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Abstract

Given the fundamental role of working memory (WM) in all domains of cognition, a central
question has been whether WM domain-general. However, the term “domain-general” has been
used in different, and sometimes misleading, ways. By reviewing recent evidence and biologically
plausible models of WM, we show that the level of domain-generality varies substantially between
three facets of WM: in terms of computations, WM is largely domain-general. In terms of neural
correlates, it contains both domain-general and domain-specific elements. Finally, in terms of
application, it is mostly domain-specific. This variance encourages a shift of focus towards
uncovering domain-general computational principles and away from domain-general approaches
to the analysis of individual differences and WM training, favoring newer perspectives, such as

training-as-skill-learning.
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The question of domain-generality of WM

Working memory (WM) is the ability to maintain information over short periods of time, usually
in the service of an ongoing task. Since different kinds of information may need to be temporarily
maintained before they are acted upon, it is not surprising that the question of domain-generality
has come up in various accounts of WM. For example, the classic Baddeley and Hitch (1974) [1]
model comprised a mixture of domain-specific visual and verbal components and a domain-
general “central executive”. Later, some researchers adopted a mostly domain-general account [2],
whereas others proposed a mostly domain-specific account [3]. However many such accounts do
not address neural findings and lack computational specificity, or the versions that have
computational implementations focus on specific aspects of WM or tasks [4,5], leaving the larger
debate on domain-generality unsettled. Aside from theoretical models, the assumption of domain-
generality is behind many practices in current psychological studies and interventions. Two
prominent examples are the analysis of individual differences and brain training. When one WM
task is used to predict (analysis of individual differences) or enhance (brain training) performance
on a range of tasks that are hypothesized to tap WM, domain-generality of WM is tacitly assumed.
It is, thus, of both theoretical and applied interest to verify the assumption of domain-generality of

WM.

The goal of this paper is not to give a comprehensive overview of the perspectives adopted on
domain-generality/specificity of WM over the years, as such overviews exist elsewhere [6]. Rather,
the paper aims to propose a more useful taxonomy for studying domain-generality, comprising (a)
domain-generality in computations, (b) domain-generality in neural substrates, and (c) domain-
generality in application. The tenet of this work is that logical relations such asa — b and b — ¢
(and consequently, = — —a and —c¢ — —b) do not necessarily hold between these three
components. For example, the same computations could be carried out by different neural
populations, or the same neural population could carry out different computations. Starting with
this logic, the next three sections examine domain-generality or specificity of WM in each
component. The first section examines a computational principle with high plausibility for domain-
specificity and shows that it is indeed domain-general. The second section demonstrates that

potentially domain-general neural regions in WM can have a mixture of domain-general and



domain-specific functions. Finally, the third section uses a state-of-the-art neural model to show

that domain-generality in neural correlates does not translate into domain-generality of application.

Domain-generality in computations
Principles of resource division in WM

The key question here is: If a set of computations can be domain-general, are they indeed domain-
general or not? This question naturally excludes operations that are tied to domain-specific
representations. For example, “verbal rehearsal” is clearly tied to phonological representations, so
even if it 1s used for memorizing visual objects, it is still mediated through verbal labels, and is
thus not a suitable candidate for examining domain-generality. A good test case for this purpose is
the principle of resource division, because (a) limited capacity is one of the least disputed
properties of human WM [7-9], (b) detailed models have been proposed to explain resource
division (Fig. 1a-d), and (c) at least some of these models have neurobiological plausibility and
directly link resource division to attention, which is another widely accepted process relevant to

WM [10,11].

Two major classes of theories have been proposed to explain capacity limitations of WM, discrete
and continuous models [7,9,12]. Discrete models were based on a clever observation in early
studies, namely that the number, and not the complexity, of stimuli determined WM capacity [9].
Correspondingly, it was proposed that WM has a fixed capacity, defined as & slots, within which
items are stored perfectly and beyond which performance is at chance (Figla). However, the
introduction of continuous reproduction paradigms [13,14], which allowed for measuring the
precision of a memory, revealed a decline in precision even from 1 to 3 items, i.e., below k. To
account for this finding, the slot-plus-averaging (SA) model was proposed [14] (Fig. 1b). Although
SA maintains the notion of slots by assuming that WM resource is divided into discrete quanta,
these slots can be combined and shared between items, allowing for higher precision for items
below k. The idea of slots-plus-averaging was later adopted by more models [15], but also received

criticism [16-18].

