Short title: Cuticular wax dynamics on maize silks 1 2 Corresponding author: Marna D. Yandeau-Nelson Iowa State University 3 2210 Molecular Biology Building 4 2437 Pammel Dr 5 6 Ames, IA 50011-1079 7 515-294-1079 8 myn@iastate.edu 9 10 Research area: Biochemistry and Metabolism 11

- 12 Dynamic relationships among pathways producing hydrocarbons and fatty acids of maize
- 13 silk cuticular waxes
- 14 Keting Chen^{a,b}, Liza E. Alexander^c, Umnia Mahgoub^a, Yozo Okazaki^{d,e}, Yasuhiro Higashi^d, Ann
- 15 M. Perera^f, Lucas J. Showman^f, Derek Loneman^a, Tesia S. Dennison^{g,h}, Miriam Lopezⁱ, Reid
- 16 Claussen^a, Layton Peddicord^{g,h}, Kazuki Saito^d, Nick Lauter^{g,h,i}, Karin S. Dorman^{a,b,j}, Basil J.
- 17 Nikolau^{b,c,h,k}, and Marna D. Yandeau-Nelson^{a,b,h,k} *

18

- 19 a Department of Genetics, Development & Cell Biology, Iowa State University, Ames, Iowa
- 20 b Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames,
- 21 Iowa
- ^c Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State
- 23 University, Ames, Iowa
- ^d RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- ^e Graduate School of Bioresources, Mie University, Kurimamachiya-cho, Tsu, Mie 514-8507,
- 26 Japan
- 27 f W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames, Iowa
- 28 g Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa
- 29 h Interdepartmental Genetics & Genomics Graduate Program, Iowa State University, Ames, Iowa
- 30 ⁱ Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, Iowa
- 31 ^j Department of Statistics, Iowa State University, Ames, Iowa
- 32 ^k Center for Metabolic Biology, Iowa State University, Ames, Iowa

33

- 34 ORCID IDs: 0000-0002-5242-7239 (K.C.), 0000-0002-5244-8259 (L.E.A.), 0000-0002-4310-
- 35 8519 (Y.O.), 0000-0003-0784-7960 (Y.H), 0000-0001-8216-0742 (M.A.D.N.P.), 0000-0002-
- 36 8308-5251 (L.J.S.), 0000-0003-4045-1175 (T.S.D.), 0000-0002-9030-6892 (M.L.), 0000-0001-
- 37 6310-5342 (K.S.), 0000-0002-3127-8609 (N.L.), 0000-0003-3650-0018 (K.S.D.), 0000-0002-
- 38 4310-8519 (B.J.N.), 0000-0002-2742-7384 (M.D.Y.-N)

39

- 40 **One-sentence Summary**: Precursor chain length, plant genotype, and spatio-temporal dynamic
- 41 gradients impact product–precursor relationships in the cuticular wax-producing network of
- 42 maize silks.

44	Present Addresses:
45 46	Liza E. Alexander, Pattern Bioscience, Austin, Texas. Email: liz.alex@gmail.com
47 48 49	Umnia Mahgoub, Centers for Disease Control and Prevention, Atlanta, Georgia. Email: umnia@hotmail.com
50 51	Reid Claussen, Novozymes, Blair, Nebraska. Email: reid.claussen@gmail.com
52 53 54	Layton Peddicord, Predictive Agriculture, Corteva Agriscience, Johnston, Iowa. Email: layton.peddicord@corteva.com
55 56 57	Derek Loneman, Massachusetts General Hospital, Boston, Massachusetts. Email: dmloneman@gmail.com
58 59 60	Tesia Dennison, AgReliant Genetics, Sioux Falls, South Dakota. Email: tesia.posekany@gmail.com
61	The author responsible for distribution of materials integral to the findings presented in this
62	article in accordance with the policy described in the Instructions for Authors
63	(https://academic.oup.com/plphys/pages/General-Instructions) is Marna D. Yandeau-Nelson
64	
65	ABSTRACT
66	The hydrophobic cuticle is the first line of defense between aerial portions of plants and the
67	external environment. On maize (Zea mays L.) silks, the cuticular cutin matrix is infused with
68	cuticular waxes, consisting of a homologous series of very long-chain fatty acids (VLCFAs),
69	aldehydes, and hydrocarbons. Together with VLC fatty-acyl-CoAs (VLCFA-CoAs), these
70	metabolites serve as precursors, intermediates and end-products of the cuticular wax biosynthetic
71	pathway. To deconvolute the potentially confounding impacts of the change in silk
72	microenvironment and silk development on this pathway, we profiled cuticular waxes on the
73	silks of the inbreds B73 and Mo17, and their reciprocal hybrids. Multivariate interrogation of
74	these metabolite abundance data demonstrates that VLCFA-CoAs and total free VLCFAs are
75	positively correlated with the cuticular wax metabolome, and this metabolome is primarily
76	affected by changes in the silk microenvironment and plant genotype. Moreover, the genotype
77	effect on the pathway explains the increased accumulation of cuticular hydrocarbons with a

concomitant reduction in cuticular VLCFA accumulation on B73 silks, suggesting that the conversion of VLCFA-CoAs to hydrocarbons is more effective in B73 than Mo17. Statistical modeling of the ratios between cuticular hydrocarbons and cuticular VLCFAs reveals a significant role of precursor chain length in determining this ratio. This study establishes the complexity of the product–precursor relationships within the silk cuticular wax-producing network by dissecting both the impact of genotype and the allocation of VLCFA-CoA precursors to different biological processes, and demonstrates that longer chain VLCFA-CoAs are preferentially utilized for hydrocarbon biosynthesis.

The cuticle is the external hydrophobic barrier covering the epidermis of most aerial organs

INTRODUCTION

of terrestrial plants (Riederer and Schreiber, 2001). The cuticle limits transpirational water loss (Yeats and Rose, 2013) and thus has a role in protecting the organism from such abiotic stresses as drought, salinity, and temperature. Additional protective roles include protection from ultraviolet radiation (Krauss et al., 1997; Shepherd and Wynne Griffiths, 2006), and from biotic stresses, such as fungal and bacterial pathogens and herbivory by insects (Eigenbrode and Espelie, 1995; Serrano et al., 2014).

The cuticle is comprised of a cutin polyester matrix that is infused with and laid atop by solvent-extractable cuticular waxes, which themselves have been shown to be associated with protection against ultraviolet radiation (Tafolla-Arellano et al., 2018), drought (Panikashvili et al., 2007; Kosma et al., 2009), humidity changes (Kim et al., 2019), and disease resistance (Wang et al., 2020). In general, these extracellular cuticular waxes can include acyl derivatives such as very long-chain fatty acids (VLCFAs) (i.e., fatty acids of 20-carbons and longer), hydrocarbons, aldehydes, primary and secondary alcohols, ketones, and wax esters. Additional components include triterpene derivatives, such as β -sitosterol, stigmasterol, lupeol and α - and

β-amyrins (Jetter et al., 2006). The specific composition of the cuticular wax metabolome is dependent on the organism, tissue or organ, and temporal stage of tissue or organ development (Shepherd and Wynne Griffiths, 2006; Samuels et al., 2008). For example, in maize (Zea mays L.), the cuticular waxes on juvenile and adult leaves are primarily composed of VLCFAs, alcohols, aldehydes and wax esters, with only about 1% and 17% being hydrocarbons, respectively (Bianchi et al., 1984; Bianchi et al., 1985). In contrast, on maize silks, which are the stigmatic floral tissues that receive pollen and facilitate fertilization of the ovule, cuticular waxes are particularly rich in hydrocarbons, comprising 40-90% of these lipids, with lesser amounts of VLCFAs, and minor to trace amounts of aldehydes and alcohols (Yang et al., 1992; Perera et al., 2010; Loneman et al., 2017; Dennison et al., 2019). Hence, the metabolic network responsible for cuticular wax deposition on silks include two major branches of the pathway, one that produces hydrocarbons and one that produces VLCFAs. The favored model for hydrocarbon biosynthesis in plants is that it occurs in the endoplasmic reticulum via the reduction of a saturated or unsaturated VLC fatty acyl-CoA (VLCFA-CoA) to an aldehyde intermediate, which subsequently undergoes decarbonylation to produce either a saturated (alkane) or unsaturated (alkene) hydrocarbon, which are then transported to the extracellular cuticle (Cheesbrough and Kolattukudy, 1984; Bernard et al., 2012; Jetter et al., 2018). Because the majority of VLCFA-CoAs are comprised of an even number of carbon atoms (2n, where n represents the number of 2-carbon units used to assemble the VLCFA-CoA), this process generates hydrocarbon products with an odd-numbered carbon chain length (i.e., 2n-1). However, if the process begins with odd-numbered VLCFA-CoA (i.e., 2n + 1 carbons) substrates, even-numbered hydrocarbon products are produced (i.e., (2n + 1) - 1 = 2n). Such even-numbered hydrocarbons occur at lower quantities in many cuticles, including that of maize

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

silks (Yang et al., 1992; Loneman et al., 2017; Dennison et al., 2019). The sequence of hydrocarbon-forming reactions can occur at each VLCFA-CoA chain length (i.e., at every value of 2n or 2n+1), thereby generating a homologous series of cuticular hydrocarbon products with alkyl chain lengths ranging from 19-33 carbon atoms (Perera et al., 2010). Apart from allocation to the reduction-decarbonylation pathway, VLCFA-CoA precursors of every chain length can also be hydrolyzed into free VLCFAs and subsequently transported to the cuticle as cuticular free VLCFAs. Importantly, the cuticular VLCFAs, the aldehyde intermediates and the hydrocarbon products of the reduction-decarbonylation pathway are all solvent-extractable from silk cuticles (Loneman et al., 2017), permitting the assessment of relationships among these metabolically interconnected lipids. Indeed, based on the assessment of cuticular VLCFAs, aldehydes, alkanes, and alkenes collected from maize silks, a pathway model involving a series of parallel reactions has been proposed for the biosynthesis of both alkanes and alkenes (Perera et al., 2010; Gonzales-Vigil et al., 2017). As with all biological processes, this cuticular wax-producing network is genetically programmed and is regulated by many factors that integrate environmental and developmental cues. Indeed, both genetic and environmental factors impact the cuticular wax metabolome on

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

programmed and is regulated by many factors that integrate environmental and developmental cues. Indeed, both genetic and environmental factors impact the cuticular wax metabolome on maize silks. For example, multiple characterizations of the maize silk cuticular waxes revealed substantial difference (i.e., up to 10-fold) in abundance among various panels of inbred lines, demonstrating the breadth of natural variation in cuticular composition (Yang et al., 1992; Miller et al., 2003; Perera et al., 2010; Loneman et al., 2017; Dennison et al., 2019). Moreover, within any individual maize inbred line, cuticular wax accumulation varies along the length of the silks. Specifically, cuticular hydrocarbons accumulate at up to five-fold higher levels on the portions of silks that have emerged from the protective husk leaves, as compared to the portions that are still

encased by these husk leaves (Miller et al., 2003; Perera et al., 2010; Loneman et al., 2017; Dennison et al., 2019), demonstrating an impact of silk microenvironment on hydrocarbon biosynthesis. Thus, it is precisely the dynamic character of these natural systems that permits the statistical interrogation of the hydrocarbon-producing network among maize inbreds.

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

Herein, a fine dissection of the cuticular wax-producing network is conducted via cuticular wax profiling of five contiguous silk sections, from base to tip, for the maize inbred lines B73 and Mo17, as well as their reciprocal hybrids. These silk sections constitute a spatio-temporal gradient that captures the spatial differences in cuticular wax composition and differences caused by silk development within the encased portions of the silks (Fuad-Hassan et al., 2008). B73 and Mo17 were selected for these studies because they are two agronomically important inbred lines for which high quality genome sequences and annotations are available (Hufford et al., 2021; Chen et al., 2023). Moreover, previous studies have revealed wide variation in cuticular wax composition between these two inbreds, which was the basis for deducing the potential pathway for alkene biosynthesis (Perera et al., 2010). Additionally, these inbred lines provide the genetic foundation for commonly used intermated B73×Mo17 recombinant inbred line populations that have facilitated the quantitative genetic analysis of metabolite traits (González-Rodríguez et al., 2023), including cuticular waxes (Dennison, 2020). Supervised and unsupervised multivariate statistical analyses of the cuticular wax profiles along the silk length of these maize lines reveal that both microenvironment and genotype of the silks greatly impact cuticular wax compositional dynamics. Furthermore, dissection of the product-precursor relationship within the silk cuticular wax-producing network demonstrated that with increasing acyl chain lengths, VLCFA-CoA precursors were preferentially incorporated into the hydrocarbon-producing pathway among many other processes that also utilize VLCFA-CoAs (e.g. complex lipid biosynthesis). These

findings provide the foundation for unraveling the complex metabolic networks underlying the compositional variations that are observed in cuticular waxes in response to changes in microenvironment and across different genetic backgrounds.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

173

174

175

RESULTS

To model the metabolic network for hydrocarbon production and deconvolute the potential impacts of development, microenvironment, and genetics on the dynamics of the cuticular wax metabolome, we profiled extracellular cuticular waxes along the lengths of silks collected at 3days post silk-emergence. These silks were exhaustively sampled (~20 biological replicates) from four maize genotypes (inbred lines B73 and Mo17, and their reciprocal hybrids, B73×Mo17 and Mo17×B73) in the summer growing seasons of 2014 and 2015. The collected silks were dissected into five contiguous segments, named sections A-E, from base to tip (Figure 1A). At the time of silk collection, cell division has ceased, and the developmental gradient is primarily determined by cellular elongation, which is occurring only in the husk-encased portions of the silk, with an acropetal decrease in the rate of cell elongation (Fuad-Hassan et al., 2008). Therefore, these sections reflect a combination of spatial and temporal gradients (Fuad-Hassan et al., 2008). This gradient includes the microenvironment transition of the silks, as sections A-C were husk-encased, and sections D and E had emerged into the external environment (McNinch et al., 2020). These factors were analyzed with the 2014 dataset, and the comparison to the 2015 data allowed for the analysis of macroenvironmental effects. All cuticular wax composition data are available in Supplemental Table S1.

Spatio-temporal dynamic changes in the cuticular wax metabolome in maize silks of

different genotypes

Depending on genotype and silk section, hydrocarbons account for 85-97%, and VLCFAs account for 2-15%, of total extractable cuticular waxes; whereas aldehydes and alcohols are detected only in trace amounts (<1%) (Figure 1, A and B; Supplemental Table S1). Irrespective of the genotype, total cuticular wax load increases acropetally (i.e., increases from section A to E; Figure 1A). A three-fold increase in total cuticular wax abundance is observed along the silk length for inbred line B73, whereas total abundance only doubles for inbred line Mo17, and the two reciprocal hybrids (Figure 1A). Furthermore, accumulation of these lipids is non-linear, and changes occur most abruptly at the transition between encased and emerged portions of silks (i.e., section C to D; Figure 1A), and along the emerged portions of silks (i.e., section D to E; Figure 1A). Regression of the cuticular wax concentration along the silk length reveals that a quadratic polynomial model (adjusted R² ranging from 0.2 to 0.9), as compared to a linear model (Supplemental Table S2), better depicts the dynamics of total waxes, hydrocarbons, VLCFAs, and aldehydes, underscoring the complexity that underlies the dynamics of cuticular wax accumulation. The compositional dynamics of these chemical classes vary not only along the silk length, but also among the different genotypes. Silks from inbred B73 and hybrid B73×Mo17

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

but also among the different genotypes. Silks from inbred B73 and hybrid B73×Mo17 exhibited a decrease in the relative abundance of VLCFAs and a concomitant increase in relative abundance of hydrocarbons along the silk length (Figure 1B). In contrast, there was no change in the relative abundance of VLCFAs along this spatio-temporal gradient in the silks of Mo17×B73 and there was no consistent change for Mo17 (Figure 1B). However, across this gradient, cuticular VLCFA concentrations were 1.7- to 4.7-fold higher in Mo17 and both reciprocal hybrids, as compared to the B73 inbred. The largest difference among the genotypes occurs for emerged silks (sections D and E) (Figure 1A), suggesting that in Mo17 VLCFA-CoA precursors

are preferentially converted to VLCFAs and transported to the silk surface instead of first being utilized for hydrocarbon production and then transported to the silk surface.

