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Abstract. We show that a pair correlation function for the spectrum of a flat
2-dimensional torus satisfying an explicit Diophantine condition agrees with those
of a Poisson process with a polynomial error rate.

The proof is based on a quantitative equidistribution theorem and tools from
geometry of numbers.
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1 Introduction

Let A C R? be a lattice. The eigenvalues of the Laplacian of the corresponding
flat torus M = R?/ A are the values of the quadratic form

(1.1) Bu(x, y) = 47 ||xv1 + yoa |12

at integer points, where {v;, 02} is a basis for the dual lattice A*.
Let
0=/10 </11 5/12

be the corresponding eigenvalues counted with multiplicity. By the Weyl’s law we

have
vol(M)

B < Ty~ T,

The set of eigenvalues has a clear symmetry; let us write j ~ k if A; = Bu(u) and
Ax = Bu(Zu). Let a < f, and define the pair correlation function

#HG k) :joek Ajy ik <T, a < 4 — Ax < B}
T .

The following was proved by Eskin, Margulis, and Mozes [EMMOS5].

RM(OC, ﬁa T) =

1.1 Theorem ([EMMOS5], Theorem 1.7). Let M be a two-dimensional flat
torus, and let

Bu(x, y) = ax> + 2bxy + ¢y’

be the associated quadratic form giving the Laplacian spectrum of M, normalized
so that ac — b?> = 1. Suppose there exist A > 1 such that for all (p1, p>, q) € 7>
with q > 2, we have

(1.2)

Then for any interval [a, ] with O & [a, f], we have
(1.3) lim Ry(a, 8, T) = 7*(f — a).
T—oo

Prior to [EMMOS5], Sarnak [Sar97] showed that (1.3) holds on a set of full
measure in the space of flat tori. The case of inhomogeneous forms, which
correspond to eigenvalues of quasi-periodic eigenfunctions, was also studied by
Marklof [Mar03, Mar(02], and by Margulis and the second-named author [MM11].
More recently, Blomer, Bourgain, Radziwill, and Rudnick [BBRIR17] studied
consecutive spacing for certain families of rectangular tori, i.e., b = 0. We also
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refer to the work of Strombergsson and Vishe [SV20] where an effective version
of [Mar03] is obtained.

In this paper, we prove a polynomially effective version of Theorem 1.1, i.e.,
we provide a polynomial error term for Ry(a., S, T).

1.2 Theorem. Let M be a two-dimensional flat torus,
Bu(x, y) = ax> + 2bxy + ¢y’

the associated quadratic form giving the Laplacian spectrum of M normalized so
that ac — b% = 1, and let A > 103. Then there are absolute constants 09 and N,
some A’ depending on A, and C and Ty depending on A, a, b, and c, and for every
0 < d < dy, a k =«k(9, A) so that the following holds.

Let T > Ty, assume that for all (p1, p», q) € 7> with T4 < g < T° we have

c_pm
a q

(1.4)

-2
a gq

=Tl

Then if
|Ru(a, B, T) — (B — )] > C(1 +|a| + |BYV T,
then there are two primitive vectors ui, u> € 7> so that

(1.5) lurll, luall < T4 and  |Bw(uy, up)| < T~'*°

and moreover

Mr(uy, us)

T O(L+ Ll + 18T

Ru(a, B, T) —n*(B—a) =
with
Mz (uy, up) = #{(51, t) e %Zz 01y + Cuy € 72, Bu(Ciuy =+ Lup) < T,
4Bu(ur, )1 € [a, Bl .

Note that our result does not require the assumption that O ¢ [a, £] (arestriction
that appears in the work of Eskin, Margulis and Mozes, and is needed in order for
Theorem 1.1 to hold). The proof of Theorem 1.2 is effective, and for all of the
above implicit constants, one can give explicit expressions if desired.

Remark. Let us now elaborate on the term M7(u;, uy) in the statement of
Theorem 1.2: Let u;, u, € Z? be two primitive vectors satisfying

0 < |l <T%* and |Bu(ui,us)| < T~
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Then for all (¢4, ¢>) € %22, we have
Bu(€iuy + Louz) — Bu(€1uy — €oup) = 4By(uy, uz)tfs.