The success of the SA model, which flexed the notion of fixed slots, gave rise to continuous
resource models that assume WM to be a continuous resource with no upper bound £ [12,19]. As

the number of items increases, the precision with which they are encoded decreases. Thus, these
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models can account for the data using a single process of continuous resource division, although
such division may be equal (Fig.1c) or unequal (Fig. 1d) among items, the latter representing
variable-precision resource models [17,19-21]. In continuous resource models, guessing is simply
the extreme end of the continuous process of resource division, where an item receives little to no
resources. Opposing this view are dual-process mixed-state models, which view pure guessing as
a process qualitatively distinct from recall [22] (see underlying distributions in Fig.la-d, and [23]

for a unifying view).

Although both SA and variable-precision continuous resource models capture the error
distributions well, continuous resource models are biologically more plausible [24]. While the
notion of £ slots is difficult to define neurally, resource limitation in continuous resource models
is simply defined as neural gain, i.e., the amplitude of activation at the level of a neural population
that has encoded a probability distribution over a given feature [23—26]. Higher gain means higher
precision. Moreover, defining resource limitation as neural gain provides a natural link between
WM and attention, which corroborates the close correspondence between the two at the level of

brain [11] and behavior [27,28].

We must also note that a large body of research has examined the limits of memory by focusing
on interference [29,30] and time [4,31] as two critical factors, but these models are not direct
competitors of resource models, and are hence not discussed here. To summarize, despite some of
the ongoing debates, the bulk of the evidence supports continuous resource models. However, most
of the evidence comes from visual WM paradigms. Can the same principle be applied to verbal

WM?
Extending continuous resource division from vision to language

Historically, visual and verbal WM have been assumed to be separate [32]. Empirically too,
performance on visual and verbal domains are dissociable [33,34]. This dissociation is
understandable given the very different nature of representations in these two domains. For one
thing, visual stimuli are spread in space, whereas verbal stimuli are spread in time. Moreover,
while the influence of category (color or phoneme labels) on perception has been reported in both
domains [35,36], cf., [37,38], this influence is much stronger in the verbal domain. This is called
categorical perception [36]; when presented with a series of artificially created stimuli between

two phonemes, such as /b/ and /d/, participants do not experience them as a smooth continuum,

5



but as either /d/ or /b/. Categorical perception is a desirable property of speech processing, as
differentiating between minimal pairs such as /beer/ and /deer/ critically depends on the

identification of the right phoneme and not its acoustic details.

The continuous nature of visual representations makes a continuous resource model an intuitive
model of visual WM, whereas the categorical nature of speech representations makes slot-based
models a prime candidate for verbal WM (see Box 1). However, if the same principles operate
across domains, continuous resource models should be able to account for the data in verbal WM.
This proposition is not unreasonable, given that despite categorical perception, listeners are
sensitive to subtle changes in the distribution of statistical information in acoustic dimensions even
when the information does not flip the category [39,40], and such sensitivity is powerful enough

to change production [41].

[Figure 1 about here]

To test this, the continuous reproduction paradigm was adapted to the auditory domain [42]. Four
continua (/ba/~/da/, /ka/~/ga/, /1a/—/la/, and /sa/—/[a/) were created, each manipulating one
acoustic property of the pair to generate seven equally-spaced. In the baseline phase, participants
heard a single syllable and moved a continuous slider to mark the position of the syllable (Fig. 1e).
This allowed for the calculation of a “deviation score” between the actual and the indicated
position of the syllable, to measure precision. The results (Fig. 1e) showed that while the effect of
category was not eliminated, participants were able to hear intermediate syllables. The authors
then played 1, 2, or 4 syllables, sequentially, from different continua on each trial and probed one
continuum at the end of the trial. After accounting for positional differences, the pattern was similar
to that uncovered in visual WM paradigms, with a gradual increase in the deviation score as a
function of increased set size even from 1 to 2 (Fig. 1f; see also [42] but see [43], for the criticism

of their methodology).

Two follow-up experiments investigated the interaction between attention and WM, by using
probabilistic cues. In the pre-cue condition, a number was presented before the sequence was

played, indicating the position in the sequence where the syllable had the highest chance of being

6



probed. In the retro-cue condition, the same cue was presented but only after the syllables had
been heard (Fig. 1g). The results showed that, for both pre- and retro-cues, deviation scores for the
uncued items (i.e., those with a lower chance of being probed on a cued trial) were significantly
higher than a baseline with no cueing. On the other hand, only pre-cues were successful at
significantly decreasing deviation scores of the cued items (Fig.1h). Collectively, these
experiments showed that the cued-item advantage was due to more precise encoding, whereas the
uncued-item disadvantage was likely due to the release of the uncued items during maintenance.