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

Hydrocarbon composition, specifically the degree of unsaturation (i.e., alkenes), also varies among these genotypes. Although alkenes consistently comprise ~50% of the hydrocarbons along the silk length of Mo17 and the reciprocal hybrids, for B73 the relative abundance of alkenes increased from approximately 40% at the base to 50% of hydrocarbons at the tips of the silks (Figure 1B). Most alkenes harbor a single double bond (i.e., a monoene), which is positioned either at the 7th or 9th carbon-position, irrespective of the alkyl chain-length (Figure 1B). However, additional, previously characterized (Perera et al., 2010; Dennison et al., 2019), minor monoenes were also identified with chain lengths of 29, 31, and 33 carbon chain lengths and double bonds positioned at the 14th or 15th carbon-positions. Accumulation patterns of the 7and 9-monoenes differed between the two inbred lines (Figure 1B). Specifically, for B73, 7monoenes consistently comprised ~50% of all alkenes along the silk length, while the relative abundance of 9-monoenes increased from 33% to 42% (Figure 1B) of the alkenes from base to tip of the silks. In contrast, on Mo17 silks, the relative abundance of both the 7- and 9-monoenes did not change along the silk length, and they accounted for 64% and 20% of all alkenes, respectively (Figure 1B). Thus, although the absolute amounts (µmol/g dry weight tissue) of these alkenes increased by ~ 2.5 -fold along the silk length (Supplemental Figure S1), the relative proportions of 7- and 9-monenes remained constant for Mo17, with the 9-monoenes being less abundant (Figure 1B).

The relative impacts of genotype, silk development and silk encasement status (i.e., silk microenvironment) on the dynamics of the cuticular wax metabolome were visualized via Principal Component Analysis (PCA) of the 45 cuticular wax metabolites (Figure 1C). The

distribution of silk samples along PC1, which accounts for 31% of the total variance, is tightly associated with the position along the silk length, and mainly separates the husk-encased (sections A-C) from the emerged (sections D and E) portions of the silks. Moreover, PC1 also separates samples based upon silk development, separating section C from sections A and B within the husk-encased silks of the inbred B73 and the two hybrids, demonstrating the impact of the temporal gradient caused by cell elongation in the encased portions of the silks (Fuad-Hassan et al., 2008). PC2 accounts for 19% of the total variance, and primarily separates samples according to genotype, with inbred lines B73 and Mo17 forming subclusters, and the hybrids forming a third cluster, which is closer to Mo17 than B73 (Figure 1C). Hence, we hypothesize that the spatio-temporal gradient of the silk has a greater influence on cuticular wax accumulation than the genetic variation that was evaluated in this study. Two-way ANOVA on specific wax classes (i.e., hydrocarbon, aldehyde and alcohol) and each individual metabolite (Supplemental Table S3; Supplemental Table S4) supports this hypothesis and reveals that the position along the length of the silk is the major determinant of the observed variance in total cuticular wax accumulation (accounting for 70% of the variance). The effect of genotype and the two-way interaction between genotype and silk section explain a much smaller proportion (between 5% and 10%) of the variance in the accumulation of these components

primarily by genotype (66%), whereas the position along the length of the silk explains only 17%

(Supplemental Table S4). In stark contrast, but in agreement with the major patterns presented in

Figure 1B, the majority of the observed variance in cuticular VLCFA accumulation is explained

of this variation.

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

262

263

Silk microenvironment is the major driver of changes in cuticular wax accumulation

The variation in the cuticular waxes along the silk length may be explained by either or both the silk developmental gradient and/or the change in the microenvironment of the silks associated with husk-encasement status. The potentially confounding determinants of silk cellular development and silk encasement status were untangled by the application of a nested ANOVA model. Silk encasement status explained 57% of the variation in total cuticular wax abundance, whereas the silk acropetal gradient (i.e., sections A *versus* B *versus* C for encased portions, and section D *versus* E for emerged portions) explained only 13% of the observed variance (Supplemental Table S4). One can conclude therefore, that cuticular wax accumulation, at 3-days post-silk emergence, is primarily impacted by the change in silk microenvironment, associated with emergence of the silks from the protective husk leaves.

Correlations among cuticular wax metabolites along the silk length reveal genotype-

dependent clustering patterns

Here we sought to evaluate the co-expressed metabolite networks and compare these networks among different genotypes. Spearman correlation matrices were calculated between every two detected wax metabolites along the silk length and these were used for subsequent weighted gene correlation network analysis (WGCNA) (Horvath and Langfelder, 2011).

WGCNA is a method that was first developed for identifying clusters of co-expressed genes, but is also widely applied to metabolomics data (Shen et al., 2013; Bartzis et al., 2017; Rosato et al., 2018).

The cluster membership of many metabolites differs among the four genotypes that were evaluated (Figure 2; Supplemental Figure S2). For the inbred B73, and the reciprocal hybrids, the majority of metabolites group into a single cluster (Table 1; Figure 2A; Supplemental Figure S2) that includes hydrocarbons (HC_{2n-1} and HC_{2n}) and VLCFAs. In contrast, for the inbred

Mo17, hydrocarbons and VLCFAs mostly reside in two separate clusters (Table 1; Figure 2, B and C). Frobenius vector norms were calculated from the Spearman correlation matrices to provide aggregate measures of the level of correlation among all metabolite pairs as they are modulated by the spatio-temporal silk gradient of a given genotype, as detailed in the Supplemental Methods. The Frobenius norms for silks of B73 and the reciprocal hybrids were statistically higher than for silks of Mo17 (Table 1), demonstrating that there are stronger correlations among the profiled metabolites in each of the former genotypes than Mo17. Collectively, these observed differences in correlation network topologies suggest that the dynamics of cuticular wax accumulation differ between Mo17 and B73, especially the dynamics of VLCFA accumulation.

A commonality among all genotypes, however, is the lack of correlation of 16- and 18-carbon FAs with the majority of the cuticular wax metabolites. Notably, these FAs are found either as singleton, non-clustered metabolites (B73, Mo17, Mo17×B73) or within a single small cluster (B73×Mo17) (Figure 2, D and E; Supplemental Figure S2), consistent with the fact that the metabolism of these shorter-chain fatty acids is distinct from the other cuticular wax metabolites, i.e., hydrocarbons and VLCFAs. For example, 18-carbon fatty acyl-CoAs serve as the initial precursors for elongation to generate VLCFAs (Bach and Faure, 2010), and as building blocks in the assembly of numerous complex lipids, including membrane glycerolipids (Sato and Awai, 2017), phospholipids (Nakamura, 2017), and sphingolipids (Michaelson et al., 2016).

Identification of the signature metabolites that are primary contributors to compositional variation in the cuticular wax metabolome

Signature cuticular wax metabolites (or biomarkers) were identified via multivariate Partial Least Squares-Discriminant Analysis (PLS-DA). This statistical strategy is commonly applied to

metabolite data for classification analysis and biomarker selection (Worley and Powers, 2012; Bartel et al., 2013). We used this strategy herein to identify the signature metabolites that most contribute to the variation in the cuticular wax metabolome as modulated by the change in the silk microenvironment or by the silk genotype. In this study, two supervised PLS-DA regression models were constructed, with the explanatory variables (R^2X) being the concentrations of individual cuticular wax metabolites and the response variable (R²Y) being either genotype (Supplemental Figure S3, A and C) or silk section (Supplemental Figure S3, B and D). The corresponding weight plots that illustrate the contributions of each metabolite in discriminating among genotypes or silk sections are presented in Supplemental Figure S3, C and D, respectively. The metabolites that contribute the most to PLS-DA classification were identified via a variable-importance-in-projection score (VIP>1; Supplemental Table S5), which is a cumulative measure of the contribution of a given explanatory variable (i.e., metabolite) to a PLS-DA model (Pérez-Enciso and Tenenhaus, 2003). The PLS-DA classification of cuticular wax metabolome compositions relative to genotype yields two clusters of silk samples for each of the inbred lines, and a third cluster containing the samples from the two hybrids (Supplemental Figure S3A). The resulting model explained 63% and 66% of the variance in the explanatory (R^2X) and response (R^2Y) variables, respectively. The predictive accuracy is relatively low for this model (i.e., $Q^2Y = 63\%$), due to the inability to correctly classify the metabolite compositions between the two hybrids, B73×Mo17 and Mo17×B73, which express nearly identical cuticular wax metabolomes. However, upon combining the metabolite data from the two hybrids into a single group, the predictive accuracy of the model was improved ($Q^2Y = 89\%$) (Supplemental Figure S3E). As visualized in the PLS-DA scatter plot, the signature wax metabolites (i.e., VIP scores >1) identified in the original

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

PLS-DA model are major contributors to sample classification, primarily differentiating B73 from Mo17, and these two parental lines from the B73×Mo17 and Mo17×B73 hybrids (Supplemental Figure S3C; black circles). These signature metabolites (10 fatty acids and 5 hydrocarbons) (Figure 3, A and C) are one third of the total number of detected cuticular wax metabolites but account for two thirds of the observed variance in the response variable (i.e., genotype). The PLS-DA classification model of metabolome compositions relative to the spatiotemporal silk gradient yields one cluster that is specific to husk-encased sections A and B, and three individual clusters specific to silk sections C, D, and E (R²X=55%, R²Y=31%, Q²Y =28%; Supplemental Figure S3B). A PLS-DA model that distinguishes silk sections based on huskencasement status improves the predictive accuracy (Q²Y) from 28% to 79% (Supplemental Figure S3F), demonstrating the importance of the silk microenvironment in shaping the cuticular wax metabolome. Moreover, the PLS-DA model that classifies the metabolomes by silk sections identified 21 signature metabolites (8 fatty acids, 2 aldehydes and 11 hydrocarbons) (Supplemental Figure S3D, black circles), each of which exhibited statistically significant differences in patterns of accumulation among the silk sections (Figure 3, B and C). In combination, these signature metabolites account for 75% of the variance observed among the silk sections. Notably, six metabolites (4 saturated fatty acids, 1 unsaturated fatty acid, and 1 alkane) were selected as signature metabolites that contribute to the variation observed both across different genotypes and different silk sections (Figure 3B). Collectively, these quantitative statistical analyses demonstrate the importance of both the silk microenvironment and the silk genotype to determining the cuticular wax composition, and further identify that the

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

accumulation of many cuticular waxes, especially the VLCFAs and hydrocarbons, are differentially influenced by these two factors.

The signature metabolites include six pairs of saturated or unsaturated hydrocarbons and fatty acids (i.e., either $HC_{(2n-1):0}$ and $FA_{2n:0}$, or $HC_{(2n-1):1}$ and $FA_{2n:1}$ metabolites) that are derived from the same VLCFA-CoA precursor. There is a striking difference in the accumulation of these cuticular VLCFAs as compared to the hydrocarbons in the two inbreds. Namely, compared to B73 silks, the cuticular VLCFAs of 22 to 26 carbons are 2- to 13-fold more abundant in Mo17, whereas the metabolically related hydrocarbons (i.e., of 21 to 25 carbons) are 2- to 13-fold less abundant in Mo17 (Supplemental Figure S4). These distinct accumulation patterns of cuticular hydrocarbons and VLCFAs reveal a difference in the cuticular wax-producing network between the two inbreds, likely caused by preferential allocation of VLCFA-CoA precursors to either decarbonylation (generating hydrocarbons) or hydrolysis (generating VLCFAs).

Metabolic partitioning of VLCFA-CoA precursors determined from the concentrations of VLCFA-CoAs, total free VLCFAs, and complex lipid-associated VLCFAs

The VLCFA-CoAs that contribute to the assembly of the silk cuticular waxes are products of the endoplasmic reticulum-associated fatty acid elongase (Yeats and Rose, 2013). But these VLCFA-CoAs can also be converted to free VLCFAs or can be utilized to assemble other complex lipids, e.g., phospholipids, neutral lipids and sphingolipids. Therefore, to address this metabolic partitioning of the VLCFA-CoAs, we extracted and analyzed total silk lipids (Figure 4, B and C) in parallel with the preparation of cuticular wax extracts from silks of B73 and Mo17 inbreds (Figure 4A). These lipids were profiled by liquid chromatography-mass spectrometry (LC-MS), which identified the occurrence of free VLCFAs and VLCFAs that were associated with complex lipids. The free VLCFAs quantified in these analyses combined both cellular and

cuticular VLCFA pools. These total free VLCFAs were of 20- to 34-carbon chain lengths (Supplemental Table S6). The VLCFA-containing lipids were predominantly associated with the sphingolipids, specifically three glucosylceramide (GlcCer) species that contain FA_{22:0}, FA_{24:0}, or FA_{26:0} (Supplemental Table S6). Although VLCFAs were also detected as associated with phosphatidylcholine and triacylglycerol, these VLCFAs were in trace amounts, and therefore ignored. Next, we sought to explore the relationship between different VLCFA pools and cuticular VLCFAs. The total free VLCFAs increased in abundance from the base to the tip of the silks (Figure 4). This increase correlated with the cuticular VLCFAs on silks of both B73 (Pearson correlation coefficients, 0.65 to 0.92) and Mo17 (0.87 to 0.94). In contrast, no such correlation was observed with the GlcCer-associated VLCFAs for either genotype (Supplemental Table S7). Because VLCFA-CoAs are the substrates for cuticular wax biosynthesis, we also profiled these fatty acyl-CoA pools in two sections of the silks, the husk-encased (i.e., represented by sections A – C, Figure 1A) and the emerged silks (i.e., represented by sections D and E, Figure 1A) of B73 and Mo17 plants. Fatty acyl-CoAs of 16- and 18-chain lengths comprised 80-90% of the acyl-CoA pools, and these were more abundant in Mo17 silks, particularly in the emerged portions of the silks (Supplemental Figure S5 and Supplemental Table S8). These analyses quantify VLCFA-CoAs of up to 34-carbon chain length (Supplemental Figure S5), including the chain lengths that are precursors of the cuticular wax metabolites (i.e., 20 to 28 carbons) (Figure 4D). The spatio-temporal accumulation of individual VLCFA-CoAs along the silk length are not statistically correlated with the corresponding cuticular wax products (Supplemental Table S9). On the other hand, VLCFA-CoA accumulation differs between inbreds. In the husk-encased silk sections, the 20- to 28-carbon VLCFA-CoAs accumulated at 16- to 68-fold higher levels in

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

Mo17 than B73, and in the emerged sections of silks these VLCFA-CoAs were between 8- to 44fold higher in Mo17 (Figure 4D). This genotypic difference in VLCFA-CoA accumulation is also observed for cuticular VLCFAs. Cuticular hydrocarbon: VLCFA ratios vary among genotypes and across acyl chain lengths Three sets of analyses were conducted to assess the metabolic commitment of VLCFA-CoA precursors to the cuticular wax-producing network. First, we examined the ratios between hydrocarbons ($HC_{2n-1:0}$) and the corresponding cuticular VLCFAs ($FA_{2n:0}$), both of which are derived from the same precursors ($FA_{2n:0}$ -CoA). Second, we sought to unravel the productprecursor relationship within the cuticular wax-producing network by studying the associations between FA_{2n:0}-CoA concentrations and the cuticular wax hydrocarbon: VLCFA ratios (i.e., $HC_{2n-1:0}$: $FA_{2n:0}$). Finally, this interrogation was further expanded by integrating the associations of the $HC_{2n-1:0}$: $FA_{2n:0}$ ratios with the other two VLCFA pools (total free VLCFAs, and GlcCerassociated VLCFAs), which are also derived from VLCFA-CoAs. Among the factors that were considered in this study, the cuticular $HC_{2n-1:0}$: $FA_{2n:0}$ ratios were most influenced by the carbon chain lengths of these metabolites. In the four genotypes examined, the saturated cuticular VLCFA $(FA_{2n:0})$ of each $HC_{2n-1:0}$: $FA_{2n:0}$ pair decreased in abundance with increasing carbon chain length, concomitant with an increase in the corresponding alkane product $(HC_{2n-1:0})$ (Figure 5 and Supplemental Figure S6). Indeed, regression analysis of the $HC_{2n-1:0}$: $FA_{2n:0}$ ratio confirms a linear increase in the value of this ratio as the chain length increases from 22 to 28 carbon atoms (p-values <0.0001, $R^2 \ge 0.79$; Figure 5; Supplemental Figure S5), and this is independent of silk husk-encasement status or genotype. In addition, the abundance of VLCFA-CoA precursors, total free VLCFAs and GlcCer-associated VLCFAs decrease with increasing acyl chain length (Figure 4 and Supplemental Table S6).

