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Achieving the Global Climate Observing System goal of 10 m resolution leaf area index (LAI) maps is critical for
applications related to climate adaptation, sustainable agriculture, and ecosystem monitoring. Five strategies for
producing 10 m LAI maps from Sentinel-2 (S2) imagery are evaluated: i. bi-cubic interpolation of 20 m resolution
S2 LAI maps from the Simplified Level 2 Prototype Processor Version 1 (SL2PV1) as currently performed by the
Sentinel Applications Platform (SNAP), ii. applying SL2PV1 to S2 reflectance bands spatially downscaled to 10 m
using bi-cubic interpolation (BICUBIC), iii. Applying SL2PV1 to S2 reflectance bands spatially downscaled to 10
m using Area to Point Regression Kriging (ATPRK), iv. using a recalibrated version of SL2PV1 (SL2PV2) requiring
only three S2 10m bands, and iv) a novel use of the previously developed Active Learning Regularization (ALR)
approach to locally approximate the SL2PV1 algorithm using only 10 m bands.

Algorithms were assessed in terms of per-pixel accuracy and spatial metrics when comparing 10 m LAI maps
produced using either actual S2 imagery or S2 imagery synthesized from airborne hyperspectral imagery to
reference 10 m LAI maps traceable to in-situ fiducial reference measurements at 10 sites across the continental
US. ATPRK and ALR algorithms had the lowest precision error of ~0.15 LAI, compared to 0.19 LAI for SNAP and
BICUBIC and 0.35 LAI for SL2PV2, and ranked highest in terms of local correlation and Structural Similarity
Index measure as well as qualitative agreement with reference maps. SL2PV2 LAI showed evidence of saturation
over forests related to decreased sensitivity of input visible reflectance. All algorithms had a similar uncertainty
of ~0.55 LAI compared to traceable reference maps, due to the trade-off between bias and precision. However,
ATPRK and ALR uncertainty reduced to 0.11 LAI and 0.16 LAI, respectively, when compared to reference maps
that ignored canopy clumping. These results suggest that both ATPRK and ALR are suitable for producing 10 m
S2 LAI maps assuming bias due to local clumping can be corrected in the underlying SL2PV1 algorithm.

1. Introduction

2012; Kang et al., 2021; Weiss and Baret, 2016, hereafter WB2016;
Weiss and Baret, 2020, hereafter WB2020; Brown et al., 2021a; Estevez

Leaf area index (LAI) is an essential climate variable required by
regional and global land surface models and for local climate adaptation
and agricultural monitoring applications (WMO, 2022; Table 1). LAI can
be systematically mapped at between 20 m and 30 m resolution using
algorithms calibrated with radiative transfer models, and input data
from imagers on Landsat and Sentinel-2 (S2) satellites (Ganguly et al.,
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et al., 2022; Fernandes et al., 2023). These algorithms satisfy the Global
Climate Observing System (GCOS) baseline 100 m resolution require-
ment, but not the goal 10 m resolution requirement. Achieving 10 m
resolution is critical for applications such as monitoring ecological re-
covery of reclaimed well sites (Lupardus et al., 2019), quantifying urban
ecosystem vegetation cover (Tran et al., 2011), monitoring crop growth
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Table 1
GCOS goal (G), baseline (B) and threshold (T) LAI requirements.

Definition one half of the total green leaf area per unit
horizontal ground area
Unit m?m2
Requirement Unit Metric ~ Value
Horizontal Resolution m G 10
B 100
T 250
Temporal Resolution days G 1
B —
T 10
Timeliness days G 1
B 5
T 10
Required measurement uncertainty % or m?m 2 G max(10%, 0.5)
B —
T max(20%, 0.5)
Stability m’m~2 /decade G 3%
B —
T 6%

and yield (Mulla, 2013; Yang et al., 2009; Defourny et al., 2019) and
modelling water use (McCabe et al., 2017). Increasing resolution could
also potentially reduce thematic uncertainty due to mixed pixels (Tian
et al., 2001; Fernandes et al., 2003; Garrigues et al., 2006; Jin et al.,
2007; Fang et al., 2013; Xu et al., 2020; Dong et al., 2023).

The Simplified Level 2 Prototype Processor Version 2 (SL2PV2) al-
gorithm (WB2020) maps LAI at 10 m resolution using surface bi-
directional reflectance (p) from three 10 m S2 Multispectral Instru-
ment spectral bands (Table 2). SL2PV2 is a simplification of the
Simplified Level 2 Prototype Processor Version 1 (SL2PV1) algorithm
(WB2016) that uses eight S2 bands aggregated to 20 m resolution
(Table 2). SL2PV1 LAI meets GCOS uncertainty requirements ~92% of
the time over non-forested sites (Djamai et al., 2019; Brown et al.,
2021a) and, once a bias correction to account for canopy clumping is
applied, ~55% of the time for forest sites (Fernandes et al., 2023). Cross-
validation using spatially homogeneous radiative transfer model simu-
lations indicates that SL2PV2 and SL2PV1 LAI agree within +0.5 LAI (50
percentile), with SL2PV2 overestimating SL2PV1 LAI by ~10% for LAI
> 4 (WB2020). However, SL2PV2 has yet to be validated against
reference maps traceable to in-situ reference measurements (RM), as
recommended by good practice (Fernandes et al., 2014).

SL2PV2 uses a single, land cover independent, regression to estimate
LAL In principle, higher resolution LAI maps could also be generated
using regression estimators calibrated locally with LAI products and
matching upscaled high resolution bands, and then applied to original
high-resolution imagery (Houborg and McCabe, 2018; Kimm et al.,
2020; Kang et al., 2021). For example, the Active Learning Regulariza-
tion (ALR) algorithm (Djamai and Fernandes, 2021) calibrates a local
LAI regression estimator, given a dictionary of candidate regressors, by

Table 2
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using matchups between vegetation indices (VIs) derived from SL2PV2
input bands aggregated to 20 m resolution and their corresponding 20 m
SL2PV1 LAL In doing so, ALR incorporates the information useful for
LAl retrieval contained in all S2 bands using a local approximation using
only the 10 m bands. Here, ALR is used to produce 10 m resolution S2
LAI maps by only using VIs derived from 10 m S2 bands.

Spatial interpolation of coarser resolution LAI maps can also produce
10 m resolution S2 LAI maps. The European Space Agency (ESA)
Sentinel Applications Package implements bi-cubic interpolation of 20
m resolution SL2PV1 LAI maps to generate 10 m resolution maps (SNAP,
SNAP - ESA Sentinel Application Platform v9.0.0, http://step.esa.int
accessed on August 25, 2023). However, spatial interpolation may in-
crease thematic uncertainty due to the non-linear relationship between p
and LAI (Tian et al., 2001).

Instead of spatial interpolation of LAI maps, SL2PV1 could also be
applied to the original 10 m S2 bands and 20 m S2 bands spatially
interpolated or downscaled to 10 m resolution. Radiance scales as a
linear function of the sensor point spread function (Schowengerdt,
2012) so downscaling reflectance scaling may be result in lower overall
uncertainty than attempting to downscale LAI products, that are in
general non-linear function of reflectance (Tian et al., 2001). Spatial
downscaling algorithms have been validated in terms of estimating 10 m
resolution p from S2 (Park et al., 2019; Armannsson et al., 2021), and in
terms of the accuracy of downstream 10 m resolution land cover clas-
sification maps (Zheng et al., 2017; Xu and Somers, 2021), but not in
terms of estimating 10 m resolution LAI maps using S2. Here, SL2PV1
combined with Area to Point Regression Kriging (ATPRK, Wang et al.,
2016a and Wang et al., 2016b) spatial downscaling is evaluated in terms
of 10 m LAI estimation. ATPRK was chosen from the many available
spatial downscaling algorithms as it resulted in the lowest uncertainty,
amongst state-of-the-art method, when downscaling S2 reflectance
(Armannsson et al., 2021). Bi-cubic spline interpolation of 20 m
reflectance inputs followed by application of SL2PV1 (BICUBIC) was
also tested as it could be applied to sensors such as the Landsat Opera-
tion Line Imager that do not have 10 m bands.

The goal of our study was to validate SL2PV2, ALR, SNAP, ATPRK,
and BICUBIC algorithms for producing 10 m resolution S2 LAI maps.
Following good practice (Fernandes et al., 2014), validation was per-
formed by comparing 10 m LAI maps, generated by applying each al-
gorithm to both actual and synthetic S2 imagery, to reference 10 m
resolution LAI maps traceable to in-situ reference RM (REFRM). Accu-
racy (A), precision (P), uncertainty (U) and spatial similarity metrics
were quantified for ten different study sites across the continental
United States of America (US). The metrics were summarized for each
site and, since the purpose of downscaling is not simply to reduce the-
matic uncertainty but also to improve the realism of the spatial pattern
of the LAI map, also as a function of local coefficient of variation of
reference LAI maps.

We hypothesized that SNAP would result in the worst spatial simi-
larity metrics as it does not account for the non-linear relationship

Sentinel-2A spectral bands used for SL2V1 (bold font) and SL2PV2 (10 m resolution) algorithms. FWHM corresponds to Full Width Half Maximum, ACT corresponds to

across track, ALT corresponds to along track and Ref corresponds to reference band.

