CONTRIBUTED
P A P E R

A Visionary Look at the
Security of Reconfigurable
Cloud Computing

This article reviews the current scope of attacks on cloud field-programmable gate

arrays and their remediation.

By MIRJANA STOJILOVIC ™, Senior Member IEEE, KASPER RASMUSSEN ", Senior Member IEEE,
FRANCESCO REGAZZONI", Member IEEE, MEHDI B. TAHOORI", Fellow IEEE,

AND RUSSELL TESSIER"™, Senior Member IEEE

ABSTRACT | Field-programmable gate arrays (FPGAs) have
become critical components in many cloud computing plat-
forms. These devices possess the fine-grained parallelism and
specialization needed to accelerate applications ranging from
machine learning to networking and signal processing, among
many others. Unfortunately, fine-grained programmability also
makes FPGAs a security risk. Here, we review the current
scope of attacks on cloud FPGAs and their remediation. Many
of the FPGA security limitations are enabled by the shared
power distribution network in FPGA devices. The simultaneous
sharing of FPGAs is a particular concern. Other attacks on the
memory, host microprocessor, and input/output channels are
also possible. After examining current attacks, we describe
trends in cloud architecture and how they are likely to impact
possible future attacks. FPGA integration into cloud hypervi-
sors and system software will provide extensive computing

Manuscript received 30 August 2022; revised 9 September 2023;

accepted 26 October 2023. Date of publication 21 November 2023; date of
current version 22 December 2023. The work of Mehdi B. Tahoori was supported
in part by the German Research Foundation under Grant DFG TA 782/42-1. The
work of Russell Tessier was supported in part by NSF under Grant CNS-1902532.
(Corresponding author: Mirjana Stojilovic.)

Mirjana Stojilovi¢ is with the School of Computer and Communication
Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland (e-mail: mirjana.stojilovic@epfl.ch).

Kasper Rasmussen is with the Department of Computer Science, University of
Oxford, OX1 3QD Oxford, U.K. (e-mail: kasper.rasmussen@cs.ox.ac.uk).
Francesco Regazzoni is with the University of Amsterdam, 1098 XH
Amsterdam, The Netherlands, and also with the Universita della Svizzera
italiana, 6900 Lugano, Switzerland (e-mail: f.regazzoni@uva.nl;
francesco.regazzoni@usi.ch).

Mehdi B. Tahoori is with the Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany (e-mail: mehdi.tahoori@kit.edu).

Russell Tessier is with the Department of Electrical and Computer Engineering,
University of Massachusetts Amherst, Amherst, MA 01003 USA (e-mail:
tessier@umass.edu).

Digital Object Identifier 10.1109/JPROC.2023.3330729

opportunities but invite new avenues of attack. We identify
a series of system, software, and FPGA architectural changes
that will facilitate improved security for cloud FPGAs and the
overall systems in which they are located.

KEYWORDS | Cloud computing; denial-of-service (DoS) attack;
fault injection; field-programmable gate array (FPGA); secure
computing; side-channel attack.

NOMENCLATURE

AES Advanced Encryption Standard.

API Application programming interface.

AWS Amazon Web Services, a subsidiary of
Amazon.

AXI Advanced eXtensible Interface, microcon-
troller bus architecture.

BNN Binary neural network.

BRAM Block RAM, used for storing data inside an
FPGA.

BTI Bias temperature instability.

CAD Computer-aided design.

CARRY8 Fast carry logic for a CLB (8 bit).

CGRA Coarse-grained reconfigurable array.

CLB Configurable logic block.

CPA Correlation power analysis.

CPU Central processing unit.

CSP Cloud service provider.

DMA Direct memory access.

DNN Deep neural network.

DoS Denial-of-Service.

DPA Differential power analysis.

DRAM Dynamic RAM.

DRL Dual rail logic.

0018-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

1548 PROCEEDINGS OF THE IEEE | Vol. 111, No. 12, December 2023
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5649-5020
https://orcid.org/0000-0002-9471-9985
https://orcid.org/0000-0001-6385-0780
https://orcid.org/0000-0002-8829-5610
https://orcid.org/0000-0003-0591-7566

DRM
DSP
FPGA
FPGAVirt

GPU
HARP

HDL
HLS
/0
IP
JTAG

LAB
LUT
MAC
MLP
MMIO
MPSoC
NIC
NN
NoC
PAX
PCB
PCle

PDN
PID

PLL
PUF

RSA

RO
RTL

S-box
SAVI

SCA
SLR
SoC
SPA
SQL

TDC
TEE
TOR

TRNG
TTP
VHDL

. . - . . Vol. 111, 12, De
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,2024

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Digital rights management.

Digital signal processing (chip).
Field-programmable gate array.
Virtualization framework for FPGAs in the
cloud.

Graphics processing unit.

Hardware accelerator research program,
an Intel platform.

Hardware description language.
High-level synthesis.

Input/output.

Intellectual property.

Joint Test Action Group, a standard for ver-
ifying and testing chips after manufacture.
Logic array block.

Lookup table.

Mandatory access control.

Multilayer perceptron.

Memory-mapped I/0.

Multiprocessor SoC.

Network interface controller.

Neural network.

Network-on-Chip.

Postlayout parasitics.

Printed circuit board.

Peripheral = Component Interconnect
Express, a high-speed serial computer
expansion bus standard.

Power delivery network.
Proportional-integral-derivative, a widely
used control mechanism.
Phase-locked loop.

Physically unclonable function.
Random access memory.
Rivest-Shamir-Adleman, a
cryptosystem.

Ring oscillator.
Register-transfer level, a design abstrac-
tion for synchronous digital circuits.
Substitution-box.

Smart applications on virtual infrastruc-
ture.

Side-channel attack.

Super logic region.

System-on-Chip.

Simple power analysis.

Structured query language, a database
query language.

Time-to-digital converter.

Trusted execution environment.
Top-of-rack, a switch that connects in-rack
switches to the rest of the data center.
True random number generator.

Trusted third party.

Very high-speed integrated circuit hard-
ware description language.

public-key

VM Virtual machine.
XOR Exclusive OR.

LINTRODUCTION

Traditionally, cloud platforms have been based on a single
type of computing device: CPUs. This homogeneity of hard-
ware resources reflected itself in cost efficiency; buying
thousands of very similar types of servers allowed cloud
providers to reap the benefits of the economies of scale.
The homogeneity of servers had other advantages as well:
easy management and scheduling of resources, and simple
development and deployment of applications and tools for
debugging and tracing.

In recent years, however, cloud servers have gone
through a significant change. They have progressively
shifted to become heterogeneous platforms in which CPUs
join forces with special-purpose integrated circuits [e.g.,
Google’s tensor processing units [1], GPUs, and repro-
grammable devices (i.e., FPGAs)]. One of the driving
forces behind this change originated from the end of
Moore’s law coupled with the breakdown of Dennard
scaling. While transistor size can still be reduced (though
at a slower pace than before), with small transistor
sizes and high operating frequencies, the power density
increases significantly. Consequently, modern applications’
continuously growing hunger for computing power can
no longer be satisfied with general-purpose hardware
only. We have entered an era in which computational
performance growth will be fueled by specialized and
heterogeneous hardware [1].

Besides energy efficiency, another important advantage
of heterogeneous platforms is more consistent and pre-
dictable performance. Cloud applications previously were
large monolithic services, but they have evolved into
fine-grained, modular designs (microservices or serverless
computing), where end-to-end tail latency is several orders
of magnitude smaller (in the order of microseconds).
Since missing latency requirements lead to cascading per-
formance issues, data center hardware must be able to
meet them. Traditional, general-purpose servers were not
designed to accommodate such constraints. Heterogeneity,
on the other hand, implies tailoring the hardware (and
software) to the needs of data center applications, however
strict.

FPGAs have emerged as the platform of choice for
both regular and irregular forms of application parallelism.
Their unique features are low-level hardware access, fine-
grain programmability, and reconfiguration at runtime.
Microsoft was among the first companies to recognize
the potential of FPGAs for data center applications: their
Catapult servers relied on FPGAs to accelerate the Bing
search engine [2]. Since then, a number of commercial
CSPs (Amazon AWS [3], Alibaba [4], Baidu, Microsoft
Azure [5], and so on) have started offering users remote
access to data center FPGAs to develop and deploy their
hardware accelerators.

1, No. 12, OF THE IEEE, 1549

cem) b,
a rom |IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

-

i

i

-

i

r

i

-

=
S
i~
5]
°
o
=
]
[~
5]
o
o
=
S
x
3
o

Fig. 1. Example FPGA architecture, showing a column-based layout
of logic, memory, and DSP blocks.

Fine-grained control over the low-level FPGA hard-
ware is, as it turns out, at the source of a number of
electrical-level security issues. Today, we understand that
FPGAs can empower a malicious user to execute a vari-
ety of remotely-controlled attacks: DoS, fault injection,
power side-channel, and crosstalk side-channel attacks.
In this article, in addition to describing the attacks in
detail, we bring forward the multifaceted challenges of
securely integrating FPGAs in the cloud, which are as
relevant for FPGA vendors and developers as they are for
cloud service providers and users. We discuss models for
future cloud-level use of FPGAs and elaborate on security
techniques adapted for virtualized FPGAs in the cloud.
Our visionary viewpoints provide insights into how FPGA-
accelerated, heterogeneous cloud platforms will likely be
used in the future.

The remainder of this article is structured as follows.
Section II describes the state of the art in cloud FPGA
use. An overview of cloud FPGA threats is described in
Section III. Existing cloud FPGA attacks (see Section IV)
and remediation (see SectionV) are then described.
In Section VI, trends in cloud FPGA systems are dis-
cussed followed by likely threats to these systems (see
Section VII). Suggested solutions to these challenges are
described in Section VIII. We conclude this article by sum-
marizing lessons learned (see Section IX) and offering
closing thoughts (see Section X). A list of the acronyms
used in this article is provided in the Nomenclature.

II. FPGAs AS COMPUTE
ACCELERATORS IN THE CLOUD

In this section, we introduce readers to FPGAs as com-
pute accelerators in the cloud. We start by providing
the basics of FPGA architecture (see Section II-A). Then,
we describe common heterogeneous cloud architecture
(see Section II-B) and the approaches that CSPs use to
expose the FPGA fabric to remote users (see Section II-C).

A. Field-Programmable Gate Arrays

Modern FPGAs consist of columns of logic blocks and
heterogeneous hardened units, such as block memories
(BRAMs), digital signal processing blocks, external mem-
ory interfaces, transceivers, PLLs, and even processor cores
and GPU fabric [6].

Fig. 1 illustrates a small part of an FPGA die. The basic
and most numerous building blocks of FPGAs are CLBs,

1550 PROCEEDINGS QF THE IEEE J Vol. 111, No. 12, December 2023
Authorized licensed use limited to: Universi

in AMD-Xilinx terminology, or LABs, in Intel terminology.
Each of these logic blocks is a cluster of LUTs, flip-flops,
and carry propagation logic, which further facilitates the
implementation of fast arithmetic circuits. The connectivity
between FPGA building blocks is provided by numerous
wires, which are grouped in horizontal and vertical routing
channels, and routing switches, which can be configured to
make connections between wires.

B. Heterogeneous Cloud Server Architecture

The main computational building block of a data center
is a server. The computational performance of today’s
servers is no longer driven by the growth of the num-
ber of CPU cores but harvested from the heterogeneity
of available computing units. In Fig. 2, we illustrate a
heterogeneous server rack—a physical structure that holds
tens of servers together, along with a rack-level power
supply and TOR network switches. Owing to TOR switches,
servers can access the data center level network and reach
any other server or the Internet; in addition, the servers
within one rack can communicate extremely efficiently
with other servers in that same rack. A server itself can
have a number of peripheral cards and local storage.
A server configuration can be easily adapted by adding a
suitable number of CPU, FPGA, GPU, or other accelerator
cards via PCle interfaces. NICs, which provide a networked
connection between servers and TOR switches, are also
integrated as PCle peripherals. The configuration of servers
across racks normally varies and is dictated by the targeted
applications and desired performance.

The system illustrated in Fig. 2 corresponds to the
single-node accelerator model, deployed by a number of
cloud providers [7], such as AWS, Huawei, Baidu, Tencent,
Nimbix, and Alibaba. However, there are other ways in
which FPGAs can be or already are deployed in data cen-
ters. For instance, Microsoft uses FPGAs to intercept and
accelerate network traffic to servers (a bump-in-the-wire

TOP-OF-RACK NEWORK SWITCHES

GPU acceleration

SERVER BOARD

Local storage =

SERVER

Communication —

RACK LEVEL POWER SUPPLY

Fig. 2. Heterogeneous cloud server architecture.

y of Masséchusetts Amherst. Downioaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

configuration). In their Azure data centers, multiple FPGAs
in a rack can directly communicate with each other, allow-
ing for data center-wide scalability of FPGA workloads [2].
These thousands of FPGAs are not only used to accelerate
packet processing but also for Bing search and machine
learning inference [8]. Baidu uses FPGAs to accelerate
storage, SQL queries, data security, search engines, and
artificial intelligence workloads.

A single-node accelerator model is not the only way
FPGAs could be exposed to users who wish to deploy their
custom accelerator in the cloud. An alternative is a copro-
cessor model, in which an FPGA and a CPU coreside on the
same server card (e.g., Intel’s HARP platform, where the
CPU and the FPGA are connected through a cache-coherent
communication link) or even in the same package (e.g.,
as part of an SoC or an MPSoC). The deployment of
MPSoC server cards in commercial clouds will allow for
improved performance for applications that do not require
an extreme amount of computing resources. It will also
allow an FPGA to offload most network configuration tasks
and simplify FPGA orchestration with the local CPU.

C. FPGA Programming and Accelerator
Deployment

Given their regular spatial architecture, FPGAs are per-
fectly tailored to implement highly parallel and deeply
pipelined circuits. Furthermore, unlike on GPUs, hardware
deployed on FPGAs can be of mixed granularity, ranging
from single bit (e.g., control lines) up to hundreds of
bits (e.g., for AXI interfaces and memories). Designing an
FPGA circuit implies fully describing the functionality of
the desired hardware circuit. Most commonly, the process
uses HDLs, such as VHDL or Verilog, involving substantial
work and competence. To bring FPGA programming closer
to software developers, FPGA vendors have developed
their own programming environments (e.g., supporting
OpenCL [9]) and are also moving toward providing sup-
port for several languages and libraries for application
spaces (e.g., Vitis from Xilinx and Intel’s OneAPI toolkit).

To decouple platform-specific FPGA hardware from user
designs, CSPs employ a shell-role architecture [7], as illus-
trated in Fig. 3. The shell often is comprised of a PCle
interface, a DMA engine, a DRAM controller interface,
virtual JTAG, and other health monitoring and image load-
ing logic. The CSP develops the shell design and specifies
the interface to user-controlled regions (also called roles),
in which custom accelerators can be quickly deployed
using partial reconfiguration. For example, on AWS FPGA
instances, the shell occupies approximately 20% of the
FPGA resources. The separation between the shell and
user regions allows for different privilege levels within
an FPGA design and improves the reuse of user applica-
tions [7]. In addition, the separation guarantees at least
basic protection of the essential FPGA configuration and
communication interfaces, which could otherwise be mis-
configured or misused by customer applications.

Vol. Dece
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,2024 a

FPGA
Shell

User 1 Region
Controllers

User 2 Region

PCIE

User N Region

Memory and network arbitration

Fig. 3. Accelerator deployment model for cloud FPGAs, illustrating
the separation between the shell and the user regions (i.e., user
roles).

The shell generally presents either a host-centric or a
shared-memory programming model. In both cases, the
shell exposes an MMIO control plane for software to man-
age the roles. The main difference between the host-centric
and shared-memory models is whether the roles can issue
their own DMAs. The host-centric model, in which the
user accelerators are unaware of the system memory mabp,
is the more widespread. It yields simpler FPGA hardware at
the expense of increased communication latency between
the CPU and the accelerator, in particular for applications
that frequently perform pointer chasing (e.g., graph pro-
cessing applications such as single source shortest path).

III. THREATS TO CLOUD FPGAs

Since cloud FPGAs have been exposed to remote users,
the attack surface on cloud infrastructures and cloud users
has grown considerably. Some remote FPGA attacks aim to
undermine the confidentiality of the cloud, e.g., by using
side channels to extract secret information from other
users. Others aim to break the integrity of the cloud by
injecting faults into other users’ applications. Last but not
least, DoS FPGA attacks target the availability of cloud
resources. These remote attacks, as we will soon see in
detail, cover a wide landscape of security threats, including
side-channel analysis attacks, IP reverse engineering, hard-
ware Trojan insertion and triggering, new covert channels,
and accelerated device aging. In this article, we will focus
exclusively on successfully demonstrated remote FPGA
attacks. Attacks that are impossible to demonstrate on a
commercial cloud (e.g., because they require FPGA device
tampering or substitution, modified software tools, and
untrusted or corrupted FPGA shell) or which are unrelated
to the cloud FPGA use case (e.g., FPGA bitstream reverse
engineering) are out of scope.

Remote FPGA attacks can broadly be categorized as
electrical- and system-level attacks. In the following,
we describe the two categories of attacks and their cor-
responding threat models.

11, No. 12, OF THE IEEE 1551

mb S <E,
t rom |IEEE Xplore. Restrictions apply.