In particular, if 77179 < |By(u;, uz)| < T~'*9, then there would be > T'~!% pairs
of integers €1, £, of size K T730-9) (so that By(€1uy + €ouz) < T), such that

a B
4B\(uy, uz)” 4Bu(uy, us)

016, € [

as the last interval is of length > T'=2. All such pairs contribute to My(uy, uz),
making w > T71% which is bigger than any fixed polynomial error term.
Moreover, even if (1.4) holds, such pairs u;, u; € 72 can definitely exist.

If (1.4) holds, up to changing the order such a pair u;, u; is unique—see
Lemma 2.5—hence there is no need for additional error terms. The subspaces
of R* spanned by pairs (u;, uy) as above are called exceptional. In Section 6
we introduce a Margulis function that accounts for all the contributions towards
pairs Ry out of exceptional spaces and show that exceptional subspaces are the
only source of large error terms.

We now state a corollary of Theorem 1.2. A rectangular torus has extra
multiplicities in the spectrum built in, so to accommodate that we consider the
modified pair correlation function

;\A(a’ﬂ,T):#{(iak):/lj#ik <]7:, OCS/Ij—/lkgﬁ}.

1.3 Corollary. Let M be a two dimensional flat torus, and let

Bu(x, y) = ax> + 2bxy + ¢y’

be normalized so that ac — b*> = 1.
(1) Suppose there exist A > 1 and q > 0 such that for all (m, n, k) € Z> \ {0},

(1.6) lam + bn + ck| > gl|(m, n, k)| 4.

Then
|Ru(a, B, T) — w*(f — a)| < C(1 +|a| + |BDN T .

(2) Let M be a rectangular torus, i.e., b = 0. Assume there exist A > 1 and g > 0
such that for all (m, n) € Z* \ {0} we have

2 —A
[a“m +n| > gl|(m, )| ™.

Then
IRy(at, B, T) — (B — a)| < C(1 + |a| + |BDVTF,

where N is absolute, k depends on A, and C depends on a, b, c, A, and q.
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Indeed, under (1.6), pairs u;, u, of primitive integer vectors as in Theorem 1.2
do not exist, and if M is a rectangular torus the unique (up to order) pair of primitive
vectors is given by e; = (1, 0), e; = (0, 1), for which the contribution of M7 (ey, e,)
can be accounted for by looking at Ry,(a, f, T) instead of Ry(a, f, T).

Note that in part (2), though the modified pair correlation function Ry, (a, f, T)
avoids counting zero values, the interval [a, f] is still allowed to contain 0. This is
slightly stronger than assuming O ¢ [a, 5], as Corollary 1.3.(2) in particular gives
effective bounds on the number of extremely close eigenvalues.

The general strategy of the proof of Theorem 1.2 is similar to [EMM98]
and [EMMO5]. Thatis, we deduce the above theorems from an equidistribution the-
orem for certain unbounded functions in homogeneous spaces. Unlike [EMM98]
and [EMMO5], where the analysis takes place in the space of unimodular lattices
in R*, the homogeneous space in question here is

X = SLy(R) x SL>(R)/T”

where I is a finite index subgroup of SL,(Z) x SL,(Z).

This reduction is carried out in §3. The lower bound estimate will be proved
using the following effective equidistribution theorem that relies on [LMW22,
Thm. 1.1]:

Let G = SLy(R) x SL,(R). For all &2 € SL,(R), we let A(h) denote the element
(h, h) € G, and let H = A(SL,(R)). For every € R and every 8 € [0, 2x], let

e 0 cosf —siné
a= (0 e") and o = (sin@ cos® ) ’

1.4 Theorem. Assume I is an arithmetic lattice in G. ForeveryxoeX = G/T,
and large enough R (depending explicitly on X and the injectivity radius at x), for
any e' > RP, at least one of the following holds.

(1) For every p € C°(X) and 2x-periodic smooth function & on R, we have

21 2
‘ / o(A(ar)x0)E(6) d6 — / £0)do / pdmy| < S(@SEOR™
0 0

where we use 8(-) to denote an appropriate Sobolev norm on both X and R,
respectively.
(2) There exists x € X such that Hx is periodic with vol(Hx) < R, and

dx(x, xo) < RPPe™".

The constants D and kq are positive and depend on X but not on xy, and dx is a
fixed metric on X.
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This is a variant of [LMW?22, Thm. 1.1]. Indeed, instead of expanding an orbit
segment of the unipotent flow A (u) where

1 s
MS= 9
0 1

here we expand an orbit of the compact group { A(ry)}. The deduction of Theo-
rem 1.4 from [LMW22, Thm. 1.1] is given in §5 using a fairly simple and standard
argument.