Band Centre Wavelength Bandwidth Resolution Modulation Transfer Function Mis-registration
nm FWHM nm Gridded m FWHM ACT FWHM ALT 3sigma m
cycles/pixel cycles/pixel
BO3 559.8 36 10 0.27 0.28 2.4
B04 664.6 31 10 0.35 0.23 3.5
BOS 704.1 15 20 0.42 0.34 Ref
B06 740.5 15 20 0.35 0.33 2.4
BO7 782.8 20 20 0.35 0.34 2.8
B8 832.8 106 10 0.26 0.25 2.5
BSA 864.7 21 20 0.36 0.31 3.8
B11 1613.7 91 20 0.20 0.24 5.4
B12 2202.4 175 20 0.24 0.22 5.2
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Fig. 1. Study site locations.
Table 3

NEON study site descriptions (https://www.neonscience.org/field-sites/explore-field-sites) together with AHS and S2 dates. Land cover corresponds to NEON legend:
Evergreen Forest (EF), Mixed Forest (MF), Deciduous Forest(DF), Woody Wetlands (WF), Shrub Scrub (SH), Cultivated Crops (CR), Grassland Herbaceous (GR). #ESU

correspond to the maximum number of unique elementary sampling units over all dates surveyed at a site.

Site Name Land Cover Lat. Long. Elev. AHS S2 #ESU LAIL LAI
°N W m. a.s.l. Date Date Min. Max.
ABBY Abby Road EF/SH 45.762 122.330 365 2021-07-19 2021-07-19 18 111 7.62
HARV Harvard Forest EF/MF 42.536 72.172 341 2019-08-26 2019-08-26 21 0.36 6.74
JORN Jornada Experimental Range SH 32.591 106.843 1324 2019-08-25 2019-08-25 23 0.01 0.22
KONZ Konza Prairie Biological Station DF/GR 38.946 96.443 396 2020-07-13 2020-07-13 23 0.01 5.76
LENO Lenoir Landing DF/WF 31.854 88.161 13 2021-04-22 2021-04-22 24 0.17 6.87
NOGP Northern Great Plains Laboratory GR 46.770 100.915 589 2020-06-26 2020-06-27 23 0.01 2.2
SERC Smithsonian Environmental Research Center CR/DF 38.890 76.560 33 2021-08-11 2021-08-10 25 0.01 7.38
SJER San Joaquin Experimental Range EF/SH 37.109 119.732 400 2021-03-31 2021-04-01 23 0.01 4.43
STEI Steigerwaldt-Chequamegon DF/MF/WF 45.509 89.586 476 2019-06-08 2019-06-08 23 0.63 7.21
UNDE University of Notre Dame Environmental Center DF/MF/ 46.234 89.537 521 2019-06-06 2019-06-06 27 0.44 6.23
WF

between LAI and p. In contrast, we hypothesized that ALR and SL2PV2
would have the best spatial metrics as they directly employ the 10 m S2
bands without applying spatial operators to infer 10 m patterns from 20
m bands. We also hypothesized that ATPRK would perform best in terms
of A, P and U metrics as, unlike SNAP, it avoids averaging over non-
linear relationships, and, unlike ALR and SL2PV2, it uses additional
input bands shown to improve LAI retrieval in comparison to the 10 m
S2 bands alone (Verger et al., 2011).

Our study is the first to quantify the impact of spatial downscaling of
reflectance on LAI product uncertainty using high resolution reference
images traceable to in-situ fiducial reference measurements. This is
critical since SL2P relies on the covariation of input bands in a non-
linear manner that may not be reflected by simply propagating the un-
certainty of downscaled p. Our study is also the first to compare the
thematic performance of widely used SL2PV1 and SNAP approaches
with locally calibrated approaches such as ALR and ATPRK. In fact, the
use of ALR for downscaling is novel in itself. Finally, our study uses a
sufficient range of sites to quantify the performance of each algorithm
across different land cover. Understanding the thematic performance of
these algorithms will enable users to determine if they are suitable of
generating 10 m resolution LAI products and allow researchers and
space agencies to prioritize the development and deployment of such
algorithms.

2. Materials and methods
2.1. Materials

2.1.1. NEON AHS imagery

Airborne hyperspectral sensor (AHS) 1 m pixel resolution surface
reflectance (p) images, acquired at 10 National Ecological Observatory
Network sites (NEON; Barnett et al., 2019; Fig. 1), were used to simulate
synthetic S2 imagery and to produce 10 m resolution reference LAI
maps. NEON sites were selected since representative in-situ LAl RM were
available for a ~ 1.5 km x 1.5 km region around a meteorological tower
at each site (Brown et al., 2020). Only acquisitions from 2019 onwards
were used to match the availability of systematically processed S2 p
imagery from ESA.

Metadata for all 3973 spectrometer orthorectified flightline p prod-
ucts covering the tower at each of the 47 terrestrial NEON sites were
extracted from the NEON Data Portal (NEON, 2023a). Orthorectified p
products corresponded to cloud, cloud shadow, and haze screened 1 m
resolution p estimated by applying ATCOR4 to spectrometer orthor-
ectified surface directional radiance flightline products (NEON, 2023b).
Flights were timed to capture the peak greenness, determined from a 15-
yr analysis of Moderate Resolution Imaging Spectroradiometer
normalized difference vegetation index measurements. Flight lines be-
tween 5 km and 20 km along track were flown at ~1 km above ground
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level and a groundspeed of ~185 km/h along a North-South track. At
sensor radiance imagery was acquired using the 34° across track field of
view, 1 mrad instantaneous field of view, NEON Imaging Spectrometer
(https://www.neonscience.org/data-collection/imaging-spectrometer
accessed on August 28, 2023); resulting in an ~600 m across track
width, an ~0.5 m across track ground sampling distance, and an ~1 m
along track ground sampling distance. Radiance was measured at 5 nm
intervals between 380 nm and 2510 nm for 6 nm full width half
maximum bands and resampled to 1 m resolution with a mean geo-
location error of 0.23 m (Kampe and Gallery, 2015). AHS p uncertainty
has not been published but it is likely lower than matching S2 L2A
products given that AHS radiance is measured at ~1 km above ground
level versus at the top of the atmosphere for S2.

AHS images satisfying the following criteria were retained for
validation:

I. terrain with <6° slope, using the 90 arcsec MERIT digital eleva-
tion model (Yamazaki et al., 2017),
II. greater than 90% clear sky pixels for the AHS image,
III. a S2 acquisition within £3 days with >90% clear sky pixels over
the flight line,
IV. NEON tower site contained within the swath.

The terrain constraint ensured ATCOR4 adjacency correction was
not applied given biases due to this correction previously observed with
S2 imagery (Djamai and Fernandes, 2018). Images were co-located with
tower sites since only sub-areas around tower sites for which in-situ RM
were representative were used during validation. One retained AHS
image was chosen at each of 10 NEON sites elected to span a range of
ecozones and land cover conditions (Table 3, Fig. 1).

2.1.2. S2 level 2A surface reflectance products

Cloud free Copernicus Sentinel-2 A and Sentinel-2B Level 2 A
Collection 1 p products (L2) covering each retained AHS image within
+3 days were acquired from the Copernicus Open Access Hub accessed
on October 20, 2023). L2 products were generated by the European
Space Agency using the Sen2Cor algorithm, which uses a version of
ATCOR4 (ATCOR) for atmospheric correction but differs from AHS
processing in approaches to clear sky identification and the use of a
global rather than a local aerosol model (Miiller-Wilm, 2018). Sen2Cor
maps clear sky pixels with 98% accuracy and estimates p with an un-
certainty better than 0.005 + 0.05p for flat surfaces with uniform soil
and vegetation cover (Doxani et al., 2018). Geolocation uncertainty is
<12.5m 95% circular error probable (Gascon et al., 2017). Band to band
misregistration ranges from 2.4 m to 5.8 m at 3 standard deviations
(Table 2; Clerc and MPC team, 2021). The full width half maximum of
the across track modulation transfer function ranges from ~0.20 cycles/
pixel for B11 to ~0.42 cycles/pixel, with moderate anisotropy present in
B04, BO5 and B11 (Table 2; Clerc and MPC team, 2021). Variation in the
projected instantaneous field of view with view angle is far less than the
pixel size as the field of view is only 20.6° (Gascon et al., 2017).

2.1.3. In-situ LAI fiducial reference measurements

Representative in-situ LAI fiducial RM (in-situ RM) for NEON sites,
from the Ground Based Observation for Validation component of the
Copernicus Land Monitoring Service (https://land.copernicus.eu/globa
1/gbov/ accessed on October 20, 2023), supplemented with identically
acquired and processed in-situ NEON data by the authors, were used to
calibrate reference LAI maps derived from AHS imagery. For each site,
in-situ RM corresponded to the sum of overstory and understory LAI LAI
was estimated by multiplying indirect estimates of plant area index
(PAI), defined as half the total vegetation surface area per unity hori-
zontal area, by land cover specific conversion factors corresponding to
the complement of the woody-to-total area ratio (Brown et al., 2021a).
PAI was estimated separately by applying HemiPy (Brown et al., 2023)
to 12 digital hemispherical photographs (DHPs) acquired facing
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upwards, for overstory, or downwards, for understory, at between 23
and 26 20 m x 20 m square elementary sampling units (ESUs) repre-
sentative of land cover within ~5 km of the tower (NEON, 2023c).
Validation using synthetic forest scenes indicates HemiPY tends to un-
derestimate PAI by ~5% for LAI < 4 and no >10% in general (Brown
et al., 2023). This bias was not corrected as it has not been quantified on
a land cover specific basis. The effective PAI (PAle), defined as the PAI
required to match the negative logarithm of the azimuthal averaged gap
fraction integrated over the upper hemisphere (Eq. 1 of Chen et al.,
1997), was also estimated using HemiPy for each RM and subsequently
converted to LAle using the same factors applied to estimate LAI from
PAL Three ESU’s adjacent to the NEON instrumented towers were
sampled bi-weekly from leaf-out through senescence, with the remain-
ing ESU’s distributed across major NLCD classes at each NEON site and
sampled every 5 years within a 1 month window that includes the AHS
imagery. LAI, together with the one standard deviation uncertainty of
estimates LAI and effective LAI (LAle), were derived according to a
fiducial RM protocol (Brown et al., 2021b).

