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Abstract—Instructional activity recognition is an analytical

tool for the observation of classroom education. One of the

primary challenges in this domain is dealing with the intri-

cate and heterogeneous interactions between teachers, students,

and instructional objects. To address these complex dynamics,

we present an innovative activity recognition pipeline designed

explicitly for instructional videos, leveraging a multi-semantic

attention mechanism. Our novel pipeline uses a transformer

network that incorporates several types of instructional seman-

tic attention, including teacher-to-students, students-to-students,

teacher-to-object, and students-to-object relationships. This com-

prehensive approach allows us to classify various interactive

activity labels effectively. The effectiveness of our proposed algo-

rithm is demonstrated through its evaluation on our annotated

instructional activity dataset.

I. INTRODUCTION

Activity recognition is an active area of research in com-
puter vision with numerous practical applications, including
surveillance, autonomous vehicles, human-computer interac-
tion, and video annotation [1]. Recently, instructional activity
recognition (IAR) has been explored by several researchers [2],
[3], [4], [5] to enhance the analysis of classroom education.
IAR can provide automated and immediate feedback to instruc-
tors in training, reducing the workload of human annotators.
IAR, however, is challenging because the interactions between
instructional semantics, including the teacher, students, and
instructional objects in classrooms, are complex. Moreover, the
number and heterogeneity of these interactions can be signifi-
cant in a classroom setting due to the multitude of instructional
semantics. We show that a specialized transformer network
can effectively model these intricate classroom interactions
using its attention mechanism. Furthermore, the paralleliza-
tion capability of the transformer network [6] enhances the
efficiency of processing such a large number of interactions.
To this end, we propose a transformer network encompassing
multiple instructional semantic attention types to capture the
relations between instructional semantics in classroom videos.
We suggest that four types of instructional relationships exist in
a classroom setting, including the relations between teacher-to-
students, students-to-students, teacher-to-object, and students-
to-object modeled using the four proposed semantic attention
mechanisms (see Fig. 1 for more details). To our knowledge,
we are the first to capture these systematic relations in class-
room settings using semantic attention mechanisms.

Fig. 1. Four types of multi-semantic attention proposed to model the complex
classroom interactions between teacher, students and object in an example
where a teacher is discussing a book with students.

II. RELATED WORK

Earlier methods focused on designing a manual feature
representation encompassing both the spatial and temporal as-
pects of human actions. These features include spatiotemporal
changes in videos, such as keypoint trajectories [7], human
pose deformations [8], and differences in depth images [9].
Based on data-driven mechanisms, deep network solutions
offer more robust feature representations than those with hand-
crafted features [10]. Several deep architectures have been ap-
plied including the convolutional neural network (CNN) [11],
the recurrent neural network (RNN) [12], the long-short term
memory (LSTM) network [13], and the graph convolutional
network (GCN) [14]. A state-of-the-art deep network is the
transformer, that has been widely used in the last few years
for activity recognition [15], [16].

Numerous methods have been developed for identifying
activities in educational video recordings. [2] employed sil-
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houettes of the educator to derive motion characteristics. [3]
introduced a more enhanced feature set that includes elbow
angles and facial and hand movements, utilizing a primitive-
based coupled hidden Markov model (PCHMM) to identify
seven specific teaching activities. [5] advanced this field with
a sophisticated deep learning architecture, integrating a multi-
modal attention layer to understand long-term semantic rela-
tionships in instructional videos. Lastly, [4] proposed focusing
on significant video segments, such as the skeletal posture, to
model activities in classroom settings effectively.

However, an effective method for systematically calculat-
ing the interactions among instructional semantics, including
teachers, students, and objects, has not yet been established.

III. METHODS

Fig. 2. The overview of the proposed pipeline of instructional activity
recognition.