To prove the upper bound estimate, in addition to Theorem 1.4, we also need
to analyze Margulis functions a la [EMM98, EMMOS5]; our analysis simplifies
substantially thanks to the simpler structure of the cusp in SL(R) x SL,(R)/T”
compared to that in SL4(R)/SL4(Z). This is the content of §6. Indeed Propo-
sition 6.1 reduces the analysis to special subspaces, see Definition 2.3, that are
closely connected to the pairs of almost By-orthogonal vectors discussed above.
We study these special subspaces using the elementary Lemma 2.2; in particular,
using this lemma we establish Lemma 2.4, which shows that under (1.4) there are
at most two special subspaces. Finally, Lemma 2.6 shows that even for special
subspaces, only the range asserted in (1.5) can produce enough solutions to affect
the error term.

Acknowledgments. We would like to thank Jens Marklof for helpful con-
versations. We also thank the anonymous referee for valuable comments.
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generosity, and it is a pleasure to dedicate this paper to him with our sincere
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2 Notation and preliminaries

In this paper

g=1{(8 © ‘g, g2€SLY@®) S and H={(% 0 :geSLy(R) b .
0 g 0 g

Let g = Lie(G) and h = Lie(H).
We identify G with SL,;(R) x SL,(R) and H with
{(g, 8 : g € SLa(R)} C SLa(R) x SLa(R).

Indeed, to simplify the notation, we will often denote

g1 O
= eG

by (g1, g2). Given v = (x1,Yy1,X2,y2) € R*, we write g.0 = (g0, g202) where
v; = (X5, y;) € R for i = 1, 2 (for purely typographical reasons, we prefer to work
with row vectors even though representing these as column vectors would be more
consistent).

For all & € SL,(R), we let A(h) = (h, h) € H. In particular, for every t € R and
every 8 € [0, 2], A(a;) and A(rp) denote the images of

e 0 and cos® —sinf
0 e sind cos0@

2.1 Quadratic forms. Let Qg denote the determinant form on R*:

in H, respectively.

Qo(X1, Y1, X2, ¥2) = X1¥2 — X2¥1.

Note that H = G N SO(Qy).
Let A C R? be a lattice and let A* be the dual lattice. We normalize A* to have
covolume (27)~2 and fix gy € SL»(R) so that

2rA* = guZ2.

The eigenvalues of the Laplacian on R?/A are ||v||? for o € 2z A*. Therefore,

given two eigenvalues A; = ||v;]|%, i = 1, 2, we have

o At =22 = (lo1l? = llo2ll*) = (01 +02) - (01 = v2)
= Qo(v1 + 02, @(v1 — v2))

where w = (¥ 31).
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Recall that G = SLy(R) x SL>(R) C SL4(R). Define
A ={(vy + 02, (01 —02)) 101,02 € Z2} c R*.

Then {(v; + 02, w(v] — 12)) : 01,03 € 2T A*} = (gm, —WEU®)A.
Let IV be the maximal subgroup of SL,(Z) x SL,(Z) which preserves A. More
explicitly,

I" = {(y1,72) € SLa(Z) x SLo(Z) : y1 = wy20 (mod 2)}.
LetX = G/T".
Modbius transformations. In this section, we prove an elementary lemma
concerning Mobius transformations. This lemma will be used to complete the

proof of Lemma 2.5; it also will be used in the proof of Lemma 6.4.
Let P denote the set of primitive vectors in Z>. For every ¢ > 1, let

PO)y={ve?P:|v| <€}

22 Lemma. LetA > 103, s > 0and 0 < qA < N0 Assume that for
i=1,2 there are v;, V;, v/ € P(s) satisfying

(22) 1 < 1Qo(, w)| K 7%, forv, w € {v, f, o).
Also suppose there are h € PGL(R) and C > 0 so that
(2.3) hoy = poy + w2, hoi=p'vi+ U)/l,2> hot = p"vf + w12

where |ul, |¢'|, |u"] = C™" and ||w|| < C'e™ for w € {w) 2, W) 5, W] ,}.
Then there exists Q € Maty(Z) with || Q|| < 7' and 1 € R so that

|h— 20| < C'y*~,

where C' depends on C and polynomially on ||h||.