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Specifically, with increasing acyl chain length, regardless of the genotype or silk microenvironment, VLCFA-CoA precursors ($FA_{2n:\theta}$ -CoA) are negatively correlated with the corresponding $HC_{2n-1:0}$: $FA_{2n:0}$ ratio (correlation coefficients < -0.8), negatively correlated with $HC_{2n-1:0}$ (correlation coefficients < -0.6), and positively correlated with cuticular $FA_{2n:0}$ (correlation coefficients > 0.7) (Supplemental Table S9). These findings suggest that VLCFA-CoAs of longer acyl chain lengths are increasingly recruited for hydrocarbon biosynthesis, instead of being converted to free VLCFAs and subsequently deposited in the cuticle. Because cuticular wax production is indirectly associated with total free VLCFAs and with GlcCer-associated VLCFAs, a more rigorous statistical approach, Bayesian model selection, was employed to evaluate the impact (or lack thereof) of these two VLCFA pools on the cuticular $HC_{2n-1:0}$: $FA_{2n:0}$ ratio. Specifically, while keeping metabolite chain length (2n) in the baseline model, our goal was to establish the relative importance of the other variables on the HC_{2n} 1:0:FA_{2n:0} ratio (i.e., total free VLCFAs, GlcCer-associated VLCFAs, genotype, husk-encasement status, and the macroenvironment). The construction of Bayesian regression models and the methods of their comparisons are detailed in Supplementary Methods. Because we did not have a single dataset that integrates the factors of both VLCFA pools and the macroenvironments (i.e., 2014 and 2015 growing years), we performed two Bayesian Model Comparisons, examining the impact of the VLCFAs pools on the $HC_{2n-1:0}$: $FA_{2n:0}$ ratio (i.e., VLCFA model selection) or the impact of the difference in the macroenvironment on this ratio (i.e., Macroenvironment model selection). To assess the impact of total free VLCFAs and GlcCer-associated VLCFAs on the HC2n-1:0:FA_{2n:0} ratios, we considered three Bayesian regression models: VLCFA model 1, which includes total free VLCFAs; VLCFA model 2, which includes GlcCer-associated VLCFAs; and

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

VLCFA model 3, which includes both total free and GlcCer-associated VLCFAs (Table 2). The predictor variables included in each model were selected by preliminary Bayesian Model Comparison (see Supplemental Methods; Supplemental Tables S10, S11 and S12) from the variables: genotype, husk-encasement status, and metabolite chain length, as well as those associated with two-way and three-way interaction terms among these predictor variables. Subsequently, a second round of Bayesian Model Comparison was performed to compare a model without VLCFA variables (Baseline Model) to VLCFA models 1, 2, and 3. The resultant Bayes factors demonstrate a substantial increase in the ability of each VLCFA model to explain patterns of $HC_{2n-1:0}$: $FA_{2n:0}$ ratios when incorporating either or both VLCFA pools (Table 2). These findings demonstrate that the allocation of VLCFA-CoAs to biological processes different from cuticular wax production strongly impact cuticular $HC_{2n-1:0}$: $FA_{2n:0}$ ratios. Finally, using combined data collected from the two growing years, we queried the effect of the macroenvironment on $HC_{2n-1:0}$: $FA_{2n:0}$ ratios in the context of the different genotypes and silk encasement status (Table 3, Macroenvironment model selection). Because the VLCFA pools were not measured in the first growing year, total free VLCFAs, GlcCer-associated VLCFAs and the related interaction terms were not included in this modeling effort. The genotype factor exhibited the strongest impact on hydrocarbon: VLCFA ratios in the combined dataset (Bayes factor = 1.01×10^{110} , Table 3, Macroenvironment model selection). Change in the macroenvironment (Bayes factor= 2.35×10^{33}) and microenvironment (Bayes factor= 7.76×10^{28}) also impacted the $HC_{2n-1:0}$: $FA_{2n:0}$ ratios, although to a lesser extent. Similarly, these quantitative modeling analyses indicate that the two-way interactions between genotype and microenvironment, and between genotype and macroenvironment also play a role in determining the $HC_{2n-1:0}$: $FA_{2n:0}$ ratio dynamics along the silk length (Table 3). In contrast, the interaction

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

between the micro- and macroenvironments do not. Collectively, these analyses quantitatively illustrate the complexity of factors that influence the relationships between precursors, intermediates and products of a complex metabolic process, such as cuticular wax biosynthesis. The quantitative relationships defined by this study involve commitment of VLCFA-CoA precursors among multiple competing metabolic branches of the cuticular wax-producing network that are represented by the steady state levels of cuticular hydrocarbons, cuticular VLCFAs, total free VLCFAs, and GlcCer-associated VLCFAs. Our analyses indicate that with increasing acyl chain length, the hydrocarbon-producing pathway is prioritized over the other competing branches.

DISCUSSION

Maize silks as a unique system to study the dynamics of the cuticular wax-producing network

In this study we utilized cuticular wax profiling data gathered along the length of maize silks from different genetic backgrounds to deduce and quantitatively compare the dynamics of the metabolic network that supports cuticular hydrocarbon accumulation. We investigated the cuticular wax metabolomes of the maize B73 and Mo17 inbred lines, and the corresponding reciprocal hybrids. Genotypic variation of cuticular wax compositions occur primarily between the two inbred parents (i.e., B73 *versus* Mo17) and between the inbred parents and the hybrids, but not between the reciprocal hybrids, B73×Mo17 and Mo17×B73. While some plant molecular phenotypes (e.g., chloroplast thylakoid lipid composition and localization (Dueñas et al., 2017) and gene expression profiles (Gonzalo et al., 2007; Swanson-Wagner et al., 2009) can differentiate between these reciprocal hybrids, such distinctions are less pronounced than the

differences that occur between the parental inbred lines (Paschold et al., 2012; Baldauf et al., 2016; Marcon et al., 2017). The remainder of the discussion is therefore focused on the cuticular wax metabolomes and the apparent variation in the underlying hydrocarbon-producing pathway between the two inbred parents.

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

Maize silks provide a unique platform for assessing the dynamics of cuticular wax production, in the absence of complex metabolic flux analysis approaches. With few exceptions, the vast majority of characterizations of the cuticular wax biosynthesis pathway have been conducted from single time-point comparisons of metabolomes profiled from different genetic backgrounds (Bianchi et al., 1979; Koornneef et al., 1989; Hannoufa et al., 1993; Jenks et al., 1996; Post-Beittenmiller, 1996; Perera et al., 2010; Xue et al., 2017; Trivedi et al., 2019). In contrast, in this study cuticular wax profiling captures differences in surface metabolite accumulation of presumed precursors, intermediates, and products of the pathway along a spatiotemporal gradient that includes the developmental progression of silks (Fuad-Hassan et al., 2008), and the transition in microenvironment as portions of the silks changed encasement status from husk-encased to husk-emerged in two separate macroenvironments. Similar spatio-temporal studies have identified metabolic shifts in primary, secondary, and lipid metabolism along the developmental gradient that integrates cell division and cell expansion in Arabidopsis (Arabidopsis thaliana), wheat (Triticum aestivum) and maize (Pick et al., 2011; Allwood et al., 2015; Busta et al., 2017; Zhou et al., 2019; Bourgault et al., 2020).

The silk microenvironment significantly impacts the cuticular wax metabolome and the hydrocarbon-producing pathway

Emergence of the silks from the encasing husk-leaves has previously been shown to induce increased accumulation of cuticular hydrocarbons in different maize genotypes (Yang et al.,

1992; Miller et al., 2003; Perera et al., 2010; Loneman et al., 2017; Dennison et al., 2019). However, in each of these prior studies that compared the cuticular wax metabolome between husk-encased and emerged portions of silks, the change in microenvironment (i.e., silk encasement status) was overlaid with a confounding developmental gradient, particularly that of an acropetal decrease in cellular elongation within the husk-encased silks and cessation of elongation within emerged silks at the time of tissue sampling (Fuad-Hassan et al., 2008). This study shows that the change in microenvironment per se drives the observed change in cuticular wax composition, as well as the ratios between cuticular hydrocarbons and corresponding cuticular VLCFAs. A recent transcriptomic atlas for maize silks has identified this microenvironmental change induces differential gene expression for many genes involved in cuticular wax biosynthesis, especially for VLCFA metabolic processes, and more broadly for genes involved in responding to biotic and abiotic stresses (McNinch et al., 2020). The increase in cuticular hydrocarbon accumulation that is observed in emerged silks of B73, the B73×Mo17 and Mo17×B73 hybrids and, to a lesser extent, Mo17, may provide protection against drought, similar, for example, to the observed increase in alkane accumulation upon drought stress that occurs in soybean (Glycine max) and sesame (Sesamum indicum) (Kim et al., 2007a; Kim et al., 2007b). These differences in cuticular wax composition may also be caused by additional environmental cues imposed upon husk-encased versus emerged silks (e.g., light, oxygen concentration, and other biotic and abiotic factors) as occurs in other plant organs (Lewandowska et al., 2020). For example, a number of prior studies have indicated that increased light exposure (von Wettstein-Knowles et al., 1980; Jenks et al., 1994; Rhee et al., 1998) or enhanced UV-B radiation (Tafolla-Arellano et al., 2018) alters cuticular wax composition, especially for alkane constituents (Steinmfiller and Tevini, 1985; Tevini and Steinmüller, 1987; Gordon et al., 1998).

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

Indeed, recent studies have demonstrated that phytochrome-mediated light signaling regulates cuticle deposition in maize leaves (Qiao et al., 2020a; Qiang et al., 2020b).

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

Supervised and unsupervised multivariate analyses identified key factors that impact the cuticular wax-producing network

In metabolomic studies, correlation networks are often used to identify metabolites that are co-regulated in response to perturbations caused by disease, chemical and other environmental treatments, or genetic modifications (DiLeo et al., 2011; Fukushima et al., 2011; Papazian et al., 2016; Angelovici et al., 2017; Desmet et al., 2021). Such correlation networks have been constructed from non-targeted metabolomics data gathered from different maize inbred lines, which capitulate pathways of primary metabolism in leaves (Toubiana et al., 2016; Zhou et al., 2019) and kernels (Rao et al., 2014). However, the correlative relationships of metabolites within targeted metabolomes are more complex, as queried metabolites are often from highly related pathways, and therefore the accumulation patterns of most metabolites are inherently correlated. Even so, such correlation networks have successfully described changes in metabolic states due to changes in development-, genotype-, or stress-specific impacts (Steuer, 2006; Sawada et al., 2009; Warth et al., 2015; Li et al., 2016; French et al., 2018). In our correlation analyses of metabolites involved in the cuticular wax-producing network, hydrocarbon products (HC_{2n-1}) and the metabolically related cuticular VLCFAs (FA_{2n}) , separated into different clusters within the correlation network in Mo17, whereas these metabolites are highly correlated in B73. The two major branches of the cuticular wax-producing network, i.e., the hydrocarbon-producing and the cuticular VLCFA-producing sub-pathways, compete for VLCFA-CoA precursors. Our findings demonstrate that interactions between these two branches are determined by the genetic background.

The combination of metabolite profiling and subsequent statistical analyses allows for the identification of signature metabolite biomarkers that represent changes in metabolic status induced by genetic or environmental perturbations or by tissue development (Fernandez et al., 2016; Hong et al., 2016). For example, metabolite biomarkers have successfully uncovered variations within complex pathways among different oat (Avena sativa) cultivars (Pretorius et al., 2021), or in response to developmental or environmental stimuli in Arabidopsis (Sulpice et al., 2009), rice (*Oryza sativa*) (Tarpley et al., 2005), maize (Obata et al., 2015; Luo et al., 2019), Brassica nigra (Papazian et al., 2016) and wheat (Kang et al., 2019). Herein, we identified 30 cuticular wax-derived signature metabolites that include six pairs of hydrocarbons and the metabolically related cuticular VLCFAs. The accumulation patterns of these signature metabolites along the silk length demonstrates that the cuticular wax-producing network is enhanced along the spatio-temporal developmental gradient of the silks, especially at the transition of the microenvironment as silks emerge from husk-encasement. Furthermore, similar to the findings from correlation network analysis, a comparison of the concentrations of the signature hydrocarbon-VLCFA pairs between B73 and Mo17 demonstrate substantial genetic difference in the relationship between the VLCFA-CoA precursor and the corresponding cuticular wax product, i.e., cuticular hydrocarbon or cuticular VLCFA. Thus, these combined supervised and unsupervised multivariate analyses of metabolomics data not only provide critical insights into the factors that impact cuticular wax accumulation and composition, but also allow us to probe the relationships among the individual metabolite conversions within the cuticular wax-producing network. Factors impacting the product-precursor relationship of the cuticular wax-producing

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

network

Unlike the hydrocarbon end-products of the cuticular wax biosynthesis pathway that only accumulate extracellularly on the silk surface (Perera et al., 2010; Loneman et al., 2017), VLCFAs accumulate both on the silk surface as the free VLCFA components of the cuticular waxes, and intracellularly as precursor VLCFA-CoAs, free VLCFAs (possibly carried by lipid transfer proteins) (Lerche and Poulsen, 1998; Carvalho and Gomes, 2007; Deeken et al., 2016) or associated with complex lipids, e.g., discrete glycerolipids (Michaelson et al., 2016) and sphingolipids (Lynch and Dunn, 2004). In this study, the complex-lipid associated VLCFAs were recovered as components of three specific cellular GlcCer species harboring a single hydroxylated C22-, C24- or C26-VLCFA moiety, and as trace amounts of triacylglycerol. Here we show that the concentrations of individual VLCFAs that accumulate on the silk surface are highly correlated with the concentrations of corresponding total free VLCFAs.

Although VLCFA-CoAs are the precursors for fatty acid-derived cuticular wax metabolites

Although VLCFA-CoAs are the precursors for fatty acid-derived cuticular wax metabolites (Yeats and Rose, 2013), the relationship between cellular VLCFA-CoA pools and cuticular wax abundance has scarcely been studied, possibly due to the technical challenges associated with identifying and quantifying VLCFA-CoAs even at acyl chain lengths of up to 22 carbon atoms (Reina-Pinto et al., 2009). In the current study, VLCFA-CoAs up to an acyl chain length of 34 carbon atoms were quantified, allowing us to dissect the relationship between VLCFA-CoA precursors and the corresponding cuticular wax products and consider the dynamics of product-precursor relationships.