2.2. Methods

2.2.1. Synthetic image generation

A synthetic 10 m reference image with S2 bands (A10m) and a
synthetic S2 A image with S2 spatial resolution (AL2) was produced
from each AHS image by first generating an image of 1 m S2 equivalent
spectral bands (A1m) and then spatial smoothing and sub-sampling the
1 m bands (AL2) as follows:

i. Alm: AHS imagery was interpolated to 1 nm spectral resolution
using shape-preserving piecewise cubic splines (Mathworks, 2023),
followed by convolution with Sentinel-2 A spectral response func-
tions (ESA, 2023a) to produce spectral bands corresponding to S2
bands. This approach was deemed suitable since the combination of
5 nm sampling interval and 6.5 nm FWHM bandwidth results in a
constant gain of 0.2 across all wavelengths between 383 nm and
2507 nm.

ii. A10m: A 10 m x 10 m moving average filter was applied to each
Alm band followed by multiplication with a 10 m x 10 m spacing
sampler to produce input for reference LAI maps with exactly 10 m
grid spacing and 10 m spatial scale.

iii. AL2: Each Alm band was filtered using the S2A point spread
function (ESA, 2023b). Filtered bands were then shifted by a
vector randomly sampled from an isotropic Gaussian distribution
with standard deviation determined by the nominal band-to-band
misregistration error (Table 2) and then nearest neighbour sub-
sampled to the A10 m grid. The 20 m resolution bands were then
synthesized by applying a 20 m x 20 m subsampler aligned with
the A10 m grid.

2.2.2. S2 L2 post processing

L2 georeferencing was visually assessed by comparison to Alm im-
ages at 10 control points spread across the Alm image. L2 products
meeting the nominal S2 georeferencing specification were radiometri-
cally cross-calibrated to AL2 products to minimize differences in
radiometric calibration and atmospheric correction. Cross-calibration
was performed by applying site and band specific linear models to the
L2 product. Each model was determined by Thiel-Sen regression cali-
brated using data from matching L2 and AL2 bands, both smoothed with
a 60 m square moving average filter to minimize the impact of mis-
registration, and sub-sampled at the nominal centre of every sixth
(third) row and column of the 10 m (20 m) bands.

2.2.3. 10 m LAI product generation
L2 and AL2 products were clipped to the extent of their corre-
sponding A10 m products, with edge pixels discarded from all images.



R. Fernandes et al.

AHS p:

Remote Sensing of Environment 311 (2024) 114269

5nm, 1Im

Alm:
S2 Bands, 1m

AL2
S2 bands,

Al0m:
S2 bands,

AL2
S2 bands, 10m

10m&20m

L

S2bands
@10m

S2bands
@10m

10m

Fig. 2. LAI production flow chart from AHS imagery. Blue boxes indicate algorithm inputs. Gray boxes indicate algorithms. Orange boxes indicate LAI products. SRF
corresponds to spectral response function. MTF corresponds to modulation transfer function. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Reference 10 m LAI maps were generated by apply SL2PV1 to the A10 m
images and 10 m downscaled LAI maps were produced from both AL2
images (Fig. 2) and L2 images (Appendix B, Fig. B1) as described below.
The Landscape Evolution and Forecasting Toolbox implementation of
SL2PV1 and SL2PV2 (Fernandes et al., 2021), matching the algorithm
theoretical basis document of WB2016 and WB2020, respectively, was
used when generating 10 m products.

2.2.3.1. Reference products. Good practice requires traceability of
reference LAI maps to in-situ RM (Fernandes et al., 2014). Typically, a
LAI map traceable to RM (labelled here REFRM) is produced by applying
a transfer function (TF) calibrated using representative co-located in-
situ LAI RM and either p (Fernandes et al., 2014) or uncalibrated LAI
products (Brown et al., 2020). Neither approach was possible here since
the spatial footprint of the in-situ LAI RM exceeded the 10 m resolution
of the desired reference maps (Fernandes et al., 2023). Instead, a three-
step approach was used to calibrate site specific TFs applied to derive

REFRM products.

The first step corresponds to generating a reference 10 m LAI map
without traceability to in-situ RM (REFV1). As in Brown et al. (2020),
SL2PV1 was used to generate this map, together with a quality layer
indicating valid retrievals as described in Fernandes et al. (2023), for
each A10 m product. REFV1 maps cannot be used for a traceable vali-
dation of downscaled products since SL2PV1 LAI is biased over the
NEON sites as it does not account for canopy clumping (Brown et al.,
2021a; Fernandes et al., 2023; Fernandes et al., 2024).

The second step corresponds to calibrating and applying a site-
specific regression to convert REFV1 LAI to LAle. This strategy is moti-
vated by the fact that SL2PV1 already provides almost unbiased esti-
mates of LAle irrespective of land cover or location across the NEON
sites (Brown et al., 2021a). The strategy was also simplified by the fact
that the regression could be calibrated using an existing dataset of
SL2PV1 LAI estimates from 20 m resolution S2 imagery matching in-situ
LAIe RM, as well as associated 1 s uncertainty estimates (Brown et al.,
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Table 4
Thematic performance metrics.
Metric Symbol  Definition
Uncertainty 0) Root mean square of estimates minus
reference.
Accuracy A Mean of estimates minus reference.
Precision P Root mean square of estimates minus reference
minus A.
Pearson correlation R Ratio of covariance of estimates and reference
coefficient to product of their standard deviation.
Structural Similarity SSIM Wang et al., 2004.

Index Measure

2021a). In-situ LAle RM were matched to SL2PV1 LAI using spatial
footprints modelled based on canopy height (Brown et al., 2020).
SL2PV1 1 s uncertainty estimates were decreased by 50% since they
generally overestimate actual uncertainty (Brown et al., 2021a). Ideally,
one would only use matches corresponding to the site of a fitted
regression. However, the requirement of clear sky matchups resulted in
imbalanced samples in terms of RM LAle for many sites. To address this
limitation, site specific regressions were fit using all NEON ESUs sharing
the land cover of any ESUs within the site. The uncertainty due to this
assumption was quantified using the regression 67.5 percentile confi-
dence prediction interval (PI). Thiel-Sen regression was used to estimate
in-situ RM LAlIe as a function of SL2PV1 LAI as it is the only statistically
consistent slope estimator in the presence of both unknown measure-
ment errors and < 28% outliers (Fernandes and Leblanc, 2005). SL2PV1
LAI measurements were log transformed prior to the regression fit to
account for multiplicative error associated with signal saturation at
higher LAle (Brown et al., 2021a).

The third step corresponds to calibrating and applying a site-specific
scaling factor to convert the in-situ RM LAle estimate from the second
step to an estimate of in-situ RM LAI The scaling factor was estimated as
the slope of a zero-intercept Thiel-Sen regression using within-site
measurements of in-situ LAI RM as response and corresponding in-situ
LAle as regressor. In this case, there were sufficient local measure-
ments for a site-specific calibration. This step assumes that, for spatial
footprints between 100m? and 200m2, the ratio of LAle to LAI, also
known as the canopy clumping index (Chen et al., 1997), was constant
across a given site; an assumption motivated by the fact that NEON site
towers were located such that the landscape in the fetch of their in-
struments could be considered homogeneous in terms of spatial patterns
of land cover and vegetation density (Barnett et al., 2019). The impact of
this assumption on REFRM uncertainty was quantified using the
regression PI(.

The product of the regression relating SL2PV1 LAI to in-situ LAle and
the scaling factor relating in-situ LAle to in-situ LAI was then used as the
site specific TF applied to the A10 m product of the site. The 67.5% PI for
the TF estimate of LAI was modelled as the Euclidean sum of the PIs of
both regressions. Negative LAI predictions were assigned a value of 0 but
with the same uncertainty as the in-situ LAI prediction for the minimum
observed SL2V1 LAI at the site.

2.2.3.2. SNAP. The 10 m bands of each AL2 and L2 product were
aggregated to 20 m resolution using averaging of the four 10 m pixels
falling within each nominal 20 m pixel. SL2PV1 was then applied to this
result to generate a 20 m LAI product, along with a quality mask indi-
cating valid clear sky retrievals. The Landscape Evolution and Fore-
casting Toolbox implementation of SL2PV1 (Fernandes et al., 2021),
with neural networks consistent with the algorithm theoretical basis
document of WB2016, was used. The 20 m LAI products were then
interpolated to 10 m resolution pixels centered at the input product 10 m
grid using the bi-cubic spline interpolation with the Geospatial Data
Abstraction.

software Library gdal. WARP function (GDAL/OGR contributors,
2024), to produce a final SNAP 10 m LAI product.
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2.2.3.3. SL2PV2. SL2PV2 was applied separately to the required 10 m
input bands (Table 2) of each AL2 or L2 products to generate a 10 m LAI
product, along with a quality mask indicating valid clear sky retrievals.