/"
1

—x X'V — x1v”
M, = }/1 1 forz, = 1Y1 1Y1
Y121

Proof. Letus write v; = (x;, ¥;), ¥;= (X, y;), and of = (x/, y/). The matrix

/ M,/ v
—X12Z1 X1Y1 — XYy

acting on P! takes (x; : y1) to (0 : 1), (X; : y}) to (1 : 0) and (x] : y{) to (1 : 1). The

matrix
—X4Zy X2 X3y2 — XaY5
M2: /2 f0r22=7/2/, n /2/
—Y2Z2 Y2 XYy — X3¥2
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in turn takes (0 : 1) to (x2 : y2), (1 : 0) to (x5 : y5) and (1 : 1) to (x5 : y5). By (2.2),
we have that = |det(M,) det(M,)| ™! is a rational number of height < #~%°. Thus
by (2.3)

h=+rMoM, + O(* ™) or

hzi\/?<(1) 0

1) M>M, + O(*~%0).

Since the denominators of the entries of M| and M, are bounded by ;1_4, and since
all our implicit constants are allowed to depend on |Z||, we may conclude the
claim. [l

We draw some corollaries of Lemma 2.2.

Definition 2.3. Let g = (g1, g2) € G. A two-dimensional gZ*-rational linear
subspace L c R* is called (p, A, r)-exceptional if there are (vy, 0), (0, v;) € Z*
satisfying

(2.4 lgivill, lg2v2ll < €” and  |Qo(g1v1, g202)| < e~

so that L N gZ* is spanned by {(g 01, 0), (0, go02)}.
Given a (p, A, t)-special subspace L, we will refer to {(gv1, 0), (0, g2v2)} as a
spanning set for L.

2.4 Lemma. Let A > 10% andlet g = (g1, g2) € G. Let p < A/100. Then for
all t large enough, depending on || g||, at least one of the following holds:
(1) There are at most two different (p, A, t)-exceptional subspaces.
(2) There exists Q € Maty(Z) whose entries are bounded by """ and i € R
satisfying ||g5' g1 — AQ|| < e=A=10071,

Proof. We begin by proving the first assertion in the lemma. Let # = e™*" and
s = pt. Indeed assume there are three different (p, A, r)-special subspaces in R*,
and let v;, v}, U] € Py, i =1, 2, be the corresponding spanning vectors. Then
v

1 < |Qo(v, w)| < ¥, forv, w e {v1,0],0

That is, {v1, v{, v{} satisfies (2.2) with # = e™”" so long as ¢ is large enough to
account for the implied constant. Moreover, if we put & = g5 gy, then

hoy = pvs + wy 2

where u € R satisfies |u| > 1 and ||w; ;|| < ™" = #4=De~5 (recall that the
implicit constants in these inequalities are allowed to depend polynomially on || g} ||
and || g21|). Similarly,

/o /. ! / " __ /N 1
hoy = oy +w), and hoy= "oy +w,
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where u/, u” € Risatisfy |u/|, |1”] > 1 and [|w) , |, 0] || K ™47, Therefore,
{0y, V5, v5} also satisfy (2.2). Moreover, h = gz_lgl satisfies (2.3) with A — 1, 7,
and s, in view of the above discussion. Hence, Lemma 2.2 implies that the assertion
in part (2) of this lemma holds so long as ¢ is large enough. (|

Special subspaces and the spectrum of flat tori. Using the discussion
in §2.1, we translate the conclusion of Lemma 2.4 to a similar statement about the
quadratic form By.

2.5 Lemma. Let A > 10, and let p < A/100. Recall that
Bu(x, y) = ax> + 2bxy + cy?

is renormalized so that ac — b* = 1. Then for all t > ty, depending on p, |a|, |b],
and |c|, at least one of the following holds:
(1) Thereis aunique, up to change of order, pair of primitive vectors uy,u,€Z>\{0}
satisfying

lwll < e” and |Bu(uy, u2)| < e~

(2) There exists Q € Maty(Z) whose entries are bounded by ¢'°?" and i € R

satisfying
ab
—A

In particular, if M is a rectangular torus, i.e., b = 0, then ty may be chosen

< o~ (A=100p1.

so that if part (2) is not satisfied, then (up to changing the order) u; = (1, 0) and
up = (0, 1).

