Fig. I about here] 
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The representational overlap view claims that the extent of transfer of WM training between two 

tasks depends on the degree of overlap between their features/processes. Although less general 

than the neuroplasticity account, the representational overlap account still predicts automatic 

transfer, and attributes the absence of transfer to the lack of overlap in the appropriate 

representations [e.g., 94,120]. It is, however, unclear which features and processes constitute the 

critical representational mediating transfer. A large-scale and well-controlled study [98] 

demonstrated that overlap in stimulus, response, or task, alone was not sufficient to reliably predict 

transfer, casting doubt on the utility of the representational account. The authors of this study, in 

turn, proposed the skill learning account.  

According to the skill learning account, transfer is only expected when a new cognitive routine is 

learned during training that can later be applied to a new task [97,98]. Importantly, and in 

opposition to the other two accounts, transfer is not viewed as automatic and may very well 

comprise strategies that lie outside of core WM processes. No significant transfer is expected if 

the tasks are either too well-learned to allow room for new strategies to develop during training, 

or if they are too different to benefit from the application of the same newly developed cognitive 

routine. For example, N-back tasks, often used for WM training, entail routines that are not 

applicable to many other WM tasks, which explains the absence of transfer between them [105]. 

Similarly, the authors reported substantial transfer between complex span tasks within the same 

stimulus domain, but not across domains. This result indicates that cognitive routines may depend 

strongly on task and domain, making the skill learning view the most restricted of the three 

perspectives in predicting generalization in WM training, but also the most compatible with both 

theoretical models of WM and empirical evidence. Critically, the success of the account hinges on 

the fact that it does not posit an automatic mechanism for far transfer solely based on shared 

representations or neural substrates. Rather, it emphasizes the development of new cognitive 

pipelines through learning, some of which are outside of primary WM operations. 

In summary, while the assumption of domain-generality in neural implementation is very much 

part of the cutting-edge computational models of WM, this assumption does not lead to the 

prediction of domain-generality in application. Quite the opposite, these models predict task-

specific patterns of neural activity, and at best, generalization to new items within the same task 
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(see also Box 4 for complementary evidence from the analysis of individual differences). At the 

same time, a new and more restrictive perspective on transfer, namely transfer by learning new 

cognitive routines, shows much promise, although there are still open questions regarding what 

constitutes a new cognitive routine and what factors promote the learning of such routines in 

individuals.  

Concluding remarks 

The goal of this paper was to show that while the question of domain-generality of WM is an 

important one, to be truly informative, it must be posed separately for computations, neural 

substrates, and application, as the answer differs for each. We showed that, in terms of 

computations that are potentially applicable to different representations, WM is indeed domain-

general. In terms of neural correlates, it contains both domain-general and domain-specific 

elements. Finally, in terms of application, it is mostly domain-specific. Thus, if progress is to be 

made, researchers must be clear about which aspect of domain-generality is being addressed, and 

mind the limits of logical inference when extending claims of domain-generality across these three 

components. The current review encourages a greater focus on cross-domain investigation of 

theoretical principles involved in WM operations, such as sequencing, and their potentially 

domain-general neural correlates, while at the same time implying a need for understanding why 

some non-sensory regions behave in a domain-specific manner in WM operations (see Outstanding 

Questions). This overview also encourages a major shift in perspectives regarding WM training, 

from an expectation of transfer as a natural and automatic consequence of domain-generality in 

neural correlates to a view of transfer as skill learning.  
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Figure captions and Boxes 

 

Figure 1. Theoretical and empirical aspects of resource division in WM. (a-d) Schematics of 

four accounts of resource division when one item (left) or four items (right) are to be stored, 

adapted from [12]. (a) Slot model (k = 3). (b) Slots + averaging (SA) model. (c) Continuous 

resource (equal precision) model. (d) Continuous resource (variable precision) model. 

Distributions under each figure show error around the true feature value of the probed item. This 

distribution is similar across models when one item is to be stored (hence shown once). When the 

number of items increases beyond capacity, all models predict increased error. In slot models, this 

distribution is a mixture of high-precision responses (white) and random guesses (yellow); in SA 

model, a mixture of low-resolution recall (white) and random guesses (yellow). In equal-precision 

continuous resource model, error increases continuously with the number of items, and in variable-

precision, the distribution is an infinite mixture of distributions with varying error rates. (a) and 

(b) are mixed-state models. (e) Ratings of tokens in the perceptual task. (f) Changes to mean 
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deviation scores in the perceptual task as a function of number of items and position. (g) The 

cueing paradigm. Uncued = non-cued items on a cued trial. Baseline (not shown) had no cues. (h) 

Mean deviations scores in (g). (i) Schematic of the activation in the language production system 

for target “cat” (Box 1). Orange indicates activation through feedback. (j) Example trial and 

ALINE coding in the production task. (k) Mean ALINE distance as a function of word length in 

(j).  