-
N
S
N
oW
c—
a
e
=0
(9]
e2]
g2]
S
Z
97}

e
01:5

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

On-die capacitors

Die

G4 bumps <)<)<ﬂ>()<)<)(>(f"‘

Package

\\‘ S Package capacitors
P

power pins

LR
VDD power plane _ ».%»
PCB —

On-board capacitors

Ground plane

Fig. 4. High-level model of PDN sharing over a PCB (voltage regulators, power and ground planes, and onboard decoupling capacitors),
device package (power and ground pins, and package capacitors), and FPGA programmable logic (C4 bumps, and power and ground

distribution grid). Dashed lines illustrate the flow of current caused by the FPGA on-chip activity.

A. Electrical-Level Attacks

Electrical-level attacks leverage the electrical coupling
between the adversary and the victim. An effective way
to achieve such coupling in data center FPGAs is via the
shared PDN. Figs. 4 and 5 illustrate PDN sharing across
a PCB, FPGA package, and programmable logic. Due to
the PDN’s inductive, capacitive, and resistive components
included by design or as parasitics, it is almost impos-
sible to completely eliminate PDN side-channel leakage.
Furthermore, maintaining an exact supply voltage level
across the system, boards, chips, and individual transis-
tors is generally impractical, if not impossible, irrespective
of (data-dependent) transistor switching activities. PDN
design usually maximizes reliability so that the amount of
voltage drop is capped and limited to ensure proper chip
timing at runtime. Several efforts have targeted reliable
PDN design [10], [11], [12], [13].

The fine-grained hardware parallelism that makes
FPGAs attractive for cloud applications also poses security
risks. The bit- and wire-level hardware control provided by
FPGAs gives malicious users the power to execute various
electrical-level attacks [14]. For an electrical-level attack to
be successful, an attacker must be able to either pick up the
side-channel information generated by the target (i.e., the
victim) or generate a signal (a disturbance) and inject it in
the shared electrical medium, through which it propagates
to the victim and causes either computational faults or the
failure of the voltage regulator supplying the FPGA. The
stronger the electrical coupling between the adversary and

the victim, the higher the risk of a successful attack. For
this reason, the most common threat model targeting PDN
sharing assumes FPGA multitenancy, where multiple user
applications run simultaneously on the same FPGA.

Fig. 6 summarizes the key features of the threat model
of an electrical-level attack on a cloud FPGA. First, there is
multitenancy. Second, the adversaries and the victims are
physically and logically isolated (i.e., not reusing the same
FPGA resources) although they share the same FPGA die
and interfaces via the FPGA shell. Several attack variants
are shown. In a fault-injection attack (scenario A in Fig. 6),
the adversary uses specially designed FPGA circuits that
draw high currents and, consequently, cause a significant
disturbance in the shared supply voltage. Depending on
the resulting voltage drop, the attack effects can range
from injecting a fault in the victim’s operation (and later
exploiting it) to the reset or unresponsiveness of the entire
cloud FPGA instance (a DoS attack). In the power SCA
(scenario B in Fig. 6), the adversary deploys delay-sensing
circuits to pick up the power side-channel leakage origi-
nating from the victims and uses it to extract their secrets
(i.e., a cryptographic key, the images being classified by NN
accelerators, and so on).

On FPGAs, the shared PDN is not the only electrical side-
channel medium: programmable interconnects (i.e., the
routing wires) have also been shown to leak information.
The threat model of such an attack (scenario C in Fig. 6),
commonly referred to as a crosstalk SCA, considers that
the victim is transmitting secret information over several

1 1 1 1
| on-die VDD and ground grids

Rs pka Leka

Rs,pcs Lece

Repca

Package

Rspcs Lecs

CPCB CPKG

Rspk Leke

PCB and package

Repra

Fig. 5. Electrical model of the PDN illustrated in Fig. 4, emphasizing the serial and parallel parasitic resistance, capacitance, and

inductance.

PROCEEDINGS OF THE IEEE J Vol. 111, No. 12, December 2023 L
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1552 P S C .
Authorized licensed use limited to: Universi

Stojilovi¢ et al.:

Shared, public
communication
channel

l\ de endent
Voltage

ﬂucl’uatlons

' Deslgn wm‘
! , pmcessmg
'\)’tlmmg c\osure a : | secret data

Faulty | victim

Intentionally injects
voltage disturbance

Faulty
data

L—

Shell (Interfaces, hardened logic, isolation between users)

Visionary Look at the Security of Reconfigurable Cloud Computing

LY Ri(t)
VW AERN

Shell (Interfaces, hardened logic, isolation between users)

Fig. 6. Threat model of an electrical-level attack on a cloud FPGA.

cascaded long wires, spanning tens of columns or rows of
FPGA logic elements; such long distances are not uncom-
mon, especially for communication channels between the
FPGA shell and the user partitions. In addition, it is
assumed that the attacker has access to the neighboring
wires and continuously measures and analyzes their prop-
agation delay, knowing that it correlates with the secret
being transmitted [15].

Thermal effects bring about another class of
electrical-level threats (scenario D in Fig. 6), which do not
require spatial multitenancy. Unlike voltage-based attacks
that typically last for a few microseconds (which is why
they concern spatially collocated tenants), temperature
changes take several orders of magnitude longer time to
dissipate. Consequently, temperature can be used as a
covert communication channel [16], [17]. The sender can
enable a heater (e.g., a free-running oscillator maximizing
dynamic power) to raise the temperature, thus encoding
and transmitting one bit of information; similarly, the
sender can let the FPGA cool down to transmit the
opposite value. As soon as the sender vacates the FPGA,
the receiver may load their design with programmable
sensors to read the on-chip temperature and infer the bit
of information sent.

BTI effects are an example of an electrical-level phe-
nomenon that leaves a trace for some time period. BTI
effects physically deteriorate CMOS transistors, negatively
impacting their switching speed [18]. They accumulate
under voltage stress. Hence, FPGA resources holding a
constant value (e.g., a secret key) for a long time are most
affected. When the user vacates the FPGA and the voltage
stress is removed, the transistors recover, slowly reverting
to their previous faster state. An adversary residing on
the same FPGA can monitor the BTI recovery process by
measuring the propagation delay of the targeted FPGA
resources over time [19]. Depending on how the propa-
gation delay evolves over time, the adversary may infer
the secret value previously imprinted by the BTI effects.
Therefore, exploiting BTI effects is a form of an SCA. Given
that the attack targets specific FPGA resources, the threat
model requires the adversary to have knowledge of the
exact placement and routing of the victim design.

BTI effects on FPGAs can be significantly accelerated
with thermal aging. Cook et al. [20] have shown that PUFs

Vol. 11
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,20

built from ROs are particularly sensitive to the frequency
degradation caused by accelerated aging. By surrounding
the FPGA ROs with short circuits (thus exposing them to
extreme heat), their frequencies can be altered. Once the
relative relationships of RO frequencies are adjusted, the
overall PUF response can also be tuned. An adversary with
the knowledge of the exact location of logic and wiring
resources used by the RO PUF can use the targeted aging
technique to imprint the desired PUF response, either
for cloning the response of an authenticated device (an
impersonation attack) or replacing it with an alternative
of their choice. These results highlight the consequences
of accelerated aging and warn against delay-based PUFs in
cloud FPGAs.

B. System-Level Attacks

In the threat model of a system-level FPGA-assisted
attack, an adversary uses the FPGA to attack other parts
of the cloud-based system. For example, the FPGA may be
used to corrupt portions of memory shared with a CPU
or overstress a communication bus shared with a CPU
or other FPGAs. In these scenarios, an adversary requires
access to the FPGA fabric and the ability to influence
privileged CPU software (e.g., operating system, virtual
memory manager, or device drivers). In the case that the
adversary is able to control privileged FPGA logic, such
as the shell, off-chip memory can be compromised (e.g.,
an adversary can intercept memory traffic via the shell).
The host CPU, which is responsible for data transfer and
for FPGA user region (role) configuration, may also be
assumed to be untrusted and independent of any security
mechanism provided by CPU TEEs. Hence, the vulnerabil-
ity of the host CPU to TEE-targeted attacks is typically out
of the scope of FPGA-assisted system-level attacks. Recent
work has focused on creating a TEE specifically for cloud
FPGAs [21]. These architectures allow for the security of
data generated by the FPGAs.

IV. SECURITY VULNERABILITIES

OF CLOUD FPGAs

As introduced in Section III, cloud FPGAs are suscepti-
ble to a variety of electrical-level attacks. To implement
SCAs, adversaries need one or more on-chip delay and

1, No. 12, D OF THE IEEE 1553

GS
rom |IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

(b)

(a)

Fig. 7. Various RO designs, suitable for on-chip voltage sensing. Buffers serve to control the RO frequency; they are optional. (a) LUT-based

RO. (b) LUT-latch RO. (c) LUT-FF RO.

voltage sensors. To inject a fault, force the FPGA to reset,
or accelerate thermal aging, they need power-wasting
circuits capable of drawing excessive current and causing
a substantial drop in on-chip voltage. Given the low-level
hardware control and bit-level programmability of FPGAs,
many such circuits can be implemented. In this section,
we introduce common FPGA malicious constructs (see
Section IV-A) before addressing cloud FPGA attacks in
detail (see Sections IV-B and IV-C).

A. Malicious FPGA Constructs

1) Voltage Sensors: FPGA circuits specifically designed
to be highly sensitive to FPGA logic and routing delay
variations are key enablers of remote power and crosstalk
SCAs. Examples of such circuits are ROs and TDCs.

An RO-based sensor is constructed by creating a loop
whose frequency of oscillation is temperature- and voltage-
dependent. An RO-sensor is typically enabled for some
reference period (i.e., the measurement period), during
which the corresponding number of pulses is counted. The
measured frequency is then used to estimate the changes in
voltage or temperature over time. When the temperature is
approximately constant (as is the case for fast voltage tran-
sients), ROs sense local on-chip voltage variations. Such
sensors have been used for power SCAs [22], crosstalk
SCAs [23], [24], and thermal covert communication [25].
They have also been leveraged to receive covert communi-
cation, where the sender is a CPU, GPU, or FPGA, and the
receiver is an FPGA sharing the same power supply unit in
a data center setting [26].

Fig. 7 illustrates three ROs. The simplest design is com-
prised of an enable signal, a single inverting stage, and,
optionally, one or more buffers for adjusting the oscillation
frequency. This sensor, being a combinational loop, can
easily be detected; indeed, the AWS CSP flags such designs

and does not allow them to be implemented, precisely
because of the security risks they pose. However, it is
not difficult to build alternative RO-based sensor designs.
In Fig. 7(b) and (c) we see two similar constructs, both
free of combinational loops, and thus, it more challenging
to prohibit in a more general context.

ROs need long measurement periods for precision and
are, therefore, unsuitable for side channels that rely on
fast transients. Alternatively, TDCs are often used to over-
come the limitations of RO-based sensors [27] and have
been shown to effectively obtain side-channel information
on FPGAs [28]. In TDCs, each measurement reflects the
delay of a circuit within a single clock cycle by observing
how far through a tapped delay line a signal can travel
during the cycle. This makes TDC sensors suitable for
sensing short transient delay and voltage fluctuations on
the order of a single clock cycle. For example, the TDC
shown in Fig. 8 includes a chain of CARRY8 multiplexers
used as delay stages. The adjustable delay blocks allow
for delay path tuning. Delay-line sensors have even been
used to demonstrate power SCAs on Amazon AWS F1
instances [29], recover the inputs to an NN deployed
on the same instances [30], and recover the information
imprinted via BTI effects [19]. They have also been used to
mount attacks against other integrated circuits on the same
board [31] and against a CPU sharing the same SoC [22].

2) Power Wasters: ROs are not only suitable for voltage
sensing but also for drawing power. They are particularly
efficient power viruses (i.e., power wasters), thanks to
their high oscillation frequency and small footprint, as well
as the ease of instantiating many of them. Similar to
RO-based sensors, several variants of RO-based power
wasters can be built [see Fig. 9(a)-(c)]. One would be
tempted to think that detecting and preventing combina-
tional loops would be a solution; however, the problem

CLK

Adjustable delay

EN (phase shift)

CARRY-8

CARRY-8

Sensor sample

Fig. 8. FPGA implementation of a TDC, with carry propagation logic serving as a delay line.

PROCEEDINGS OF THE IEEE

Wol. 111, No. 12, December 2023

1554
Authorized licensed use limited to: Unlversily of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.:

Visionary Look at the Security of Reconfigurable Cloud Computing

Variable Iatency

Shift reglster

Data /
Key In

High frequency
gPLL c7ock

®

128-bit
AES round

Fig. 9. FPGA power wasting circuits that, when instantiated in large numbers, can cause fault injection or FPGA reset. (a) LUT-based RO
power waster. (b) LUT-latch RO power waster. (c) LUT-FF RO power waster. (d) Glitch-based power waster. (e) CARRY8-based power waster.
(f) Shift register-based power waster, initialized with alternating zeros and ones. (g) AES-based power waster.

is significantly more difficult: power wasters can be built
in a variety of ways, and even benign-looking circuits can
draw excessive current. In Fig. 9(d)-(g), we see examples
of different power wasters—circuits’ harnessing glitches,
CARRYS8 blocks, shift registers, and even AES encryption
rounds [32], respectively. They have been successfully
used for remote fault injection or DoS attacks. For even
more aggressive attacks (e.g., targeted RO PUF aging in
impersonation attacks), short circuits are required [20].

B. Cloud FPGA Attacks

1) Fault Injection and DoS: The use of on-FPGA power
wasters to induce timing delay faults in victim circuits
has been extensively studied. Characterizations of power
waster voltage effects have been performed for localized
attacks [48], dynamic and transient attacks [49], and
attacks targeting the entire FPGA [36]. These charac-
terizations show that voltage manipulations are possible
chip-wide with an isolated power waster due to the FPGA's
shared PDN. Recently, Alam et al. [44] showed that allow-
ing a user to intentionally cause write collisions in FPGA
dual-port BRAMs can also induce voltage and temperature
fluctuations and result in circuit faults. Faults in victim
circuits have also been induced using power wasters based
on AES [40], [50] and glitch generators based on XOR
gates [34], [45].

An assortment of victim circuits has been targeted for
fault injection. Krautter et al. [39] examined the possibil-
ity of injecting faults into an AES core at a number of
operating frequencies and circuit minimum slack values.
In [37], a fault-inducing attack on TRNGs using ROs
was described. The ROs were placed adjacent to TRNGs,

Vol. 11
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,20

and TDCs were used to evaluate induced delay changes.
In [42], RSA encryption was successfully attacked by
enabling power wasters and inducing timing faults. The
faulty output was analyzed to determine the secret RSA
key [42]. Several attempts have been made to inject faults
into machine learning circuits to cause mischaracterization
[45], [46], [47]. Fault injection via voltage manipula-
tion in machine learning is challenging due to model
redundancy and the significant timing margins employed
by FPGA physical design tools [45]. Other application
attacks include stealthy FPGA Trojan triggering [41] and
FPGA-to-CPU undervolting for injecting faults in CPU code
execution [38].

If a sufficient supply of power wasters is simultaneously
enabled, the regulators supplying power to the FPGA
will be reset. Gnad et al. [33] showed that the sudden
activation of thousands of ROs can drive Xilinx FPGAs
into reset, requiring a bitstream reload. Although this
attack results in a denial of service, it is not capable
of stealthily extracting information from an unsuspecting
circuit. Provelengios et al. [50] demonstrated that board
failure for an Intel Stratix 10 FPGA can occur in as little
as 20 us, necessitating an effective remediation approach.

Table 1 summarizes the research on PDN fault attacks.
It compares the attack objectives, attack types (intra-
FPGA or intra-SoC), victim applications, malicious designs
deployed, and the FPGA platforms (including the public
cloud) on which the attacks were demonstrated.