Importantly, this pattern was very similar to that reported for visual WM [29].

To summarize, when WM in speech perception is probed using a continuous reproduction
paradigm, the results look strikingly similar to visual WM. This pattern is compatible with a
continuous resource model, but, in theory, also with a mixed-state model that combines a discrete
slot model with a pure guessing process. To minimize the chance of guessing, in another study, the
framework was applied to speech production [44] (see Box 1, and Fig. 1i). Using a case-series
approach, phonological errors were analyzed from four individuals with aphasia [44]. The
precision of an error was defined as the distance between the target and error phoneme in the
articulatory-phonetic space, weighted more heavily for features more diagnostic of minimal pairs,
using ALINE ([45]; Fig. 1g). WM load was simply word length (3-9 letters; see Box 1). If
phonological WM stores phonemes as discrete units, one would expect an increased probability of
committing a phonological error with increasing word length, but there would be no reason to
expect that such errors show a gradual increase in deviation from the target. Conversely, if
phonemes in the phonological buffer have a graded representation, one would expect a continuous
increase in deviation scores as a function of word length, as predicted by continuous resource
models. This was indeed what was found (Fig. 1k). These findings match those reported for verbal
WM in perception, as well as visual WM. Moreover, since phoneme selection within a word is
unlikely to be driven by pure guessing (see Box 1), this pattern of results endorses the applicability
of continuous resource models to verbal WM, despite the much greater utility of discrete
categorical representations in speech vs. vision, pointing to domain-generality in a core principle

of processing.

[Box 1 about here]



Domain-generality in neural substrates

A general framework has emerged in which WM is argued to be implemented in a network
comprising sensory and fronto-parietal regions, with contributions from cerebellum, as well as
subcortical regions including hippocampus, thalamus and basal ganglia [46-55]. Comprehensive
reviews of the role of these regions exist elsewhere [49,56]. Rather, our goal here is to examine
the existing evidence as it relates to domain-generality or specificity of the neural correlates of
WM. The target of such investigation will, obviously, not be the sensory cortex, as domain-
specificity is undisputed in those areas. Rather, the focus will be on regions that are not clearly

specialized to process a certain type of sensory information, such as the frontoparietal regions.

Although parietal regions have been implicated in both visual and verbal WM, different parts of
the parietal lobe have been identified in these two domains. Specifically, the bulk of evidence in
visual WM points to posterior parietal and intraparietal sulcus (IPS), whereas verbal WM studies
often implicate the supramarginal gyrus (SMG) [57—-65]. Even within the domain of language
processing, researchers have identified separable neural correlates for semantic and phonological
WM [66]. For example, [64] used representational similarity analysis (Fig. 3c) on data from
participants judging either the phonological or semantic similarity of a memory item to a probe
item (Fig. 3a, b). For the phonological task, they were able to decode phonological representations
in superior temporal gyrus (STG, the speech perception region [67]) during encoding but not
during maintenance across a delay period (Fig. 3d), whereas in the SMG, the opposite was the case
(Fig. 3e; see also [63,65] for similar evidence using multi-voxel pattern analysis (MVPA) and
transcranial magnetic stimulation (TMS)). On the other hand, semantic representations could not
be decoded in either STG or SMG during either encoding or maintenance, showing the specificity
of these regions for phonological WM. In contrast, both types of information could be decoded
from angular gyrus (AG; Fig. 3f), although in a task-specific manner, e.g., phonological

information could only be decoded in the phonological task but not in the semantic task.