Proof. Let? be large enough so that Lemma 2.4 holds for all # > #,. Since By
is positive definite, there exists #; so that if # > 1, then

|Bu(uy, up)| < e

implies that {u;, u,} is linearly independent.
Let 7o = max(t, ;) and let r > 1. Put

a b
e (¢ 9)1)

Note that if part (2) in Lemma 2.4 holds, then part (2) in this lemma holds and the
proof is complete. Thus let us assume that part (1) in Lemma 2.4 holds.
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Let u; = (x;, y;) € Z* \ {0}. Then

Bu(uy, uz) = (X1, y1) (a b) <X2>
b ¢/ \y2

= (ax; + by )xa + (bx; +cy1)y2

= ((Z b) <X1>> A <_y2> = QO(gl(Xl,yl), (—Y2,X2)).
c Y1 X2

Thus if u;, u, satisfy part (1), then (g1(x1, y1), (0, 0)) and ((0, 0), (—y2, X2)) span a
(p, A, 1)-special subspace for gZ*.

By Lemma 2.4, there is at most two such subspaces. Moreover, since By( , )
is symmetric, we conclude that

Qo(g1(x2, ¥2), (=Y1, x1)) = Qo (g1(X1, Y1), (=2, X2)).

This implies the two special subspaces are spanned by

{(gl(xl) YI)> Oa O)a (Oa Oa —Y2, X2)} or {(gl(X2> YZ),O, O)a (Oa Oa —bel)}-

This shows part (1) in this lemma holds.
Assume now that b = 0, and suppose part (2) does not hold. Let u; be as in

part (1). Then
(2.5) |Bu(ui, u2)| = laxixa +a~ly1ya| < e

Unless y1y, = 0, the above contradicts that part (2) does not hold. Therefore, we
have y;y, = 0. Assuming ¢ is large enough so that the right side in (2.5) is < |a],
we conclude x;x, = 0 and the claim follows. O

The following lemma further investigates the contribution of special subspaces,
or more precisely, vectors uj, u, satisfying part (1) in Lemma 2.5. We note that
condition (2.6) is (1.5) in Theorem 1.2.

2.6 Lemma. Let A > 10° and 0 < p < 1/(100A). Let
Bu(x, y) = ax> + 2bxy + cy®

which is normalized so that ac —b* = 1. The following holds for all large enough ,
depending on p, |a|, |b|, and |c|. Let uy, ur € Z* \ {0} satisfy

luill < e’ and |Bu(ui, up)| < e
Assume further that

(2.6) IBu(uy, up)| > e =22
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Let C > 0, then
1, ' Q—pxt
#{(01, ) € 5271 6] < Ce'4Bu(n, 1)1z € (o, 1| < max(lal, |B)eC
where the implied constant depends on C, a, b, and c.
Proof. Let ({1, {,) satisfy that |£;| < Ce' and
2.7 4Bu(uy, up)1t> € [a, fl.

Then the number of solutions with £; = 0 or £, = 0is < €. Therefore, we assume
€; # 0 for i =1, 2 for the rest of the argument.

Assume that

[Bu(ui, up)| > e =22

Then (2.7) implies that

(2.8) 0 < 416162] < max(lal, |f)e>".

The number of (£, £») € Z*> with 0 < |£1] < Ce' so that (2.8) holds is
< max(|al, |f)te® " « max(|al, |B)e® "

as we claimed. O

3 Circular averages and values of quadratic forms

In this section, we state an equidistribution result for the action of SO(Qy). The-
orem 1.2 will be deduced from this equidistribution theorem in §4 using some
preparatory lemmas which will be established in this section.

Let f; be compactly supported bounded Borel functions on R2, and define f
on R* by f(w1, wy) = fi(w1)f>(w>). For any g’ € G, let

3.1) figth= > f)
veg' An,

where

A ={(v1 + 02, 0(0; —v2)) : vy, 03 € Z7} C R,
Ap, = {(wy, w2) € A : w; #0 and wy # 0},
" ={(y1, y2) € SL2(Z) x SLa(Z) : y1 = wy,0 (mod 2)},
and w = (¥ 3!). Note that I'" preserves A and Ap,.
Let X = G/T”, and let myx denote the G-invariant probability measure on X.
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3.1 Theorem. ForeveryA > 10* and0 < p < 107%, there exist A (depending
on A) and 6, 9, (depending on p and A) with

p/A < 61/A < p/100,

so that for all g = (g1, 82) € G and all large enough t, depending linearly on
log(llg:ll), the following holds.