 

Box 1. Phonological errors as a tool for studying WM 

Origin of phonological errors. The word production system is a hierarchical system comprising 

several layers of representations, from semantics to articulatory-phonetic features that guide motor 

production [67,106,107] (Fig. 1i). To say a word like “cat”, speakers must first activate the concept 

of cat (shown in Fig. 1i as distributed semantic features). Activation then spreads to lexical items, 

phonemes, and articulatory phonetic features (shown only partially for clarity). The system has 

three key properties that create potential for errors: (a) Spreading activation activates all the 

representations that are connected to the currently activated nodes, regardless of their target/non-

target status. (b) The system is cascaded, meaning that even items that are not selected in one layer 

still send some activation down to subsequent layers. (c) The system is interactive [108,109], 

meaning that activation not only flows from upper to lower layers, but also backwards (shown 

only in one part of the system for visual clarity). This feature is important for producing 

phonological errors (e.g., “mat” instead of “cat”). When the lexical item “cat” is activated, it 

activates phonemes /k/, /æ/ and /t/. Through feedback between phonemes and lexical items, /æ/ 

and /t/ activate “mat”, which in turn activates its onset /m/, the misselection of which leads to the 

phonological error “mat”. As such, activation reverberates between phonemes and lexical items 

that support them, making the retrieval of other phonemes in the same words easier. 

Relationship to WM. Several findings suggest that sequencing phonemes within a word taps into 

similar memory processes as memorizing items within a list, albeit less explicitly. The evidence 

includes the length effect, i.e., an increase in the probability of phonological errors in reading, 

writing, and repetition, as the word length increases, above and beyond chance [110], as well as 

strikingly similar positional effects in phonological errors in picture naming and reading and 

memory errors in serial recall tasks [111]. Furthermore, the inability to maintain information about 
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phonology in WM (e.g., whether a probe word rhymed with another word in a list) is predictive of 

phonological errors [112]. However, while items in a typical serial recall task are usually 

independent of one another, hence giving rise to responses that are simply guesses, phonemes 

within a word are not. Even if a phoneme is hard to retrieve, it still receives support from the 

lexical item, as well as other correctly retrieved phonemes. This dynamic makes selection by pure 

guessing a much less likely scenario in word production compared to a typical memory 

experiment. 
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Figure 2. Neural correlates of phonological and semantic WM. (a) Paradigm for testing 

phonological and semantic WM. (b-d) ROI-based results of representational similarity analysis in 

(b) Left superior temporal gyrus (STG), (c) left supramarginal gyrus (SMG), and (d) left angular 

gyrus (AG). Error bars represent the standard error of the mean. Dashed lines indicate the typical 

boundaries between the encoding period and the delay period. pho: phonological; sem: semantic. 

Asterisks indicate the significance of one-sample t-test:  *p < .05, **p < .01, ***p <.001. Adapted 

from [64]. (e) Beta values of the regions significantly associated with decreased performance in 

phonological and (f) semantic WM after accounting for lesion volume, input processing, and the 

respective opposing WM task (p values < 0.05); adapted from [71].  

 

Box 2. What might domain-general neural regions do in WM tasks?  

Aside from regions in the parietal cortex discussed in the text such as AG, several other regions, 

including prefrontal cortex (PFC), thalamus, and basal ganglia have been implicated in domain-

general WM processes. One of the most detailed accounts of the role of these regions is [113]’s 

gating model, a schematic of which is shown in Figure I. The model explains the trade-off between 

maintaining and updating memories in PFC over short periods of time. Sensory input is mapped 

onto motor outputs via posterior cortical regions. PFC’s role is to modulate this mapping based on 

prior information and task goals. PFC’s flexibility in updating is adjusted through gating via baso-

cortical loops.  Thalamus always excites the PFC, however this excitation is inhibited by substantia 

nigra (SN). Two pathways via dorsal striatum modulate this interaction. The direct pathway is 

activated when the Go neurons with excitatory D1 receptors in dorsal striatum are activated. They 

directly inhibit SN, which leads to the disinhibition of thalamus and updating in PFC. The indirect 

pathway is activated when the NoGo neurons with inhibitory D2 receptors in dorsal striatum are 

activated. This pathway counteracts the direct pathway by inhibiting globus pallidus. Since globus 

pallidus itself has an inhibitory effect on SN, its inhibition leads to the activation of SN and further 

inhibition of thalamus, which prevents updating in PFC.  
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Figure I. Schematic of potentially domain-general and domain-specific regions in WM. GPe 