Product-precursor relationships within the cuticular wax-producing network have previously been inferred from cuticular wax profiles of several systems. These include the relationship between VLCFAs (as presumed precursors) *versus* alkanes (Busta et al., 2017), alcohols *versus* wax esters (Lai et al., 2007; Wen and Jetter, 2009), and among alkanes, secondary alcohols, and

ketones (Wen and Jetter, 2009) in Arabidopsis. In the grasses, product-precursor relationships have been determined between primary and secondary diols and esters in the wheat cuticle (Racovita and Jetter, 2016), and between unsaturated aldehydes and alkenes of the maize cuticle (Perera et al., 2010). In each case, the accumulation of the precursor metabolites within the cuticle was incorporated into the analysis as proxies of the intracellular precursors, and thereby demonstrating product-precursor relationships amongst these metabolites. We evaluated the product-precursor relationship by querying the association between cuticular wax products and the corresponding cellular VLCFA-CoA precursors, as well as between cuticular waxes and the other VLCFA-containing product pools that are also derived from VLCFA-CoA. Because the cuticular wax-producing network in maize silks predominantly consists of two branches that separately produce hydrocarbons and cuticular VLCFAs, the product-precursor relationships within this network are greatly simplified as compared to other plants or plant organs that also accumulate cuticular alcohols, ketones, and wax esters (Lai et al., 2007; Wen and Jetter, 2009; Racovita and Jetter, 2016; Busta et al., 2017). Here we collected different VLCFA pools as well as cuticular wax metabolomes to characterize the possible metabolic fates of VLCFA-CoA in maize silks, including (1) fatty acid elongation that generates longer chain VLCFA-CoA precursors; (2) hydrolysis by acyl-CoA thioesterases to generate a cellular pool of free VLCFAs; (3) sequential hydrolysis and transport for deposition as cuticular VLCFAs; (4) sequential reduction-decarbonylation reactions that generate hydrocarbons (Lewandowska et al., 2020); (5) assembled into complex lipids to become complex lipid-associated VLCFAs; and (6) β-oxidation that produces shorter-chain VLCFA-CoAs and acetyl-CoA. Although the VLCFA-CoA levels show minor differences between the husk-encased and emerged silk sections, both cuticular VLCFAs and total free VLCFAs increase

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

in accumulation along the silk length. Thus, VLCFA biosynthesis is likely promoted from the base to the tip of the silks, resulting in increased cuticular wax load (both as VLCFAs and hydrocarbons). Similar associations between fatty acid elongation processes and cuticular wax accumulation along the developmental gradient of the leaves have been observed in Arabidopsis (Busta et al., 2017) and leek (*Allium porrum*) (Rhee et al., 1998). We further dissected the allocation of VLCFA-CoA precursors between different branches of the cuticular wax-producing network by comparing the abundances of cuticular alkanes (HC_{2n} - $_{1:0}$) and cuticular VLCFAs ($FA_{2n:0}$). The Bayesian approach that was employed for this dissection has been previously used to predict protein trafficking routes (Paultre et al., 2016), to elucidate genomic and environmental controls over plant phenotypes (Allard et al., 2016; Di Guardo et al., 2017; Montesinos-López et al., 2017; Wang et al., 2019), and to assess gene-to-metabolome associations (Marttinen et al., 2014). In this study, the Bayesian model testing identified factors that significantly impact the VLCFA-CoA allocation, including the genetic background, the husk encasement status of the silks, the acyl chain length of VLCFA-CoAs, and the allocation of VLCFA-CoAs to metabolic processes that are distinct from cuticle deposition. For example, the ratios between cuticular hydrocarbons (HC_{2n-1}) and cuticular VLCFAs (FA_{2n}) are lower in Mo17 than B73, whereas the corresponding VLCFA-CoA precursor pools as well as GlcCer-associated VLCFAs are substantially larger in Mo17 than B73. These findings collectively suggest that the hydrocarbonproducing pathway is less active in Mo17 than B73, possibly due to the competition for VLCFA-CoAs by other pathways that are more active in Mo17 (e.g., GlcCer biosynthesis). Statistical assessment of the $HC_{2n-1:0}$: $FA_{2n:0}$ ratios further demonstrate that environmental cues differentially impact the cuticular wax-producing network between Mo17 and B73. These different modulators

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

that impact VLCFA-CoA allocation between cuticular HC_{2n-1} and cuticular FA_{2n} can be further explored either by transgenic strategies to evaluate individual genes that may impact product-precursor relationships, or by studying different maize inbred lines to evaluate the impact of different combinations of alleles on product-precursor relationships.

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A key observation made in this study is that regardless of the genetic background or silk micro-environment, the cuticular $HC_{2n-1:0}$: $FA_{2n:0}$ ratio increases and the three VLCFA pools (VLCFA-CoA precursors, total free VLCFAs, and GlcCer-associated VLCFAs) decrease in abundance with increasing acyl chain length. These findings indicate that VLCFA-CoAs, which are common precursors for many biological processes, are preferentially utilized to produce longer-chain hydrocarbons via parallel reduction-decarbonylation reactions. There are several potential mechanisms that could generate this acyl chain length-dependent change in the HC_{2n-} $1:0:FA_{2n:0}$ ratio. Specifically in the hydrocarbon-producing pathway, these mechanisms include variations in the substrate preference of 1) the VLCFA-CoA elongation system; 2) the reductase that converts VLCFA-CoAs to aldehydes; and/or 3) the decarbonylase that converts aldehydes to hydrocarbons. Indeed, chain length preference has been identified for several of the 26 maize 3ketoacyl-CoA synthetases (KCSs) responsible for the condensation reaction of the fatty acid elongase system that generates VLCFAs (Campbell et al., 2019; Stenback et al., 2022). Different substrate preferences have been described among Arabidopsis KCS isozymes (Millar and Kunst, 1997; Fiebig et al., 2000; Blacklock and Jaworski, 2006; Joubès et al., 2008; Kim et al., 2013; Hegebarth et al., 2016; Hegebarth et al., 2017; Huang et al., 2023; Luzarowska et al., 2023). Downstream of the fatty acid elongase system, within the decarbonylative hydrocarbon-forming pathway, Arabidopsis ECERIFERUM1 (CER1) and CER1-LIKE1 proteins each form unique reductase-decarbonylase complexes with CER3 and cytochrome b5, which sequentially convert

VLCFA-CoAs to aldehydes and alkanes of different chain lengths (Pascal et al., 2019). These potential mechanisms for altering $HC_{2n-1:0}$: $FA_{2n:0}$ ratios can be tested via heterologous expression of candidate genes within recently engineered yeast systems expressing the maize or Arabidopsis fatty acid elongase complexes (Haslam et al., 2012; Haslam et al., 2015; Campbell et al., 2019; Stenback et al., 2022; Batsale et al., 2023).

682 683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

677

678

679

680

681

CONCLUSIONS

In this study we demonstrate that the combination of spatio-temporal profiling and multivariate analyses is an effective approach for assessing and comparing metabolic networks that are differentially impacted by developmental and environmental perturbations among different genotypes. The study depicts the product-precursor relationship for the cuticular wax-producing network on maize silks through a comprehensive analysis of cuticular wax metabolites, VLCFA-CoA precursor pools, total free VLCFAs, and GlcCer-associated VLCFAs. The compositional dynamics of the cuticular wax metabolome were most impacted by a change in the silk microenvironment and genotype, with minor impact due to the developmental trajectory of the tissue at the time of sampling. These product-precursor relationships are complex and dependent upon the precursor acyl chain length, such that longer chain VLCFA-CoAs are preferentially allocated to hydrocarbon biosynthesis. These findings provide a foundation for dissecting the underlying mechanisms of cuticular hydrocarbon-producing networks in response to changes in microenvironment, ultimately leading to a genotype-metabolite-phenotype understanding of a molecular structure that provides a protective capability to plant surfaces (Yandeau-Nelson et al., 2015).

699

MATERIALS AND METHODS

Nomenclature

Cuticular wax metabolites are represented using a n:y(z) notation, where n represents the number of carbon atoms, y the number of double bonds, and z the positions of the double bonds in the alkyl chain (Howard and Lord, 2003). This study reports three classes of cuticular waxes; very long-chain fatty acids (VLCFAs) that are saturated ($FA_{n:0}$) or unsaturated ($FA_{n:y(z)}$), saturated aldehydes ($Ald_{n:0}$), and hydrocarbons (HCs), which include saturated alkanes ($HC_{n:0}$), and two classes of alkenes: monoenes ($HC_{n:1(z)}$), and dienes ($HC_{n:2(z1,z2)}$). The saturated cellular VLCFA-CoAs are annotated as $FA_{n:0}$ -CoA.

Plant growth, sample collection and processing

Maize (*Zea mays*) inbred lines B73 and Mo17 and their reciprocal hybrids, B73×Mo17 and Mo17×B73 were grown to maturity at the Iowa State University Agronomy Research Farm (Boone, IA) during the 2014 and 2015 growing years using standard cultivation practices and no supplemental irrigation. Developing ear shoots were covered prior to silking to prevent pollination. Ears were harvested three days after silks had emerged from encasing husk leaves, at a point at which half of the plants in a row were silking (i.e., the mid-silk cohort). Ears were harvested between 11am and 1pm each day and were transported to the laboratory at ambient temperature using insulated chests. The number of biological replicates sampled per genotype were 8 and 12 in the 2014 and 2015 growing years, respectively. Each biological replicate consisted of silks from two ears of similar size and appearance collected from two separate plants and harvested on the same day. Silk samples were prepared as described in McNinch *et al.* (2020). For each biosample, one sub-sample was flash-frozen in liquid nitrogen and reserved for subsequent total VLCFA profiling and the second sub-sample was immediately subjected to

cuticular wax extraction. A random selection of four biological replicates collected in the 2015 growing year were subjected to total cellular lipid analysis.

Cuticular wax and cellular lipid extraction and derivatization

Cuticular waxes were extracted from fresh silks by immersion for 4 min in 9:1 hexanes: diethyl ether supplemented with the internal standards eicosane ($1\mu g/ml$), nonadecanoic acid ($1\mu g/ml$) and heptadecanol ($1\mu g/ml$), as previously described (Loneman et al., 2017). Extracts were concentrated under a stream of N_2 gas in a N-EVAP nitrogen evaporator (Organomation Associates, Inc., MA). Extracts were chemically derivatized via transmethylation followed by silylation, as previously described (Loneman et al., 2017). For total lipid analyses, intra- and extracellular lipids were extracted as previously described (Okazaki et al., 2015) from 5-8 mg of lyophilized silk tissue that had been pulverized to a fine powder using a Mixer Mill 301 (Retsch GmbH, Germany).

VLCFA-CoAs were extracted from B73 and Mo17 silks, each inbred represented by three biological replicates, using methods adapted from Sun et al. (2006), and all extraction solvents were LC-MS grade (Fisher Scientific, Waltham, MA). Per sample, approximately 300 mg of flash-frozen silk tissue was pulverized with a pre-chilled mortar and pestle, and transferred and weighed into 2 mL microcentrifuge tubes kept on dry ice until extraction. Weighed samples were spiked with 100 ng of the internal standard, 25:0 Coenzyme A (10 ng/μL pentacosanoyl Coenzyme A ammonium salt, in 1:1:2 1mM acetic acid/isopropanol/acetonitrile) (Avanti Polar Lipids, Birmingham, AL). The extractions were initiated with 425μL of freshly made 100 mM potassium phosphate monobasic buffer solution (pH 4.9) followed by the addition of 425 μL isopropanol. Samples were then vortexed for 1 min and placed into an ice-cold sonication water bath for 5 min. The samples were vortexed again for 1 min before the addition of 850 μL

acetonitrile and a further 5 min of vortexing to finish the extraction. The extracted samples were centrifuged for 7 min at 16,000 x g and supernatants were transferred to new microcentrifuge tubes and dried in a speed-vac concentrator. The dried extracts were then resuspended in $200 \mu L$ of 4:1 isopropanol/1 mM acetic acid before being centrifuged 7 min at 16,000 x g to remove insoluble sample components and potassium phosphate. The resulting supernatants were filtered with 0.2 micron centrifugal filters (Cat. No. UFC30LG25, Millipore Sigma, Burlington, MA) and subjected to LC-MS/MS analysis.

Chromatography-mass spectrometric analyses

Gas chromatography of cuticular wax extracts was performed with an HP-5MS cross-linked (5%) diphenyl (95%) dimethyl polysiloxane column (30 m in length; 0.25 mm inner diameter) using helium as the carrier gas, and an Agilent Technologies series 6890 gas chromatograph, equipped with a model 5973 mass detector (Agilent Technologies, Santa Clara, CA). Extracts were introduced to the gas chromatograph via splitless injection of a 2 µl sample and the oven temperature program was as listed for samples that were both transmethylated and silylated (Loneman et al., 2017). Quantification analysis was performed using the AMDIS software package (Stein, 1999) with assistance from the NIST Mass Spectral library (http://webbook.nist.gov/chemistry/) for compound identification. Double bond positions within unsaturated hydrocarbon constituents (alkenes) were previously identified via analysis of dimethyl-disulfide (DMDS) adducts, as described and reported in Dennison et al. (2019) and were identified in this study based on peak elution patterns.

Total lipid extracts were analyzed via liquid chromatography quadrupole time-of-flight mass spectrometry on a Waters Xevo G2 Q-TOF MS combined with a Waters ACQUITY UPLC

system in both positive and negative ion modes, as previously described (Kimbara et al., 2013).

770 LC-MS data were recorded using MassLynx4.1 software (Waters) and processed using 771 MarkerLynx XS software (Waters). The data matrices were queried against an in-house lipid 772 library (RIKEN, Japan). For data normalization, the original peak intensity values were divided 773 by the internal standard peak intensity value at m/z 566.382 [M + H]⁺ and m/z 550.351 [M-774 CH₃] for the positive and negative ion modes, respectively. 775 Liquid chromatography separation of fatty acyl-CoA constituents was performed with an 776 Agilent Technologies 1290 Infinity II UHPLC instrument equipped with a ZORBAX RRHT 777 Extend-C18 analytical column (80Å pore size; 50 mm in length; 2.1 mm inner diameter; 1.8 µm 778 particle size) that was coupled to a 6470 triple quadrupole mass spectrometer with an 779 electrospray ionization (ESI) source (Agilent Technologies, Santa Clara, CA). A volume of 20 780 μL of each sample was injected into the LC system. The chromatography was carried out at 40 781 °C with a flow rate of 0.300 mL/min. All LC-MS/MS solvents used were LC-MS grade (Fisher 782 Scientific, Waltham, MA). Running solvents were A: 15% acetonitrile in water with 0.05% 783 triethylamine, and B: 10% water in acetonitrile with 0.05% triethylamine. Initial solvent 784 conditions were 0% B, which was held for 5 min and then increased on a linear gradient to 100% 785 B over 9 min, 100% B was held for 11 min before returning to 0% B over a 5-min linear 786 gradient. A 4-min post-run at 0% B was conducted after each LC-MS/MS acquisition. 787 Fatty acyl-CoA metabolites were detected using electrospray ionization in positive ionization 788 mode. Nitrogen was used as the service gas for the ion source with a drying gas flow rate of 9 789 L/min at a temperature of 340 °C, a nebulizing pressure of 30 psi, and a sheath gas flow of 10 790 L/min at 325 °C. The capillary and nozzle voltages were 4000 and 1000 volts, respectively. The 791 mass spectrometer was operated in dynamic MRM mode to monitor the neutral loss of m/z 507 792 for all target fatty acyl-CoA molecules, as described previously (Haynes et al., 2008; Sun et al.,

2006). Mass transitions for the eight detected long-chain and very long-chain fatty acyl-CoA metabolites and the internal standard are provided in Supplemental Table S13. Fatty acyl-CoA LC-MS/MS peak quantification was accomplished using Agilent MassHunter Quantitative Analysis (version 10.0) software (Agilent Technologies, Santa Clara, CA) with all fatty acyl-CoA amounts reported relative to the internal standard (25:0-CoA).

Quantitative methods

Cuticular wax metabolite concentrations were initially calculated relative to the compatible internal standard (i.e., hydrocarbons quantified relative to eicosane, VLCFAs relative to nonadecanoic acid, and alcohols and aldehydes relative to heptadecanol). Because quantification of each metabolite class did not differ depending on choice of standard, all subsequent quantifications were relative to the eicosane standard. Quantification was performed relative to silk dry weight, to avoid potential differences in metabolite concentrations due solely to differences in water content between genotypes or among silk sections. Representative measurements of silk dry weight were calculated for each silk section (A-E) from surrogate ears harvested on the same days as those used for cuticular wax profiling, and a ratio of dry weight to fresh weight was calculated as a conversion factor to estimate the dry weight of extracted silk samples, as described by Loneman et al. (2017). The measured water content of silk samples was approximately 90% regardless of the position along the silk length, the genetic background, or the growing year.