Fig. 2 shows the overview of the suggested pipeline
for instructional activity recognition. The inputs of the pro-
posed pipeline are instructional videos, where each video
Vi = {fm,m = 0, 1, ...,M} consists of M action frames
fm 2 RH⇥W⇥3. Here H and W are the height and width of
the frames. The outputs of the pipeline are the predicted action
class labels for each frame as Ŷ = {ŷm,m = 0, 1, 2, ...,M}.
The proposed pipeline includes several steps that are explained
as follows:

A. Semantic Detection

We first use a state-of-the-art network [17] to detect the
semantics, specifically the persons and objects. So that for
each frame fm, we will have N 0 detected semantics as
Zm = {zi, i = 0, 1, 2, ..., N 0}, where zi 2 Rh⇥w⇥3, that h
and w are the height and width of the each semantic. Each si
is then resized to the fixed dimension of h0 ⇥ w0.

B. Final Multi-semantic Set

Next, an age estimation algorithm [18] is used to detect
the teacher by way of selecting the person with the highest
estimated age. The aforementioned age estimation algorithm
can estimate age in cluttered environments and in the event
of partial face occlusion, a common occurrence in class-
room videos. In this stage the instructional semantics set is
Zm = {zT , zSi , zOj , i = 0, 1, 2, ..., NS , j = 0, 1, 2, ..., NO},
that includes one teacher (zT ), NS number of students (zSi ),

and NO number of objects (zOj ). In this study the closest object
to the teacher, zO, is considered as the primary instructional
tool for further analysis as shown as follows:

zO = argmin
j

(
��Center(zO

j
)� Center(zT)

��
2
) (1)

where the operator Center defines the center of each semantic
image. So, the final set of instructional semantics provided to
the network becomes Zm

F = {zT , zSi , zO, i = 0, 1, 2, ..., NS}.

C. Multi-semantic Feature Embedding

The feature embedding step is formulated as follows:

XZ = Conv(Zm
F ,WS) : RN⇥h0⇥w0⇥3 ! RN⇥df . (2)

where, Conv is a convolutional operator, N = NS + 2 is
the total number of instructional semantics, and WS is the
convolutional kernel weights. So, the subsequent embedded
semantic feature set becomes XZ = {XT , XS

i , X
O, i =

0, 1, 2, ..., NS}, where XT , XS
i , and XO 2 Rdf are embed-

ded semantic features for the teacher, students, and objects
respectively.

D. Multi-Semantic Attention

We hypothesize that instructional activity labels can be
defined in light of four types of relationships among instruc-
tional semantics. These relationships are teacher-to-students,
students-to-students, teacher-to-object, and students-to-object.
Hence, we define four types of attention to capture such
relations among instructional semantics.

The attention aims to compute the correlations between the
query (Q) and keys (K) and then map the correlation results
to values (V ). The four suggested attention types to represent
the correlations among instructional semantic features are
formulated as follows:

AT�S = Softmax(
QT (KS)Tp

dh
)V S ,

AS�S = Softmax(
QS(KS)Tp

dh
)V S ,

AT�O = Softmax(
QT (KO)Tp

dh
)V O,

AS�O = Softmax(
QS(KO)Tp

dh
)V O,

(3)

where AT�S , AS�S , AT�O, and AS�O are teacher-to-
students, students-to-students, teacher-to-object, and students-
to-object attention types, respectively. dh is the size of the
attention head and T is a transpose operation. The multi-
semantic queries (QZ), keys (KZ), and values (V Z) are
calculated as follows:

QZ = XZWZ
Q , KZ = XZWZ

K , V Z = XZWZ
V (4)
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where WZ
Q , WZ

K , and WZ
V are projecting weights.

The set of multi-semantic attention is used as the final
representation of multi-semantic features:

AZ = {↵AT�S ,�AS�S , �AT�O, ⇣AS�O} (5)

where ↵, �, �, and ⇣ are the adjusting parameters that
control the importance of multi-semantic attention types. Some
examples of multi-semantic relations in classroom videos and
corresponding attention types are shown in Fig. 1. Later Table
I illustrates the relevance between the multi-semantic attention
types and the corresponding activity class labels.