Assume that for every Q € Maty(Z) with e’/ < ||Q|l < e” and all ). € R, we
have

(3.2) ligs'gr — 20| > [1Q|I=A/10%,

There exists some C' depending on A and polynomially on || g;|| so that the following
holds. For any 2r-periodic smooth function & on R, if

21 R 21 R
] / F(Aars)gT)E0) do — / £do / Fdmy| > C8(SEe
0 0 X

then there are at least one, and at most two, (0 /A, A, t)-exceptional subspaces,
say L and L (for notational convenience, if there is only one exceptional subspace,
set L' = L). Moreover

21 21 )
/ F(Aars)gTHE®) db = / do / Fdmy + M + O(S(HS©e™)
0 0 X

where

2= [ fol0)0)c0
cC
with

fo@®= > f(Aaro),

vegAnN(LUL')

C=1{0¢€[0,27]:£p(6) > '},

The proof of Theorem 3.1 will be completed in §7; it relies on results in §5
and §6. Notice that, even though the functions f;, f> are bounded on R?, the resulting
function f is unbounded on G/T". It is well-recognized that such unboundedness
can be overcome with the use of cusp functions and their contracting functions;
see, e.g., [EM22]. The adaptation of this method to our setting where exceptional
subspaces are present will be contained in §6.

The goal in the remaining parts of this section and §4 is to complete the proof of
Theorem 1.2 using Theorem 3.1. We will also explicate the proof of Corollary 1.3
at the end of &4.

Before proceeding, however, let us record an a priori, i.e., without assum-
ing (3.2), upper bound for [ f(A(a,rp)gl”) dé.
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3.2 Lemma. For every 0 < n < 1, there exists t, < |logn| so that the
following hold. Let g = (g1,82) € G and R > 1; assume that || g;|| < R. Let f; be
the characteristic function of {w € R? : ||w|| < R}, and put f = fif>.

(1) Foreveryt > t, we have

2r
F(A(arg)gl)do < e™.

(2) Lett > t,. Let L C R* be a two-dimensional subspace so that L N gZ* is
spanned by {(g1v1, 0), (0, g202)} for (v, 0), (0, v2) € Z* \ {0}. Then

/ F1.(0)dO < 1!
0,271\,

where f1.(0) = 3 con,, S (Alairg)v) and
€L =1{0 € [0,2x]: f1.(0) > e"}.
The implied constants depend polynomially on R.

We postpone the proof of this lemma to the end of §6. Part (1) in this Lemma
should be compared with [EMM98, Lemma 5.13]; indeed in loc. cit. the integral
appearing as part (1) in Lemma 3.2 is bounded by O(z) (vs. e’® that we give here)
which is sharp. The above however suffices for our needs.

3.3 A linear algebra lemma. The goal in the remaining parts of this
section is to relate the circular integrals as they appear in Theorem 3.1 to the
counting problem in Theorem 1.2. This is the content of Lemma 3.4 which should
be compared with [EMM98, Lemma 3.6] and [EMO1, Lemma 3.4]. We will also
establish a certain upper bound estimate in Lemma 3.9 which will be used in the
proof of Theorem 1.2.

Let us begin by fixing some notation which will be used in Lemma 3.5 and
Lemma3.4. Leta < f,R > max{1, |a|, |B]},R"! <g <R,and0 < & < R™*. Let
o : R — [0, 1] be a smooth function supported on [¢q — ¢, g]. Let f; be a smooth
function on R? satisfying

(3.3) l-£5100 -0 < ik y) < 1oz w2 (0 - 0(y);

we chose p and f; so that their partial derivatives are <z ¢~ 1°.

For an interval I = [a, b] and 6 > 0, put

Is=[la—0d,b+d] DI,

3.4
I_s=[a+0,b—0] CL
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Given two intervals I C [—R?, R?] and I’ C [0, R], let fr.r be a smooth function
with partial derivatives < £~ !9 satisfying

(3.5) Lo () - 1pa(lyD) < frr(x,y) < Lia(x) - La(yD,

where we write I®¥) = Iz, (in the formula above we used k = 1, 2, but later also
large values of k will be used).
For any function 4 on R?, define

Ji(y) = /R h(x, y) dx.