Detection limits were determined as previously described (Dennison et al., 2019). The detection limits for the datasets collected in growing years 2014 and 2015 were 0.005 and 0.006 µmol g⁻¹ dry weight, respectively. Metabolite abundances were censored (Newman et al., 1989) such that concentrations below the detection limit (DL) were assigned a value of DL/2, and

concentrations for metabolites that were not detected in a specific condition were assigned the value, DL/10. Consistently low abundance metabolites that were assigned DL/2 or DL/10 values for more than 90% of the samples were removed from the dataset.

Statistical Methods

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

The raw metabolite data were log-transformed and pareto-scaled. ANOVA was performed to evaluate the effects of genotype, position along the silk, growing year, and cellular free VCLFA and cellular lipid-associated VLCFA content on cuticular wax composition. For each genotype, the accumulation dynamics along the silk length for each lipid class were modeled using linear and polynomial (i.e., quadratic, cubic and quartic models) regression. The regression model that best fitted the concentration data for each lipid class was determined by comparing the adjusted R² of the four regression models. Tukey's Honestly Significant Difference (HSD) tests were applied for post-hoc pairwise comparisons between silk sections either within or among genotypes. These analyses were conducted using the R/stats base package (R core team, 2016). PCA was performed using the prcomp() function in the R/stats package and 95% confidence ellipses were constructed using the R/car dataEllipse() function (Fox and Weisberg, 2019). Partial least squares-discriminant analysis (PLS-DA) was performed using the R/ropls opls() function that also determined the optimal number of components for the PLS-DA model using seven-fold cross validation (Thévenot et al., 2015). Variable Importance in Projection (VIP) scores were calculated by the R/ropls getVipVn() function as a cumulative measure of the contribution of each metabolite in distinguishing among genotypes or silk sections (Pérez-Enciso and Tenenhaus 2003). Individual metabolites with VIP scores >1.0 (i.e., with above-average contribution in sample classification) were deemed as metabolite biomarkers that discriminate between classes. The explained fraction of data variance by a PLS-DA model for explanatory

and response variables were reported as R²X and R²Y, respectively, and the predictive accuracy of the model was reported as Q²Y. The response variable for PLS-DA is categorical and therefore transformed into a binarized numerical variable for model construction, and R²Y represents the explained variation within the transformed data.

Non-parametric Spearman correlations between every pair of metabolites across silk sections A to E were calculated in each genotype, and were compared among genotypes according to Choi and Kendziorski (2009) with modifications that are described in Supplemental Methods. The metabolite correlation networks were constructed based on topological overlap matrices (TOMs) derived from the correlation matrices using the R/WGCNA package (Langfelder and Horvath, 2008). Briefly, for each genotype, metabolite clusters were initially determined according to TOMs by hierarchical clustering and then pruned by four independent R functions: pam(), cutreeStatic(), and two cutreeDynamic()s with the "methods" argument specified as either "tree" or "hybrid" (Horvath and Langfelder, 2011).

The ratios of $HC_{2n-1:0}$: $FA_{2n:0}$ relative to the carbon chain length 2n were fitted into a linear regression model as the response variable using the R/stat function lm(), with precursor chain length, genotype, silk encasement status, growing year, and the corresponding interaction terms as the explanatory variables. The prediction interval for regression was calculated by R/stat function predict(). Bayesian Model Comparison, using the R/BayesFactor package (Morey and Rouder, 2015), was applied to assess the association of the $HC_{2n-1:0}$: $FA_{2n:0}$ ratio with these explanatory variables and two additional explanatory variables (concentration of total free VLCFAs and concentration of GlcCer-associated VLCFAs). Bayesian model construction and comparison are described in detail in Supplemental Methods.

Supplemental Data

861862863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Supplemental Methods: Supplemental Statistical Methods

Supplemental Figure S1: Accumulation of cuticular monoenes along the spatio-temporal gradient of silks. Concentrations of cuticular 7-monoenes, 9-monoenes, and other alkenes (a mixture of 14- and 15-monoenes) from different silk sections of inbreds B73 and Mo17, and the reciprocal hybrids. For each genotype, different letters associated with data bars of the same color denote a statistically significant difference in concentrations between silk sections (p<0.05; Tukey's Honestly Significant Difference test). Seven or eight replicates were evaluated per combination of genotype and silk section; N=158. Averages \pm standard errors are reported. Supplemental Figure S2: Correlation-based clustering of silk cuticular wax abundance data for hybrids, B73×Mo17 and Mo17×B73. Rank-based Spearman correlations were calculated between all pairs of metabolites and used to construct the weighted correlation networks via weight correlation network analysis for B73×Mo17 (A) and Mo17×B73 (B and C). Pairs of cuticular wax metabolites connected by edges are significantly correlated with coefficients ≥0.5 and reside within the same cluster. Edge length represents correlation strength, with shorter edges representing stronger correlations between metabolites. Unclustered singleton metabolites (**D** and **E**) were not statistically correlated with any other metabolites, or shared correlation values <0.5. The notations for cuticular wax metabolites are described in Methods. Abbreviations: Alc, alcohol; Ald, aldehyde; FA, fatty acid; HC, hydrocarbon; VLCFA, very long-chain fatty acid. **Supplemental Figure S3:** Clustering of silk samples by partial least squares discriminant analysis (PLS-DA) based on different genotypes and different silk sections. PLS-DA score plots and corresponding weight plots based on different genotypes (A, C, and E) and silk sections (B,

D, and **F**). The percent covariance between the response and predictor variables explained by each PLS component, R²X, R²Y, and Q²Y for these PLS-DA models are reported in panels A and B. C-D, Weight plots, derived from the PLS-DA models presented in A and B, display the influence of each cuticular wax metabolite on the discrimination of different genotypes or silk sections. Closed circle symbols identify the signature metabolites selected with variableimportance-in-projection (VIP) scores >1. The 30 signature cuticular wax metabolites contribute to 41% and 24% for the R²Y of the PLS-DA models that discriminate genotypes and silksections, respectively. E-F, revised PLS-DA models that discriminate the hybrids from the parental lines B73 and Mo17 (E), or discriminate the silk sections based on the encasement status (F). Abbreviations: Alc, alcohol; Ald, aldehyde; FA, fatty acid; HC, hydrocarbon. **Supplemental Figure S4:** The spatio-temporal accumulation patterns of the metabolically related hydrocarbon ($HC_{2n-1:0}$) and VLCFA ($FA_{2n:0}$) pairs in inbreds B73 and Mo17. These metabolites that were selected by PLS-DA as contributing to the discrimination of either genotype (G), silk section (S) or both (G+S) are identified. Data-points are the average \pm standard error from 7-8 biological replicates. The genotype difference for each metabolite per silk section is represented by the length of the dotted lines. Asterisks denote statistical differences between genotypes at p <0.05, according to Tukey's Honestly Significant Difference test (***, p <0.0001; **, p <0.001; *, p <0.05). Abbreviations: DW, dry weight; FA, fatty acid; HC, hydrocarbon; VLCFA, very long-chain fatty acid. Supplemental Figure S5: Accumulation of fatty acyl-CoAs in the encased and the emerged sections of maize silks from inbreds B73 and Mo17. The concentrations of fatty acyl-CoAs with 16 or 18 carbons are presented in (A), and the concentrations of very long-chain fatty acyl-CoAs (VLCFA-CoAs) with 30-34 carbons are presented in (B). For each genotype, different letters

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

associated with data points indicate statistical differences among silk sections (p <0.05; Tukey's Honestly Significant Difference test). The genotype difference for each metabolite per silk section is represented by the length of the dotted lines. Asterisks denote statistical differences between genotypes at a specific position along the silk length (***, p <0.0001; **, p <0.001; **, p <0.05; Tukey's Honestly Significant Different test). Averages ± standard errors from three biological replicates are reported for each fatty acyl-CoA. Abbreviations: DW, dry weight; FA, fatty acid.

Supplemental Figure S6: Accumulation of cuticular hydrocarbon products and the metabolically related cuticular VLCFAs, and the regression of the hydrocarbon: VLCFA ratios on chain length for hybrids, B73×Mo17 and Mo17×B73. Concentrations (log-scaled) of cuticular hydrocarbons ($HC_{2n-1:0}$) and VLCFAs ($FA_{2n:0}$) were analyzed from husk-encased silks (**A**) and from silks that had emerged from the husks (**B**) of the hybrid B73×Mo17 (blue data points) and Mo17×B73 (green data points). Averages \pm standard errors from seven to eight biological replicates are reported for the metabolite concentrations. Different letters associated with data points from the same metabolite class indicate a statistically significant difference between alkyl chain lengths (p <0.05; Tukey's Honestly Significant Difference test); letters associated with VLCFAs are underlined. In the regression, the prediction intervals for the regression models are indicated by the dashed lines for each inbred. Abbreviation: DW, dry weight; FA, fatty acid; HC, hydrocarbon; VLCFA, very long-chain fatty acid.

Supplemental Table S1: Spatio-temporal profiles of cuticular waxes from maize silks of B73, Mo17, and the reciprocal hybrids that were collected in the 2014 and 2015 growing years.

929 **Supplemental Table S2**: Comparison of models that depict the dynamics of cuticular 930 metabolite accumulation levels among the silk sections in the indicated maize lines. 931 Supplemental Table S3: Two-way and two-way nested ANOVAs that test the main effect of 932 genotype (G), silk section (S) and $G \times S$ interaction on each cuticular wax metabolite. 933 Supplemental Table S4: Two-way and three-way ANOVAs of total cuticular waxes and 934 individual lipid metabolite classes. 935 **Supplemental Table S5**: Variable importance in projection (VIP) score for each lipid in two 936 PLS-DA models built to discriminate genotypes or silk sections based on the cuticular wax 937 metabolome compositions. 938 **Supplemental Table S6**: Spatio-temporal profiles of cellular very long-chain fatty acids 939 (VLCFAs) from maize silks of B73 and Mo17 collected in the 2015 growing year. 940 **Supplemental Table S7**: Pearson correlations between total free very long-chain fatty acids 941 (VLCFAs) or glucosylceramide (GlcCer)-associated VLCFAs versus cuticular VLCFAs at 942 individual acyl chain lengths. 943 **Supplemental Table S8**: Profiles of very long-chain fatty acyl-CoAs from maize silks of B73 944 and Mo17 collected in the 2015 growing year. 945 Supplemental Table S9: Spearman correlations between cellular very long-chain fatty acyl-946 CoA precursors (FA_{2n:0}-CoA), cuticular hydrocarbon (HC_{2n-1:0}), cuticular very long-chain fatty 947 acids (FA_{2n:0}), and the ratios between cuticular $HC_{2n-1:0}$ and the metabolically related cuticular 948 $FA_{2n:0}$. 949 **Supplemental Table S10:** Identification of the optimal very long-chain fatty acid (VLCFA) 950 Bayesian regression model that incorporated total free VLCFAs as predictors in the model

951 **Supplemental Table S11:** Identification of the optimal very long-chain fatty acid (VLCFA) 952 Bayesian regression model that incorporated glucosylceramide (GlcCer)-associated VLCFAs as 953 predictors in the model. 954 **Supplemental Table S12:** Identification of the optimal very long-chain fatty acid (VLCFA) 955 Bayesian regression model that incorporated total free VLCFAs and glucosylceramide (GlcCer)-956 associated VLCFAs as predictors in the model. 957 Supplemental Table S13. Mass transitions for the eight long-chain and very long-chain fatty 958 acyl-CoA (VLCFA-CoA) metabolites in maize silks, and that of the internal standard (ISTD), as 959 detected by LC-MS/MS. 960 961 **FUNDING INFORMATION** 962 This work has been supported in part by National Science Foundation award IOS-1354799 to 963 N.L., B.J.N., and M.D.Y.-N., PGRP-1546727 to M.D.Y.-N., the State of Iowa (Iowa Agriculture 964 and Home Economics Research Station Project IOW03649) and through Iowa State University's 965 Center for Metabolic Biology, the United States Department of Agriculture (USDA) National 966 Institute of Food and Agriculture (NIFA) Hatch project IOW03617 and by USDA-ARS project 967 #5030 21000-067-00D. The content of this paper is however solely the responsibility of the 968 authors and does not represent the official views of the NSF, NIFA or USDA. 969 970 **ACKNOWLEDGEMENTS** 971 The authors thank the W. M. Keck Metabolomics Research Laboratory (Office of Biotechnology, 972 Iowa State University, Ames, IA) for providing access to analytical instrumentation. We thank Mr. Kouji Takano for assistance in lipid profiling, and Pauline Aamodt, Grace Kuehne, Sarah 973

974 (Weirich) Hennings, and Kyle King for assistance with sample collection and processing. 975 **AUTHOR CONTRIBUTIONS** 976 N.L., B.J.N. and M.D.Y.-N. conceived the research; K.C., M.A.D.N.P., N.L., K.D. and M.D.Y.-977 978 N. designed the experiments; M.A.D.N.P., K.S., N.L., K.D., B.J.N., and M.D.Y. N. supervised 979 the experiments; L.E.A., U.M., Y.O., Y.H., M.A.D.N.P., L.J.S., D.L., T.S.D., M.L., R.C., L.P., N.L., and M.D.Y.-N. performed the experiments; K.C., L.E.A., L.J.S., U.M., K.D. and M.D.Y.-980 N. analyzed the data; K.C., N.L., K.D., B.J.N. and M.D.Y.-N. wrote the article with important 981 edits and feedback from all authors. 982 983

TABLES

Table 1. Silk cuticular wax metabolites from B73 and Mo17 exhibit different correlation patterns along the spatio-temporal silk gradient. The Frobenius norm is derived from the sum of squares for all the elements in a Spearman correlation matrix. Correlation-based clustering was performed by WGCNA.

Genotype	Frobenius norm ¹	Number of clusters	Number of singletons
B73	0.58^{a}	1	6
Mo17	0.48^{b}	2	9
B73×Mo17	0.55^{ab}	2	9
Mo17×B73	0.54^{ab}	1	9

¹ Values followed by different superscript letters are statistically different (p <0.001) according to a random permutation test as described by Choi and Kendziorski (2009).

 The allocation of VLCFA-CoA precursors within the cuticular wax-producing network was represented by the linear regression of cuticular HC_{2n-1} : FA_{2n} ratio *versus* acyl chain length, 2n. Bayesian model comparison was performed on metabolomics data collected during the 2015 growing season with total free VLCFAs and GlcCer-associated VLCFAs profiled from lipids extracted from the entire silk tissue.

Baseline model	VLCFA models ^a	Examined terms	Bayes factor ^b
Genotype (g) +	$VLCFA \ model \ 1: g + k + n + (g \times g)$	Total free VLCFAs	1.88×10^{7}
Encasement status	k) + $(k \times n)$ + $(g \times k \times n)$ + [free	(ffa) and the	
(k) + Acyl chain	VLCFAs $(ffa) + (ffa \times g) + (ffa \times g)$	interaction effects	
length $(n) + (g \times k) +$	$k + (ffa \times n) + (ffa \times k \times n)$	with g , k and n	
$(k \times n) + (g \times k \times n)$, 03		
	<i>VLCFA model 2:</i> $g + k + n + (g \times f)$	GlcCer-associated	8.83×10^{6}
	k) + $(k \times n)$ + $(g \times k \times n)$ +	VLCFAs (gfa) and	
	[GlcCer-associated VLCFAs	the interaction effects	
	$[gfa) + (gfa \times g) + (gfa \times n)]$	with g and n	
	$VLCFA \ model \ 3: g + k + n + (g \times f)$	Total free VLCFAs	8.27×10^{6}
	k) + $(k \times n)$ + $(g \times k \times n)$ + $[ffa$ +	(ffa) and GlcCer-	
	$gfa + (gfa \times n)$	associated VLCFAs	
	/1	(gfa), and interaction	
		effects with g , k and	
		n	

^a For each VLCFA model, the main effect of the examined term and the associated interaction effects were added to the Baseline model as justified in Supplementary Tables S10 – S12. ^b Bayes factors were calculated as the ratio of the likelihood between a VLCFA model (numerator) and the Baseline model (denominator). A Bayes factor >3.2 indicates that the addition of the examined terms to the Baseline model resulted in significantly better fit to the data.