= globus pallidus, I = input, O = output, PFC = prefrontal cortex, SNr = substantia nigra. 

Adapted from [113]. 
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Box 3. Do biologically-plausible models of WM predict far transfer? 

Models of WM must explain many properties, such as its flexible nature for temporarily storing 

various kinds of information, its capacity limitation, and sensitivity to interference [114], as well 

as neural findings, such as the increase in neural activity with WM load [115], involvement of a 

distributed network comprising sensory cortex and frontoparietal and hippocampal regions [49], 

and the dual static-dynamic nature of neural representations in WM [116]. One recent model that 

successfully captures all of this is [103] (Fig. I), which models WM as random and recurrent 

connectivity between a structured network (representing sensory regions) and an unstructured 

random network (representing regions such as PFC and hippocampus; see also newer versions that 

also implement fast Hebbian synaptic plasticity [117]). 

The idea of WM as a workspace is instantiated by the random connections to the random network, 

which generate a high-dimensional space within which various types of information can be 

temporarily stored, such as those reported in PFC or the hippocampus [118]. As such, the model 

very much embraces the idea of undifferentiated neural regions involved in WM operations across 

various tasks and domains, and could be considered a great candidate for demonstrating domain-

generality in application. Yet, even within such a model, while learning optimizes performance on 

trained items, benefits do not generalize to untrained items. The reason is that training increases 

the correlation between the input in sensory regions and the random network, and is therefore 

specific to those connections. Most recent advances, such as spatial computing models, allow 

generalization to new items within the same task, but even in these models, different tasks generate 

unique patterns of neural activity [104].  
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Figure I. Flexible WM model [103]. (A) Model layout. The sensory network is composed of 8 

ring-like sub-networks. The inset shows center-surround connectivity within a sensory sub-

network. The connections to the random network are randomly assigned and balanced. (B) Raster 

plot of an example trial with 8 sensory sub-networks (512 neurons each) randomly connected to 

the same random network (1,024 neurons). Six sensory sub-networks (1–6) receive a Gaussian 

input for 0.1 s during the ‘‘stimulus presentation’’ period (shaded blue region). Representations are 

maintained (without external drive) for four of the inputs. Reproduced from [103]. 

 

Box 4. Analysis of individual differences and domain-generality of WM 

WM tasks are some of the most popular tasks used in the analysis of individual differences, as they 

often predict performance in tasks such as language comprehension, production, and reasoning 

[119–121]. If scores on the same WM task predict performance across an array of other tasks, it is 

concluded that a domain-general WM ability underlies these tasks. To see the problems with this 

interpretation, recall the concepts discussed in the text in the context of training and transfer. For 

example, in line with [98], complex span tasks have been shown to measure strategic processing 
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in interference control, and it is individual differences in this trainable strategy, and not general 

WM capacity, that predicts variation in performance in other tasks [122].  

But analysis of individual differences, if conducted properly, can be a source of evidence for testing 

domain-generality/specificity of WM. For example, many studies have shown that while WM tasks 

can be predictive of performance on other tasks, such correlation is specific to domain or task 

characteristics [123–125](see [66] for a review). Most convincing in this vein are reports of double 

dissociations within one domain, language processing, in individuals with brain damage. For 

example, double dissociations have been reported between semantic and phonological WM 

abilities in individuals with aphasia [126,127]; see [66,128] for reviews. Importantly, these two 

types of impairments have different consequences for language processing: phonological WM 

deficits lead to impaired verbatim repetition, whereas semantic WM deficits lead to greater 

disruption of comprehension and elaboration of content during language production [129,130]. In 

summary, both neurotypical and neuropsychological data on individual differences in WM point 

to domain-specificity of WM in application, complementing the data from training studies.  

 