2.2.3.4. ALR. ALR is described in detail in Djamai and Fernandes
(2018) and provided as open-source code (https://github.com/hon
girsa/ALR accessed on October 30, 2023), so only information
required to replicate results used in this study are provided here.
The 10 m bands of each AL2 and L2 product were aggregated to 20 m
resolution using averaging of the four 10 m pixels falling within each
nominal 20 m pixel. A calibration dataset was produced by sampling
these aggregated bands, augmented with a library of VIs derived from
them (https://custom-scripts.sentinel-hub.com/custom-scripts/sentine
1-2/indexdb/, accessed October 10, 2023), and matching valid SL2PV1
20 m LAl retrievals. A two-stage feature selection procedure was applied
to select input bands or VIs used for prediction. First, only one feature
from any set of inputs with pairwise correlation >0.95 was retained.
Second, the first 5 non-zero coefficients of a 10 fold cross validated Least
Angle Regression (https://scikit-learn.org/stable/modules/generated
/sklearn.linear_ model.LarsCV.html#sklearn.linear model.LarsCV
accessed on October 10, 2023) of LAI versus the retained features were
selected as regressors. The revised calibration dataset was then trimmed
by discarding samples corresponding to lowest 5 percentile and highest
95 percentile values of each regressor conditional on LAI. The Google
Earth Engine implementation of random forest regression (https://devel
opers.google.com/earth-engine/apidocs/ee-classifier-smilerandomfore
st accessed on October 10, 2023) with default settings of 100 trees, a
minimum leaf node size of one, and a 0.5 bag fraction, was calibrated
with the trimmed database to produce a local regression algorithm. The
regression was then applied to the selected features produced using the
original 10 m resolution bands in the input image to generate a 10 m
resolution LAI map. A quality mask indicating valid clear sky retrieval
was produced using the same approach as for SL2PV1 but based on the
local calibration database rather than the original SL2PV1 calibration
database.

2.2.3.5. ATPRK. ATPRK was applied to each AL2 or L2 product to
produce 10 m resolution estimates of their 20 m resolution bands using a
MATLAB implementation tuned for S2 (https://github.com/qunming
wang/Code-for-S2-fusion accessed on October 10, 2023). ATPRK pre-
dicts p at the nominal center of a reference 10 m resolution band (here
B04) as the sum of a band specific regression prediction calibrated on the
entire image and an area to point kriging estimate of the regression
residuals at 10 m resolution. The regression prediction first calibrates a
multi-variate linear regression estimate of a given 20 m S2 band p given
the p for the four 10 m S2 bands, upscaled to the 20 m band assuming a
nominal S2 PSF. The calibrated regression is then applied to the original
10 m S2 bands to provide a regression prediction of the 20 m S2 band at
10 m resolution. A 10 m resolution residual image between the original
20 m S2 band and the 10 m regression prediction, is upscaled to 20 m
using the nominal S2 PSF, subsampled to the nominal 20 m grid, and
then interpolated to 10 m resolution using kriging; with semi-
variograms estimated by spatial deconvolution of the semi variogram
between 20 m residuals and all input bands upscaled to 20 m resolution.
SL2PV1 was applied to both the downscaled 10 m resolution L2 and AL2
p imagery to produce 10 m resolution LAI maps.

2.2.3.6. BICUBIC. The gdal.WARP function was used to convert 20 m
resolution input bands to 10 m resolution reflectance bands reflectance.
SL2PV1 was then applied to the resulting 10 m products to generate 10
m LAI products, along with a quality mask indicating valid clear sky
retrievals.

2.2.4. Thematic performance metrics
Thematic performance metrics were derived using comparisons of
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Direct validation metrics for 20 m SL2PV1 maps (20 m SL2PV1) and regression statistics for transfer function (TF) calibration. N corresponds to number of samples and

PI is the width of the 67.5 percentile prediction interval.

Site 20 m SL2PV1 SL2PV1 LAI vs In-situ LAle In-Situ LAlIe vs In-Situ LAI TF
A U R2 N Slope Int. PI U R2 N Slope PI U R2 PI
ABBY —0.4 0.61 0.66 253 2.04 —0.53 0.50 0.24 0.66 211 1.55 0.45 0.21 0.96 0.67
HARV -1.17 1.31 0.32 253 2.04 —0.53 0.50 0.24 0.66 378 1.34 0.36 0.12 0.94 0.61
JORN 0.2 0.20 0.27 214 0.36 —0.06 0.09 0.02 0.28 335 1.04 0.01 0.00 0.92 0.09
KONZ —0.69 0.97 0.83 505 2.23 —0.53 0.46 0.21 0.83 352 1.06 0.08 0.01 0.98 0.47
LENO —1.04 1.14 0.57 385 1.66 0.24 0.50 0.25 0.57 307 1.33 0.33 0.01 0.98 0.60
NOGP 0.07 0.31 0.63 168 1.40 -0.31 0.39 0.08 0.64 274 1.05 0.05 0.00 0.99 0.30
SERC -0.9 1.07 0.75 412 2.04 —0.27 0.51 0.25 0.74 362 1.36 0.42 0.17 0.91 0.66
SJER —0.4 0.61 0.66 253 2.04 —0.53 0.50 0.24 0.66 342 1.53 0.37 0.12 0.97 0.62
STEI -1.34 1.46 0.46 455 1.73 0.20 0.53 0.27 0.54 265 1.36 0.44 0.19 0.92 0.69
UNDE -1.07 1.28 0.46 455 1.73 0.20 0.53 0.27 0.54 286 1.45 0.42 0.17 0.97 0.68
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Fig. 3. Kernel density plots of estimated 10 m LAI from 20 m resolution AL2 imagery versus REFRM 10 m LAI for each site. Solid (dashed) contours correspond to 50
percentile (10 percentile) cumulative probability density. Dashed line corresponds to GCOS LAI uncertainty requirement, solid line corresponds to 1:1 line.

valid retrievals from either the REFRM or REFV1 10 m resolution
reference LAI maps and estimates from each algorithm (Table 4).
Comparisons to REFV1 maps assumed SL2PV1 is itself unbiased. These
comparisons are relevant if a local bias correction, that accounts for
canopy clumping, can be applied to the derived 10 m LAI maps. Com-
parisons to REFRM provide a traceable validation of derived 10 m LAI
maps, without further bias correction, to fiducial reference measure-
ments. Only pixels where all algorithms provided a valid retrieval were
used to facilitate comparison of performance across algorithms. Kernel

density plots of comparisons were produced for each site to visualize
both the typical (50 percentile) and extreme (10 percentile) of the joint
distribution of estimated and reference LAI in a manner independent of
sample size. Site A, P, and U were computed from valid comparisons to
test our hypothesis regarding the per-pixel estimation error while site
average Pearson correlation coefficient (R) and structural similarity
index measure (SSIM) (Wang et al., 2004), implemented in scikit-image
(Van der Walt et al., 2014), were used to test our hypothesis regarding
the fidelity of the spatial pattern of each estimate. R and SSIM were also
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Table 6
Site uncertainty, accuracy, and precision, in units of LAI using REFRM as reference maps. Green indicates best methods within rounding error of
0.02. Forested sites indicated in bold.
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Fig. 4. Kernel density plots of estimated 10 m LAI from 20 m resolution AL2 imagery versus REFV1 10 m LAI for each site. Solid (dashed) contours correspond to 50
percentile (10 percentile) cumulative probability density. Dashed line corresponds to GCOS LAI uncertainty requirement, solid line corresponds to 1:1 line.



R. Fernandes et al.

Table 7

Remote Sensing of Environment 311 (2024) 114269

Site uncertainty, accuracy, and precision, in units of LAI using REFV1 as reference maps. Green indicates best methods within rounding error of

0.02. Forested sites indicated in bold.

u A P

Site sL2p | BI- sL2p BI- AT- SsL2p BI-
SNAP | ATPRK | ALR | ° " | o | SNAP | ATPRK | ALR va | cusc | SV | pre | AR Vo | cosic

mean | 019 | 041 | 045| 062 | 020]| o0o00| 000| 000 | 051 0.00 020 | 041 045 | 031 0.20
range | 023 | 042 | 016 132 | 024| 003| 001 | 006| 1.40 | 003 023 | 042 047 | 042 0.24
ABBY | 0.12 008 | 0.14 | 2.02 | 013]| o.01 0.00 | 0.00 089 | 0.01 0.12 | 0.08| 0.14 | 0.50 0.13
HARV | 010 | 007 011 | 146 | 0410] 001| 000| 001| 140| 001| o010 007| 011 | 041 0.10
JORN | 008 | 005 | 005| 025 008| 000 000 001| 024| 000 0.08 | 0.05 | 004 | 0.07 0.08
KONZ | 031 | o016 021| 054| 032| -002| o000| -0.01| 042]| -0.02 031| 0.6 021 033 0.32
LENO | o028 | 017 | 020| 043 | o028 001| 000| 002 0.28]| -0.01 028 | 017 | 020 034 0.29
NOGP | 0.20 | 0.09 || 0.12 | 0.14 | 020 001| 000 | 002| 006/| -0.01 020 | 009 | 012 | 013 0.21
SERC 0.13 0.09 | 0.14 | 085 | 0.13| 0.01 0.00 | 0.00 0.75 0.01 0.13 | 0.09| 014 | 040 0.13
SIER 023 | 014 017| 017 | o024] -001| -001| o001 001]| -0.01 023 | 014 017 | 017 0.24
STEI 019 | 011 015| 062| 020| 000| o000| 000| 051| 0.00 020 | 041 045 | 031 0.20
UNDE | 023 012|016 232 024| 003 0.01] o006 140| 0.03 023 | 012 017 | o042 0.24

quantified as a function of the local coefficient of variation (CV) of
REFRM within moving 110 m x 110 m windows across all sites. The
sensitivity of site A and U to potential underestimation of RM LAI was
evaluated by quantifying these metrics with REFRM maps scaled by %
105 and %110.