Table 3. Impact of genotype, husk-encasement status, and growing year on the cuticular HC_{2n-1} : FA_{2n} ratio determined by Bayesian model comparison. The allocation of VLCFA-CoA precursors within the cuticular wax-producing network was represented by the linear regression of cuticular HC_{2n-1} : FA_{2n} ratio *versus* acyl chain length, 2n. Bayesian model comparison was performed on the combined metabolomics datasets gathered from tissue grown in 2014 and 2015.

Baseline model	Macroenvironment models ^a	Examined term	Bayes factor ^b
Genotype (g) +	$k + y + n + (k \times y) + (k \times n) +$	Genotype (g)	1.01×10^{110}
Encasement status (k) +	$(y \times n) + (k \times y \times n)$		
Growing year (y) +	$g+y+n+(g\times y)+(g\times n)+$	Growing year (y)	2.35×10^{33}
Acyl chain length (n) +	$(y \times n) + (g \times y \times n)$		
$(g \times k) + (g \times y) + (g \times y)$	$g+k+n+(g\times k)+(g\times n)+$	Encasement Status (k)	7.76×10^{28}
$(n) + (k \times n) + (k \times y) +$	$(k \times n) + (g \times k \times n)$	` ,	
$(y \times n) + (g \times k \times n) +$	$g+k+y+n+(g\times n)+(k\times n)$	$g \times k$	8.80×10^{7}
$(g \times y \times n) + (k \times y \times n)$	$+(k \times y) + (y \times n) + (k \times y \times n)$		
$+(g\times k\times y\times n)$	$g+k+y+n+(g\times k)+(g\times n)$	$g \times y$	3.52×10^{6}
	$+(k\times n)+(k\times y)+(y\times n)+$		
	$(g \times k \times n) + (k \times y \times n)$		
	$g + k + y + n + (g \times k) + (g \times y)$	$k \times y$	5.49×10^{-9}
	$+(g\times n)+(k\times n)+(y\times n)+$		
	$(g \times k \times n) + (g \times y \times n)$		

^a For each modified model, the main effect of the examined term and the associated interaction effects were removed from the Baseline model.

^b Bayes factors were calculated as the ratio of likelihood between the Baseline model (numerator) and modified models (denominator). A Bayes factor >3.2 indicates that the removal of the examined terms from the Baseline model resulted in significantly worse fit to the data. Examined terms are therefore listed in descending order of importance to the model.

FIGURE LEGENDS

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

Figure 1. Spatio-temporal cuticular wax profiles of maize silks from inbreds Mo17 and B73, and their reciprocal hybrids. (A) Concentrations of total cuticular waxes and individual lipid classes from silks harvested 3-days post-silk emergence and cut into five allometric sections, A-E (see Methods). The bold dashed line depicts the transition point between huskencased (sections A, B and C) and emerged (sections D and E) portions of the silks. For each genotype, the changes in concentration of each cuticular wax class along the A to E gradient were fitted to a quadratic regression model. The resulting R² values are listed and the associated p-values are denoted by asterisks (***, p < 0.0001; **, p < 0.001; *, p < 0.05). Different letters associated with data bars of the same color denote a statistically significant difference in accumulation between silk sections within a genotype (p < 0.05; Tukey's Honestly Significant Difference (HSD) test). Seven to eight biological replicates (two ears pooled from two separate plants per replicate) were evaluated per combination of genotype and silk section, constituting a total sample size of 158. (B) Relative compositions of cuticular waxes along the silk length. Proportion of each cuticular wax class relative to total cuticular wax accumulation. Aldehydes and alcohols comprise <1% of the cuticular wax metabolome and are not depicted in the figure. Alkenes are comprised predominantly of 7- and 9-monoene classes, and ">9" constituents that include 14- and 15-monoenes, and two dienes. Different letters within data bars for a given genotype denote a statistically significant difference in cuticular wax relative abundance between silk sections for a given metabolite class (p<0.05; Tukey's HSD test). (C) Principal component analysis (PCA) of cuticular wax metabolite abundances among different silk sections. Each data point, which represents the concentrations of the 45 cuticular wax metabolites profiled from each silk sample, is labeled by silk section (A-E) and color-coded according to genotype. Percentages

represent the amounts of variance explained by the first and second principal components (PC1 and PC2). Ovals represent 95% confidence ellipses for emerged and husk-encased samples.

Abbreviations: DW, dry weight; HSD, honestly significant difference.

Figure 2. Correlation-based clustering of silk cuticular wax abundance data for inbred lines, B73 and Mo17. Rank-based Spearman correlations were calculated between all pairs of metabolites and used to construct the weighted correlation networks via weight gene correlation network analysis for **A**, B73 and **B** and **C**, Mo17. The non-clustered metabolites for B73 and Mo17 are shown in **D** and **E**, respectively. Pairs of lipid metabolites connected by edges are significantly correlated with correlation coefficients ≥0.5 and reside within the same cluster. Edge length represents correlation strength with shorter edges representing stronger correlations between metabolites. Non-clustered singleton metabolites were not statistically correlated with any other metabolites, or shared correlation values <0.5. Abbreviations: Alc, alcohol; Ald, aldehydes; FA, fatty acid; HC, hydrocarbon; VLCFA, very long-chain fatty acid.

Figure 3. Accumulation patterns of signature cuticular wax metabolites that distinguish among genotypes or among silk sections. Concentrations of signature cuticular waxes identified by partial least square discriminant analysis (PLS-DA) as having variable-importance-in-projection (VIP) scores >1. Nine (**A**) and fifteen (**B**) of these metabolites contribute to either the observed genotype-based or silk section-based PLS-DA separation, respectively, and an additional six lipid metabolites were selected in both categories (**C**). Two-way ANOVA of the main effects of genotype and silk section were conducted for each metabolite, and statistical significance is noted with asterisks (***, p<0.0001) for genotype (G), silk section (S) or both G

and S. The interaction effect, $G \times S$ was also evaluated by ANOVA for each metabolite and presented in Supplementary Table S3. Averages \pm standard errors from seven to eight biological replicates are reported (N = 158) as presented in Figure 1, with averages connected by colored lines to facilitate visualization. Abbreviations: Ald, aldehyde; DW, dry weight; FA, fatty acid; HC, hydrocarbon.

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1076

1077

1078

1079

1080

Figure 4. Accumulation of four VLCFA pools along the silk length. Concentrations of individual cuticular VLCFAs (A), total free VLCFAs (B), glucosylceramide (GlcCer)-associated VLCFAs (C), and VLC fatty acyl-CoAs (VLCFA-CoAs) (D) in different silk sections of inbred lines B73 (black data points) and Mo17 (red data points). Cuticular VLCFA concentrations are reported as µmol/g dry weight and VLCFA-CoA concentrations are reported as pmol/g dry weight. Total free VLCFAs and GlcCer-associated VLCFAs are reported as relative abundance in comparison to the phosphatidylcholine internal standard that was added to each sample during lipid extraction. For each genotype, different letters associated with data points indicate statistical differences among silk sections (p <0.05; Tukey's HSD). The genotype difference for each metabolite per silk section is represented by the length of the dotted lines. Asterisks denote statistical differences between genotypes at a specific position along the silk length (***, p <0.0001; **, p <0.001; *, p <0.05). Averages \pm standard errors from three to four biological replicates (two ears pooled from two separate plants per replicate) are reported for the VLCFA pools; N=35. Abbreviations: DW, dry weight; FA, fatty acid; HSD, honestly significant difference; VLCFA, very long-chain fatty acid; VLCFA-CoA, very long-chain fatty acyl-CoA.

1098	Figure 5. Accumulation of cuticular hydrocarbon products and the metabolically related
1099	cuticular VLCFAs, and the regression of the hydrocarbon:VLCFA on chain length for
1100	inbreds B73 and Mo17. Concentrations (log-scaled) of cuticular hydrocarbons ($HC_{2n-1:\theta}$) and
1101	VLCFAs $(FA_{2n:\theta})$ were analyzed from husk-encased silks (A) and from silks that had emerged
1102	from the husks (B) of the inbreds B73 (black data points) and Mo17 (red data points). Averages
1103	\pm standard errors from seven to eight biological replicates as presented in Figure 1 are reported
1104	for the metabolite concentrations. Different letters associated with data points from the same
1105	metabolite class indicate a statistically significant difference between acyl chain lengths (p
1106	<0.05; Tukey's HSD test); letters associated with VLCFAs are underlined. In the regression, the
1107	prediction intervals for the regression models are indicated by the dashed lines for each inbred.
1108	Abbreviations: DW, dry weight; FA, fatty acid; HC, hydrocarbon; HSD, honestly significant
1109	difference; VLCFA, very long-chain fatty acid.
1110	
1111	
1112	REFERENCES
1113 1114 1115 1116 1117 1118 1119 1120 1121	Allard A, Bink MCAM, Martinez S, Kelner J-J, Legave J-M, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, and Costes E (2016) Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J Exp Bot 67: 2875–2888. https://doi.org/10.1093/jxb/erw130 Allwood JW, Chandra S, Xu Y, Dunn WB, Correa E, Hopkins L, Goodacre R, Tobin AK, and Bowsher CG (2015) Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115: 99–111. https://doi.org/10.1016/j.phytochem.2015.01.007 Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, and DellaPenna
1122 1123 1124 1125 1126	D (2017) Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiol 173: 872–886. https://doi.org/10.1104/pp.16.01287 Baldauf J, Marcon C, Paschold A, and Hochholdinger F (2016) Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive and allelic expression patterns in maize hybrids. Plant Physiol 171: 1144-1155. https://doi.org/10.1104/pp.16.00262

- 1127 Bartel J, Krumsiek J, and Theis FJ (2013) Statistical methods for the analysis of high-throughput 1128 metabolomics data. Comput Struct Biotechnol J 4: e201301009.
- https://doi.org/10.5936/csbj.201301009 1129
- 1130 Bartzis G, Deelen J, Maia J, Ligterink W, Hilhorst HWM, Houwing-Duistermaat J-J, van Eeuwijk F, and Uh H-W (2017) Estimation of metabolite networks with regard to a specific 1131 1132 covariable: applications to plant and human data. Metabolomics 13: 129. 1133 https://doi.org/10.1007/s11306-017-1263-2
- 1134 Batsale M, Alonso M, Pascal S, Thoraval D, Haslam RP, Beaudoin F, Domergue F, and Joubès J 1135 (2023) Tackling functional redundancy of arabidopsis fatty acid elongase complexes. Front 1136 Plant Sci 14: 1107333. https://doi.org/10.3389/fpls.2023.1107333
- Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire 1137 1138 R, and Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates 1139 that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very 1140 long-chain alkane synthesis complex. Plant Cell 24: 3106–3118. https://doi.org/10.1105/tpc.112.099796 1141
- 1142 Bianchi A, Bianchi G, Avato P, and Salamini F (1985) Biosynthetic pathways of epicuticular 1143 wax of maize as assessed by mutation, light, plant-age and inhibitor studies. Maydica 30: 1144 179-198
- 1145 Bianchi G, Avato P, and Salamini F (1984) Surface waxes from grain, leaves, and husks of 1146 maize (Zea mays 1.). Cereal Chem 61: 45-47
- 1147 Bianchi G, Avato P, and Salamini F (1979). Glossy mutants of maize. Heredity (Edinb) 42: 391– 1148 395. https://doi.org/10.1038/hdy.1979.42
- Blacklock BJ, and Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-coa 1149 1150 synthases. Biochem Biophys Res Commun 346: 583–590. 1151 https://doi.org/10.1016/j.bbrc.2006.05.162
- Bourgault R, Matschi S, Vasquez M, Oiao P, Sonntag A, Charlebois C, Mohammadi M, Scanlon 1152 1153 MJ, Smith LG, and Molina I (2020) Constructing functional cuticles: analysis of 1154 relationships between cuticle lipid composition, ultrastructure and water barrier function in 1155 developing adult maize leaves. Ann Bot 125: 79–91. https://doi.org/10.1093/aob/mcz143
- 1156 Busta L, Hegebarth D, Kroc E, and Jetter R (2017) Changes in cuticular wax coverage and 1157 composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene 1158 expression levels and trichome density. Planta 245: 297–311. 1159 https://doi.org/10.1007/s00425-016-2603-6
- 1160 Campbell AA, Stenback KE, Flyckt K, Hoang T, Perera MAD, and Nikolau BJ (2019) A single-1161 cell platform for reconstituting and characterizing fatty acid elongase component enzymes. 1162 PLoS One 14: e0213620. https://doi.org/10.1371/journal.pone.0213620
- 1163 Carvalho A de O, and Gomes VM (2007) Role of plant lipid transfer proteins in plant cell 1164 physiology—a concise review. Peptides (N.Y.) 28: 1144–1153. https://doi.org/10.1016/j.peptides.2007.03.004 1165
- 1166 Cheesbrough TM, and Kolattukudy PE (1984) Alkane biosynthesis by decarbonylation of 1167 aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci 1168 81: 6613–6617. https://doi.org/10.1073/pnas.81.21.6613
- 1169 Chen J, Wang Z, Tan K, Huang W, Shi J, Li T, Hu J, Wang K, Wang C, Xin B, Zhao H, Song 1170 W, Hufford MB, Schnable JC, Jin W, and Lai J (2023) A complete telomere-to-telomere assembly of the maize genome. Nat Genet 55: 1221-1231. https://doi.org/10.1038/s41588-1171 023-01419-6 1172

- 1173 Choi Y, and Kendziorski C (2009) Statistical methods for gene set co-expression analysis. 1174 Bioinformatics 25: 2780–2786. https://doi.org/10.1093/bioinformatics/btp502
- Deeken R, Saupe S, Klinkenberg J, Riedel M, Leide J, Hedrich R, and Mueller TD (2016) The nonspecific lipid transfer protein AtLtpI-4 is involved in suberin formation of *Arabidopsis* thaliana crown galls. Plant Physiol 172: 1911–1927. https://doi.org/10.1104/pp.16.01486
- Dennison T, Qin W, Loneman DM, Condon SGF, Lauter N, Nikolau BJ, and Yandeau-Nelson MD (2019) Genetic and environmental variation impact the cuticular hydrocarbon metabolome on the stigmatic surfaces of maize. BMC Plant Biol 19: 430. https://doi.org/10.1186/s12870-019-2040-3
 - Dennison TS (2020) Metabolomic Characterization and Quantitative Genetic Dissection of Cuticular Surface Lipid Accumulation on the Stigmatic Surfaces of Maize. Iowa State University. https://doi.org/10.31274/etd-20200902-35
- Desmet S, Brouckaert M, Boerjan W, and Morreel K (2021) Seeing the forest for the trees: retrieving plant secondary biochemical pathways from metabolome networks. Comput Struct Biotechnol J 19: 72–85. https://doi.org/10.1016/j.csbj.2020.11.050
- Di Guardo M, Bink MCAM, Guerra W, Letschka T, Lozano L, Busatto N, Poles L, Tadiello A, Bianco L, Visser RGF, van de Weg E, and Costa F (2017) Deciphering the genetic control of fruit texture in apple by multiple family-based analysis and genome-wide association. J Exp Bot 68: 1451–1466. https://doi.org/10.1093/jxb/erx017
- DiLeo M V., Strahan GD, den Bakker M, and Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS One 6: e26683. https://doi.org/10.1371/journal.pone.0026683
- Dueñas ME, Klein AT, Alexander LE, Yandeau-Nelson MD, Nikolau BJ, and Lee YJ (2017)
 High spatial resolution mass spectrometry imaging reveals the genetically programmed,
 developmental modification of the distribution of thylakoid membrane lipids among
 individual cells of maize leaf. The Plant Journal 89: 825–838.
 https://doi.org/10.1111/tpj.13422
 - Eigenbrode SD, and Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40: 171–194. https://doi.org/10.1146/annurev.en.40.010195.001131
 - Fernandez O, Urrutia M, Bernillon S, Giauffret C, Tardieu F, Le Gouis J, Langlade N, Charcosset A, Moing A, and Gibon Y (2016) Fortune telling: metabolic markers of plant performance. Metabolomics 12: 158. https://doi.org/10.1007/s11306-016-1099-1
 - Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, and Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12: 2001–2008. https://doi.org/10.1105/tpc.12.10.2001
- Fox J, and Weisberg S (2019) An R companion to applied regression, Third. ed. Thousand Oaks CA: Sage
- French KE, Harvey J, and McCullagh JSO (2018) Targeted and untargeted metabolic profiling of wild grassland plants identifies antibiotic and anthelmintic compounds targeting pathogen physiology, metabolism and reproduction. Sci Rep 8: 1695. https://doi.org/10.1038/s41598-018-20091-z
- Fuad-Hassan A, Tardieu F, and Turc O (2008) Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ 31: 1349–60.
- 1217 https://doi.org/10.1111/j.1365-3040.2008.01839.x