Also informative about the neural correlates of WM are studies using lesion-symptom mapping
(LSM) techniques, which examine the relationship between lesions and behavioral deficits in

individuals with brain damage. Although several studies have examined the neural correlates of



WM using this method [68-70], very few studies have compared the neural regions involved in
semantic and phonological processing within the same participants in tasks with comparable
demands. In one such study [71], 94 participants were studied at the acute stage (within one week)
of stroke, ruling out reorganization of function. To tap phonological WM, a digit matching task
was used in which participants judged whether two lists were the same or different, and to tap
semantic WM, a category probe task was used in which participants heard a word list and judged
whether a probe word was in the same semantic category as any list word. For both tasks, WM
load was manipulated by presenting lists of increasing length. Appropriate control measures were
employed to identify regions specific to either semantic or phonological WM. In keeping with the
neuroimaging results, the largest number of voxels relevant to phonological WM were in SMG
(see also [72]). Several frontal and subcortical regions were also identified, all of which could
plausibly be involved in articulatory rehearsal. In contrast, the largest regions related to semantic
WM were in AG and a region spanning the opercular portion of the inferior frontal gyrus and the
insula [73,74]. The next largest region was in the posterior superior temporal sulcus — a region
often thought to link phonological with semantic representations [75]. These results show a clear

double dissociation in neural correlates of semantic and phonological WM.

To summarize, studies of WM across visual and verbal domains, and even subdomains of language
processing have implicated largely separable neural correlates for different types of information,
pointing to domain-specificity in neural correlates. That said, there is also evidence that certain
regions may be involved in aspects of processing that have a more domain-general flavor. For
example, transcranial magnetic stimulation (TMS) of SMG affected the maintenance of a sequence
regardless of the nature of items (verbal, spatial or motor)[76], raising the possibility that the
sequencing demand of certain WM tasks may also critically involve this region, although this
finding is not uncontested [64,74]. Similarly, as discussed earlier, both phonological and semantic
representations could be decoded from AG, although each in a task-specific manner [64]. This
finding fits well with the role of AG in episodic memory [77], which would predict its involvement
in processing various kinds of information but each related to a specific context. Finally, there is
ample evidence for the involvement of prefrontal regions, thalamus and basal ganglia in balancing
maintenance and updating functions of WM (Box 2). It is reasonable to assume that, in so far as

balancing these demands is required in WM tasks, the neural correlates involved in these gating



processes could be shared between tasks. However, these loops are triggered by sensory-motor

mapping and task goals, which are, by definition, domain and task-specific.
[Figure 2 about here]

[Box 2 + Fig. I about here]

Domain-generality in application

The assumption of domain-generality has had two important outcomes: the emergence of WM
training programs, and certain practices for the analysis of individual differences. Given the
broader impact of the former, we focus on training in this section. However, the latter can also
impact science in important ways, as discussed in Box 4. The general idea behind training
programs is that extensive (and usually adaptive) training of WM using a small number of
(computer-based) tasks will improve WM capacity across a wide array of tasks in real life (i.e., far
transfer; [78—80]). The efficacy of brain-training methods in general, and WM training in specific,
has been one of the most hotly debated topics in the past two decades. The reason is that WM is
considered to underlie a very wide range of cognitive tasks, act as a building block of general
intelligence [81,82], and be a critical locus of impairment in many neuropsychiatric conditions
such as schizophrenia and attention-deficit hyperactivity disorder [83,84]. Therefore, it is natural
that an easy tool for training WM would be highly appealing to both neurotypical and impaired
populations. In fact, sales in the digital-brain-health market already well exceed $1 billion, with
more than one case of charges brought up by the Federal Trade Commission against brain-training

companies for deceptive advertising practices [85].

There are numerous empirical studies, meta-analyses, and review papers arguing for or against the
efficacy of WM training [86—90]. Similar disagreements exist about aging effects on WM training,
with studies ranging from no effect to differential effects of training on some but not other tasks
[91-93]. As with neural correlates of WM, our goal is not to review this literature but rather to
examine whether far transfer is predicted by current, biologically plausible, theories of WM.
Currently, three main theoretical accounts exist for transfer: neuroplasticity [94,95],

representational overlap [e.g., 94,120], and skill learning accounts [97,98].
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Proponents of far transfer often cite neuroplasticity as the foundation of their theoretical
perspective. It is well-established that training WM induces plastic changes in certain brain regions
(e.g., dorsolateral prefrontal cortex, DLFC) by changing the local field potentials and recruiting a
greater proportion of neurons with increased firing rates [99], and that such plasticity improves
performance on trained tasks [94,100]. It is also well-known, as reviewed in the earlier sections,
that there is some overlap in neural regions involved in WM processes across various tasks and
domains [95]. Combining these two uncontroversial findings, it has been reasoned that, if there is
some domain-generality in neural correlates of WM and if such neural regions show plasticity,
then inducing plastic changes through one task should lead to improved performance in other tasks
[94,101]. Indeed, single-cell recordings from the DLPFC of rhesus monkeys show that changes
induced during training are sufficient to benefit near-transfer, i.e., changes to the task parameters
such as delay period or stimulus location in visual WM paradigms [99], and similar effects have
been observed in humans [102]. The critical question, however, is whether far-transfer can be
expected, when there is little or no overlap between stimuli and/or task goals, except for the
necessity of holding on to information over short periods of time. The answer, according to recent
neurobiologically plausible computational models of WM is no. Box 3 discusses an example
model [103]. Critically, the model implements the uncontested assumptions of neuroplasticity and
the undifferentiated neural space that overlaps across tasks. Nevertheless, while training does
improve performance on the same task, as well as new stimuli within task [104], far transfer is not