3. Results
3.1. Transfer function calibration

At each site, between 168 and 505 LAI samples were used for SL2PV1
LAI versus in-situ LAle regressions and between 211 and 362 samples
were used for in-situ LAle versus in-situ LAI regressions (Table 5). The
67.5% PIs of both regressions covered the majority of measurements and
were almost constant width with respect to the regressor (Appendix A).
As such, the regression PIs were summarized using their mean 67.5% PI
half width. The PI half widths for SL2PV1 LAI versus in-situ LAle re-
gressions ranged from 0.39 LAle to 0.53 LAle, except for the very low
LAI JORN site where it was only 0.09 LAle (Table 5). The PI for in-situ
LAle versus in-situ LAI ranged from 0.33 LAI to 0.45 LAI for forested
sites and 0.01 LAI to 0.08 LAI otherwise. The estimated PI of the com-
bined TF, corresponding to the uncertainty of REFRM LAI estimates,
ranged from 0.30 LAI to 0.69 LAI with the exception of JORN where it
was only 0.09 LAL The relatively small PIs indicate that per-pixel dif-
ferences of <0.68 can be detected with confidence 67.5% of the time.
However, the impact of PI uncertainty on regional comparison statistics
is likely negligible given that population statistics are based on all valid
samples within a 1.5 km by 1.5 km window, and even the local SSIM
statistic used a 121 sample widow.

The U, A and R2 for SL2PV1 applied at 10 m resolution were also
quantified since SNAP, ALR and ATPRK rely on SL2PV1 and will prop-
agate SL2PV1 biases. SL2PV1 bias ranged from —1.34 LAI to 0.2 LAI
with underestimation at all sites except the JORN dry shrubland and
NOGP grassland sites. Additionally, except for NOGP, over two thirds of
uncertainty was due to accuracy error.

3.2. Validation

3.2.1. Per-pixel metrics
When using AL2 inputs, site specific joint sample distributions of

predicted versus REFRM LAIL, were similar for SNAP, ATPRK and ALR
(Fig. 3). Joint distributions for BICUBIC are given in Appendix F
(Fig. F1) for brevity as they were very similar to SNAP. The majority of
estimates for SNAP, ATPRK and ALR were within +20% of the 1:1 line
for grasslands and shrub sites but biased by ~20% above the 1:1 line for
forests. In contrast, the joint distributions of SL2PV2 vs REFRM LAI
showed the least symmetry parallel to the 1:1 line, with substantial skew
over forested sites and bias of between —10% and — 20% over grassland
and crop sites. However, in comparison to other algorithms, the SL2PV2
vs REFRM LAI distributions showed lower bias over forests for LAI > 2,
except for HARV where SL2PV2 underestimated LAI by 1.18 LAI on
average (Table 6). Joint distributions of predicted versus REFRM LAI
based on L2 inputs (Appendix D) were qualitatively similar to those of
the RM versus AL2 comparisons in terms of bias. However, the RM
versus L2 comparisons indicated greater scatter than the RM versus AL2
comparisons. This was expected given mis-registration and radiometric
normalization error between the corresponding AHS reference maps and
L2A products.

Joint distributions of predicted versus REFV1 LAI showed far less
dispersion and bias in comparison to their predicted versus REFRM LAI
counterparts (compare Fig. 3 and Fig. 4). Irrespective of land cover,
ATPRK and ALR joint distributions were concentrated along the 1:1 line
with the majority of their retrievals corresponding to an agreement with
REFV1 LAI better than 10%. SNAP versus REFV1 LAI joint distributions
were also generally along the 1:1 line, but the dispersion was almost
twice that observed for ATPRK and ALR counterparts. SL2PV2 versus
REFV1 LAI joint distributions showed the largest dispersion and least
symmetry amongst algorithms, with a large negative bias at the HARV
forested site and positive bias for the LENO crop/grassland site.

When compared to REFRM maps, the mean U across all sites was
~0.55 LAI for BICUBIC, SNAP, ATPRK and ALR, with SL2PV2 slightly
worse at 0.57 LAI (Table 6Error! Reference source not found.).
Additionally, BICUBIC and SNAP metrics were virtually identical. That
said, for a given algorithm, the between site range in U was substantial at
>0.77 LAL For example, SL2PV2 had the lowest U at all forested sites
except HARV, ranging from 0.44 LAI to 0.61 LAI, even though it had the
largest mean U. Accuracy closely followed the pattern observed for U,
with SL2PV2 having less than half the bias of the other algorithms at
four of the forested sites; resulting in a mean A of 0.15 LAI for SL2PV2
versus ~ — 0.36 LAI for other approaches. ATPRK and ALR resulted in
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Site R, SSIM. Green indicates best methods within rounding error of 0.02. Forested sites indicated in bold. #samples correspond

to count of valid 10 m pixels used for comparisons.

' R SSIM #samples
e SNAP | ATPRK | ALR | SL2PV2 | BICUBIC | SNAP | ATPRK | ALR | SL2PV2 | BICUBIC

mean | 072 0.86 | 0.85 0.77 072 077| 084 0.83 0.70 0.77 6091
range | 0.67 | 0.44|0.27 0.41 073| o.61 0.64 | 0.65 0.78 0.60 3841
Ay | 08| 090|083 0.64 0.83| 0.84| 0.90] 0.87 0.65 0.83 4586
HARV | 071 0.85 | 0.69 0.54 071 092 0.95 | 0.92 0.61 0.91 6699
JORN | 0.19| 0.2 | 0.69 0.59 015 0.31 0.31 | 0.28 0.09 0.28 7504
koNz | 0.81| 094|093 0.92 083 o0.82 0.90 | 0.91 0.88 0.82 6546
LENO | 082 | 091|092 0.86 083| 0.84| 091|093 0.82 0.83 3663
NoGgp | 0.86| 096 | 0.95 0.95 0.88| 0.86| 0.87| 0.87 0.85 0.87 6840
SERC 076 | 0.87 | 0.76 0.63 077| 087| 091] 0.88 0.64 0.87 5841
SJER 072| 0.89 | 0.89 0.86 073| o0.63 0.82 | 0.79 0.80 0.61 6242
STEI 079 | 091|090 0.87 072| o085 0.91 | 0.91 0.84 0.81 6725
UNDE| 077 0.8 | 0.89 0.86 078 0.8 0.88 | 0.88 0.80 0.81 6266

=
-0.2 ; ; — ;
12 0 2 4 6 8 10 12
REFRM CV LA REFRM CV LAl
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Fig. 5. Kernel density plots of conditional distribution of the(a.) Pearson correlation coefficient I and (b.) Structural Similarity Image Metric (SSIM) (right panel)
versus reference LAI coefficient of variation (REFRM CV LAI) for 110 m x 110 m moving windows using input AL2 imagery. Solid (dashed) contours correspond to 50

percentile (10 percentile) cumulative probability density.

the lowest mean precision error of ~0.15 LAI with ATPRK P being
slightly lower on a site-by-site basis. SNAP and BICUBIC P was only
slightly (~0.03 LAI) larger than ALR on average but could be up to 0.14
LAI higher on a site basis. SL2PV2 had a much greater P error that the
other algorithms, averaging 0.47 LAI and only once dropping below 0.25
LAL In summary, when compared to REFRM maps, SL2PV2 had the
lowest mean accuracy error but mean uncertainty was approximately
equal across algorithms. Furthermore, ALR and ATPRK had the lowest
precision error at most sites.

When compared to REFV1 maps, the mean U across all sites was
<0.20 LAI for SNAP, AAPRK and ALR, with ATPRK always resulting in
the lowest U. SL2PV2 resulted in the highest average U of 0.62 LAI
(Table 7). For all algorithms except SL2PV2, the range in U was much
smaller than observed for comparisons to REFRM maps. Also, all
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algorithms except SL2PV2 had an absolute accuracy error <0.05. This
was expected given that both their estimates and the REFV1 maps are
based on SL2PV1. In contrast SL2PV2 overestimated REFV1 LAI by 0.51
LAI on average, and up to 1.4 LAI (at the HARV site). Precision error was
lowest for ATPRK at all sites with a mean error of 0.11 LAI with ALR
slightly worse at 0.15 LAI and SNAP and BICUBIC at 0.20 LAI. Precision
error for SL2PV2 was greater than the other approaches at all sites, with
a mean P of 0.31 LAIL In summary, when compared to REFV1 maps,
ATPRK was always the best algorithm in terms of A,P and U although
ALR was close at most sites. Furthermore, SL2PV2 was almost always the
worst in terms of A, P, and U; although one should keep in mind that the
REFV1 maps are themselves biased estimates of in-situ LAL
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Fig. 6. 10 m resolution LAI maps based on input 10 m synthetic imagery for S2 bands (REFRM and REFV1) and input synthetic S2 imagery (SNAP, SL2PV2, ATPRK,

ALR) for KONZ site. White areas correspond to invalid retrievals.

3.2.2. Spatial agreement metrics

R and SSIM were consistent with the precision error results, with
ATPRK and ALR resulting in the best mean and site specific statistics,
and SNAP and BICUBIC the worst statistics, when compared to REFRM
maps (Table 8) or REFV1 maps (Appendix D). There were only two sites,
NOGP and SERC, where SL2PV2 showed similar R or SSIM statistics to
ATPRK and ALR, and no sites where SNAP matched ATPRK for R and
SSIM. In fact, BICUBIC, SNAP and SL2PV2 has similar mean R and SSIM,
although their performance was not consistent across sites. In summary,
as observed with precision error, ATPRK and ALR shared the best results,
and SNAP and SL2PV2 the worst results, for both site specific and mean
R and SSIM.