2) Side-Channel Attacks: In addition to fault injection,
on-chip voltage fluctuation caused by victim circuit activ-
ity can be monitored to extract information. A variety
of voltage fluctuation sensors have been crafted and

1, No. 12, D OF THE IEEE 1555

GS
rom |IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Table 1 Comparison of PDN Fault Attacks. Attacks Demonstrated on a Public Cloud Are Highlighted in Bold

Attack objective Type Target circuit (the victim) Malicious circuits (the attacker) Evaluation platform
Single-stage LUT-based RO [33] Virtex 6 (ML605) [33]
Host Glitch generator and long wires [34] Kintex 7 (KC705) [33]
Denial of service Intra FPGA ROs with transparent latch [35] Zynq 7020 (Zedboard) [33]
FPGA (331, [34]. [35] ROs with FFs [35] Zynq UltraScale+ (Ultra96) [34]
’ ’ ROs through carry chain logic [35] Virtex UltraScale+ (Amazon AWS) [35]
Glitch amplification [35] Virtex UltraScale+ (Alveo U200) [35]
19-stage ROs as voltage sensors [36] .
L Intra Adder [36], [32] S;gngle—stage ROsg[36], [37] Cyclone V (Terasic DE1-SoC) [36], [32]
Fault injection . Aria 10 GX (Terasic DESa-Net) [32]
FPGA RNG [37] ROs with FFs [32] Virtex-7 (VCT07) [37]
Shift registers[32]
Intra Software routines:
Fault injection SoC multiplication [38] Single-stage ROs [38] Zynq UltraScale+ (Genesys-ZU) [38]
AES [38]
Cyclone V SoC
DFA on AES [39], [40] Single-stage LUT-based RO (Terasic DE1-SoC [39], [41], [42], [40],
Intra HW Trojan infected AES [41] [39], [41], [42], [40], [43] Terasic DEO-Nano-SoC [39])
Recover the key FPGA Adder [42] 19-stage ROs as voltage sensors [42] Aria 10 GX (Terasic DESa-Net) [42]
RSA [42] AES [40] Lattice Semiconductor iCE40HX8K [40]
DFIA on AES [43] ISCAS’89 51238 benchmark [40] Stratix 10 SX SoC (DE10-Pro) [40]
Spartan-7 (Arty S7) [43]
CNN [44] Dual-port RAM memory collisions [44]
MobileNet-V1 [45] TDC for timing the attack [46], [47] Artix-7 (Nexys 4 DDR) [44]
Degrade network Intra DNN LeNet-5 [46] Single-stage ROs [45] Stratix 10 (Terasic DE10-Pro) [45]
inference accuracy ~ FPGA ResNet-20 [47] ROs with transparent latches [46], [47] Pyng-Z1 [46]
VGG-11 [47], Clock-gated garbled XORs [45] Zynq UltraScale+ (ZCU104) [47]
MobileNetV2 [47] Clock-gated hybrid toggling logic [45]

demonstrated to work (as shown in Figs. 7 and 8) [27],
[28], [36], [56], [57]. For example, Zhao and Suh [22]
demonstrated that RSA encryption activity on a micropro-
cessor could be detected using ROs in the FPGA fabric
when both devices share the same power source. More
common attacks on encryption occur when both the victim
circuit and sensors are located in the FPGA fabric. AES
key information was extracted on a stand-alone FPGA
board [28] and AWS EC2 F1 [29] using a TDC. A TDC was
used to extract a black-and-white image input to a BNN
circuit [30], where tiny voltage fluctuations were used
to differentiate between black and white pixels. In [54],
a TDC is used to identify the operational phases and
parameters of a versatile tensor accelerator.

SCAs that use voltage and electromagnetic effects have
been demonstrated using one or more FPGAs. In [58], ROs
are periodically enabled to reduce on-FPGA voltage. A col-
lection of TDCs is used to measure small voltage changes
as a changed logic value. A similar approach was used
to communicate information across multiple dies (SLRs)
in an FPGA [59]; in this work, multiple ROs are used to
detect communicated values. Finally, when a power supply
is shared, it was shown that communication via on-FPGA
voltage manipulation can be made across FPGA chips [26]
and even across boards that contain FPGAs [26]. It was
found that cross-device communication is more effective
when the on-chip voltage of the receiver is stressed using
RO power wasters.

SCAs in FPGAs can also be carried out using adjacent
long FPGA wires. It has previously been shown [23], [24],
[60] that the delay of a wire differs slightly if the adjacent

PROCEEDINGS OF THE IEEE J Vol. 111, No. 12, December 2023 .
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1556 P S C .
Authorized licensed use limited to: Universi

wire carries a logic “0” or a logic “1.” This difference can
be exploited to extract an AES encryption key [23] from an
unsuspecting victim.

Finally, Drewes et al. [19] analyzed the side-channel
created by BTI effects. On an AWS EC2 F1 instance, they
deployed TDC sensors to track the recovery behavior of the
FPGA routing wires and multiplexers previously exposed
to accelerated BTI effects. They observed a difference in
the recovery behavior, which correlates with the type of
BTI effect (positive or negative) to which the wires and
multiplexers were exposed.

Table 2 summarizes and compares the FPGA voltage and
the long-wire-coupling SCAs.

C. System-Level Attacks

Attacks using cloud FPGAs can have impacts beyond the
FPGA fabric. These devices can be manipulated to disclose
information or generate faulty results from attached mem-
ory, caches, CPUs, and adjacent FPGAs. For example, cloud
FPGAs can be programmed to fingerprint specific devices
to disclose configurations of computing resources in the
data center. Tian et al. [25] used a cloud FPGA to access
PUFs implemented in DRAM. Distinctive DRAM decay pat-
terns help distinguish specific FPGAs in the cloud. A similar
goal was achieved using on-FPGA RO power wasters to
create an identifiable per-FPGA voltage response [35].
Tian et al. [61] showed that PCIe contention could also be
used to map the locations of cloud nodes. If one FPGA
overuses the attached PCle bus, an adjacent resource on
the same bus suffers from excessive bus latency, which

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Table 2 Comparison of Power Side-Channel and Long-Wire Coupling Attacks, Together With Thermal and BTI Side Channels. Scenarios Demonstrated

on a Public Cloud Are Highlighted in Bold

Attack Objective Type Target circuit (the victim) Malicious circuits (the attacker) Evaluation platform
Zyng-7020 (Zedboard) [22
e Intra RSA (SPA attack [22]) ROs as voltage sensors [22] sy}"::tan . ((Saiurzd(r}))[[z 8J]
FPGA AES (CPA attack [28], [51 TDC [28], [51 .
(autack [28], (31D (281, 511 Virtex UltraScale+ (Amazon AWS) [51]
Inter
Recover the key FPGA AES (CPA attack [31]) TDC [31] Spartan-6 (Sakura-G) [31]
Intra OpenSSL AES (CPA attack [52])
R the ki TDC [52 Zyng-7000 [52
ecover the xey SoC Tiny AES (CPA attack [52]) ;521 YR 52
Recover: MLP [53], AlexNet [53], Zyng-7000 SoC (Zedboard) [53]
DNN model [53], VGG16 [53] Zyng-7000 SoC (ZC706) [54]
X X Three-stage ROs . . .
the architecture Intra Versatile Tensor Accelerator It 53] Artix-7 (ChipWhisperer) [30]
as voltage sensors
of NN layers [54], FPGA (ResNet-18, MobileNet v1) [54] TDC [541 1301, [55] Zynq UltraScale+ (ZCU1-4) [30]
BNN inputs [30], Convolution unit of a BNN [30] o ’ Virtex UltraScale+ [30]
folding parameters [55] FINN-MLP with folding [55] Pyng-Z1 (Z-7020 SoC)[55]
Cyclone IV E [23]
Long wire Cyclone IV GX [23]
R the k Intra Long wire at the AES S-box input [23] side-channel leakage Virtex 6 (ML605s) [24]
ecover the ke
y FPGA Long wire carrying AES key [24] sensed with ROs Artix 7 (Digilent Nexys 4 DDR) [24]
[23], [24] Artix 7(Digilent Basys 3) [24]
Spartan 7 (ArtyS7) [24]
Covert communication Thermal Temperature sensors: Heaters: Stratix V [16]
RO sensors [16], [17] Power wasters [16], [17] SmartSSD (with an FPGA) [17]
Recover previous . ZCU102 Ultrascale+ [19]
BTI L s [19 TDC [19
user data g WS (TR (1] Virtex UltraScale+ (Amazon AWS) [19]

is easily identifiable. Contention can, thus, effectively be
used to map out the locations of the interconnected compo-
nents (CPUs, memory, and FPGAs) in AWS EC2 F1 nodes.
PClIe bus contention can also be used as a covert chan-
nel. Giechaskiel et al. [62] showed that a low-bandwidth
channel can be established between two VMs that use
cloud FPGAs via PCle bus contention. A VM can transfer
a logic “1” value to another VM that shares the bus by
programming its FPGA to overuse the bus. The lack of
contention indicates a logic “0” transfer.

Cloud FPGAs have also been used to induce faults in
attached DRAM and caches. Weissman et al. [63] showed
that RowHammer [64] attacks could be efficiently exe-
cuted on DRAM from an FPGA. Bit flips caused by the
attack led to the exposure of an RSA encryption key. It was
also shown in this article that a cloud FPGA could attack
the last level (LL) cache used by an attached CPU creating
a covert side channel.

Table 3 summarizes and compares the research works
on cloud system-level FPGA attacks.

V. REMEDIATION FOR
ELECTRICAL-LEVEL ATTACKS

A body of research investigated remediations against
electrical-level cloud FPGA attacks. In this section,
we introduce and discuss the proposed countermeasures,
highlighting their key features. The strategies against
system-level attacks are discussed in Sections VII and VIII.

A. Protection Against Fault-Injection and DoS
Attacks

Approaches to address voltage-based fault injection and
DoS attacks in multitenant FPGAs can be broken into two

Vol. 111,
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,2024 a

broad classes: bitstream scanning and runtime remedia-
tion. Scanning FPGA bitstreams or intermediate designs
used to generate bitstreams can help identify potentially
malicious logic structures, such as ROs. For example,
Krautter et al. [65] and La et al. [66] have developed bit-
stream scanners that attempt to locate malicious circuits
instantiated in a library. These circuits include ROs, self-
clocked logic, high fan-out circuits, and glitch amplifiers.
Both tools regenerate a netlist from a partial bitstream and
use graph-based algorithms to locate potentially malicious
circuits. Although this approach can locate many types of
circuits, it is, unfortunately, straightforward to build power
wasters that have the same logical profile as legitimate
circuits [see Fig. 9(a)] [32]. Benign-looking constructs
can be used to inject faults [40] or perform SCAs [40].
This makes the job of such FPGA antivirus tools much
harder. Another issue is the balance between false positives
(benign designs that are red-flagged) and false negatives
(malicious designs that escape detection).

During deployment, the software of the CSP should
monitor the activities of various tenants and closely watch
for electrical-level issues [78]. For instance, by identi-
fying suspicious tenants and reacting to voltage surges,
a malicious tenant can be disabled and evicted from
the FPGA fabric before causing harm and impacting
other FPGA tenants [67]. However, the efficiency of such
approaches can be greatly improved by providing proper
support in the technology and toolchain of cloud FPGAs,
allowing for quick deconfiguration of malicious tenants.
Runtime approaches for voltage attack detection typically
involve the use of distributed voltage sensors [27]. Both
Provelengios et al. [36] and Mirzargar et al. [79] use an
array of low-overhead RO-based voltage sensors that can

OF THE IEEE, 1557

1, No. 12, December 2023 bPR?CEEDING “E,
t 01:54:11 ore. Restrictions apply.

01:5

T,

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Table 3 Comparison of System-Level Attacks. Attacks Demonstrated on a Public Cloud Are Highlighted in Bold

Attack Objective

Type

Target (the victim)

Malicious circuits (the attacker)

Evaluation platform

Fingerprinting cloud

FPGA-to-DRAM

Cloud

Decay-based

Virtex UltraScale+

FPGA instances [25]

infrastructure [25]

DRAM PUF [25] (Amazon AWS) [25]

Retrieve cloud configuration;
Reverse engineer
the FPGA instance
allocation algorithm

PCle contention

Cloud
infrastructure [61]

Remote user
transferring data between
CPU and FPGA,
creating PCle traffic [61]

Virtex UltraScale+
(Amazon AWS) [61]

Covert communication
between virtual machines
on FPGA-accelerated
cloud instances;

Use PCle traffic signatures
for covert communication;
Deduce cloud resource

usage by monitoring Side-channel leak
PCle bandwidth of PCle signatures

of cloud users

Cloud
infrastructure [62]

Virtex UltraScale+
(Amazon AWS) [62]

Remote user causing
intensive PCle traffic [62]

Covert communication FPGA-to-FPGA

CPU-to-FPGA
GPU-to-FPGA

between components
powered by the same
power supply unit

Cloud
infrastructure [26]

Kintex 7 (KC705)
Artix 7 (AC701)
Xeon E5645 CPU
Xeon E5-2609 CPU
Nvidia GeForce GPU [26]

Four-stage ROs
(one inverter and
three buffers) [26]

Fault attack on RSA,
leaking the private factors

FPGA-to-DRAM
RowHammer

Shared DRAM [63]

RowHammer attacker

Arria 10 GX PAC [63
from the FPGA [63] e (631

Cache attack
FPGA-to-FPGA
CPU-to-FPGA
FPGA-to-CPU

Cache-based
covert communication

CPU LL-cache,
FPGA cache [63]

Software or hardware
accesmng Ih?-, cache Arria 10 GX PAC [63]
to evict, time,

prime, or reload [63]

identify voltage droops. This information can be used for
remediation. More recent work has shown that TDCs can
identify droops more quickly, allowing for a faster response
time [82].

Since voltage attacks can lead to fault injection (in a
few microseconds) or board reset (in tens of microsec-
onds), attack remediation techniques must be able to
be rapidly deployed. Luo and Xu [81] built a frame-
work that controls the frequency of the target FPGA
applications to avoid timing faults. Provelengios et al. [50]
demonstrated a processor-based approach to suppress syn-
chronous power wasters. Information from voltage sensors
is transferred to an ARM core via a dedicated network. If an
attack is detected, it is localized to a clock region, and
the associated clock is deactivated, stopping the attack.
The remediation approach was shown to suppress voltage
attacks on a Stratix 10 FPGA within 20 us, sufficiently fast
to prevent board reset. In [67], partial FPGA reconfigura-
tion is used to disrupt the operation of loop-based ROs.
The authors determined a configuration sequence that was
able to rapidly deactivate interconnect in a clock region
of an UltraScale+ FPGA, effectively stopping a voltage
attack. Partial reconfiguration was sufficiently fast enough
to suppress a board crash and some timing faults.

B. SCA Remediation

Power SCAs can be defeated if preventive actions are
deployed. FPGA SCA countermeasures can be classified
into two categories: hiding and masking [83]. The goal of

PROCEEDINGS OF THE IEEE l Vol. 111, No. 12, December 2023 -
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1558 P S C .
Authorized licensed use limited to: Universi

hiding is to reduce the signal-to-noise ratio of side-channel
information by increasing noise in the side channel or
equalizing power consumption across computation [74].
Masking requires the processing of randomized data while
ensuring computation correctness [73]. Unfortunately,
both approaches lead to area increases and the possibil-
ity of higher order attacks [83]. For multitenant FPGAs,
remediation approaches against power SCAs have been
developed by Le Masle et al. [75] and Krautter et al. [76].
These approaches use a closed-loop control system to
stabilize the steady-state power consumption of an FPGA
circuit. In the former case, an on-chip RO network is used
to monitor on-FPGA voltage [75]. A PID controller, whose
PID constants are set so that the voltage measured by
the sensors is kept approximately constant, is used as a
control circuit. The latter approach uses a fence composed
of ROs between two neighboring FPGA tenants [76] to
increase the signal-to-noise ratio. The number of active
ROs is controlled by a voltage sensor. The total size of
the fence can be adjusted by the designer of the circuit
to be protected. For an even more effective fence per unit
of area, ROs can be combined with the abundant FPGA
routing resources [77].

Effective remediation approaches against long-wire cou-
pling prevent security-sensitive signals from being routed
in the vicinity of other tenants’ signals. Both CAD and
architectural techniques have been developed to address
the potential risks of crosstalk. Huffmire et al. [68] isolated
risky applications and their signals via moats and draw-
bridges. Yazdanshenas and Betz [69] proposed wrapping

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Table 4 Comparison of the Proposed Protections Against Electrical-Level Attacks on Shared FPGAs

Use of Who should
Applicability FPGA resources deploy them

Protections crs pwr dos flt logic wire clk Type usr vnd csp Disclosure Portable
Krautter et al. [65] o o ¢ © O O O Passive O @) o O N/A
La et al. [66] ® 0 © O O O O Pasi,e O O @ O N/A
Nassar et al. [67] O O o [D) o o o Active O O o O o
Huffmire et al. [68] [D) O o O o o O Passive @ O O O O
Yazdanshenas and Betz [69] © @) o O o o @® Passive O © o o o
Luo et al. [70] ®¢ O O O O ® O Pasie O @ O O [
Seifoori et al. [71] ® O O O O ® O pPasi,e O @ O O o
Luo et al. [72] o O O O O o O Passive O o O o o
Regazzoni et al. [73] O [D) O O o o O Passive o O O O o
Tiri et al. [74] ©c © O O e ® O Ppassive @ O O O [
Le Masle et al. [75] O ©6 O O e ® O Acve O® O O O O
Krautter et al. [76] @) © o O o o @ Active o @) © O O
Glamod¢anin et al. [77] O [D) o O o o @ Active o O (D) O O
Shen et al. [78] o O O e e ®@ O Active @ O O O O
Provelengios et al. [36] O O (D) o o o o Active o O o o O
Mirzargar et al. [79] O O © o o o @ Active O O o o [&
Stott et al. [80] o O o @ o o @ Active ®¢ O O O O
Mahmoud et al. [41] O O O e e ® O Actie @ O O O O
Luo and Xu [81] O O O e e ®@ O Acive @ O O O O

Legend: crs) Crosstalk side-channel attack; pwr) Power side-channel attack; dos) Denial-of-service attack; flt) Fault attack; logic)

FPGA logic; wire) FPGA routing; clk) Clocking resources; usr) Users; vad) FPGA vendors; csp) Cloud service providers; @ Yes;

© Partially; O No; * Conditionally; N/A Not applicable.

roles with wrappers made from FPGA logic. All data trans-
ported to or from a role are encrypted. The approach leads
to an 80% data transport latency increase and a 20% role
area increase. A hardware isolation framework [70], [72]
was developed, which prevents security-critical nets from
using long routing wires. The nets are isolated from other
users’ nets by routing them first and keeping subsequently
routed signals away from them. For long wires that can-
not fit within the design boundaries, wires surrounding
sensitive signals are left unassigned. Seifoori et al. [71]
modified PathFinder, an FPGA routing algorithm, to pre-
vent potential crosstalk. Their approach requires the users
to specify security-critical nets at design time and set
parameters to control the use of wires adjacent to these
nets.