1183

1184

1200

1201

1202

1203

1204

1205

1206

- Fukushima A, Kusano M, Redestig H, Arita M, and Saito K (2011) Metabolomic correlationnetwork modules in Arabidopsis based on a graph-clustering approach. BMC Syst Biol 5: 1. https://doi.org/10.1186/1752-0509-5-1
- Gonzales-Vigil E, Hefer CA, von Loessl ME, La Mantia J, and Mansfield SD (2017) Exploiting natural variation to uncover an alkene biosynthetic enzyme in poplar. Plant Cell 29: 2000–2015. https://doi.org/10.1105/tpc.17.00338
- González-Rodríguez T, Pérez-Limón S, Peniche-Pavía H, Rellán-Álvarez R, Sawers RJH, and Winkler R (2023) Genetic mapping of maize metabolites using high-throughput mass profiling. Plant Science 326: 111530. https://doi.org/10.1016/j.plantsci.2022.111530
- Gonzalo M, Vyn TJ, Holland JB, and McIntyre LM (2007) Mapping reciprocal effects and interactions with plant density stress in Zea mays l. Heredity (Edinb) 99: 14–30. https://doi.org/10.1038/sj.hdy.6800955
- Gordon DC, Percy KE, and Riding RT (1998). Effect of enhanced UV-B radiation on adaxial leaf surface micromorphology and epicuticular wax biosynthesis of sugar maple. Chemosphere 36: 853–858. https://doi.org/10.1016/S0045-6535(97)10137-0
- Hannoufa A, McNevin J, and Lemieux B (1993) Epicuticular waxes of *eceriferum* mutants of Arabidopsis thaliana. Phytochemistry 33: 851–855. https://doi.org/10.1016/0031-9422(93)85289-4

- Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernández AM, Beaudoin F, Napier JA, Kunst L, and Joubès J (2015). ECERIFERUM2-like proteins have unique biochemical and physiological functions in very long-chain fatty acid elongation. Plant Physiol 167: 682–692. https://doi.org/10.1104/pp.114.253195
 - Haslam TM, Mañas-Fernández A, Zhao L, and Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160: 1164–1174. https://doi.org/10.1104/pp.112.201640
- Haynes CA, Allegood JC, Sims K, Wang EW, Sullards MC, and Merrill AH (2008) Quantitation of fatty acyl-coenzyme as in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J Lipid Res 49: 1113–1125. https://doi.org/10.1194/jlr.D800001-JLR200
- Hegebarth D, Buschhaus C, Joubès J, Thoraval D, Bird D, and Jetter R (2017) Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36 /C38 acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ 40: 1761–1776. https://doi.org/10.1111/pce.12981
- Hegebarth D, Buschhaus C, Wu M, Bird D, and Jetter R (2016) The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. The Plant Journal 88: 762–774. https://doi.org/10.1111/tpj.13294
- Hong J, Yang L, Zhang D, and Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17: 767. https://doi.org/10.3390/ijms17060767
- Horvath S, and Langfelder P (2011) Tutorial for the WGCNA package for R: III. Using: 5. construction of a weighted gene co-expression
- Howard RW, and Lord JC (2003) Cuticular lipids of the booklouse, Liposcelis bostrychophila: hydrocarbons, aldehydes, fatty acids, and fatty acid amides. J Chem Ecol 29: 615–27. https://doi.org/10.1023/a:1022806922246
- Huang H, Yang X, Zheng M, Chen Z, Yang Z, Wu P, Jenks MA, Wang G, Feng T, Liu L, Yang P, Lü S, and Zhao H (2023) An ancestral role for 3-ketoacyl-coa synthase3 as a negative

- regulator of plant cuticular wax synthesis. Plant Cell 35: 2251–2270. https://doi.org/10.1093/plcell/koad051
- Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, Ricci WA, Guo T,
 Olson A, Qiu Y, Della Coletta R, Tittes S, Hudson AI, Marand AP, Wei S, Lu Z, Wang B,
 Tello-Ruiz MK, Piri RD, Wang N, Kim D won, Zeng Y, O'Connor CH, Li X, Gilbert AM,
- Baggs E, Krasileva K V., Portwood JL, Cannon EKS, Andorf CM, Manchanda N,
- Snodgrass SJ, Hufnagel DE, Jiang Q, Pedersen S, Syring ML, Kudrna DA, Llaca V, Fengler
- 1270 K, Schmitz RJ, Ross-Ibarra J, Yu J, Gent JI, Hirsch CN, Ware D, and Dawe RK (2021) De
- novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science (1979) 373: 655–662. https://doi.org/10.1126/science.abg5289
- Jenks MA, Rashotte AM, Tuttle HA, and Feldmann KA (1996) Mutants in Arabidopsis thaliana
 altered in epicuticular wax and leaf morphology. Plant Physiol 110: 377–385.
 https://doi.org/10.1104/pp.110.2.377
- Jenks MA, Rich PJ, and Ashworth EN (1994) Involvement of cork cells in the secretion of epicuticular wax filaments on Sorghum bicolor (l.) moench. Int J Plant Sci 155: 506–518. https://doi.org/10.1086/297190
- Jetter R, Kunst L, and Samuels AL (2018) Composition of plant cuticular waxes, in: Annual Plant Reviews Online. John Wiley & Sons, Ltd, Chichester, UK, pp. 145–181. https://doi.org/10.1002/9781119312994.apr0232
- Jetter R, Kunst L, and Samuels AL (2006) Composition of plant cuticular waxes, in: Riederer, M., Müller, C. (Eds.), Biology of the Plant Cuticle. Blackwell, Oxford, pp. 145–181

1285 1286

- Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, and Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67: 547–566. https://doi.org/10.1007/s11103-008-9339-z
- Kang Z, Babar MA, Khan N, Guo J, Khan J, Islam S, Shrestha S, and Shahi D (2019)
 Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals
 complex mechanisms involved in post-anthesis drought tolerance in wheat. PLoS One 14:
 e0213502. https://doi.org/10.1371/journal.pone.0213502
- Kim H, Yu S, Jung SH, Lee B ha, and Suh MC (2019) The F-box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynthesis in response to changes in humidity in Arabidopsis. Plant Cell 31: 2223–2240. https://doi.org/10.1105/TPC.19.00152
- Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, and Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme A synthase 9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162: 567–580. https://doi.org/10.1104/pp.112.210450
- Kim KS, Park SH, and Jenks MA (2007a) Changes in leaf cuticular waxes of sesame (Sesamum indicum l.) plants exposed to water deficit. J Plant Physiol 164: 1134–1143.
 https://doi.org/10.1016/j.jplph.2006.07.004
- Kim KS, Park SH, Kim DK, and Jenks MA (2007b) Influence of water deficit on leaf cuticular waxes of soybean (Glycine max [l.] merr.). Int J Plant Sci 168: 307–316. https://doi.org/10.1086/510496
- Kimbara J, Yoshida M, Ito H, Kitagawa M, Takada W, Hayashi K, Shibutani Y, Kusano M,
 Okazaki Y, Nakabayashi R, Mori T, Saito K, Ariizumi T, and Ezura H (2013) Inhibition of
 CUTIN DEFICIENT 2 causes defects in cuticle function and structure and metabolite

- changes in tomato fruit. Plant Cell Physiol 54: 1535–1548. https://doi.org/10.1093/pcp/pct100
- Koornneef M, Hanhart CJ, and Thiel F (1989) A genetic and phenotypic description of *Eceriferum (cer)* mutants in Arabidopsis thaliana. Journal of Heredity 80: 118–122. https://doi.org/10.1093/oxfordjournals.jhered.a110808
- Kosma DK, Bourdenx B, Bernard A, Parsons EP, Lü S, Joubès J, and Jenks MA (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151: 1918–1929. https://doi.org/10.1104/pp.109.141911
- Krauss P, Markstadter C, and riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20: 1079–1085. https://doi.org/10.1111/j.1365-3040.1997.tb00684.x
- Lai C, Kunst L, and Jetter R (2007) Composition of alkyl esters in the cuticular wax on inflorescence stems of Arabidopsis thaliana *cer* mutants. The Plant Journal 50: 189–196. https://doi.org/10.1111/j.1365-313X.2007.03054.x
- Langfelder P, and Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559. https://doi.org/10.1186/1471-2105-9-559
- Lerche MH, and Poulsen FM (1998) Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins. Protein Science 7: 2490–2498. https://doi.org/10.1002/pro.5560071202
- Lewandowska M, Keyl A, and Feussner I (2020) Wax biosynthesis in response to danger: its regulation upon abiotic and biotic stress. New Phytologist 227: 698–713. https://doi.org/10.1111/nph.16571
- Li D, Heiling S, Baldwin IT, and Gaquerel E (2016) Illuminating a plant's tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci 113: E7610–E7618. https://doi.org/10.1073/pnas.1610218113
- Loneman DM, Peddicord L, Al-Rashid A, Nikolau BJ, Lauter N, and Yandeau-Nelson MD (2017) A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize. PLoS One 12: e0180850. https://doi.org/10.1371/journal.pone.0180850
- Luo B, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q, Ren Z, Lin H, Wu Y, Shen Y, Zhang S, Wu L, Liu D, Pan G, Rong T, and Gao S (2019) Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. The Plant Journal 97: 947–969. https://doi.org/10.1111/tpj.14160
- Luzarowska U, Ruß A-K, Joubès J, Batsale M, Szymański J, P. Thirumalaikumar V, Luzarowski M, Wu S, Zhu F, Endres N, Khedhayir S, Schumacher J, Jasinska W, Xu K, Correa Cordoba SM, Weil S, Skirycz A, Fernie AR, Li-Beisson Y, Fusari CM, and Brotman Y (2023) Hello darkness, my old friend: 3-ketoacyl-coenzyme A synthase4 is a branch point in the regulation of triacylglycerol synthesis in *Arabidopsis thaliana*. Plant Cell 35: 1984–2005. https://doi.org/10.1093/plcell/koad059
- Lynch D V., and Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist 161: 677–702. https://doi.org/10.1111/j.1469-8137.2004.00992.x
- Marcon C, Paschold A, Malik WA, Lithio A, Baldauf JA, Altrogge L, Opitz N, Lanz C, Schoof
 H, Nettleton D, Piepho H-P, and Hochholdinger F (2017) Stability of single-parent gene

- expression complementation in maize hybrids upon water deficit stress. Plant Physiol 173: 1247–1257. https://doi.org/10.1104/pp.16.01045
- Marttinen P, Pirinen M, Sarin A-P, Gillberg J, Kettunen J, Surakka I, Kangas AJ, Soininen P,
 O'Reilly P, Kaakinen M, Kähönen M, Lehtimäki T, Ala-Korpela M, Raitakari OT, Salomaa
 V, Järvelin M-R, Ripatti S, and Kaski S (2014) Assessing multivariate gene-metabolome
 associations with rare variants using bayesian reduced rank regression. Bioinformatics 30:
- 1359 2026–2034. https://doi.org/10.1093/bioinformatics/btu140
- McNinch C, Chen K, Dennison T, Lopez M, Yandeau-Nelson MD, and Lauter N (2020) A multigenotype maize silk expression atlas reveals how exposure-related stresses are mitigated following emergence from husk leaves. Plant Genome 13. https://doi.org/10.1002/tpg2.20040
- Michaelson L V., Napier JA, Molino D, and Faure J-D (2016) Plant sphingolipids: their
 importance in cellular organization and adaption. Biochimica et Biophysica Acta (BBA) Molecular and Cell Biology of Lipids 1861: 1329–1335.
 https://doi.org/10.1016/j.bbalip.2016.04.003
- Millar AA, and Kunst L (1997) Very long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. The Plant Journal 12: 121–131. https://doi.org/10.1046/j.1365-313X.1997.12010121.x
- Miller SS, Reid LM, Butler G, Winter SP, and McGoldrick NJ (2003) Long chain alkanes in silk extracts of maize genotypes with varying resistance to Fusarium graminearum. J Agric Food Chem 51: 6702–6708. https://doi.org/10.1021/jf0341363
- Montesinos-López A, Montesinos-López OA, Cuevas J, Mata-López WA, Burgueño J, Mondal S, Huerta J, Singh R, Autrique E, González-Pérez L, and Crossa J (2017) Genomic bayesian functional regression models with interactions for predicting wheat grain yield using hyperspectral image data. Plant Methods 13: 62. https://doi.org/10.1186/s13007-017-0212-4
- Morey R, and Rouder J (2015) Computation of bayes factors for common designs. R package version 0.9.12-2.
- Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein—lipid interactions. Trends Plant Sci 22: 1027–1040. https://doi.org/10.1016/j.tplants.2017.09.002
- Newman MC, Dixon PM, Looney BB, and Pinder JE (1989) Estimating mean and variance for environmental samples with below detection limit observations. J Am Water Resour Assoc 25: 905–916. https://doi.org/10.1111/j.1752-1688.1989.tb05406.x
- Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Araus JL, Cairns JE, Yousfi S, and Fernie AR (2015) Metabolite profiles of maize leaves in drought, heat and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol pp.01164.2015. https://doi.org/10.1104/pp.15.01164
- Okazaki Y, Nishizawa T, Takano K, Ohnishi M, Mimura T, and Saito K (2015) Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol Plant 155: 33–42. https://doi.org/10.1111/ppl.12334
- Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Höfer R, Schreiber L, Chory J, and Aharoni A (2007) The Arabidopsis *DESPERADO / AtWBC11* transporter is required for cutin and wax secretion. Plant Physiol 145: 1345–1360.
- https://doi.org/10.1104/pp.107.105676

- Papazian S, Khaling E, Bonnet C, Lassueur S, Reymond P, Moritz T, Blande JD, and Albrectsen BR (2016) Central metabolic responses to ozone and herbivory affect photosynthesis and stomatal closure. Plant Physiol 172: 2057–2078. https://doi.org/10.1104/pp.16.01318
- Pascal S, Bernard A, Deslous P, Gronnier J, Fournier-Goss A, Domergue F, Rowland O, and Joubès J (2019) Arabidopsis CER1-LIKE1 functions in a cuticular very long-chain alkaneforming complex. Plant Physiol 179: 415–432. https://doi.org/10.1104/pp.18.01075
- Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh C-T, Ossowski S, Lanz C, Nettleton D, Schnable PS, and Hochholdinger F (2012) Complementation contributes to transcriptome complexity in maize (Zea mays 1.) hybrids relative to their inbred parents. Genome Res 22: 2445–2454. https://doi.org/10.1101/gr.138461.112
- Paultre DSG, Gustin M-P, Molnar A, and Oparka KJ (2016) Lost in transit: long-distance trafficking and phloem unloading of protein signals in Arabidopsis homografts. Plant Cell 28: 2016–2025. https://doi.org/10.1105/tpc.16.00249
- Perera MADN, Qin W, Yandeau-Nelson M, Fan L, Dixon P, and Nikolau BJ (2010). Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks. The Plant Journal 64: 618–632. https://doi.org/10.1111/j.1365-313X.2010.04355.x
- Pérez-Enciso M, and Tenenhaus M (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet 112: 581–92. https://doi.org/10.1007/s00439-003-0921-9
- Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H,
 Pieruschka R, Rascher U, Sonnewald U, and Weber APM (2011) Systems analysis of a
 maize leaf developmental gradient redefines the current C₄ model and provides candidates
 for regulation. Plant Cell 23: 4208–4220. https://doi.org/10.1105/tpc.111.090324
- Post-Beittenmiller D (1996) Biochemistry and molecular biology of wax production in plants.