The conditional distributions of R and SSIM with respect to REFRM
CV LAI were used to quantify how well each algorithm represented local
LAI patterns as a function of pattern complexity (Fig. 5). Except for
SNAP AND BICUBIC, the typical R was inversely proportional to CV LAI,
ranging from R > 0.8 for CVLAI < 1 toR < 0.2 for CV LAI > 5. SNAP and
BICUBIC had very similar distributions, with the typical R was always
<0.36 and was essentially unrelated to CV LAI Similar relationships
were observed between R and CV LAI for less likely samples although the
spread of these contours was about twice that observed for typical cases
in Fig. 5. In contrast to R, for typical cases, SSIM did not show a clear
relationship with CV LAI, ranging from 0.05 < SSIM<0.15 for SL2PV2
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and 0.25 < SSIM<0.45 for the other algorithms. As with R versus CV
LAI, the contours for SSIM vs CV LAI were about twice as broad for less
likely cases as for the typical cases. However, there was also a high SSIM
mode for less likely cases, corresponding to regions with low local
variation, with SSIM>0.7 and CV LAI < 0.2, that was generally indis-
tinguishable across algorithms. In summary, ALR and ATPRK ranks
highest for both R and SSIM conditional on CV LAI while SNAP ranks
lowest for R conditional on CV LAI and SL2PV2 ranks lowest for SSIM
conditional on CV LAIL

3.2.3. Qualitative Intercomparisons

Qualitative intercomparisons based on visual assessment of images
are widely used to evaluate downscaling algorithms. Comparisons were
performed at all sites to sample different land cover and LAI pattern
complexity (Appendix E and F). For brevity, R and SSIM results for all
methods except BICUBIC are shown for two sites that inform the pre-
vious precision are presented here. BICUBIC results are provided in
Appendix F as they are similar to SNAP in appearance.

The KONZ site corresponds to a mosaic of forest and grassland land
cover with relatively uniform LAI patches at 20 m resolution but with
cast shadows and mixed pixels at edges between canopies of different
heights (Fig. 6). REFRM and REFV1 reference maps are qualitatively
similar, with the former essentially a positively biased version of the
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Fig. 7. 10 m resolution LAI maps based on input 10 m synthetic imagery for S2 bands (REFRM and REFV1) and input synthetic S2 imagery (SNAP, SL2PV2, ATPRK,

ALR) for SJER site. White areas correspond to invalid retrievals.

latter as expected when converting LAle to LAI Single pixel wide roads
and linear clearings, as well as within forest texture, are clearly visible in
both REFRM and REFV1 maps. Both ATPRK and ALR represent REFRM
spatial patterns well, with ATPRK better at capturing the high LAI region
of forests. SNAP appears as if a 2 x 2 blurring filter was applied to ALR.
SL2PV2 exaggerates both high and low LAI values, almost saturating
within some forested areas (central region in Fig. 6). However, SL2PV2
also tends to represent the variability within moderate LAI forests in the
north of the site better than the other approaches.

The ABBY site corresponds to a region with a range of forest types
and densities intersected by single pixel roads (Fig. 7). Mixed pixels
occur along roads, but otherwise LAI variation occurs within large
patches. Only SL2PV2 captures the magnitude of REFRM LAI well over
forests, but at the cost of missing detail of within-patch LAI patterns.
Results are quite different when comparing algorithms to REFV1 LAL
Here ALR is close in magnitude and pattern to REFV1 LAI, with ATPRK
only slightly blurrier. SNAP results in the same visually obvious spatial
blurring observed at KONZ. SL2PV2 appears to quantize the REFV1 LAI
pattern into a few, exaggerated, levels but retains spatial detail at edges.

4, Discussion

4.1. Study scope

To our knowledge, this is the first study to validate high (<10 m)
resolution LAI maps following community good practice guidelines with
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traceability to in-situ fiducial reference measurements. Previous studies
have resorted to validating high resolution maps by scaling them to
match lower resolution reference maps (Houborg and McCabe, 2018;
Kganyago et al., 2020) or by only considering spatially homogeneous
reference sites such as croplands (Kross et al., 2015; Kimm et al., 2020).
Other studies have used gap fraction based reference measurements,
such as LAle, with spatial footprints >10 m resolution and without
correction for non-photosynthetic matter (Colombo, 2003; Soudani
et al., 2006). These approaches test necessary, but not sufficient, con-
ditions to support the hypothesis that the high-resolution mapping al-
gorithms are either accurate or precise. Indeed, none of these
approaches validate retrievals of complex spatial patterns and retrievals
across edges between different canopies that are amongst the primary
motivations for producing 10 m LAI maps.

Our scope was limited to validating one candidate algorithm from
each of five differing approaches to producing 10 m resolution S2 LAI
maps. In fact, two other downscaling algorithms were initially involved,
but dropped either due to visible artifacts (DSEN2, Lanaras et al., 2018)
or dependencies on closed libraries (SEN2RES, Brodu, 2017) that could
not be easily applied to the synthetic S2 imagery. We will be publishing
our reference maps as an open dataset (Fernandes et al., in review) to
allow the community to test novel approaches in a controlled manner.

4.2. Reference LAI maps

The validation protocol was the most challenging part of this study.
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Ideally, one would use <10 m resolution reference maps produced using
in-situ spatial surveys of RM matched to high resolution imagery with an
associated TF relating them to in-situ RM. This is not currently possible
as non-destructive fiducial RM of LAI are only widely available using gap
fraction analyses methods corresponding to a spatial support exceeding
the canopy height (Weiss et al., 2004; Fernandes et al., 2023). Mono-
directional contact methods (Law et al., 2021, Gebbers et al., 2011),
three-dimensional terrestrial laser scanning systems (Hosoi and Omasa,
2006; Béland et al., 2011; Dube et al., 2019) and structure from motion
processing of high resolution imagery (dos Santos et al., 2020) have
been shown to estimate LAI for small (<10 m) horizontal footprints
given assumptions regarding leaf angle distribution. These methods may
allow for high-resolution LAI maps in the future but their current cost,
availability and, more importantly, maturity as fiducial RM currently
inhibit their use for validating 10 m resolution LAI maps over multiple
sites.

Initially, our experiment tested each algorithm using S2 L2B prod-
ucts as input (L2). Indeed, this was one reason we did not exploit all the
available NEON AHS data. This approach was flawed from the point of
view of algorithm validation because differences in atmospheric
correction and geolocation between the reference maps and the input to
downscaling algorithms resulted in experimental errors that masked
differences between the tested algorithms. While we reduced these er-
rors by radiometric cross-calibration, the precision of comparisons based
on L2 products was lower than that using synthetic S2 imagery (AL2)
products derived from the same imagery used for the reference map
(compare Fig. 3 and Appendix D Fig. D1). We suspect that future vali-
dation experiments may need to rely on synthetic S2 imagery unless
great care is performed to match footprints of individual reference
measurements to footprints of high resolution products and to charac-
terize the uncertainty due to input reflectance measurement error. That
said, we still included comparisons based on actual S2 imagery (Ap-
pendix B) as they verified that our results based on synthetic imagery
were consistent with applying high resolution LAI mapping algorithms
to S2 imagery. Indeed, it is the observed consistency between results
based on S2 and AHS input imagery that leads us to recommend future
studies use the synthetic image approach to exploit all available NEON
AHS imagery.

Validation using SL2PV1 reference imagery resulted in ALR and
ATPRK being both almost unbiased and relatively precise, considering
GCOS requirements, at all sites, with BICUBIC and SNAP slightly worse.
While BICUBIC and SNAP were close to ALR and ATPRK in terms of A
and U, qualitative visual assessment and quantitative spatial metrics
indicated the latter two approaches resulted in much better spatial
agreement with SL2PV1 estimated LAI In contrast, SL2PV2 had lower
precision at most sites and positive bias over forested sites when
compared to SL2PV1 imagery. SL2PV2 overestimation of forests LAI
persisted when using input bands averaged to 60 m (not shown) sug-
gesting that it was not due to its use of a radiative transfer model that
assumes of zero lateral fluxes between pixels, i.e. that shadows or scat-
tered light from adjacent pixels can be neglected (Verhoef, 1984).
Instead, we hypothesize that the overestimate was due to biases in input
red reflectance over low reflectance targets such as forests, although
testing this hypothesis is beyond the scope of our study. These would
have been our conclusions if, as in many other studies using either
effective LAI as reference or simply relying on algorithm in-
tercomparisons, we did not insist on 10 m resolution reference maps
traceable to in-situ LAI (REFRM). However, we would have been wrong
since our results were completely different when using REFRM maps as
reference.

Considerable effort was required to produce the REFRM maps. We
could not simply apply a TF calibrated using matching REFV1 LAI re-
trievals and in-situ RM since the latter were not available at 10 m res-
olution. The first stage, converting SL2PV1 LAI to LAle, was employed
specifically because SL2PV1 is known a priori to assume a homogenous
canopy and subsequently is approximately linearly related to LAle at the
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same scale (Brown et al., 2020). Using a linear transfer function ensured
the calibration based on the spatial support of the in-situ DHP footprints
was unbiased when applied at 10 m resolution. Robust linear regression
also reduced the impact of random errors in conversion factors between
PAle and LAle applied based on in-situ databases. Ideally, these factors
would be calibrated locally using leaf-off samples for deciduous land
cover, or methods capable of leaf-wood separation such as near-infrared
DHP or dual-wavelength terrestrial laser scanning (Brown et al., 2024;
Danson et al., 2018). Such data were not available over the NEON sites.
As such, we resorted to typical values of woody to total area ratios for
our forest sites with an associated uncertainty of ~10% (Brown et al.,
2021a). Some of this uncertainty will persist in biases in the final
transfer function but, except for SJER, differences between SL2PV2 and
the other algorithms are far >10% in terms of accuracy (Table 5).