Side channels based on temperature and BTI effects are
best addressed, first, by not allowing aggressive heating (a
strategy effective also against targeted aging attacks aim-
ing at FPGA impersonation [20]) and, second, by allowing
sufficient recovery time between two subsequent FPGA
tenants [16], [17], [19].

C. Discussion

Table 4 summarizes and compares proposed counter-
measures using the following criteria:

1) applicability, if a countermeasure is effective against
more than a single attack type;

2) use of logic, wiring, and clock resources;

3) real-time (i.e., active) application or not real time
(i.e., passive);

4) deployed by users, FPGA vendors, or CSPs;

Vol. Dece
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,2024 a

5) whether design disclosure to the CSP is a requirement
for protection implementation;

6) amount of effort required to port the countermeasure
to an FPGA of another family or another vendor.

We can observe that countermeasures seldom target
more than a single type of attack. Furthermore, they
often require additional FPGA resources. Some are easily
portable between different FPGA families, but many are
not. It is clear that combined efforts by researchers, end
users, FPGA vendors, and CSPs are required to reach a
more general solution or at least a suitable combination
of the existing ideas.

VI. TRENDS IN CLOUD SYSTEM USE
OF FPGAs

Currently, the most widespread model of cloud-level use of
FPGAs is the single-node accelerator model, as discussed
in Section II and illustrated in Fig. 2. In such a model,
an FPGA accelerator node acts as a PCle-attached copro-
cessor, which remote users can access and program with
designs via a host CPU. From the point of view of CSPs, this
model is convenient for a number of reasons. First, CSPs
can quickly and efficiently deploy an FPGA-accelerated
cloud by using off-the-shelf boards, an approach used
by Nimbix and Tencent [7]. Other CSPs, e.g., Amazon
AWS, Baidu, Huawei, and Alibaba, have designed custom
boards and tailored their hardware not only to specific user
requirements but also to their specific data center-level
architecture requirements and upgrades. While custom
board design implies higher startup and maintenance
costs, it provides the freedom of feature selection

11, No. 12, OF THE IEEE 1559

mb <E,
t lore. Restrictions apply.

-
N
S
N
oW
c—
a!
e
=0
(9]
e2]
g2]
S
Z
7]

e
01:5

o
3
m,
T
m,
N
©

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

(e.g., FPGA family, size, I/O port count, and off-chip
memory size and type). Another advantage of the dis-
tributed single-node accelerator model is simplicity. FPGA
instances are easier to orchestrate, and the risk of their
failure affecting a large amount of data center resources
is reduced. In addition, in a single-node accelerator model,
it is straightforward to offer FPGAs as bare-metal resources
using standard FPGA-design tools.

Despite the aforementioned advantages, the single-node
accelerator model is not here to stay. Future models
for cloud system-level use of FPGAs will need to pro-
vide higher scalability, minimum communication and
data transfer latency, virtualization, and sharing of FPGA
resources while addressing the accompanied security risks.
In this section, we first discuss trends in FPGA-accelerator
architectures that address the challenge of scalability and
latency. Then, we give a detailed overview of research on
FPGA resource virtualization.

A. Trends in Cloud FPGA Architectures

Unlike production systems, research architectures are
built with less concern regarding total implementation cost
or security constraints but rather focus on performance
and latency. For instance, to achieve fast FPGA-to-FPGA
communication, a number of research architectures deploy
a secondary network that connects FPGAs across servers.
Examples of such architectures include Microsoft’s Cata-
pult v1 [84], Novo-G# [85], Albireo nodes of the Cygnus
supercomputer system at the University of Tsukuba, and
the Noctua system at the Paderborn Center for Paral-
lel Computing [86]. None of today’s production systems
uses a secondary network, likely because of the cost and
complexity of wiring and additional networking hardware
and the resources needed to secure the system. However,
designers of some production systems are considering pro-
viding fast FPGA-to-FPGA links; specifically, Amazon AWS
is advertising its plans to enable FPGA cards to send or
receive data from an adjacent card at 200 Gb/s, over a
generic raw streaming interface [87].

Another important trend among research architectures
is to directly connect FPGAs to the data center network.
Consequently, FPGAs could be accessed by a CPU or by
another FPGA, leading to good scalability. Some exam-
ples of such architectures include CloudFPGA by IBM
Zurich Research Lab [88], the University of Toronto SAVI
testbed [89] (where a cluster of FPGAs is connected to the
data center network), Enzian at ETH Ziirich [90] (where
an FPGA is connected to the network on one side and
coherently attached to a server-class SoC on another side),
and Microsoft Azure. It is obvious that the security and
reliability concerns inherent to direct network connectivity
of FPGAs limit user FPGA access.

B. FPGA Resource Management and Virtualization

Users of cloud FPGA environments ideally want access
to one or more dedicated FPGA boards without having

PROCEEDINGS OF THE IEEE l Vol. 111, No. 12, December 2023 -
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1560 P S C .
Authorized licensed use limited to: Universi

to worry about resource sharing. However, cloud FPGA
providers can sell FPGA services to more users if they can
virtualize the environment and allow users who do not
take up all FPGA and connected peripheral resources to
share the underlying physical infrastructure. Sharing can
be performed either by giving each user a specific time
period in which to use the cloud environment, also called
slot-based allocation, e.g., [91], or by allowing multiple
users to use the environment at the same time (multite-
nancy). A virtualized view of peripherals can be provided
to make it seem like each user has unique access, e.g.,
[92], [93], and [94]. Multitenancy allows for increased
flexibility and control.

The goal of a virtualized environment is to make it
seem like a user has sole resource access while physically
serving several users at the same time. This approach for
FPGAs is conceptually similar to traditional CPU virtualiza-
tion, which is widely deployed and understood. However,
FPGA virtualization differs in several important ways that
make existing virtualization solutions for CPUs unsuitable.
One important difference is that FPGAs do not execute
sequential programs one instruction at a time but rather
implement parallel circuits, so circuits from different users
run simultaneously. Furthermore, FPGA circuits can con-
tain asynchronous elements that are not directly controlled
by an external clock, so stopping and restarting an FPGA
are not feasible with the current technology. Since FPGAs
are often used for time-sensitive processes, even if there
was a way to interrupt an FPGA and restart it in the same
internal state, it would likely interfere with application
semantics.

To achieve a virtualized environment, external memory
must be remapped to different physical addresses, and
access to the FPGA must be carefully controlled to make
sure that each user cannot interfere with other users on
the same hardware. The same is true for other exter-
nal resources, such as the network or storage systems.
Together a shell and the virtualized peripherals should
create a good logical separation between different users,
even if several users use the hardware at the same time.
However, multiple problems have been presented in the
last few years, which cast doubt on the effectiveness
of this separation technique [15], [24], [39], [59], [60],
[911, [95].

The challenge of data center resource provisioning has
motivated the development of platforms that allow data
center managers to monitor the network and modify,
in real time, the amount and type of compute resources
given to each application. Examples of such platforms
are OpenStack [96] (a free and open standard for cloud
computing platforms) and Kubernetes [97]. While these
platforms orchestrate the entire data center, they require
individual components on each server to provision its
resources. Furthermore, these platforms are currently lim-
ited to provisioning CPUs. For heterogeneous servers,
extending and redesigning the existing orchestration plat-
forms to include other types of computing components are

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

Table 5 Trends in FPGA Virtualization Architectures

Access FPGA Spatial On-chip

method regions sharing comm.
Byma et al. [105] 10 GbE X 4 X
Chen et al. [103] PCle 4 v X
Fahmy et al. [106] PCle 4 v X
Weerasinghe et al. [107] 10 GbE 1 X X
Asiatici et al. [108] PCle 3 4 X
Vesper et al. [109] PCle 4 v v
Tarafdar et al. [110] 10 GbE 1 X X
Zhang et al. [111] PCle X v X
Mbongue et al. [104] PCle 4 v v
Mbongue et al. [92] PCle, Ethernet 6 v v

necessities. In particular, provisioning and sharing FPGA
resources require an entirely new solution for resource
virtualization [98], operating system support, and FPGA
programming (i.e., bitstream file creation and partial
reconfiguration). Processor virtualization relies either on
instruction set translation or hardware support with tech-
nologies such as Intel Virtualization Technology (Intel
VT) [99]. Alternative approaches are needed for FPGAs.
Two common approaches for FPGA resource management
are slot-based allocation and FPGA overlays.

In slot-based FPGA resource management [7], [100],
[101], [102], an FPGA is divided into several reconfig-
urable regions, in which user FPGA circuits can be mapped
at runtime via reconfiguration. These regions may or may
not be symmetric, i.e., use similar or identically sized slots.
In an example of slot-based FPGA virtualization [103],
an FPGA is divided into four regions, while the architecture
multiplexes FPGAs by dynamically assigning resources.
The main limitation of the architecture is the lack of
on-chip communication between regions, resulting in a
considerable data-copy overhead when such a transfer
is required. To address the above issue and reduce data
movement overhead, Mbongue et al. [94], [104] and Yaz-
danshenas and Betz [69] make use of the FPGA on-chip
interconnect. A number of research proposals for FPGA
virtualization architectures are listed in Table 5. In addition
to the solutions listed in the table, commercial solutions
from VMAccell and InAccel offer complete frameworks.
The VMAccel software is based on OpenStack, Docker,
and Kubernetes, while InAccel software contains high-level
APIs in C/C++, Java, and Python and a unified engine to
support a heterogeneous multiaccelerator platform.

FPGA overlays, also called intermediate architectures
or fabrics [112], offer an alternative to FPGA partition-
ing. Overlays abstract away the low-level FPGA hardware
components (e.g., LUTs, flip-flops, and DSPs). Higher level
coarse-grained processing elements, also called CGRAs,
are implemented and can be programmed at runtime
through software-level function calls. These elements are
connected using interconnect topologies that allow both
parallel processing and easy data exchange [7], [113],
[114], [115], [116]. CGRAs are often supported by
compilers that can map popular software programming
languages. By abstracting away the low-level hardware

Vol. 111, 1
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,

details, overlays also allow faster FPGA development
cycles.

Virtualized FPGA hardware requires an operating-
system and hypervisor interaction. Previous work [7]
has addressed the challenge of allowing spatial [101],
[103], [105], [117]1, [118], [119], [120], [121], [122]
and temporal multiplexing [103], [117], [118], [119],
[121], [122], [123], [124], [125] of FPGA resources
and facilitating integration of FPGAs in data centers
and the cloud. The application of a traditional oper-
ating system resource abstraction to FPGAs has been
recently explored by Korolija et al. [126]; the authors
implemented a portable and configurable shell for FPGAs,
which supports secure spatial and temporal FPGA mul-
tiplexing, virtual memory, communication, and memory
management inside a uniform execution environment.
Optimus [127] is a hypervisor that supports scalable
shared-memory FPGA virtualization while offering spatial
multiplexing of up to eight physical accelerators on a
single FPGA and temporal multiplexing to overprovision
each of these accelerators. To isolate each guest’s address
space, Optimus uses the technique of page table slic-
ing as a hardware-software codesign technique. Another
example is FPGAVirt that uses Virtio, an I/0 virtualization
framework initially implemented for Linux environments,
to provide communication interfaces between the host VM
and FPGAs [104]. In FPGAVirt, an FPGA is abstracted
away as an overlay architecture consisting of a 2-D array
of routers and programmable processing elements, where
each processing element is a virtual reconfigurable func-
tion. Zha and Li [121] developed the VIiTAL framework
that supports dynamic fine-grained resource management
by abstracting heterogeneous resources of FPGA clusters
into a homogeneous view of an array of virtual blocks
and partitioning and mapping user applications onto those
virtual blocks. In ViTAL, each block has the same type and
amount of programmable resources and the same inter-
face to the peripheral devices; furthermore, virtual blocks
deployed on the same or different FPGAs use identical
intrablock communication interfaces. The resulting illusion
of a single and infinitely large FPGA reduces the program-
ming complexity and enables scale-out acceleration. As a
follow-up, Zha and Li [122] developed Hetero-ViTAL to
address the challenges of heterogeneous FPGA clusters
and demonstrate that adding a system abstraction as an
indirection layer between application-specific instruction
set architecture and hardware-specific abstractions sub-
stantially reduces resource management complexity [125].

Although scheduling is a well-established technique for
CPUs, state saving makes it a challenge for FPGAs. For
preemptive scheduling, capturing and restoring the state
of an accelerator can be prohibitively complex because
the accelerator state can be spread out across a large
amount of FPGA resources (LUTs, flip-flops, BRAMs, and
so on). Saving and restoring the state have been shown
to take between microseconds to milliseconds, exclud-
ing partial reconfiguration latency [128]. In comparison,

1, No. OF THE IEEE. 1561

2. Decemb S <E,
2024 at rom |IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

nonpreemptive scheduling is less costly, as the accel-
erators run to completion. Asiatici et al. [108] proposed
dynamic scheduling that takes advantage of the free slots
available at runtime to improve resource utilization and
performance. Similar to nonpreemptive scheduling, coop-
erative scheduling can operate with minimal overhead,
e.g., by offering context switching only when an acceler-
ator reaches an execution checkpoint [129].

VII. SECURITY CHALLENGES FOR
NEXT-GENERATION CLOUD FPGAs

This section presents an overview of the security challenges
likely to be faced due to current and expected trends in
cloud FPGAs.

A. Memory Timing and RowHammer

When cloud data are remapped to a different part of
the available physical memory, the user loses fine-grained
control over where data are placed relative to other
data blocks. Memory sharing and remapping inevitably
change the timing of memory access, which can lead to
reduced performance or, in the worst case, allow a user
to deduce information about other users in the system,
e.g., [130]. This issue occurs because the activity of other
users changes the physical location of data in memory,
and even if a physical address is hidden, it is still possible
to use timing to deduce memory activity such as cache
misses [131]. Such cache timing attacks have been used in
the past to extract encryption keys and other secrets from
memory [22], [28], [31]. It might also be possible to use
RowHammer-like attacks [39], [63] to change a value in
memory that a user is not permitted to access.

B. Emerging Electrical Threats

Given the virtualization of the FPGA fabric in the cloud
and “FPGA as a Service” models, there are additional types
of electrical vulnerabilities, threats, and attacks, beyond
those discussed in Section IV, which may arise. The cloud
provider that rents the FPGA resources needs to ensure
that FPGA devices are not vandalized or improperly used.
For instance, intentional overaging may result in damage
to the FPGA fabric or a significant reduction in the remain-
ing useful lifetime of the FPGA. In the context of untrusted
FPGA IP cores, FPGA Trojans may be able to perform
electrical-level attacks after a trigger input sequence is
used. The trigger and payload parts of the Trojan could
exploit electrical-level vulnerabilities, which are then also
embedded in the IP core, making it stealthy and hard to
detect.

Newer FPGAs (e.g., Xilinx Virtex UltraScale+ and Kintex
UltraScale) are partitioned into SLRs, which are separate
structures that are analogous to cores in a modern CPU.
This isolation can assist virtualization and resource sharing
since each user can be assigned a single SLR; however,
it has been shown that it is possible to communicate
between SLRs through power fluctuations, even if no direct

PROCEEDINGS OF THE IEEE l Vol. 111, No. 12, December 2023 -
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1562 P S C .
Authorized licensed use limited to: Universi

wires connect the two regions [59]. Cross-SLR attacks are
extremely hard to prevent because they utilize the physical
properties of the underlying device (e.g., a shared PDN).
This issue is likely to become more pronounced as the
number of SLRs per device increases.

C. Coordinated Attacks

There are also new sets of vulnerabilities, which may
arise when the FPGA fabric is cointegrated with other
cloud components, such as CPUs and GPUs. This integra-
tion may lead to more powerful coordinated attacks in
which the adversarial collaboration on both processor and
FPGA sides may render existing countermeasures ineffec-
tive. Moreover, processes running on the processor or GPU
may become new victims in such scenarios.

D. System-Level Attacks

The spectrum of system-level attacks and remediations
that will affect cloud FPGAs is likely to follow the attacks
present in current CPU-dominated systems. As FPGAs are
integrated into the data center memory hierarchy, timing-
based cache attacks in which specific instructions and data
values are extracted from shared caches [132] are likely to
increase. These types can be addressed in some cases by
isolating cache addressing [133], limiting sharing among
VMs that use FPGAs.

The use of bus contention as a covert channel is a
concern for both CPU and FPGA compute elements. FPGAs
may be used to extract machine learning [134] and encryp-
tion key values [135] from PCle bus traffic between third
parties, an approach previously used with GPUs and CPUs.
New approaches to balance and mask bus traffic may
be needed to prevent contention and snooping-based bus
attacks.

Finally, FPGAs have been shown to be efficient in per-
forming RowHammer attacks on DRAM. New approaches
to isolate sensitive values in memory, similar to BlockHam-
mer [136], may be used to separate global FPGA data from
malicious activity by other users. However, an increase in
interest in remote DMA and resource disaggregation may
make the secure orchestration of memory locations more
difficult [137].