 Annu Rev Plant Physiol Plant Mol Biol 47: 405–430.

 https://doi.org/10.1146/annurev.arplant.47.1.405
- Pretorius CJ, Tugizimana F, Steenkamp PA, Piater LA, and Dubery IA (2021) Metabolomics for biomarker discovery: key signatory metabolic profiles for the identification and discrimination of oat cultivars. Metabolites 11: 165.

 https://doi.org/10.3390/metabo11030165
- Qiao P, Bourgault R, Mohammadi M, Gore MA, Molina I, and Scanlon MJ (2020a) A maize lipid transfer protein may bridge the gap between phytochrome-mediated light signaling and cuticle biosynthesis. Plant Signal Behav 15: 1790824. https://doi.org/10.1080/15592324.2020.1790824
- Qiao P, Bourgault R, Mohammadi M, Matschi S, Philippe G, Smith LG, Gore MA, Molina I, and Scanlon MJ (2020b) Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Proc Natl Acad Sci 117: 12464–12471. https://doi.org/10.1073/pnas.2004945117
- R core team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
- Racovita RC, and Jetter R (2016) Identification of in-chain-functionalized compounds and methyl-branched alkanes in cuticular waxes of Triticum aestivum cv. Bethlehem. PLoS One 11: e0165827. https://doi.org/10.1371/journal.pone.0165827

- Rao J, Cheng F, Hu C, Quan S, Lin H, Wang J, Chen G, Zhao X, Alexander D, Guo L, Wang G, Lai J, Zhang D, and Shi J (2014) Metabolic map of mature maize kernels. Metabolomics 10: 775–787. https://doi.org/10.1007/s11306-014-0624-3
- Reina-Pinto JJ, Voisin D, Kurdyukov S, Faust A, Haslam RP, Michaelson L V., Efremova N, Franke B, Schreiber L, Napier JA, and Yephremov A (2009) Misexpression of FATTY ACID ELONGATION1 in the *Arabidopsis* epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. Plant Cell 21: 1252–1272. https://doi.org/10.1105/tpc.109.065565
- Rhee Y, Hlousek-Radojcic A, Ponsamuel J, Liu D, and Post-Beittenmiller D (1998) Epicuticular wax accumulation and fatty acid elongation activities are induced during leaf development of leeks. Plant Physiol 116: 901–911. https://doi.org/10.1104/pp.116.3.901
- Riederer M, and Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52: 2023–2032. https://doi.org/10.1093/jexbot/52.363.2023
- Rosato A, Tenori L, Cascante M, De Atauri Carulla PR, Martins dos Santos VAP, and Saccenti E (2018) From correlation to causation: analysis of metabolomics data using systems biology approaches. Metabolomics 14: 37. https://doi.org/10.1007/s11306-018-1335-y
- Samuels L, Kunst L, and Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59: 683–707. https://doi.org/10.1146/annurev.arplant.59.103006.093219

1465

1466

1467

1468

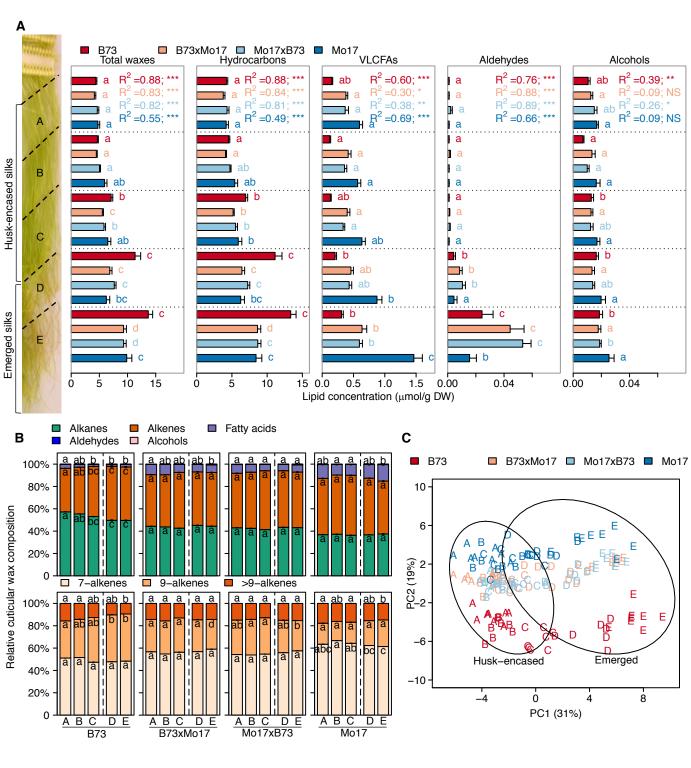
1469

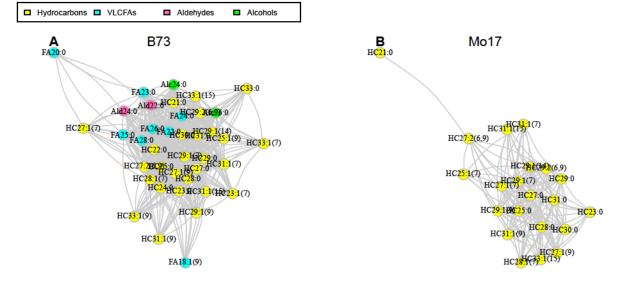
1470

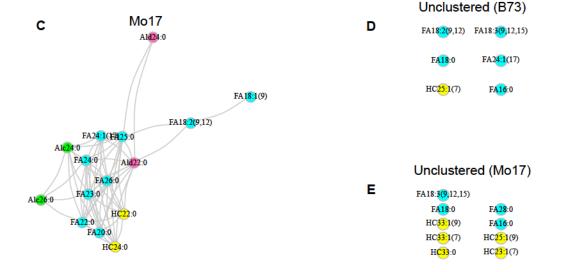
1471

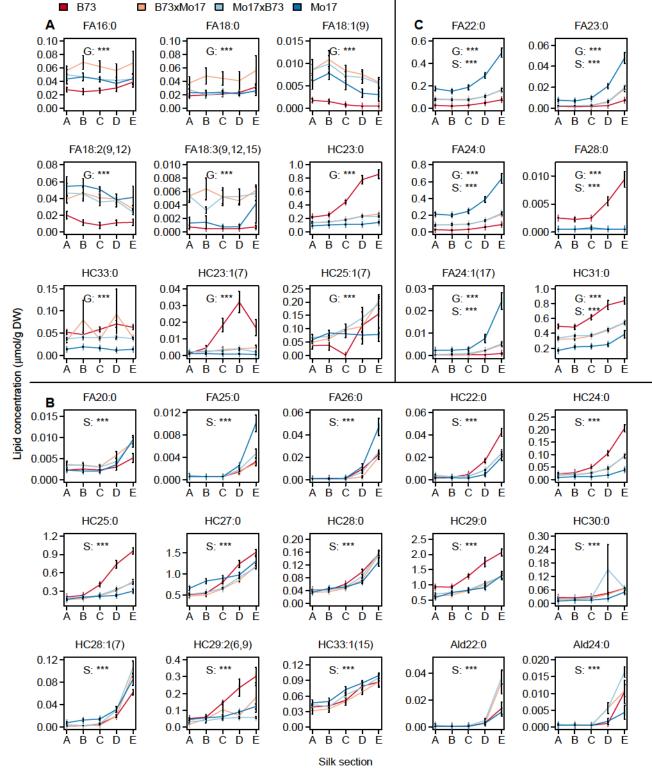
1472

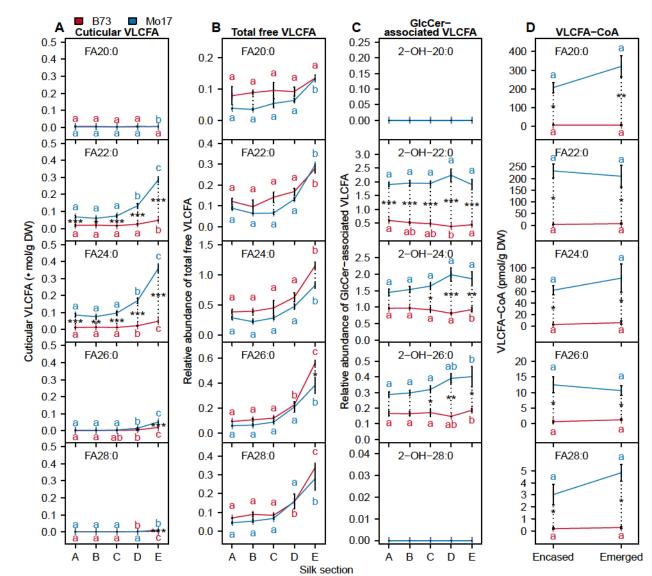
1473


- Sato N, and Awai K (2017) "Prokaryotic pathway" is not prokaryotic: noncyanobacterial origin of the chloroplast lipid biosynthetic pathway revealed by comprehensive phylogenomic analysis. Genome Biol Evol 9: 3162–3178. https://doi.org/10.1093/gbe/evx238
 - Sawada Y, Akiyama K, Sakata A, Kuwahara A, Otsuki H, Sakurai T, Saito K, and Hirai MY (2009) Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol 50: 37–47. https://doi.org/10.1093/pcp/pcn183
 - Serrano M, Coluccia F, Torres M, L'Haridon F, and Métraux J-P (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274. https://doi.org/10.3389/fpls.2014.00274
 - Shen M, Broeckling CD, Chu EY, Ziegler G, Baxter IR, Prenni JE, and Hoekenga OA (2013) Leveraging non-targeted metabolite profiling via statistical genomics. PLoS One 8: e57667. https://doi.org/10.1371/journal.pone.0057667
 - Shepherd T, and Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytologist 171: 469–499. https://doi.org/10.1111/j.1469-8137.2006.01826.x
- Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10: 770–781. https://doi.org/10.1016/S1044-0305(99)00047-1
- Steinmfiller D, and Tevini M (1985) Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta 164: 557–564
- Stenback KE, Flyckt KS, Hoang T, Campbell AA, and Nikolau BJ (2022) Modifying the yeast very long chain fatty acid biosynthetic machinery by the expression of plant 3-ketoacyl CoA synthase isozymes. Sci Rep 12: 13235. https://doi.org/10.1038/s41598-022-17080-8
- Steuer R (2006) Review: on the analysis and interpretation of correlations in metabolomic data.


 Brief Bioinform 7: 151–158. https://doi.org/10.1093/bib/bbl009
- Sulpice R, Pyl E-T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Von Korff M, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne


- M, Selbig J, Fernie AR, Altmann T, and Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci 106: 10348–10353. https://doi.org/10.1073/pnas.0903478106
- Sun D, Cree MG, and Wolfe RR (2006) Quantification of the concentration and 13C tracer enrichment of long-chain fatty acyl-coenzyme A in muscle by liquid chromatography/mass spectrometry. Anal Biochem 349: 87–95. https://doi.org/10.1016/j.ab.2005.10.006
- Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, and Schnable PS
 (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize
 hybrids. Science (1979) 326: 1118–1120. https://doi.org/10.1126/science.1178294
- Tafolla-Arellano JC, Báez-Sañudo R, and Tiznado-Hernández ME (2018) The cuticle as a key
 factor in the quality of horticultural crops. Sci Hortic 232: 145–152.
 https://doi.org/10.1016/j.scienta.2018.01.005
 Tarpley L, Duran AL, Kebrom TH, and Sumner LW (2005) Biomarker metabolites capturing t
- Tarpley L, Duran AL, Kebrom TH, and Sumner LW (2005) Biomarker metabolites capturing the metabolite variance present in a rice plant developmental period. BMC Plant Biol 5: 8. https://doi.org/10.1186/1471-2229-5-8
- Tevini M, and Steinmüller D (1987) Influence of light, UV-B radiation, and herbicides on wax biosynthesis of cucumber seedling. J Plant Physiol 131: 111–121. https://doi.org/10.1016/S0176-1617(87)80272-9
- Thévenot EA, Roux A, Xu Y, Ezan E, and Junot C (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14: 3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354
 - Toubiana D, Xue W, Zhang N, Kremling K, Gur A, Pilosof S, Gibon Y, Stitt M, Buckler ES, Fernie AR, and Fait A (2016) Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating n and c metabolism in Zea mays. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01022
- Trivedi P, Nguyen N, Hykkerud AL, Häggman H, Martinussen I, Jaakola L, and Karppinen K (2019) Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Front Plant Sci 10:431. https://doi.org/10.3389/fpls.2019.00431
- von Wettstein-Knowles P, Avato P, and Mikkelsen JD (1980) Light promotes synthesis of the very long fatty acyl chains in maize wax, in: Mazliak, P., Benveniste, P., Costes, C., Douce, R. (Eds.), Biogenesis and Function of Plant Lipids. Elsevier/North-Holland Biomedical Press, pp. 271–274
- Wang DR, Guadagno CR, Mao X, Mackay DS, Pleban JR, Baker RL, Weinig C, Jannink J-L, and Ewers BE (2019) A framework for genomics-informed ecophysiological modeling in plants. J Exp Bot 70: 2561–2574. https://doi.org/10.1093/jxb/erz090
- Wang X, Kong L, Zhi P, and Chang C (2020) Update on cuticular wax biosynthesis and its roles in plant disease resistance. Int J Mol Sci 21: 5514. https://doi.org/10.3390/ijms21155514
- Warth B, Parich A, Bueschl C, Schoefbeck D, Neumann NKN, Kluger B, Schuster K, Krska R, Adam G, Lemmens M, and Schuhmacher R (2015) GC–MS based targeted metabolic profiling identifies changes in the wheat metabolome following deoxynivalenol treatment. Metabolomics 11: 722–738. https://doi.org/10.1007/s11306-014-0731-1
- Wen M, and Jetter R (2009) Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes. J Exp Bot 60: 1811–1821.
- 1531 https://doi.org/10.1093/jxb/erp061


1511


1532	Worley B, and Powers R (2012) Multivariate analysis in metabolomics. Curr Metabolomics 1:
1533	92–107. https://doi.org/10.2174/2213235X11301010092
1534	Xue D, Zhang X, Lu X, Chen G, and Chen Z-H (2017) Molecular and evolutionary mechanisms
1535	of cuticular wax for plant drought tolerance. Front Plant Sci 8:621.
1536	https://doi.org/10.3389/fpls.2017.00621
1537	Yandeau-Nelson M (2015) Advances in metabolomic applications in plant genetics and
1538	breeding. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and
1539	Natural Resources 10. https://doi.org/10.1079/PAVSNNR201510040
1540	Yang G, Wiseman BR, and Espelie KE (1992) Cuticular lipids from silks of seven corn
1541	genotypes and their effect on development of corn earworm larvae [Helicoverpa zea
1542	(Boddie)]. J Agric Food Chem 40: 1058–1061. https://doi.org/10.1021/jf00018a030
1543	Yeats TH, and Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:
1544	5–20. https://doi.org/10.1104/pp.113.222737
1545	Zhou S, Kremling KA, Bandillo N, Richter A, Zhang YK, Ahern KR, Artyukhin AB, Hui JX,
1546	Younkin GC, Schroeder FC, Buckler ES, and Jander G (2019) Metabolome-scale genome-
1547	wide association studies reveal chemical diversity and genetic control of maize specialized
1548	metabolites. Plant Cell 31: 937–955. https://doi.org/10.1105/tpc.18.00772
1549	
1550	
1551	
1552	