E. Multi-layer Transformer

The suggested transformer network includes multiple lay-
ers where the relation between layers l� 1 and l is illustrated
as follows:

Û l = MSA(U l�1) + U l�1, l 2 {1, ..., L},
U l = MLP (Norm(Û l)) + Û l, l 2 {1, ..., L},

(6)

where MSA is the multi-semantic attention, U is the output
of the layer, Û is the output of the intermediate layer output,
L is the number of layers, Norm is a normalization layer, and
MLP is a multilayer perception layer.

F. Classification

Finally, the classification phase can be formulated as fol-
lows:

Ŷ = Softmax(Conv(AZ ,WF )), (7)

where Ŷ is the frame prediction scores set, Conv : RN⇥df !
RC , WF is the kernel weights, and C is the number of activity
classes. The loss function of the transformer network is shown
as follows:

Loss = �
CX

c=1

y(c)logŷ(c) (8)

IV. EXPERIMENTAL RESULTS

A. Dataset

We utilized 50 hours of annotated instructional videos
acquired by the University of Virginia School of Education
of Human Development. Twelve instructional activity labels
are used in these experiments. These activity labels with their
relevant multi-semantic attention are shown in Table I.

B. Results

In our experiments, we used the F1 score metric based on
frame-level prediction as

F1 = 2 · precision · recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

(9)

TABLE I. TWELVE INSTRUCTIONAL ACTIVITY LABELS AND THEIR
RELEVANT MULTI-SEMANTIC ATTENTION (MSA) TYPES

Activity Class Label Relevant MSA
Whole Class Activity AT�S , AS�S

Individual Activity AT�S , AS�S

Small Group Activity AT�S , AS�S

Transition AT�S , AS�S

Teacher Supporting with Students AT�S , AS�S

Teacher Supporting without Students AT�S

Teacher Supporting one Student AT�S

Using or Holding Book AT�O, AS�O

Using or Holding Worksheet AT�O, AS�O

Using or Holding Instructional Tool AT�O, AS�O

Presenting with Technology AT�O, AS�O

where TP , FP , and FN are true positive, false positive, and
false negative predicted frames, respectively.

Fig. 3 shows the performance of our proposed pipeline for
twelve instructional activity labels based on the F1 score. The
average F1 score for all instructional class labels was 0.56.

Fig. 3. The performance of the proposed pipeline for twelve activity labels.

Fig. 5 illustrates an ablation study of different types of
multi-semantic attention. As can be seen, using the full model
with all the attention types led to maximum performance.

Fig. 5 shows the impact of different types of multi-semantic
attention on the activity prediction scores for two examples
of our classroom videos. As can be seen, for the activity
label, “teacher using instructional tool”, the highest prediction
score is achieved by using the most relevant attention type,
teacher-to-object (T�O). On the other hand, the most relevant
attention type for the activity label, “small group activity” was
teacher-to-students (T � S) based on the highest prediction
score.

Six transformer layers were used in our implementation.
The learning rate was 1e�4. All the weights are initialized

115

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 16,2024 at 12:48:26 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. The ablation study on the impact of various combinations of multi-
semantic attention types of teacher-to-students (T � S), students-to-students
(S � S), teacher-to-object (T � O), and students-to-object (S � O) on the
overall performance of instructional activity recognition.

Fig. 5. The ablation study on the impact of various attention types of teacher-
to-students (T � S), students-to-students (S � S), teacher-to-object (T �
O), and students-to-object (S � O) on the activity prediction scores for two
examples of instructional video.

with random values. All the experiments are conducted using
PyTorch 1.7 on a server PC with dual Nvidia RTX 3090 GPUs
(24GB VRAM), AMD Ryzen Threadripper 3990X 64-Core
Processor, and 256GB of RAM.

V. CONCLUSION

This paper introduces various multi-semantic types of
attention including teacher-to-students, students-to-students,
teacher-to-object, and students-to-object. Such a framework
can model complex relationships within instructional videos.
Our proposed pipeline encompasses several stages: detecting
semantics, identifying teachers, recognizing instructional ob-
jects, generating multi-semantic sets, applying multi-semantic
attention, and finally, classifying data. We evaluated this
pipeline using our unique annotated instructional activity
dataset, and the results demonstrate the effectiveness of our
approach.
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