predicted by these models (see Box 3 for details).

[Box 3 + Fig. I about here]
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The representational overlap view claims that the extent of transfer of WM training between two
tasks depends on the degree of overlap between their features/processes. Although less general
than the neuroplasticity account, the representational overlap account still predicts automatic
transfer, and attributes the absence of transfer to the lack of overlap in the appropriate
representations [e.g., 94,120]. It is, however, unclear which features and processes constitute the
critical representational mediating transfer. A large-scale and well-controlled study [98]
demonstrated that overlap in stimulus, response, or task, alone was not sufficient to reliably predict
transfer, casting doubt on the utility of the representational account. The authors of this study, in

turn, proposed the skill learning account.

According to the skill learning account, transfer is only expected when a new cognitive routine is
learned during training that can later be applied to a new task [97,98]. Importantly, and in
opposition to the other two accounts, transfer is not viewed as automatic and may very well
comprise strategies that lie outside of core WM processes. No significant transfer is expected if
the tasks are either too well-learned to allow room for new strategies to develop during training,
or if they are too different to benefit from the application of the same newly developed cognitive
routine. For example, N-back tasks, often used for WM training, entail routines that are not
applicable to many other WM tasks, which explains the absence of transfer between them [105].
Similarly, the authors reported substantial transfer between complex span tasks within the same
stimulus domain, but not across domains. This result indicates that cognitive routines may depend
strongly on task and domain, making the skill learning view the most restricted of the three
perspectives in predicting generalization in WM training, but also the most compatible with both
theoretical models of WM and empirical evidence. Critically, the success of the account hinges on
the fact that it does not posit an automatic mechanism for far transfer solely based on shared
representations or neural substrates. Rather, it emphasizes the development of new cognitive

pipelines through learning, some of which are outside of primary WM operations.

In summary, while the assumption of domain-generality in neural implementation is very much
part of the cutting-edge computational models of WM, this assumption does not lead to the
prediction of domain-generality in application. Quite the opposite, these models predict task-

specific patterns of neural activity, and at best, generalization to new items within the same task
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(see also Box 4 for complementary evidence from the analysis of individual differences). At the
same time, a new and more restrictive perspective on transfer, namely transfer by learning new
cognitive routines, shows much promise, although there are still open questions regarding what
constitutes a new cognitive routine and what factors promote the learning of such routines in

individuals.
Concluding remarks

The goal of this paper was to show that while the question of domain-generality of WM is an
important one, to be truly informative, it must be posed separately for computations, neural
substrates, and application, as the answer differs for each. We showed that, in terms of
computations that are potentially applicable to different representations, WM is indeed domain-
general. In terms of neural correlates, it contains both domain-general and domain-specific
elements. Finally, in terms of application, it is mostly domain-specific. Thus, if progress is to be
made, researchers must be clear about which aspect of domain-generality is being addressed, and
mind the limits of logical inference when extending claims of domain-generality across these three
components. The current review encourages a greater focus on cross-domain investigation of
theoretical principles involved in WM operations, such as sequencing, and their potentially
domain-general neural correlates, while at the same time implying a need for understanding why
some non-sensory regions behave in a domain-specific manner in WM operations (see Outstanding
Questions). This overview also encourages a major shift in perspectives regarding WM training,
from an expectation of transfer as a natural and automatic consequence of domain-generality in

neural correlates to a view of transfer as skill learning.
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Figure 1. Theoretical and empirical aspects of resource division in WM. (a-d) Schematics of
four accounts of resource division when one item (left) or four items (right) are to be stored,
adapted from [12]. (a) Slot model (k = 3). (b) Slots + averaging (SA) model. (¢) Continuous
resource (equal precision) model. (d) Continuous resource (variable precision) model.
Distributions under each figure show error around the true feature value of the probed item. This
distribution is similar across models when one item is to be stored (hence shown once). When the
number of items increases beyond capacity, all models predict increased error. In slot models, this
distribution is a mixture of high-precision responses (white) and random guesses (yellow); in SA
model, a mixture of low-resolution recall (white) and random guesses (yellow). In equal-precision
continuous resource model, error increases continuously with the number of items, and in variable-
precision, the distribution is an infinite mixture of distributions with varying error rates. (a) and