VIII. SECURITY TECHNIQUES FOR
NEXT-GENERATION CLOUD FPGAs

To secure the next generation of FPGAs, designers should
act at different layers and should use and combine several
technologies. The hypervisor is the most natural module
where security techniques and components, such as mon-
itors, could be integrated and where security properties,
such as isolation, could be verified and enforced. FPGAs
are reconfigurable by nature. This provides designers with
the flexibility to counteract SCAs but also to quickly
address attacks targeting specific cryptographic algorithms
by updating the algorithm implementation. Security in
FPGAs can also be improved through changes to device

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

architecture. These changes could make a device more
resistant to certain attacks or make devices more suitable
for cryptographic primitive implementation. Finally, the
role of CAD tools in the security of cloud FPGAs should
not be underestimated. CAD tools could potentially verify
security properties or construct systems that are secure by
design. However, if used without care, CAD tools could
negatively affect security. The remainder of this section
discusses the most promising techniques for securing the
next generation of cloud FPGAs and their development.

A. Hypervisor-Based Monitoring

In a cloud setting in which resources are shared across
multiple tenants, security and isolation are paramount.
It is typically the duty of the cloud provider to ensure
both features. One approach to providing security and
isolation is to integrate monitoring functionality into a
hypervisor. Monitor implementations include dedicated
circuits and programmable modules that implement the
needed security policies. In general, a monitor is a ded-
icated component (often a dedicated circuit, but it can
be a software routine running on a microcontroller) that
analyzes and promptly detects anomalous behavior that
can be classified as malicious. In principle, monitors can
be inserted into a system by designers or by the cloud
provider. Designer-inserted monitors (sensors) in FPGAs
would need to be managed carefully since the same struc-
tures used by some sensors (e.g., ROs) can also be used
by attackers. In CSPs providing monitoring, the privacy of
users must be ensured.

A step beyond the use of monitors is the development of
complete hypervisor frameworks to provide isolation. For
example, Hategekimana et al. [138] proposed a security
framework to control the sharing of hardware modules
in a heterogeneous cloud system composed of CPUs and
FPGAs. The framework is derived from MAC-based hyper-
visors, and it is adapted to guarantee the isolation of
hardware accelerators in shared FPGAs. The goal of the
framework is to ensure that hardware monitors reside
and are executed in the same security context as the VM
that called them. This goal is achieved by managing the
privileges of the guest VMs at the software level.

B. Hypervisor-Based Remediation

Despite the number of approaches addressing the chal-
lenge of FPGA virtualization and operating system support,
current research lacks a comprehensive solution against
the electrical-level attacks detailed in Section III. FPGA vir-
tualization currently addresses physical isolation between
tenants (spatial isolation within the reconfigurable fabric
or memory address space isolation). However, as seen in
Section III, isolation alone cannot prevent intrachip and
interchip electrical coupling. To that end, future hypervi-
sors need at least the following three mechanisms: first,
a mechanism to prevent (to the extent possible) a mali-
cious design from being deployed in the cloud; second,

. . - o Vol. 111, 12, Dece
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,2024 a

a mechanism to detect an ongoing electrical-level attack;
and last but not least, a safe way to migrate the state of the
FPGA accelerator that is potentially affected by the attack.
The first mechanism requires, for instance, having the
FPGA design software discard potentially malicious accel-
erators or forcing the user to create an alternative built
with trusted primitives. The second mechanism requires
the implementation of one or a combination of tech-
niques detailed in Section V. Finally, the third mechanism
requires the development of solutions for reliable and fast
checkpointing, including error recovery, since hypervisor
reaction time will inevitably be orders of magnitude longer
than the time required by a fault-injection attack.

C. Use of FPGA Reconfiguration for Security

Reconfiguration is a powerful feature that FPGAs can
use to ensure security. For example, reconfiguration is
a useful tool for providing crypto-agility, which provides
the capability of updating security primitives when they
become obsolete or vulnerable to attacks that were not
known when a system was deployed. This feature is clearly
useful in the context of the cloud, especially when the
deployment of not-yet-standardized algorithms is needed
(as is the case of lightweight primitives or postquantum
algorithms). Reconfiguration has also been explored as a
possible way to mitigate side-channel attacks [139]. The
principle on which this countermeasure is based is that it is
hard to profile a device that keeps changing. This approach
could also be a promising way to mitigate attacks in cloud
settings. To ensure effective security using reconfiguration,
the reconfiguration manager must not be compromised
since this action would allow the use of a malicious bit-
stream or access to hardware resources by unauthorized
software. To mitigate this problem, authentication modules
paired with appropriate procedures for key management
and challenge-response protocols for authentication could
be used, and communication to and from the hardware
accelerators could be secured. It may be possible to rely
on classical encryption [130] and access control mech-
anisms [140] to perform these actions. It is, however,
necessary to ensure that they are resistant to physical
attacks.

D. FPGA Architecture Enhancement

Many of the attacks on multitenant FPGAs are a result
of the FPGA’s shared PDN. Unlike multicore microproces-
sors that typically have isolated power islands for each
processor core [141], the PDN in individual FPGAs is
not electrically isolated. Several research projects have
examined allowing for tunable voltage for both logic and
interconnect. Ahmed et al. [142] suggested optimizing the
LUT design to render its input-to-output delays less vari-
able with the change of supply voltage. They tried gate
boosting the LUT, decoding the slowest two inputs of the
LUT, and using separate voltage islands for the LUTs and
routing. Although their work is not motivated by voltage

1, No. 12, mber 2023 bPR?CEEDING OF THE IEEE 1563
t 01:54:11 plore. Restrictions apply.

o
3
m,
T
m,
)

e
0

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

attacks but dynamic voltage scaling, the idea of enhancing
the FPGA architecture is certainly promising and worth
exploring in the power SCA context. Ebrahimi et al. [143]
use a combination of hardened and reconfigurable logic to
address changes in power consumption, as needed. Sev-
eral projects have examined dynamically controlling the
voltage for FPGA regions. Gayasen et al. [144] provided
selectable voltages for interconnect and logic in a logic
cluster. More recent work examined voltage selection for
regions of logic clusters [145]. Giechaskiel et al. [59]
described the possibility of isolating each SLR on a separate
PDN although an implementation was not provided.

As mentioned in Section V, voltage sensing is a key
component of voltage attack remediation. Although cur-
rent FPGAs typically contain one (or a small number)
of low sample rate hard voltage and thermal sensors
[146], [147], more would be needed for a fast, reliable
remediation strategy. Soft voltage sensors remain a viable
option (e.g., Zick [27]) although they often have TDC
structures that could be construed as malicious. AWS EC2
F1 currently employs an external power monitor [148] to
identify power attacks consuming more than 80 W. Attack
detection results in FPGA shutdown.

The use of sensors has limitations. If sensor data collec-
tion is supported by the shell, the trustworthiness of the
shell becomes an issue. Even if the shell is trusted, the
data collection and processing may take too much time to
prevent the attack. Finally, the sensors themselves can be
affected by the attack (e.g., a TDC can be decalibrated and
recalibration can take an extended time).

Several architectural enhancements could improve
an FPGAs ability to respond to a voltage attack.
Nassar et al. [67] showed that partial reconfiguration can
suppress an RO-based voltage attack in as little as 1.5 us
in an UltraScale+ FPGA. However, even faster dynamic
reconfiguration approaches (e.g., a “kill” signal) could be
considered if an attack is detected. Although not used
for fault suppression, Vipin and Fahmy [149] developed a
fast partial reconfiguration approach that could be used.
Finally, FPGA communication could be isolated logically
and electrically via NoC interconnection. Yazdanshenas
and Betz [69] previously demonstrated this effective secu-
rity approach.

Additional FPGA architectural changes can be con-
sidered to suppress SCAs. Recently, several approaches
have attempted to reduce the amount of PDN informa-
tion leakage. One idea is to use converter gating and
distributed voltage regulators to reduce the amount of
switching-dependent fluctuations on the PDN [150]. Other
approaches use current flattening circuits against DPA
attacks [151] or power profile scrambling [152], [153].
Such methods would extend existing hiding techniques
(see Section V-B). In general, it will be important to design
PDNs with security constraints in mind. Although it is likely
impossible to fully remove PDN information leakage, it can
be suppressed to a certain level such that, together with
solutions at higher abstraction levels, leakage is practically

PROCEEDINGS OF THE IEEE l Vol. 111, No. 12, December 2023 -
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1564 P S C .
Authorized licensed use limited to: Universi

removed. In more advanced technology nodes, due to
tighter wire pitch, the parasitic resistance and capacitance
of wires increase, which, in turn, amplifies the amount
of observed leakage through voltage fluctuations. This
behavior further highlights the need for secure PDN design
for cloud FPGAs.

At the design level, one can consider design styles that
are inherently less susceptible to electrical-level leakage.
A promising solution is DRL. It may be possible to provide
proper circuit-level support to implement DRL efficiently
in an FPGA fabric [154], [155], [156]. Since mapping DRL
to an existing FPGA fabric does not allow for glitch-free
design, it is necessary to redesign the FPGA fabric and
design tools to allow for more efficient DRL realization of
masked designs on FPGAs. In addition to the increased
hardware design costs and associated performance and
power overheads for mapped designs, toolchain compat-
ibility is another concern. The effective realization of
dual-rail logic and other masking schemes on FPGAs
requires the support of design automation and mapping
tools. For instance, the two rails of the logic must be routed
to minimize delay differences.

E. FPGA CAD Enhancements

FPGA mapping and physical design have a considerable
impact on the amount of information leakage at the elec-
trical level. An analysis [157] showed that the effect of
physical design and mapping on the amount of information
leakage between two tenants, measured in the number
of traces needed to perform a CPA attack on the AES
implementation, could be more than 100x. This is both
good news and bad news since many countermeasures
have the same level of effectiveness. As a result, some
countermeasures could be almost nullified by ignoring the
effect of physical design and wrongly mapping a trusted
(victim) tenant in a very sensitive region of the fabric.
However, by carefully choosing the region and physical
design of the victim tenant and the floorplanning and
placement of the potentially malicious tenants, more than
100x protection can be achieved at no extra hardware
costs (including online monitoring, wrapper circuitry, and
so on).

This highlights the importance of FPGA CAD in suppress-
ing electrical-level information leakage. One challenge that
cannot be fully ignored is the impact of chip-to-chip vari-
ations. As a result, the final mapping of the victim and
untrusted tenants should be fine-tuned to the specific FPGA
board. In addition, the design of proper wrappers (around
the victim tenants) and sandboxing (around the untrusted
tenants) should be automated and included as a part of
a secure FPGA mapping flow. This further highlights the
complexity of such attacks and potential countermeasures,
given various dependencies on the respective placement
of the victim’s and attacker’s blocks, as well as the spe-
cific boards, which can relatively increase (or reduce) the
attack and countermeasure efficiency multiple fold. Such

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

still-open research challenges motivate further research on
this topic to find suitable solutions.

E Trust in FPGAs and Their Components

FPGAs largely rely on IP cores for the development of
complete systems. This approach is also used for systems
deployed in the cloud. The use of third-party IP cores
(which, in cloud FPGAs, is even more common than in
stand-alone reconfigurable devices) brings several chal-
lenges related to the trust of components and the entities
involved in the design and deployment chain. A model
of trust for current cloud-based FPGAs is summarized by
Turan and Verbauwhede [158]. The model considers three
main entities: the platform provider, the accelerator devel-
oper (who develops accelerators for specific tasks), and the
application developer. The platform provider trusts neither
the accelerator developer nor the application developer.
The accelerator developer, instead, is required to trust the
platform provider (for instance, providing the accelerators
in a nonencrypted form). In this scenario, a malicious
platform provider can comprehend the IPs created by
the accelerator provider. Finally, the application provider
must trust both the platform and accelerator providers.
Among the model limitations, the authors report that only
platform providers are protected.

To address the limitations of the current model, it is
necessary to include mechanisms to protect IP providers
from piracy or other similar illegitimate use of their IPs.
Common IP protection methods proposed in the litera-
ture involve encryption at the bitstream level [158]. For
these methods to be successfully ported to future cloud
FPGAs, challenges such as cryptographic key management,
simulation, and debugging of the interoperation of the
encrypted IP bitstreams with other hardware blocks will
need to be addressed [158]. Some published works rely
on a TTP [159], [160], [161], [162]. Turan and Ver-
bauwhede [158] argue that, in the cloud FPGA context,
TTPs could be involved as entities responsible for crypto-
graphic key management. In addition, having TTPs take a
share of the license fee of each IP core via a pay-per-use
licensing scheme could further incentivize TTPs to invest
in protecting the IP cores they offer.

The importance of IP protection has motivated the rise
of start-ups. An example is Accelize, whose business model
involves designing custom accelerators for customers and
supporting third-party developers to offer their accelera-
tors to Accelize clients. The protection is achieved using a
proprietary DRM solution, compatible with various FPGA
accelerated cloud platforms. Their DRM wraps the IPs,
protects them (via a licensing scheme), and meters the IP
use. The obvious downsides are the required trust in a third
party (which is Accelize itself) and the added cost for end
users.

G. Single Tenancy Versus Multitenancy

Considering electrical-level attacks enabled by FPGA
multitenancy, an alternative strategy would be to run

Vol. 111, 1
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,

each tenant on a separate FPGA. However, resorting
to this extreme policy would erode most of the gains
from FPGA cloud virtualization and significantly increase
upfront investment in the FPGA fleet. Smaller FPGAs
would incur more costs at the board level and create a
communication bottleneck, which may not be economical
or high-performing. As a last security resort, some users
might opt to have their own FPGA units and avoid mul-
titenancy. Therefore, hybrid FPGA fleets containing many
large and high-performance FPGAs for multitenancy and
a limited selection of smaller FPGAs for single use for
security reasons might be favorable.

IXx. LESSONS LEARNED AND NEXT
STEPS

In the previous sections, we discussed various electrical-
level attacks for cloud FPGAs and countermeasures to deal
with them. Here, we summarize some of the key takeaways
from the research performed over the past several years on
this topic and provide some insights for the next gener-
ation of secure FPGA platforms to be deployed in cloud
computing.

A. Lessons Learned

Our main takeaways can be grouped into three topics:
leakage, mitigation mechanisms, and deployment updates.
In this section, we discuss each in turn.

1) Electrical-Level Leakage Is Unavoidable: Because
FPGAs, and indeed any integrated circuit, have a common
electrical medium throughout the chip, electrical-level
leakage will always be unavoidable to some extent. This
problem is made worse by the shared PDN in many inte-
grated circuits. Such fundamental electrical relationships
between different parts of a chip inherently undermine any
attempt at isolation at the logic level and above.

On cloud FPGAs, electrical-level attacks are made more
difficult in the presence of additional activity by other users
and the shell, but, with more samples and postprocess-
ing, they remain feasible. Varying victim and adversary
locations on the FPGA have generally failed to completely
isolate different users from each other. Providing complete
isolation at the electrical level is, if not impossible, imprac-
tical and extremely costly. A certain level of information
leakage should be the underlying assumption for all secu-
rity solutions for cloud FPGAs.

2) Mitigation Mechanisms Are Required Across All Levels:
Since electrical-level leakage is fundamentally unavoid-
able, design-level solutions for electrical-level isolation are
also incomplete and cannot fully suppress the leakage.
However, despite the fact that the problem cannot be
entirely eliminated, there is a need for runtime solutions
that predict, detect, and mitigate electrical-level attacks.
This could be in the form of treating important data in
such a way that leakage has minimal impact, e.g., avoiding
transferring encryption keys between different parts of a

1, No. OF THE IEEE. 1565

2. Decemb S <E,
2024 at rom |IEEE Xplore. Restrictions apply.

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

design. There is a need for a holistic cross-layer approach
for secure FPGA platforms from design to deployment.

3) Continuous Updates of Deployed Measures Are Required:
New electrical-level attacks are continuously being found,
and existing attacks have become more stealthy, evad-
ing existing countermeasures. Often, new attacks are
not fundamentally undetectable; they just evade existing
countermeasures. This point highlights the importance of
continuously updating a deployed system to ensure that it
stays resistant to new attacks. There is a constant need to
update coordinated countermeasures at all levels of design
and deployment.

Some of the specific insights from existing research on
cloud FPGA vulnerabilities and countermeasures are given
as follows.

1) Side-channel attacks can be made harder in the
presence of noise, which is the basis for hiding coun-
termeasures. Noise can be deliberately generated by
the victim (to protect itself). However, the presence
of noise can be outside the control of the victim
or the adversary, as it could be caused by other
accelerators or the shell. Due to this noise, sensor
readings may be misleading (both for SCAs and attack
detection/mitigation). Also, using sensors to control
noise generators (e.g., a noisy fence) can be subopti-
mal given that sensors pick up the voltage variations
caused by all the activity on the chip.

2) Noise generators (as part of a fence) have to be imple-
mented carefully to ensure that the added noise does
not destabilize the PDN, making it more vulnerable
to unwanted (benign) reliability faults in a cotenant
or making the tenant design more vulnerable to fault
attacks.

3) FPGA power wasters can be misused to inject com-
putational faults in the CPU or other components on
the same SoC, so protections must be extended to
other components besides the shell/logic. By using
the common PCle bus and other system interfaces
and buses, fault injection and side-channel attacks
originating from the FPGA can affect other system
components.

4) Isolating shell logic and wiring is mandatory, given
that tapping into wires (e.g., via crosstalk) could
reveal secrets.

5) The techniques and strategies used to provide security
may vary greatly, depending on whether or not mul-
titenancy is supported. Even without multitenancy,
there is still leakage between the processor and the
other parts of the system (CPU, GPU, and networks)
through the PCle bus, enabled by the common PDN,
which should be mitigated.