The second stage, which corrects for within pixel canopy clumping
and non-photosynthetic vegetation, relied solely on paired in-situ RM of
LAI and LAle. Fortuitously, the error in assuming a constant ratio of LAle
to LAI was reasonable (PI typically <0.5 LAI and R2 > 0.9), perhaps
because the NEON sites are in landscapes with low within site variability
in land cover and vegetation patterns. As a result, the per-pixel PIs of the
final REFRM LAI maps were modest (<0.7 LAI). Moreover, the clumping
calibration assumes the clumping index for in-situ sites also applies at
10 m resolution. This assumption is difficult to verify since estimation of
clumping requires second order spatial statistics sampled over extents
greater than the largest canopy gaps (Lang and Xiang, 1986). That said,
validation population statistics were derived from between 3663 and
7504 samples, so our major concern was not the PI but bias of the
REFRM maps due to measurement errors, spatial or temporal mismatch,
and error in the regression model. Thiel-Sen regression was used to
reduce the likelihood the TF was unbiased. In fact, there is no unbiased
linear regression estimator for random measurement errors but at least
Thiel-Sen results in a statistically consistent estimator that converges to
the unbiased estimator under mild assumptions and with <28% outliers
(Fernandes and Leblanc, 2005). The use of other linear regression ap-
proaches for calibrating local TFs, within other studies, is baffling given
that they are not even statistically consistent slope estimators. The Thiel-
Sen PI was at least twice as large as the regression U (root mean square
error). This suggests that TF error propagation based on population U
may be optimistic as recommended by current good practice (Fernandes
etal., 2014). The sensitivity of A and U to correcting for hypothetical 5%
and 10% underestimates due to clumping bias resulted in proportional
changes in A and somewhat smaller relative changes in U due to the
presence of precision error but the relative ranking of methods did not
change overall and for plots. (Appendix G).

4.3. Direct validation performance

Repeating our experiment using REFRM reference maps resulted in
drastic differences in per-pixel metrics compared to the same metrics
derived using REFV1 maps. Now, SL2PV2 was close to being unbiased at
most sites, while the other algorithms underestimated LAI at forest sites.
Some of the improvement in SL2PV2 bias may be due to its ability to
account for landscape level clumping between 10 m pixels. However,
the downscaled images indicate patches of high LAI over forests with
poor spatial agreement to REFRM imagery (e.g. the upper half of the
ABBY image in Fig. 7) and ALR did not result in unbiased forest LAI
retrievals even though it also only uses 10 m bands. We hypothesize that
the SL2PV2 bias reduction is possibly a fortuitous cancellation of LAI
underestimation due to SL2PV2 using a homogenous radiative transfer
model during calibration and LAI overestimation due to errors in input
reflectance. The ATPRK, BICUBIC and SNAP bias could possibly be due
to unresolved spatial smoothing of, respectively, SL2PV1 inputs or
SL2PV1 outputs. But this does not explain why ALR, that only uses 10 m
resolution input bands, was also biased or why ATPRK showed good
spatial agreement with REFRM. We hypothesize that ALR encodes bias
when using 20 m pixels during calibration of its local regression



R. Fernandes et al.

estimator. The induced bias is simply because local LAI versus vegeta-
tion index regressions are only scale independent if both the vegetation
index manner and the actual LAI versus vegetation index relationship is
scale independent (Garrigues et al., 2006). Indeed, Table 5 indicates
negative bias ranging from —0.4 LAI to —1.34 LAI for all but two sites.
This result underlines the fact that downscaling algorithms tested do not
address bias in the underlying SL2PV1 algorithm due to canopy scale
clumping (Brown et al., 2021a). Land cover specific versions of SL2PV1
with reduced bias are available (Fernandes et al., 2024a) but would
require 10 m land cover maps that would induce additional uncertainty
in 10 m LAI maps produced by ATPRK, SNAP, BICUBIC or ALR.

Both R and SSIM spatial agreement metrics were reported in our
study. The negative correlation of R with CV LAl reflects the fact that the
spatial precision of downscaling algorithms decreases in areas with
complex spatial patterns. In contrast SSIM was uncorrelated with CV LAI
for most of the tested scenes, suggesting it may be a more appropriate
statistic when comparing downscaling performance across different
studies. ATPRK and ALR had the best precision and spatial agreement
metrics while SL2PV2, SNAP and BICUBIC were worse in most circum-
stances. The inferior performance of BICUBIC and SNAP, especially for
areas with high local CV LAI, was expected since they rely only on
spatial proximity to enhance resolution. High spatial frequency mea-
surement errors, such as band-to-band misregistration, is unlikely to
explain the inferior performance of SL2PV2 as it would also apply to
ALR, that uses the same 10 m input bands. Again, we hypothesize the
poor SL2PV2 spatial metrics, especially SSIM, may be due to input
measurement error resulting in saturation for forests that can have low
visible reflectance (Butson and Fernandes, 2004). ALR is subject to the
same input reflectance error as SL2PV2 as it also uses only 10 m reso-
lution bands. This prompts the question as to why ALR did not also show
the same saturation as SL2PV2. We hypothesize that the regularization
incorporated in ALR reduces its sensitivity to measurement errors since
ALR forces outlier retrievals into the space of valid retrievals. Indeed,
ALR was originally used to revise SL2PV1 retrievals flagged as invalid
due to input measurement error (Djamai and Fernandes, 2021).

Our study indicates that there is a bias-variance trade-off for algo-
rithms mapping LAI at 10 m resolution using S2. SL2PV2 offers a bias
generally under 0.5 LAI while ATPRK and ALR offer a precision of ~0.16
LAL but all methods have similar total uncertainty of ~0.55 LAI. ATPRK
or ALR may be suitable for 10 m resolution S2 maps if their bias could be
reduced. Current bias correction approaches are land cover dependent; a
luxury that may not be afforded at 10 m resolution in changing land-
scapes. Alternatively, combining SL2PV1 and either ALR or ATPRK may
reduce the uncertainty of 10 m resolution S2 LA maps.

4.4. Limitations and recommendations

This study serves as a starting point for validating high spatial res-
olution LAI maps. Reported A and U for REFRM comparisons may be
optimistic for BICUBIC, SNAP, ALR and ATPRK due to uncertainties
associated with clumping correction. Clumping was a major issue when
producing reference maps. Our method requires a TF to correct for
clumping that depends on unbiased in-situ clumping estimates and
representative sampling for each site. Fortuitously, the clumping
transfer functions supported our assumption of constant site clumping.
Even so, extending our approach to other sites will require reference
measurements of clumping. High resolution LIDAR imaging and struc-
ture for motion surveys has both been used to produce LAI maps at <10
m resolution (Fang et al., 2019). However, both approaches currently
require calibration to in-situ measurements (Lefsky et al., 2002;
Kamoske et al., 2018; Mendes dos Santos et al., 2020; Sumnall et al.,
2021; Awaya and Araki, 2023). This calibration would need to adopt our
assumption clumping does not change between the DHP footprint and
10 m grids. More limiting for LIDAR surveys is the finding from Kamoske
e et al. 2019 that the LIDAR PAle estimates at SERC could not quantify
understory LAIL Nevertheless, both LIDAR and structure from motion
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surveys could potentially provide better spatial delineation of relative
LAI patterns than the 1 m resolution AHS imagery that suffers from
potential shadowing between pixels.

Our study was limited in being able to validate only peak growing
season conditions due to the timing of the AHS imagery. Future studies
should consider multi-temporal validation but may need to enhance in-
situ sampling since the assumption of a constant canopy clumping index
may not hold. We hope the reader takes to heart our insistence to using
reference maps traceable to in-situ fiducial reference measurements,
rather than intercomparisons or off-line error propagation of down-
scaled reflectance product uncertainty. We would have arrived at vastly
different conclusions if we took the easy way out and used only in-
tercomparisons to reference maps derived using the SL2PV1 algorithm,
rather than traceable reference maps. We also note that validation
metrics varied between sites and between land cover. This variability
underlines the importance of not drawing conclusions based on single
site studies and the importance of using protocols that can be applied
across space and time. We hope that both our methodology and the
NEON datasets will enable further testing and refinement of algorithms
for high-resolution LAI mapping.

5. Conclusions

Our study validated four differing approaches for producing 10 m
resolution LAI maps using actual and simulated S2 imagery: simply
interpolating 20 m resolution maps produced by applying the SL2PV1
algorithm (SNAP), using a global algorithm with input 10 m resolution
bands (SL2PV2), using a local algorithm using only 10 m resolution
bands (ALR), or spatial downscaling of input reflectance using bi-cubic
interpolation (BICUBIC) or kriging followed by applying the 20 m res-
olution SL2PV1 algorithm. Results with simulated S2 inputs were used
to assess algorithms as they did not suffer from measurement and geo-
location error when comparing downscaled S2 LAI maps to reference
maps.