(b) are mixed-state models. (e) Ratings of tokens in the perceptual task. (f) Changes to mean
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deviation scores in the perceptual task as a function of number of items and position. (g) The
cueing paradigm. Uncued = non-cued items on a cued trial. Baseline (not shown) had no cues. (h)
Mean deviations scores in (g). (i) Schematic of the activation in the language production system
for target “cat” (Box 1). Orange indicates activation through feedback. (j) Example trial and
ALINE coding in the production task. (k) Mean ALINE distance as a function of word length in

-

Box 1. Phonological errors as a tool for studying WM

Origin of phonological errors. The word production system is a hierarchical system comprising
several layers of representations, from semantics to articulatory-phonetic features that guide motor
production [67,106,107] (Fig. 11). To say a word like “cat”, speakers must first activate the concept
of cat (shown in Fig. 11 as distributed semantic features). Activation then spreads to lexical items,
phonemes, and articulatory phonetic features (shown only partially for clarity). The system has
three key properties that create potential for errors: (a) Spreading activation activates all the
representations that are connected to the currently activated nodes, regardless of their target/non-
target status. (b) The system is cascaded, meaning that even items that are not selected in one layer
still send some activation down to subsequent layers. (c) The system is interactive [108,109],
meaning that activation not only flows from upper to lower layers, but also backwards (shown
only in one part of the system for visual clarity). This feature is important for producing
phonological errors (e.g., “mat” instead of “cat”). When the lexical item “cat” is activated, it
activates phonemes /k/, /&/ and /t/. Through feedback between phonemes and lexical items, /a/
and /t/ activate “mat”, which in turn activates its onset /m/, the misselection of which leads to the
phonological error “mat”. As such, activation reverberates between phonemes and lexical items

that support them, making the retrieval of other phonemes in the same words easier.

Relationship to WM. Several findings suggest that sequencing phonemes within a word taps into
similar memory processes as memorizing items within a list, albeit less explicitly. The evidence
includes the length effect, i.e., an increase in the probability of phonological errors in reading,
writing, and repetition, as the word length increases, above and beyond chance [110], as well as
strikingly similar positional effects in phonological errors in picture naming and reading and

memory errors in serial recall tasks [111]. Furthermore, the inability to maintain information about
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phonology in WM (e.g., whether a probe word rhymed with another word in a list) is predictive of

phonological errors [112]. However, while items in a typical serial recall task are usually

independent of one another, hence giving rise to responses that are simply guesses, phonemes

within a word are not. Even if a phoneme is hard to retrieve, it still receives support from the

lexical item, as well as other correctly retrieved phonemes. This dynamic makes selection by pure

guessing a much less likely scenario in word production compared to a typical memory

experiment.
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Figure 2. Neural correlates of phonological and semantic WM. (a) Paradigm for testing
phonological and semantic WM. (b-d) ROI-based results of representational similarity analysis in
(b) Left superior temporal gyrus (STG), (¢) left supramarginal gyrus (SMG), and (d) left angular
gyrus (AG). Error bars represent the standard error of the mean. Dashed lines indicate the typical
boundaries between the encoding period and the delay period. pho: phonological; sem: semantic.
Asterisks indicate the significance of one-sample t-test: *p < .05, **p <.01, ***p <.001. Adapted
from [64]. (e) Beta values of the regions significantly associated with decreased performance in
phonological and (f) semantic WM after accounting for lesion volume, input processing, and the

respective opposing WM task (p values < 0.05); adapted from [71].

Box 2. What might domain-general neural regions do in WM tasks?