B. Next Steps

To tackle these new FPGA security challenges for cloud
usage and ensure secure and efficient FPGA virtualization
in the cloud, there is a need for a set of orchestrated

PROCEEDINGS OF THE IEEE l Vol. 111, No. 12, December 2023 -
y of Massachusetts Amherst. Downloaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

1566 P S C .
Authorized licensed use limited to: Universi

solutions. These solutions span a spectrum from the design
and fabrication of a secure FPGA fabric to the secure map-
ping of user designs to FPGAs using a mapping toolchain,
secure FPGA CAD tools, and hypervisor deployment strate-
gies. Thus, the fabric and toolchain for secure cloud
FPGAs might look very different from today’s systems.
Solutions should also consider fabrication (secure FPGA
fabric against electrical-level attacks), design (the design
of primitives and wrappers to mitigate information leak-
age and fault attacks), mapping (automating the modular
design of secure designs to ensure proper isolation at
the electrical level), and deployment (proper offline and
runtime mechanisms by the hypervisor).

Given the nature and medium of electrical-level leak-
age, it is imperative to secure the FPGA fabric against
electrical-level attacks. PDNs should be designed with
security constraints in mind. One approach is to sup-
press information leakage at the PDN level. Although
it may be impossible to fully remove PDN information
leakage, it may be suppressed to a certain level such that
together with higher abstraction levels, leakage is prac-
tically removed. Another approach is to provide voltage
islands for separate tenants on the same FPGA fabric.
In more advanced technology nodes, due to tighter wire
pitch, the parasitic resistance and capacitance of wires
increase, which, in turn, amplifies the amount of observed
leakage through voltage fluctuations. This issue further
highlights the need for secure PDN design for cloud FPGAs.
This approach, of course, comes with extra overheads in
terms of routing, chip area, potential delay, power, and
design closure.

Design automation toolchains for FPGAs should become
aware of such electrical-level vulnerabilities and should
support automatic analysis and identification of malicious
constructs and potential leakage, as well as integration
of proper countermeasures and wrappers into the FPGA
designs. An extension of the signal integrity analysis check,
with all PAX, may be required to analyze the potential
leakage and embed proper countermeasures in the design
to counter it. Of course, this adds extra complexity to the
overall FPGA design and mapping toolchain, and clever
solutions are required for tractable design closure and
sign-off.

Proper protection requires both offline and online meth-
ods. Tenant designs must be certified against known
malicious behaviors before being loaded into cloud FPGAs.
This certification includes hypervisor checking of the ten-
ant design and bitstream, and potentially the source
RTL, against known malicious activities and constructs.
This activity includes both static (structural) checks and
dynamic checks using accurate timing simulation. Due
to the stealthy nature of such malicious constructs,
machine-learning approaches that automatically learn
and generalize offline countermeasures and machine-
learning-based anomaly detection approaches executed at
runtime that can predict and prevent attacks seem very
promising.

Stojilovi¢ et al.:

R

Design Synthesis/
HDL/HLS /RTL / ’Implementation

User

Visionary Look at the Security of Reconfigurable Cloud Computing

| //

FPGA Image
Creation

Design Rule
Checks

Deployment

Allocation

Qoﬁ . ’ Cloud Instance

-]

FPGA Image
Deployment

—

Hypervisor

Possible logical isolation,
yet with common PDN;
Underutilisation

1

Fig. 10. Today’s solutions for design deployment on cloud FPGAs. Even though the tools can achieve logical isolation between multiple

tenants, due to electrical-level security issues discussed in this article, the entire FPGA gets allocated for one user.

There likely will be new vulnerabilities and associated
attack vectors related to FPGA deployment in cloud set-
tings. In the context of untrusted FPGA IP cores, the issue
of FPGA Trojans performing electrical-level attacks should
also be considered. The trigger and payload parts of the
Trojan could exploit electrical-level vulnerabilities that are
embedded in the IP core, making them stealthy and hard
to detect.

Vulnerabilities may arise when the FPGA fabric is
cointegrated with other cloud components, such as micro-
processors and GPUs. This integration may lead to
powerful coordinated attacks in which adversarial collab-
oration on both processor and FPGA sides may render
existing countermeasures ineffective. Moreover, processes
running on the processor or GPU sides may become new
victims in such scenarios.

Figs. 10 and 11 illustrate today’s and, the way we
see them, tomorrow’s solutions for design deployment on
multitenant cloud FPGAs. We envision numerous changes,
affecting many steps of FPGA manufacturing, compilation,
and deployment.

C. Is It Worth It?

Last but not least, the question arises as to whether all
the hardware design and manufacturing efforts, toolchain
redesign efforts, hypervisor costs and extra performance,

and area and power penalties associated with security
measures for cloud FPGAs are worth it. The answer is the
benefit of sharing. Providing true multitenancy and sharing
of virtualized FPGA resources in the cloud, which is now
hindered by security concerns, can unleash the benefits of
reconfigurable cloud computing. This effort would enable
flexibility, increased performance, and cost efficiency for all
types of users, no matter how large a fabric they require,
and allow the cloud provider to reach out to a wider range
of users and use cases.

X. CONCLUSION

In this article, we provide a visionary look at the secu-
rity issues associated with the diffusion and use of
reconfigurable cloud computing. By critically reviewing
successfully demonstrated remote FPGA attacks, we have
shown and demonstrated the severity and scale of the
threat. It is evident that current attacks are capable of
undermining the availability of resources, the integrity of
applications running on top of them, and the confidential-
ity of application data.

Attacks that have been successfully demonstrated so far
have either targeted the FPGA itself or have used an FPGA
to assist in system-level attacks. The former leverages
electrical coupling between the adversary and a victim to

Multitenacy-

Desi
= HDL/HLS m
Aware

2
———————| HDL/HLS
/ Synthesis/

O Implementatiol

Design HDL/HLS

and Shell Deployment
Hypervisor

Fig. 11. Tomorrow’s solutions for design deployment on multitenant cloud FPGAs, taking three t

Deployment
Deployment QQ 1 Multitenancy-Aware 3
Deployment —: Cloud Instance Allocation »—»‘

FPGA
Image

Multitenancy-Aware

FPGA
—
Image

Multitenancy- :
Aware i, and

Wrapper

Design Rule Monitoring Logic : FPgialg;ge
Checks Insertion 3 i
FPGA
Image
Vel rpGa
| I _I Vee3
—L—_ EEE O !}
Multitenancy-Aware il (==
FPGA Image Deployment E! Logic isolation
Voltage islands, secure PDN
Vee == logic
sheIIL L wappers
o O i+
= Vcti o D[4 Vecd
£ L
ts as an le. To alleviate

electrical-level security issues, existing tools will need to be adapted, and new steps (e.g., monitoring logic and wrapper insertion) will likely

need to be added. New FPGA fabrics with reduced power side-channel coupling (e.g., with voltage islands) will need to be developed. Cloud

FPGA shells will need to handle security-related tasks as well.

Vol. 11
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,

OF THE IEEE. 1567

1, No. 12, D, b,
lore. Restrictions apply.

5]
3
i
m=
l'"'m
>Xn
kel

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

pick up side-channel information or to generate a distur-
bance that injects faults via the electrical medium. The
latter corrupts portions of memory shared with CPUs or
overstresses shared components. These attacks generally
require the use of on-chip voltage sensors to measure side
channels and power-wasting circuits to inject faults. Both
components can be easily implemented in FPGAs due to
the low-level hardware control and bit-level programma-
bility that is offered. Sensors can be counteracted using
bitstream scanning, which identifies malicious design
circuits. Dynamic attacks can be addressed with runtime
remediation, for instance, the use of a closed-loop control
system to stabilize steady-state power consumption in an
effort to mitigate side-channel leakage.

From our study, it appears evident that the next gen-
eration of reconfigurable cloud computing security will

levels and combine multiple technologies. At the system
level, the most natural module to enforce security policies
is the hypervisor, which should provide and guarantee
isolation. At the same time, security improvements are
expected to also come from architectural enhancements
that could make FPGAs more resistant to attacks and from
CAD tools, whose role in security is often underestimated.

It is, however, necessary to acknowledge that
electrical-level leakage is unavoidable. This leakage is
intrinsic to FPGAs that share an on-chip electrical medium.
As a result, designers should be aware that a certain
level of information leakage is present for all cloud FPGA
security solutions. Such awareness should be the guiding
assumption when designing mitigation mechanisms that
should necessarily be tackled in a holistic manner and
allow for continuous updates to address the evolving attack

require designers to consider multiple different operation

REFERENCES
[1] Google. (2023). Cloud Tensor Processing Units

surface.

pp. 298-303.

pp. 1639-1644.

(TPUs). [Online]. Available: https://cloud.go [17] T. Trochatos, A. Etim, and J. Szefer, “Security [31] E Schellenberg, D. R. E. Gnad, A. Moradi, and
ogle.com/tpu/docs/tpus evaluation of thermal covert-channels on M. B. Tahoori, “Remote inter-chip power analysis

[2] Microsoft Research. (2019). Project Catapult. SmartSSDs,” 2023, arXiv:2305.09115. side-channel attacks at board-level,” in Proc.
[Online]. Available: https://www.microsoft. [18] S. Mahapatra et al., “A comparative study of IEEE/ACM Int. Conf Computer-Aided Design
com/en-us/research/project/project-catapult/ different physics-based NBTI models,” IEEE Trans. (ICCAD), Nov. 2018, pp. 1-7.

[3] Amazon AWS. (2019). Amazon EC2 F1. [Online]. Electron Devices, vol. 60, no. 3, pp. 901-916, [32] G. Provelengios, D. Holcomb, and R. Tessier,
Available: https://aws.amazon.com/ec2/ Mar. 2013. “Power wasting circuits for cloud FPGA attacks,”
instance-types/fl/ [19] C. Drewes et al., “Pentimento: Data remanence in in Proc. 30th Int. Conf. Field-Program. Log. Appl.

[4] Alibaba. (2023). Compute Optimized Instance cloud FPGAs,” 2023, arXiv:2303.17881. (FPL), Aug. 2020, pp. 231-235.

Families with FPGAs. [Online]. Available: https:// [20] H. Cook, J. Thompson, Z. Tripp, B. Hutchings, and [33] D.R.E. Gnad, E Oboril, and M. B. Tahoori,
alibabacloud.com/help/doc-detail/108504.htm J. Goeders, “Cloning the unclonable: Physically “Voltage drop-based fault attacks on FPGAs using

[5] Microsoft Azure. Machine Learning. Accessed: cloning an FPGA ring-oscillator PUE” in Proc. Int. valid bitstreams,” in Proc. 27th Int. Conf. Field
Nov. 10, 2023. [Online]. Available: Conf. Field-Program. Technol. (ICFPT), Dec. 2022, Program. Log. Appl. (FPL), Sep. 2017, pp. 1-7.
https://azure.microsoft.com/en- pp- 1-10. [34] K. Matas, T. M. La, K. D. Pham, and D. Koch,
us/pricing/details/machine-learning/ [21] M. Zhao, M. Gao, and C. Kozyrakis, “ShEF: “Power-hammering through glitch

[6] Xilinx. (2023). Zynq UltraScale4+ MPSoC. Shielded enclaves for cloud FPGAs,” in Proc. 27th amplification—Attacks and mitigation,” in Proc.
[Online]. Available: https://xilinx.com ACM Int. Conf. Architectural Support Program. IEEE 28th Annu. Int. Symp. Field-Program. Custom

[7] C.Bobda et al., “The future of FPGA acceleration Lang. Operating Syst., Feb. 2022, pp. 1-16. Comput. Mach. (FCCM), May 2020, pp. 65-69.
in datacenters and the cloud,” ACM Trans. [22] M. Zhao and G. E. Suh, “FPGA-based remote [35] T.La, K. Pham, J. Powell, and D. Koch,
Reconfigurable Technol. Syst., vol. 15, no. 3, power side-channel attacks,” in Proc. IEEE Symp. “Denial-of-service on FPGA-based cloud
pp. 1-42, Sep. 2022. Secur. Privacy (SP), May 2018, pp. 229-244. infrastructures—Attack and defense,” IACR Trans.

[8] Microsoft. (2022). Brainwave Project. [Online]. [23] C. Ramesh et al., “FPGA side channel attacks Cryptograph. Hardw. Embedded Syst., vol. 2021,
Available: https://www.microsoft.com/en- without physical access,” in Proc. IEEE 26th Annu. no. 3, pp. 441-464, Jul. 2021.
us/research/project/project-brainwave/ Int. Symp. Field-Program. Custom Comput. Mach. [36] G. Provelengios, D. Holcomb, and R. Tessier,

[9] J.E. Stone, D. Gohara, and G. Shi, “OpenCL: (FCCM), Apr. 2018, pp. 45-52. “Characterizing power distribution attacks in
A parallel programming standard for [24] 1. Giechaskiel, K. Eguro, and K. B. Rasmussen, multi-user FPGA environments,” in Proc. 29th Int.
heterogeneous computing systems,” Comput. Sci. “Leakier wires: Exploiting FPGA long wires for Conf. Field Program. Log. Appl. (FPL), Sep. 2019,
Eng., vol. 12, no. 3, pp. 66-73, May 2010. covert- and side-channel attacks,” ACM Trans. pp. 194-201.

[10] A. Koneru, A. Todri-Sanial, and K. Chakrabarty, Reconfigurable Technol. Syst., vol. 12, no. 3, [37] D.Mahmoud and M. Stojilovic, “Timing violation
“Reliable power delivery and analysis of pp- 1-29, Sep. 2019. induced faults in multi-tenant FPGAs,” in Proc.
power-supply noise during testing in monolithic [25] S. Tian, W. Xiong, I. Giechaskiel, K. Rasmussen, Design, Autom. Test Eur: Conf. Exhib. (DATE),
3D ICs,” in Proc. IEEE 37th VLSI Test Symp. (VTS), and J. Szefer, “Fingerprinting cloud FPGA Mar. 2019, pp. 1745-1750.

Apr. 2019, pp. 1-6. infrastructures,” in Proc. ACM/SIGDA Int. Symp. [38] D.G. Mahmoud, D. Dervishi, S. Hussein,

[11] S.-C. Hung and K. Chakrabarty, “Design of a Field-Program. Gate Arrays, Feb. 2020, pp. 58-64. V. Lenders, and M. Stojilovic, “DFAulted:
reliable power delivery network for monolithic [26] 1. Giechaskiel, K. B. Rasmussen, and J. Szefer, Analyzing and exploiting CPU software faults
3D ICs,” in Proc. Design, Autom. Test Eur. Conf: “C3 APSULe: Cross-FPGA covert-channel attacks caused by FPGA-driven undervolting attacks,”
Exhib. (DATE), Mar. 2020, pp. 1746-1751. through power supply unit leakage,” in Proc. IEEE IEEE Access, vol. 10, pp. 134199-134216,

[12] S.Lin and N. Chang, “Challenges in power-ground Symp. Secur. Privacy (SP), May 2020, 2022.
integrity,” in Proc. IEEE/ACM Int. Conf. pp. 1728-1741. [39] J. Krautter, D. R. E. Gnad, and M. B. Tahoori,
Comput.-Aided Design, Nov. 2001, pp. 651-654. [27] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “FPGAhammer: Remote voltage fault attacks on

[13] N. Evmorfopoulos, D. Karampatzakis, and “Sensing nanosecond-scale voltage attacks and shared FPGASs, suitable for DFA on AES,” JACR
G. Stamoulis, “Precise identification of the natural transients in FPGAs,” in Proc. ACM/SIGDA Trans. Cryptograph. Hardw. Embedded Syst.,
worst-case voltage drop conditions in power grid Int. Symp. Field Program. Gate Arrays, Feb. 2013, vol. 2018, no. 3, pp. 44-68, Aug. 2018.
verification,” in Proc. IEEE/ACM Int. Conf. Comput. pp. 101-104. [40] J. Krautter, D. R. E. Gnad, and M. B. Tahoori,
Aided Design, Nov. 2006, pp. 112-118. [28] E Schellenberg, D. R. E. Gnad, A. Moradi, and “Remote and stealthy fault attacks on virtualized

[14] S. S. Mirzargar and M. Stojilovic, “Physical M. B. Tahoori, “An inside job: Remote power FPGAs,” in Proc. Design, Autom. Test Eur. Conf.
side-channel attacks and covert communication analysis attacks on FPGAs,” IEEE Design Test, Exhib. (DATE), Feb. 2021, pp. 1632-1637.
on FPGAs: A survey,” in Proc. 29th Int. Conf. Field vol. 38, no. 3, pp. 58-66, Jun. 2021. [41] D.G. Mahmoud, W. Hu, and M. Stojilovic,
Program. Log. Appl. (FPL), Sep. 2019, [29] O. Glamocanin, L. Coulon, E Regazzoni, and “X-Attack: Remote activation of satisfiability
pp. 202-210. M. Stojilovic, ‘Are cloud FPGAs really vulnerable don’t-care hardware trojans on shared FPGAs,”

[15] I Giechaskiel, K. B. Rasmussen, and J. Szefer, to power analysis attacks?” in Proc. Design, Autom. in Proc. 30th Int. Conf Field-Program. Log. Appl.
“Measuring long wire leakage with ring oscillators Test Eur: Conf. Exhib. (DATE), Mar. 2020, (FPL), Aug. 2020, pp. 185-192.
in cloud FPGAs,” in Proc. 29th Int. Conf. Field pp. 1007-1010. [42] G. Provelengios, D. Holcomb, and R. Tessier,
Program. Log. Appl. (FPL), Sep. 2019, pp. 45-50. [30] S. Moini, S. Tian, D. Holcomb, J. Szefer, and “Power distribution attacks in multitenant

[16] S. Tian and J. Szefer, “Temporal thermal covert
channels in cloud FPGAs,” in Proc. ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2019,

R. Tessier, “Remote power side-channel attacks on
BNN accelerators in FPGAs,” in Proc. Design,
Autom. Test Eur: Conf. Exhib. (DATE), Feb. 2021,

PROGEEDINGS OF THE IEEE 1yVOL 111, No. 12, December 2023

1568 P S C .
Authorized licensed use limited to: Universi

FPGAs,” IEEE Trans. Very Large Scale Integr. (VLS
Syst., vol. 28, no. 12, pp. 2685-2698,
Dec. 2020.

of Masséchusetts Amherst. Downioaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

[43]

[44]

[45]

[46]

[47]

[48]

[491]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

X. Li, R. Tessier, and D. Holcomb, “Precise fault
injection to enable DFIA for attacking AES in
remote FPGAs,” in Proc. IEEE 30th Annu. Int.
Symp. Field-Program. Custom Comput. Mach.
(FCCM), May 2022, pp. 1-5.