When validated against reference 10 m LAI maps traceable to in-situ
fiducial reference measurements of LAI at ten NEON sites, SL2PV2
resulted in the lowest overall bias (0.15 LAI) with <50% of the bias
observed for other algorithms over most forested sites. However, ATPRK
and ALR algorithms had the least precision error (~0.15 LAI) and
ranked highest in terms of local correlation and Structural Similarity
Index measure at all sites. Moreover ATPRK, and to some extent ALR,
provided the best qualitative reproduction of the relative LAI pattern
and the lowest residuals across all sites when compared to reference
maps proportional to effective LAI. BICUBIC and SNAP approaches had
similar bias to ATPRK and ALR but fared worse in terms of spatial
metrics and resulted in visually blurred 10 m LAI maps. These results
contradict our initial hypotheses that SL2PV2 would have the greatest
bias on the basis that it does not use optimal input spectral sampling.
This leads us to now hypothesize that the ATPRK and ALR forest LAI
underestimation may be due to the use of a spatially homogeneous
radiative transfer models for calibrating all algorithms. If true, then the
low SL2PV2 bias observed here may actually be an artifact due to
opposing model and input measurement errors.

Future studies are required to investigate strategies for correcting
scale dependencies in LAI retrieval algorithms. For example, Fernandes
et al. (2024) showed that modifying SL2PV1 with a spatially heteroge-
neous radiative transfer model resulted in a 61% reduction in bias over
forests. This new algorithm may address the observed bias in the
downscaled products that relied on SL2PV1. Finally, we encourage al-
gorithm developers to make use of our methodology and datasets for
validation and we encourage the development of new methods for high
spatial resolution survey of in-situ LAI fiducial reference measurements.
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Abbreviation Description

A Accuracy

Alm image of 1 m S2 equivalent spectral bands

Alm image of 10TFm S2 equivalent spectral bands
ABBY Abby Road

AHS Airborne Hyperspectral Imagery

AL2 synthetic S2A image with nominal S2 band resolution
ALR Active Learning Regularization

Arcsec arc second

ATPRK Area to Point Regression Kriging (

B Baseline

BICUBIC Bi-Cubic Spline Interpolation of 20 m reflectance
DHPs digital hemispherical photographs

ESU Elementary sampling unit

G Goal

GCOs Global Climate Observing System

HARV Harvard Forest

JORN Jornada Experimental Range

KONZ Konza Prairie Biological Station

L2 Copernicus Sentinel-2 A and Sentinel-2B Level 2A Collection 1 surface reflectance products
LAT Leaf Area Index

LAle effective LAI

LENO Lenoir Landing

mrad milliradian

NEON National Ecological Observatory Network

NOGP Northern Great Plains Research Laboratory

PAI plant area index

PAle effective PAI

PI 1 standard deviation prediction confidence interval
R Precision

R2 Coefficient of determination

REFRM reference 10 m LAI map with traceability to in-situ RM
REFV1 reference 10 m LAI map without traceability to in-situ RM
RM Reference measurement

S2 Sentinel 2

SERC Smithsonian Environmental Research Center

SJER San Joaquin Experimental Range

SL2p Simplified Level 2 Prototype Processor

SL2PV1 Simplified Level 2 Prototype Processor Version 1
SL2PV2 Simplified Level 2 Prototype Processor Version 2
SNAP Sentinel Applications Platform

SSIM Structural similarity index measure

STEI Steigerwaldt-Chequamegon

T Threshold

(continued on next page)
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(continued)
Abbreviation Description
TF Transfer function
U Uncertainty
UNDE University of Notre Dame Environmental Research Center
p Surface reflectance

Appendix B. Flowchart of methods for deriving downscaled products from L2 imagery
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Fig. B1. LAI production flow chart from S2 imagery. Blue boxes indicate inputs to algorithms. Gray boxes indicate algorithms. Orange boxes indicate LAI products.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix C. Calibration of regressions required for SL2PV1 LAI to in-situ LAI transfer functions
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Appendix D. Per-pixel comparisons using L2 inputs
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Fig. D3. Kernel density plots of Pearson correlation coefficient (R) (left panel) and Structural Similarity Image Metric (SSIM) right column versus reference LAI
coefficient of variation (REFRM CV LAI) based on input L2 data from all sites. All samples were extracted using 110 m x 110 m moving windows. Solid (dashed)
contours indicate the 83.75%ile (16.25%ile) of each distribution, bracketing the 67.5%ile central interval.
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Table D1
Site accuracy, precision, and uncertainty in units of LAI for comparisons to REFRM reference maps. Worst corresponds to worst site.
Green indicates best methods within rounding error of 0.02. Sites in bold are forested.
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Table D2
Site R and SSIM for comparisons to REFRM reference maps. Green indicates
best methods within rounding error of 0.02. Bold sites are forested.
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Appendix E. Comparison of 10 m LAI maps from tested algorithms versus REFRM and REFV1 LAI maps
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Fig. E1. 10 m resolution reference LAI maps based on input 10 m synthetic imagery for S2 bands (REFRM shows LAI traceable to in-situ fiducial reference mea-
surements and REFV1 shows LAI without accounting for canopy clumping) and algorithm estimates (BSNAP, SL2PV2, ATPRK, ALR) using synthetic S2 imagery for
all sites.
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Appendix F. LAI maps and performance metrics for BICUBIC algorithm versus ATPRK algorithm
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Fig. F1. Kernel density plots of estimated 10 m LAI from 20 m resolution AL2 imagery versus REFRM 10 m LAI (left panel;) and REFV1 10 m LAI (right panel) for
each site. Solid (dashed) contours correspond to 50 percentile (10 percentile) cumulative probability density. Dashed line corresponds to GCOS LAI uncertainty
requirement, solid line corresponds to 1:1 line.
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Fig. F2. 10 m resolution reference LAI maps based on input 10 m synthetic imagery for S2 bands (REFRM shows LAI traceable to in-situ fiducial reference mea-
surements and REFV1 shows LAI without accounting for canopy clumping) and algorithm estimates (BICUBIC, ATPRK) using synthetic S2 imagery for all sites.
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Fig. F2. (continued).

Appendix G. Sensitivity of performance metrics to clumping uncertainty

See Tables G1-G3.

Table G1

Site uncertainty and accuracy, in units of LAI using 100% of the REFRM LAI as
reference maps. Green indicates best methods within rounding error of 0.02.
Forested sites indicated in bold.
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Table G2

Site uncertainty and accuracy, in units of LAI using 105% of the REFRM LAI as
reference maps. Green indicates best methods within rounding error of 0.02.
Forested sites indicated in bold.

Site J A
SNAP | ATPRK | ALR | SL2PV2 | SNAP | ATPRK | ALR SL2PV2
mean | 0.64 | 0.62 0.63 | 0.58 -047 | -0.47 -0.47 | 0.04
range | 0.94 | 0.94 0.96 | 0.67 1.53 1.53 1.55 | 1.63
ABBY | 0.76 | 0.75 0.77 | 0.51 -0.73 | -0.74 -0.74 | 0.16
HARV | 0.41 | 0.41 0.41 | 1.08 -0.40 | -0.40 -0.40 | 1.00
JORN | 0.19 | 0.18 0.20 | 0.42 0.17 0.17 0.19 | 0.42
KONz | 0.82 | 0.79 0.80 | 0.55 -0.77 | -0.76 -0.77 | -0.33
LENO | 0.26 | 0.19 0.17 | 0.43 -0.02 | -0.01 0.01 | 0.27
NOGP | 0.45 | 0.47 0.48 | 0.54 0.41 | 0.41 0.43 | 0.48
SERC | 0.80 | 0.80 0.81 | 0.41 -0.79 | -0.79 -0.80 | -0.05
SJIER 0.73 | 0.69 0.68 | 0.68 -0.65 | -0.64 -0.63 | -0.63
STEI 0.86 | 0.84 0.88 | 0.46 -0.83 | -0.82 -0.86 | -0.29
UNDE | 1.12 1.12 1.13 | 0.72 -1.11 | -1.11 -1.12 | -0.56
Table G3

Site uncertainty and accuracy, in units of LAI using 110% of the REFRM LAI as
reference maps. Green indicates best methods within rounding error of 0.02.
Forested sites indicated in bold.

Site Y A
SNAP | ATPRK | ALR | SL2PV2 | SNAP | ATPRK | ALR | SL2PV2
mean | 0.73 | 0.72 0.72 | 0.60 -0.58 | -0.58 -0.58 | -0.06
range | 1.10 | 1.10 1.10 | 0.62 1.64 1.65 1.68 | 1.62
ABBY | 0.88 | 0.88 0.89 | 0.49 -0.85 | -0.86 -0.86 | 0.03
HARV | 0.52 | 0.52 0.52 | 0.98 -051 | -051 | -0.51 | 0.88
JORN | 0.19 | 0.18 | 0.19 | 0.42 0.17 | 0.17 | 0.19 | 0.42
KONz | 0.95 | 0.93 0.93 | 0.64 -092 | -091 | -091 | -048
LENO | 0.30 | 0.23 0.21 | 0.36 -0.12 | -0.211 | -0.09 | 0.17
NOGP | 0.41 | 0.42 0.43 | 0.49 0.37 0.37 0.39 | 0.43
SERC | 0.94 | 0.94 0.95 | 0.44 -0.93 | -0.93 -0.94 | -0.19
SJER 0.83 | 0.79 0.78 | 0.79 -0.75 | -0.75 -0.73 | -0.74
STEl | 1.02 | 1.00 1.04 | 0.57 -099 | -0.99 | -1.02 | -045
UNDE | 1.29 | 1.29 1.29 | 0.85 -1.28 | -1.28 | -1.28 | -0.73
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