Aside from regions in the parietal cortex discussed in the text such as AG, several other regions,
including prefrontal cortex (PFC), thalamus, and basal ganglia have been implicated in domain-
general WM processes. One of the most detailed accounts of the role of these regions is [113]’s
gating model, a schematic of which is shown in Figure I. The model explains the trade-off between
maintaining and updating memories in PFC over short periods of time. Sensory input is mapped
onto motor outputs via posterior cortical regions. PFC’s role is to modulate this mapping based on
prior information and task goals. PFC’s flexibility in updating is adjusted through gating via baso-
cortical loops. Thalamus always excites the PFC, however this excitation is inhibited by substantia
nigra (SN). Two pathways via dorsal striatum modulate this interaction. The direct pathway is
activated when the Go neurons with excitatory D1 receptors in dorsal striatum are activated. They
directly inhibit SN, which leads to the disinhibition of thalamus and updating in PFC. The indirect
pathway is activated when the NoGo neurons with inhibitory D2 receptors in dorsal striatum are
activated. This pathway counteracts the direct pathway by inhibiting globus pallidus. Since globus
pallidus itself has an inhibitory effect on SN, its inhibition leads to the activation of SN and further

inhibition of thalamus, which prevents updating in PFC.
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Adapted from [113].
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Box 3. Do biologically-plausible models of WM predict far transfer?

Models of WM must explain many properties, such as its flexible nature for temporarily storing
various kinds of information, its capacity limitation, and sensitivity to interference [114], as well
as neural findings, such as the increase in neural activity with WM load [115], involvement of a
distributed network comprising sensory cortex and frontoparietal and hippocampal regions [49],
and the dual static-dynamic nature of neural representations in WM [116]. One recent model that
successfully captures all of this is [103] (Fig. I), which models WM as random and recurrent
connectivity between a structured network (representing sensory regions) and an unstructured
random network (representing regions such as PFC and hippocampus; see also newer versions that

also implement fast Hebbian synaptic plasticity [117]).

The idea of WM as a workspace is instantiated by the random connections to the random network,
which generate a high-dimensional space within which various types of information can be
temporarily stored, such as those reported in PFC or the hippocampus [118]. As such, the model
very much embraces the idea of undifferentiated neural regions involved in WM operations across
various tasks and domains, and could be considered a great candidate for demonstrating domain-
generality in application. Yet, even within such a model, while learning optimizes performance on
trained items, benefits do not generalize to untrained items. The reason is that training increases
the correlation between the input in sensory regions and the random network, and is therefore
specific to those connections. Most recent advances, such as spatial computing models, allow
generalization to new items within the same task, but even in these models, different tasks generate

unique patterns of neural activity [104].
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Figure 1. Flexible WM model [103]. (A) Model layout. The sensory network is composed of 8
ring-like sub-networks. The inset shows center-surround connectivity within a sensory sub-
network. The connections to the random network are randomly assigned and balanced. (B) Raster
plot of an example trial with 8 sensory sub-networks (512 neurons each) randomly connected to
the same random network (1,024 neurons). Six sensory sub-networks (1-6) receive a Gaussian
input for 0.1 s during the ““stimulus presentation” period (shaded blue region). Representations are

maintained (without external drive) for four of the inputs. Reproduced from [103].

Box 4. Analysis of individual differences and domain-generality of WM

WM tasks are some of the most popular tasks used in the analysis of individual differences, as they
often predict performance in tasks such as language comprehension, production, and reasoning
[119-121]. If scores on the same WM task predict performance across an array of other tasks, it is
concluded that a domain-general WM ability underlies these tasks. To see the problems with this
interpretation, recall the concepts discussed in the text in the context of training and transfer. For

example, in line with [98], complex span tasks have been shown to measure strategic processing
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in interference control, and it is individual differences in this trainable strategy, and not general

WM capacity, that predicts variation in performance in other tasks [122].

But analysis of individual differences, if conducted properly, can be a source of evidence for testing
domain-generality/specificity of WM. For example, many studies have shown that while WM tasks
can be predictive of performance on other tasks, such correlation is specific to domain or task
characteristics [123—125](see [66] for a review). Most convincing in this vein are reports of double
dissociations within one domain, language processing, in individuals with brain damage. For
example, double dissociations have been reported between semantic and phonological WM
abilities in individuals with aphasia [126,127]; see [66,128] for reviews. Importantly, these two
types of impairments have different consequences for language processing: phonological WM
deficits lead to impaired verbatim repetition, whereas semantic WM deficits lead to greater
disruption of comprehension and elaboration of content during language production [129,130]. In
summary, both neurotypical and neuropsychological data on individual differences in WM point

to domain-specificity of WM in application, complementing the data from training studies.
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