M. M. Alam, S. Tajik, E Ganji, M. Tehranipoor, and
D. Forte, “RAM-Jam: Remote temperature and
voltage fault attack on FPGAs using memory
collisions,” in Proc. Workshop Fault Diagnosis
Tolerance Cryptogr. (FDTC), Aug. 2019, pp. 48-55.
A. Boutros, M. Hall, N. Papernot, and V. Betz,
“Neighbors from hell: Voltage attacks against deep
learning accelerators on multi-tenant FPGAs,” in
Proc. Int. Conf. Field-Program. Technol. (ICFPT),
Dec. 2020, pp. 103-111.

Y. Luo, C. Gongye, Y. Fei, and X. Xu, “DeepStrike:
Remotely-guided fault injection attacks on DNN
accelerator in cloud-FPGA,” in Proc. 58th
ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021,
pp. 295-300.

A. S. Rakin, Y. Luo, X. Xu, and D. Fan, “Deep-Dup:
An adversarial weight duplication attack
framework to crush deep neural network in
multi-tenant FPGA,” in Proc. 30th USENIX Secur.
Symp., Aug. 2021, pp. 1919-1936.

D. R. E. Gnad, E Oboril, S. Kiamehr, and

M. B. Tahoori, “Analysis of transient voltage
fluctuations in FPGAs,” in Proc. Int. Conf.
Field-Program. Technol. (FPT), Dec. 2016,

pp. 12-19.

D. R. E. Gnad, E Oboril, S. Kiamehr, and

M. B. Tahoori, “An experimental evaluation and
analysis of transient voltage fluctuations in
FPGAs,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 26, no. 10, pp. 1817-1830, Oct. 2018.
G. Provelengios, D. Holcomb, and R. Tessier,
“Mitigating voltage attacks in multi-tenant
FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 14, no. 2, pp. 1-24, Jul. 2021.

0. Glamocanin, D. G. Mahmoud, E Regazzoni,
and M. Stojilovic, “Shared FPGAs and the holy
grail: Protections against side-channel and fault
attacks,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Feb. 2021, pp. 1645-1650.

J. Gravellier, J.-M. Dutertre, Y. Teglia,

P L. Moundi, and E Olivier, “Remote side-channel
attacks on heterogeneous SoGC,” in Proc. 18th
Smart Card Res. Adv. Appl. Conf. (CARDIS),

Mar. 2020, pp. 109-125.

Y. Zhang, R. Yasaei, H. Chen, Z. Li, and

M. A. A. Faruque, “Stealing neural network
structure through remote FPGA side-channel
analysis,” IEEE Trans. Inf. Forensics Security,

vol. 16, pp. 4377-4388, 2021.

S. Tian, S. Moini, A. Wolnikowski, D. Holcomb,
R. Tessier, and J. Szefer, “Remote power attacks
on the versatile tensor accelerator in multi-tenant
FPGAs,” in Proc. IEEE 29th Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM),
May 2021, pp. 242-246.

V. Meyers, D. Gnad, and M. Tahoori, “Reverse
engineering neural network folding with remote
FPGA power analysis,” in Proc. IEEE 30th Annu.
Int. Symp. Field-Program. Custom Comput. Mach.
(FCCM), May 2022, pp. 1-10.

D. R. E. Gnad, V. Meyers, N. M. Dang,

E Schellenberg, A. Moradi, and M. B. Tahoori,
“Stealthy logic misuse for power analysis attacks
in multi-tenant FPGAs,” in Proc. Design, Autom.
Test Eur: Conf. Exhib. (DATE), Feb. 2021,

pp. 1012-1015.

B. Udugama, D. Jayasinghe, H. Saadat,

A. Ignjatovic, and S. Parameswaran, “VITI: A tiny
self-calibrating sensor for power-variation
measurement in FPGAs,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2022, no. 1,

pp. 657-678, Nov. 2022.

D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and
M. B. Tahoori, “Voltage-based covert channels
using FPGAs,” ACM Trans. Design Autom. Electron.
Syst., vol. 26, no. 6, pp. 1-25, Nov. 2021.

1. Giechaskiel, K. Rasmussen, and J. Szefer,
“Reading between the dies: Cross-SLR covert
channels on multi-tenant cloud FPGAs,” in Proc.
IEEE 37th Int. Conf. Comput. Design (ICCD),

Nov. 2019, pp. 1-10.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

1. Giechaskiel, K. Rasmussen, and K. Eguro,
“Leaky wires: Information leakage and covert
communication between FPGA long wires,” in
Proc. 13th ACM Asia Conf. Comput. Commun.
Secur. (ASIACCS), May 2018, pp. 15-27.

S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer,
“Cloud FPGA cartography using PCle contention,”
in Proc. IEEE 29th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), May 2021,

Dpp. 224-232.

1. Giechaskiel, S. Tian, and J. Szefer, “Cross-VM
information leaks in FPGA-accelerated cloud
environments,” in Proc. IEEE Int. Symp. Hardw.
Oriented Secur. Trust (HOST), Dec. 2021,

pp. 91-101.

Z. Weissman, T. Tiemann, D. Moghimi,

E. Custodio, T. Eisenbarth, and B. Sunar,
‘JackHammer: Efficient RowHammer on
heterogeneous FPGA-CPU platforms,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020,
no. 3, pp. 169-195, Jun. 2020.

Y. Kim et al., “Flipping bits in memory without
accessing them: An experimental study of DRAM
disturbance errors,” in Proc. ACM/IEEE 41st Int.
Symp. Comput. Archit. (ISCA), Jun. 2014,

pp. 361-372.

J. Krautter, D. R. E. Gnad, and M. B. Tahoori,
“Mitigating electrical-level attacks towards secure
multi-tenant FPGAs in the cloud,” ACM Trans.
Reconfigurable Technol. Syst., vol. 12, no. 3,

pp. 1-26, Sep. 2019.

T. M. La, K. Matas, N. Grunchevski, K. D. Pham,
and D. Koch, “FPGADefender: Malicious
self-oscillator scanning for Xilinx
UltraScale+FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 13, no. 3, pp. 1-31, Sep. 2020.
H. Nassar, H. AlZughbi, D. R. E. Gnad, L. Bauer,
M. B. Tahoori, and J. Henkel, “LoopBreaker:
Disabling interconnects to mitigate voltage-based
attacks in multi-tenant FPGAs,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Design (ICCAD),

Nov. 2021, pp. 1-9.

T. Huffmire et al., “Designing secure systems on
reconfigurable hardware,” ACM Trans. Design
Autom. Electron. Syst., vol. 13, no. 3, pp. 1-24,
Jul. 2008.

S. Yazdanshenas and V. Betz, “The costs of
confidentiality in virtualized FPGAs,” IEEE Trans.
Very Large Scale Integr: (VLSI) Syst., vol. 27,

no. 10, pp. 2272-2283, Oct. 2019.

Y. Luo and X. Xu, “HILL: A hardware isolation
framework against information leakage on
multi-tenant FPGA long-wires,” in Proc. Int. Conf.
Field-Program. Technol. (ICFPT), Dec. 2019,

pp. 331-334.

Z. Seifoori, S. S. Mirzargar, and M. Stojilovi¢,
“Closing leaks: Routing against crosstalk
side-channel attacks,” in Proc. 28th ACM/SIGDA
Int. Symp. Field-Program. Gate Arrays, Feb. 2020,
pp. 197-203.

Y. Luo, S. Duan, and X. Xu, “FPGAPRO: A defense
framework against crosstalk-induced secret
leakage in FPGA,” ACM Trans. Design Autom.
Electron. Syst., vol. 27, no. 3, pp. 1-31, May 2022.
E Regazzoni, Y. Wang, and E-X. Standaert, “FPGA
implementations of the AES masked against
power analysis attacks,” in Proc. Int. Workshop
Constructive Side-Channel Anal. Secure Design,
Feb. 2011, pp. 56-66.

K. Tiri and I. Verbauwhede, ‘A logic level design
methodology for a secure DPA resistant ASIC or
FPGA implementation,” in Proc. Design, Autom.
Test Eur. Conf. Exhib., Feb. 2004, pp. 1-6.

A. Le Masle, G. C. T. Chow, and W. Luk, “Constant
power reconfigurable computing,” in Proc. Int.
Conf. Field-Program. Technol., Dec. 2011, pp. 1-8.
J. Krautter, D. R. E. Gnad, E Schellenberg,

A. Moradi, and M. B. Tahoori, “Active fences
against voltage-based side channels in
multi-tenant FPGAs,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design (ICCAD), Nov. 2019,

pp. 1-8.

0. Glamocanin, A. Kostié, S. Kostié¢, and

M. Stojilovié, “Active wire fences for multitenant
FPGAs,” in Proc. 26th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), May 2023,

11, No. 12, Decembe
2024 at 01:

Vol.
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded én July 16,

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[871

[88]

[89]

[901]

[91]

[92]

[93]

[94]

[95]

-
[SUN]
O
4N
N
c—
.
=]
=0
Is)
=
]
9
1~
3)

pp. 1-8.

L. L. Shen, I. Ahmed, and V. Betz, “Fast voltage
transients on FPGAs: Impact and mitigation
strategies,” in Proc. IEEE 27th Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM),
Apr. 2019, pp. 271-279.

S. S. Mirzargar, G. Renault, A. Guerrieri, and

M. Stojilovic, “Nonintrusive and adaptive
monitoring for locating voltage attacks in
virtualized FPGAs,” in Proc. Int. Conf.
Field-Program. Technol. (ICFPT), Dec. 2020,

pp. 288-289.

E. Stott, J. M. Levine, P Y. K. Cheung, and

N. Kapre, “Timing fault detection in FPGA-based
circuits,” in Proc. IEEE 22nd Annu. Int. Symp.
Field-Program. Custom Comput. Mach., May 2014,
pp. 96-99.

Y. Luo and X. Xu, “A quantitative defense
framework against power attacks on multi-tenant
FPGA,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), Nov. 2020, pp. 1-4.

S. Moini et al., “Understanding and comparing the
capabilities of on-chip voltage sensors against
remote power attacks on FPGAs,” in Proc. IEEE
63rd Int. Midwest Symp. Circuits Syst. (MWSCAS),
Aug. 2020, pp. 941-944.

S. Mangard, E. Oswald, and T. Popp, Power
Analysis Attacks: Revealing the Secrets of Smart
Cards. New York, NY, USA: Springer, 2007.

A. Putnam et al., ‘A reconfigurable fabric for
accelerating large-scale datacenter services,” in
Proc. ACM/IEEE 41st Int. Symp. Comput. Archit.
(ISCA), Jun. 2014, pp. 13-24.

A.D. George, M. C. Herbordt, H. Lam,

A. G. Lawande, J. Sheng, and C. Yang, “Novo-G#:
Large-scale reconfigurable computing with direct
and programmable interconnects,” in Proc. IEEE
High Perform. Extreme Comput. Conf. (HPEC),
Sep. 2016, pp. 1-7.

C. Plessl, “Bringing FPGAs to HPC production
systems and codes,” in Proc. 4th Int. Workshop
Heterogeneous High-Perform. Reconfigurable
Comput., Nov. 2018, pp. 1-25.

AWS GitHub. (2022). FPGA Link. [Online].
Available: https://github.com/HFTrader/aws-
fpga/blob/master/FAQs.md

E Abel, J. Weerasinghe, C. Hagleitner, B. Weiss,
and S. Paredes, “An FPGA platform for
hyperscalers,” in Proc. IEEE 25th Annu. Symp.
High-Perform. Interconnects (HOTI), Aug. 2017,
pp. 29-32.

T. Lin, B. Park, H. Bannazadeh, and

A. Leon-Garcia, “SAVI testbed architecture and
federation,” in Future Access Enablers for
Ubiquitous and Intelligent Infrastructures
(FABULOUS). Cham, Switzerland: Springer,

Sep. 2015, pp. 3-10.

D. Cock et al., “Enzian: An open, general,
CPU/FPGA platform for systems software
research,” in Proc. 27th ACM Int. Conf.
Architectural Support Program. Lang. Operating
Syst., Feb. 2022, pp. 434-451.

Z. Istvan, G. Alonso, and A. Singla, “Providing
multi-tenant services with FPGAs: Case study on a
key-value store,” in Proc. 28th Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2018,

pp. 119-1195.

J. M. Mbongue, A. M. Shuping, P Bhowmik, and
C. Bobda, “Architecture support for FPGA
multi-tenancy in the cloud,” in Proc. IEEE 31st Int.
Conf. Appl.-Specific Syst., Architectures Processors
(ASAP), Jul. 2020, pp. 125-132.

J. M. Mbongue and C. Bobda, “Accommodating
multi-tenant FPGAs in the cloud,” in Proc. IEEE
28th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), May 2020, p. 214.

J. M. Mbongue, D. T. Kwadjo, A. Shuping, and
C. Bobda, “Deploying multi-tenant FPGAs within
Linux-based cloud infrastructure,” ACM Trans.
Reconfigurable Technol. Syst., vol. 15, no. 2,

pp- 1-31, Jun. 2022.

M. Gobulukoglu, C. Drewes, B. Hunter,

D. Richmond, and R. Kastner, “Classifying
computations on multi-tenant FPGAs,” in Proc.
29th ACM/SIGDA Int. Symp. Field Program. Gate
Arrays, Feb. 2021, p. 227.

OF THE IEEE, 1569
ore. Restrictions apply.

T,

Stojilovi¢ et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

[961]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

1570 P S C .
Authorized licensed use limited to: Universi

O. Sefraoui, M. Aissaoui, and M. Eleuldj,
“OpenStack: Toward an open-source solution for
cloud computing,” Int. J. Comput. Appl., vol. 55,
no. 3, pp. 38-42, Oct. 2012.

D. Bernstein, “Containers and cloud: From LXC to
Docker to Kubernetes,” IEEE Cloud Comput.,

vol. 1, no. 3, pp. 81-84, Sep. 2014.

A. Vaishnav, K. D. Pham, and D. Koch, “A survey
on FPGA virtualization,” in Proc. 28th Int. Conf.
Field Program. Log. Appl. (FPL), Aug. 2018,

pp. 131-1317.

Intel. (2023). Intel Virtualization Technology (Intel
VT). [Online]. Available: https://www.intel.com/
content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html
C. Bobda, M. Majer, A. Ahmadinia, T. Haller,

A. Linarth, and J. Teich, “The Erlangen slot
machine: Increasing flexibility in FPGA-based
reconfigurable platforms,” in Proc. IEEE Int. Conf.
Field-Program. Technol., Dec. 2015, pp. 37-42.

J. Weerasinghe, E Abel, C. Hagleitner, and

A. Herkersdorf, “Enabling FPGAs in hyperscale
data centers,” in Proc. IEEE 12th Int. Conf.
Ubiquitous Intell. Comput., IEEE 12th Int. Conf.
Autonomic Trusted Comput., IEEE 15th Int. Conf.
Scalable Comput. Commun. Associated Workshops
(UIC-ATC-ScalCom), Aug. 2015, pp. 1078-1086.
O. Knodel, P Lehmann, and R. G. Spallek, “RC3E:
Reconfigurable accelerators in data centres and
their provision by adapted service models,” in
Proc. IEEE 9th Int. Conf. Cloud Comput. (CLOUD),
Jun. 2016, pp. 19-26.

E Chen et al., “Enabling FPGAs in the cloud,” in
Proc. 11th ACM Conf. Comput. Frontiers,

May 2014, pp. 1-10.

J. Mbongue, E Hategekimana, D. T. Kwadjo,

D. Andrews, and C. Bobda, “FPGAVirt: A novel
virtualization framework for FPGAs in the cloud,”
in Proc. IEEE 11th Int. Conf. Cloud Comput.
(CLOUD), Jul. 2018, pp. 862-865.

S. Byma, J. G. Steffan, H. Bannazadeh,

A. Leon-Garcia, and P Chow, “FPGAs in the cloud:
Booting virtualized hardware accelerators with
OpenStack,” in Proc. IEEE 22nd Annu. Int. Symp.
Field-Program. Custom Comput. Mach., May 2014,
pp. 109-116.

S. A. Fahmy, K. Vipin, and S. Shreejith,
“Virtualized FPGA accelerators for efficient cloud
computing,” in Proc. IEEE 7th Int. Conf. Cloud
Comput. Technol. Sci. (CloudCom), Nov. 2015,
pp. 430-435.

J. Weerasinghe, R. Polig, E Abel, and

C. Hagleitner, “Network-attached FPGAs for data
center applications,” in Proc. Int. Conf.
Field-Program. Technol. (FPT), Dec. 2016,

pp. 36-43.

M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and
P Ienne, “Virtualized execution runtime for FPGA
accelerators in the cloud,” IEEE Access, vol. 5,

pp. 1900-1910, 2017.

M. Vespet, D. Kocha, and K. Phama, “PCIeHLS:
An OpenCL HLS framework,” in Proc. 4th Int.
Workshop FPGAs Softw. Programmers (FSP),

Sep. 2017, pp. 1-6.

N. Tarafdar, T. Lin, E. Fukuda, H. Bannazadeh,

A. Leon-Garcia, and P Chow, “Enabling flexible
network FPGA clusters in a heterogeneous cloud
data center,” in Proc. 25th ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2017,

pp. 237-246.

J. Zhang et al., “The Feniks FPGA operating
system for cloud computing,” in Proc. 8th
Asia—Pacific Workshop Syst., Sep. 2017, pp. 1-7.
J. Coole and G. Stitt, “Intermediate fabrics: Virtual
architectures for circuit portability and fast
placement and routing,” in Proc. IEEE/ACM/IFIP
Int. Conf. Hardw./Softw. Codesign Syst. Synth.,
Oct. 2010, pp. 13-22.

N. Kapre and J. Gray, “Hoplite: Building austere
overlay NoCs for FPGAs,” in Proc. 25th Int. Conf.
Field Program. Log. Appl. (FPL), Sep. 2015,

pp. 1-8.

X. Li and D. L. Maskell, “Time-multiplexed FPGA
overlay architectures: A survey,” ACM Trans.
Design Autom. Electron. Syst., vol. 24, no. 5,

pp. 1-19, Sep. 2019.

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

P Maidee, A. Kaviani, and K. Zeng, “LinkBlaze:
Efficient global data movement for FPGAs,” in
Proc. Int. Conf. ReConFigurable Comput. FPGAs
(ReConFig), Dec. 2017, pp. 1-8.

J. M. Mbongue, D. T. Kwadjo, and C. Bobda,
“FLexiTASK: A flexible FPGA overlay for efficient
multitasking,” in Proc. ACM/SIGDA Great Lakes
Symp. VLSI (GLSVLSI), May 2018, pp. 483-486.
A. Khawaja, J. Landgraf, R. Prakash, M. Wei,

E. Schkufza, and C. J. Rossbach, “Sharing,
protection, and compatibility for reconfigurable
fabric with AmorphOS,” in Proc. 13th USENIX
Symp. Operating Syst. Design Implement.,

Oct. 2018, pp. 107-127.

M. Paolino, S. Pinneterre, and D. Raho, “FPGA
virtualization with accelerators overcommitment
for network function virtualization,” in Proc. Int.
Conf. ReConFigurable Comput. FPGAs (ReConFig),
Dec. 2017, pp. 1-6.

S. Pinneterre, S. Chiotakis, M. Paolino, and

D. Raho, “VFPGAmanager: A virtualization
framework for orchestrated FPGA accelerator
sharing in 5G cloud environments,” in Proc. IEEE
Int. Symp. Broadband Multimedia Syst. Broadcast.
(BMSB), Jun. 2018, pp. 1-5.

D. V. Vu, O. Sander, T. Sandmann, S. Baehr,

J. Berliner, and J. Becker, “Enabling partial
reconfiguration for coprocessors in mixed
criticality multicore systems using PCI express
single-root I/O virtualization,” in Proc. Int. Conf.
ReConFigurable Comput. FPGAs (ReConFig),

Dec. 2014, pp. 1-6.

Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,”
in Proc. 24th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., Mar. 2020,

pp. 845-858.

Y. Zha and J. Li, “Hetero-ViTAL: A virtualization
stack for heterogeneous FPGA clusters,” in Proc.
ACM/IEEE 48th Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2021, pp. 470-483.

W. Wang, M. Bolic, and J. Parri, “pvFPGA:
Accessing an FPGA-based hardware accelerator in
a paravirtualized environment,” in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth., Sep. 2013,
pp- 1-9.

H. Yu, A. M. Peters, A. Akshintala, and

C. J. Rossbach, “Automatic virtualization of
accelerators,” in Proc. Workshop Hot Topics
Operating Syst., May 2019, pp. 58-65.

Y. Zha and J. Li, “When application-specific ISA
meets FPGAs: A multi-layer virtualization
framework for heterogeneous cloud FPGAs,” in
Proc. 26th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., Apr. 2021,

pp. 123-134.

D. Korolija, T. Roscoe, and G. Alonso, “Do OS
abstractions make sense on FPGAs?” in Proc. 14th
USENIX Symp. Operating Syst. Design Implement.,
Nov. 2020, pp. 991-1010.

J. Ma et al., “A hypervisor for shared-memory
FPGA platforms,” in Proc. 25th Int. Conf:
Architectural Support Program. Lang. Operating
Syst., Mar. 2020, pp. 827-844.

M. Happe, A. Traber, and A. Keller, “Preemptive
hardware multitasking in ReconOS,” in Proc. Int.
Symp. Appl. Reconfigurable Comput., Apr. 2015,
pp. 79-90.

T. Xia, J.-C. Prévotet, and E Nouvel, “Hypervisor
mechanisms to manage FPGA reconfigurable
accelerators,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2016, pp. 44-52.

R. Elnaggar, R. Karri, and K. Chakrabarty,
“Multi-tenant FPGA-based reconfigurable systems:
Attacks and defenses,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 7-12.

L. Bossuet and E. M. Benhani, “Performing cache
timing attacks from the reconfigurable part of a
heterogeneous SoC—An experimental study,”
Appl. Sci., vol. 11, no. 14, p. 6662, Jul. 2021.

E Yao, M. Doroslovacki, and G. Venkataramani,
“Are coherence protocol states vulnerable to
information leakage?” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2018,
pp. 168-179.

E Liu et al., “CATalyst: Defeating last-level cache
side channel attacks in cloud computing,” in Proc.

PROCEEDINGS QF THE IEEE J Vol. 111, No. 12, December 2023

y of Massachusetf

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Mar. 2016, pp. 406-418.

Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes
Attack: Steal DNN models with lossless inference
accuracy,” in Proc. USENIX Secur. Symp.,

Aug. 2021, pp. 1973-1988.

R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of
the ring(s): Side channel attacks on the CPU
on-chip ring interconnect are practical,” in Proc.
USENIX Secur. Symp., Aug. 2021, pp. 645-662.

A. G. Yaglikci et al., “BlockHammer: Preventing
RowHammer at low cost by blacklisting
rapidly-accessed DRAM rows,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA),

Feb. 2021, pp. 345-358.

S.-Y. Tsai, M. Payer, and Y. Zhang, “Pythia: Remote
oracles for the masses,” in Proc. USENIX Secur.
Symp., Aug. 2019, pp. 693-710.

E Hategekimana, J. M. Mbongue, M. J. H. Pantho,
and C. Bobda, “Secure hardware kernels
execution in CPU+FPGA heterogeneous cloud,” in
Proc. Int. Conf. Field-Program. Technol. (FPT),

Dec. 2018, pp. 182-189.

B. Hettwer, J. Petersen, S. Gehrer, H. Neumann,
and T. Giineysu, “Securing cryptographic circuits
by exploiting implementation diversity and partial
reconfiguration on FPGAs,” in Proc. Design,
Autom. Test Eur: Conf. Exhib. (DATE), Mar. 2019,
pp. 260-263.

S. Yazdanshenas and V. Betz, “Improving
confidentiality in virtualized FPGAs,” in Proc. Int.
Conf. Field-Program. Technol. (FPT), Dec. 2018,
pp. 258-261.

W. Lee, Y. Wang, and M. Pedram, “Optimizing a
reconfigurable power distribution network in a
multicore platform,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 7,

pp. 1110-1123, Jul. 2015.

1. Ahmed, L. L. Shen, and V. Betz, “Optimizing
FPGA logic circuitry for variable voltage supplies,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 28, no. 4, pp. 890-903, Apr. 2020.

Z. Ebrahimi, B. Khaleghi, and H. Asadi, “PEAF:

A power-efficient architecture for SRAM-based
FPGAs using reconfigurable hard logic design in
dark silicon era,” IEEE Trans. Comput., vol. 66,
no. 6, pp. 982-995, Jun. 2017.

A. Gayasen, Y. Tsai, N. Vijaykrishnan,

M. Kandemir, M. J. Irwin, and T. Tuan, “Reducing
leakage energy in FPGAs using region-constrained
placement,” in Proc. ACM/SIGDA 12th Int. Symp.
Field Program. Gate Arrays, Feb. 2004, pp. 51-58.
A. A. M. Bsoul and S. J. E. Wilton, “An FPGA
architecture supporting dynamically controlled
power gating,” in Proc. IEEE Int. Conf.
Field-Program. Technol., Dec. 2010, pp. 1-8.
UltraScale Architecture System Monitor,

document UG580, Xilinx Corporation, San Jose,
CA, USA, Sep. 2021.

Intel Stratix 10 Analog to Digital Converter User
Guide, Intel Corporation, Santa Clara, CA, USA,
2019.

AWS GitHub. (2020). AFI Power. [Online].
Available: https://github.com/aws/aws-fpga/
blob/master/hdk/docs/afi_power.md

K. Vipin and S. A. Fahmy, “FPGA dynamic and
partial reconfiguration: A survey of architectures,
methods, and applications,” ACM Comput.
Surveys, vol. 51, no. 4, pp. 1-39, Jul. 2019.

0. A. Uzun and S. Kose, “Converter-gating:

A power efficient and secure on-chip power
delivery system,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 4, no. 2, pp. 169-179, Jun. 2014.

E. Laohavaleeson and C. Patel, “Current flattening
circuit for DPA countermeasure,” in Proc. IEEE Int.
Symp. Hardware-Oriented Secur: Trust (HOST),
Jun. 2010, pp. 118-123.

A. Krieg, J. Grinschgl, C. Steger, R. Weiss, and

J. Haid, “A side channel attack countermeasure
using system-on-chip power profile scrambling,”
in Proc. IEEE 17th Int. On-Line Test. Symp.,

Jul. 2011, pp. 222-227.

V. Telandro, E. Kussener, A. Malherbe, and

H. Barthelemy, “On-chip voltage regulator
protecting against power analysis attacks,” in
Proc. 49th IEEE Int. Midwest Symp. Circuits Syst.,

ts Amherst. Downioaded on July 16,2024 at 01:54:11 UTC from IEEE Xplore. Restrictions apply.

vol. 2, Aug. 2006, pp. 507-511.

[154] A. Moradi, M. Kirschbaum, T. Eisenbarth, and
C. Paar, “Masked dual-rail precharge logic
encounters state-of-the-art power analysis
methods,” IEEE Trans. Very Large Scale Integr.
(VLSD) Syst., vol. 20, no. 9, pp. 1578-1589,

[157]

Stojilovic et al.: Visionary Look at the Security of Reconfigurable Cloud Computing

circuits on FPGAs,” IEEE Trans. Comput., vol. 67,
no. 3, pp. 375-387, Mar. 2018.

J. Krautter, D. Gnad, and M. Tahoori, “CPAmap:
On the complexity of secure FPGA virtualization,
multi-tenancy, and physical design,” IACR Trans.
Cryptograph. Hardw. Embedded Syst., vol. 2020,

[160]

[161]

Mar. 2009, pp. 50-61.

K. Eguro and R. Venkatesan, “FPGAs for trusted
cloud computing,” in Proc. 22nd Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2012, pp. 63-70.
K. Kepa, E Morgan, K. Kosciuszkiewicz, and

T. Surmacz, “SeReCon: A secure dynamic partial

Sep. 2012.

[155] A. Wild, A. Moradi, and T. Giineysu, “Evaluating
the duplication of dual-rail precharge logics on
FPGAs,” in Proc. Int. Workshop Constructive
Side-Channel Anal. Secure Design, Apr. 2015,
pp. 81-94.

[156] A. Wild, A. Moradi, and T. Giineysu, “GliFreD:
Glitch-free duplication towards power-equalized

[158]

Dec. 2020.

[159]

ABOUT THE AUTHORS

Mirjana Stojilovié (Senior Member, IEEE)
received the Dipl.Ing. and Ph.D. degrees
from the School of Electrical Engineering,
University of Belgrade, Belgrade, Serbia, in
2006 and 2013, respectively.

Since 2016, she has been with the School
of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland. Her research = -
interests include electronic design automation, reconfigurable com-
puting, and hardware security.

Dr. Stojilovi¢ is a Principal Investigator in the Swiss National Foun-
dation (SNF)-funded project Secure FPGAs in the Cloud. She serves
on the program committees of the International Symposium on
Field-Programmable Fate Arrays (FPGA), International Symposium
On Field-Programmable Custom Computing Machines (FCCM), Inter-
national Conference on Field-Programmable Logic and Applications
(FPL), Design, Automation and Test in Europe Conference (DATE)
Conferences. She is an Associate Editor of the ACM Transactions
on Reconfigurable Technology and Systems (TRETS) and the IEEE
EMBEDDED SYSTEMS LETTERS (ESL).

Kasper Rasmussen (Senior Member, IEEE)
received the Ph.D. degree from ETH Zurich,
Zirich, Switzerland, in 2011.

He worked mainly on security issues relat- §
ing to secure time synchronization and
secure localization with a particular focus
on distance bounding at ETH Zirich. After
completing his Ph.D. degree, he held a
postdoctoral position at the University of
California at Irvine, Irvine, CA, USA, before joining the University
of Oxford, Oxford, U.K., in 2013. He is currently a Professor of infor-
mation security with the Computer Science Department, University
of Oxford, where he leads a research group that works on different
aspects of system and communication security, including the secu-
rity of wireless networks, protocol design, applied cryptography,
security of embedded systems, and cyber-physical systems.

Dr. Rasmussen was awarded a University Research Fellowship
from the Royal Society in London in 2015.

Francesco Regazzoni (Member, IEEE)
received the M.Sc. degree from the Politec-
nico di Milano, Milan, Italy, and the Ph.D.
degree from the Universita della Svizzera
italiana, Lugano, Switzerland.

He held research positions at the
Université Catholique de Louvain, Ottignies-
Louvain-la-Neuve, Belgium, and the
Technical University of Delft, Delft, The
Netherlands. He has been a Visiting Researcher with several
institutions, including NEC Labs America, Princeton, NJ, Ruhr
University Bochum, Bochum, Germany, and Ecole Polytechnique

Vol. 111,
Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded dn July 16,2024

no. 3, pp. 121-146, Jun. 2020.

E Turan and I. Verbauwhede, “Trust in
FPGA-accelerated cloud computing,” ACM
Comput. Surveys, vol. 53, no. 6, pp. 1-28,

S. Drimer and M. G. Kuhn, “A protocol for secure
remote updates of FPGA configurations,” in Proc.
Int. Workshop Appl. Reconfigurable Comput.,

reconfiguration controller,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Apr. 2008,

pp. 97-292.

P Maene, J. Gotzfried, R. de Clercq, T. Miiller,

E Freiling, and I. Verbauwhede, “Hardware-based
trusted computing architectures for isolation and
attestation,” IEEE Trans. Comput., vol. 67, no. 3,
pp. 361-374, Mar. 2018.

[162]

Fédérale de Lausanne (EPFL), Lausanne, Switzerland. He is cur-
rently an Assistant Professor with the University of Amsterdam,
Amsterdam, The Netherlands, and the Universita della Svizzera
italiana. His research interests are mainly focused on the security of
Internet-of-Things (loT) devices and embedded systems, covering
in particular design automation for security, physical attacks and
countermeasures, postquantum cryptography, and efficient imple-
mentation of cryptographic primitives.

Mehdi B. Tahoori (Fellow, IEEE) received
the B.S. degree in computer engineering
from the Sharif University of Technology,
Tehran, Iran, in 2000, and the M.S. and Ph.D.
degrees in electrical engineering from Stan-
ford University, Stanford, CA, USA, in 2002
and 2003, respectively.

He is currently a Professor and the Chair
of dependable nanocomputing with the Karl-
sruhe Institute of Technology (KIT), Karlsruhe, Germany. His
research interests include secure and resilient system design, and
emerging technologies and paradigms for computing.

Prof. Tahoori was a recipient of the National Science Founda-
tion Early Faculty Development (CAREER) Award in 2008 and the
European Research Council (ERC) Advanced Grant in 2022. He was
the Program Chair and the General Chair of the IEEE VLSI Test
Symposium (VTS) and the General Chair of the IEEE European
Test Symposium (ETS). He is the Chair of the IEEE European Test
Technologies Technical Council (eTTTC). He was the Editor-in-Chief
of Microelectronics Reliability (Elsevier) journal. He is the Deputy
Editor-in-Chief of IEEE Design & Test Magazine.

Russell Tessier (Senior Member, I|EEE)
received the B.S. degree in computer and
systems engineering from the Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1989,
and the M.S. and Ph.D. degrees in electrical
engineering from the Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in
1992 and 1999, respectively.

He is currently a Professor of electrical
and computer engineering with the University of Massachusetts
Amherst, Amherst, MA, USA. His current research interests
include computer architecture and field-programmable gate arrays
(FPGASs).

OF THE IEEE 1571

1, No. 12, Decemb S LB
at rom |IEEE Xplore. Restrictions apply.