Note that if f; is as in (3.3), then

(3.6) Jr(y) = o(y)(& + O(&?)).
Let f1 be as above (for this g and some p) and let
S :flo,ll

(for Iy = [—g~' B, —g~'a] and some I| C [0, R]). Define f on R* by
S, 02) =fi(w)fr(v2).

We will work with a slight variant of polar coordinates in R>: 0 # w € R? is
denoted by (8,, ||wl|) where 8,, € [0, 2] is so that ry,w = (0, ||w]]).

3.4 Lemma. Let the notation be as above. Lett > log(4R%¢~?), and let & be a
2r-periodic non-negative smooth function. Let v = (v1, v2) € R* with |jv;]] > R~
Then

2

ge* A F(A(arp)0)EO) dO

<

GD (14 06); (e~ [ DE@) + OLip(f) Lip@e=),  if (3.8) holds,
0, otherwise,

where
(3.8) (=g~ Qo(), e Noall) € 1) x 1Y and  |joy|| < 2Re'.

If we moreover assume that e™"||v;|| € I} and Qp(v) € [a, B], then

2
g /O F(A@ra)0)E0)

= (1+ 0@y (e o1 IDEONA(—g" Qo(v), e [|va]l)
+ O(Lip(fy) Lip(&)e ™).
The implied constants depend polynomially on R.

3.9)

Analogous statements hold with the roles of v, and v, switched.
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The proof is based on a direct computation which we will carry out in the next

lemma.

3.5 Lemma. Let the notation be as in Lemma 3.4. Let t > log(4R%e~?). If
S(A(a;rg)v) #0

for some v = (vy, 12) € R* with ||v;|| > R™! and some 6 € [0, 2x], then all of the
Jfollowing properties hold

(1) g(1 —2¢) < eorl < q(1+e),

(2) 10 — 6,,] < 2Ree™ %,

(3) e7'|vall € I?, and

@ —q7' Qo) e I

Proof. The definitions of f] and f> imply that
if ol > (R+20R%e)e!, then f(A(arg)v) =0

and there is nothing to prove. We thus assume that ||v;|| < (R +20R3g)e’ for the
rest of the argument.
For convenience, we will write 8, = 8,,. Since 8 € [0, 2x] satisfies

2

a;rpv| € [ﬂ 8+82} X [qg — ¢, q]
tFo01 5 - q »q
only if
3 —t —1 -2t
(3.10) |0 — 01| < %€ lo1|”" < 2Ree™ ",
we see that when
(3.11) g(1 —2¢) < e'|logll < g(1 +¢)

fails, f(A(a,rg)v) = 0.

Thus, assume that (3.10) and (3.11) hold for the rest of the argument, which is
to say the conditions (1) and (2) in the lemma are satisfied if f(A(a,rg)v) #0. We
now show (3) and (4) must also hold.

Let us write

ro, 02 = (X2, Y2).

Recall that ||o;]] < (R + 20R3¢)e’ and that @ is in the range (3.10), and write

rovr = (X1, y)) and  rgoy = (X5, ¥5).
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Then [X;| < 4Ree™", Iy; — [lvill| < 4Ree™,
(3.12) s — %o, Iy — val < 3Ree™ orll ™ loall < 4R%se™;

in the last inequality we used ¢ < R™%, |lvz2]| < (R + 20R3¢)é’, and (3.11).
Thus, we conclude that

airgvy = (€'%5, e7'y5) = (e'%2 + X2,0, € 'Y2 + ¥2,0)

where |x2,9| < 4R%¢ and |ys 9| < 4R%ce™%.
In view of the definition of f>, we conclude that f>(a,rsv,) = 0, unless

e'x, € (I(()l))mRzg and e7'y, € (I\V)20R% + ¢
These and the bound on x; o imply that
(3.13) %z € U5 )aaree

and hence using the upper bound on |x,| implied by (3.13), we get

4 ,—21
o2l

Since ey} € (151))20R3g+s and |y,9| < 4R3ce™%, we conclude from (3.14) that if
Jalagrgvz) # 0, then

(3.14) lly2 = llo2l] <

e oall € U Na1pss
which establishes (3) in the lemma.
Finally, combining (3.13) and (3.11), we conclude that
g~ lo1lxe € (6300
Since A(rp) € SO(Qp) for all @ and A(rp,)v = (0, ||v1]l, X2, ¥2), we get
—q7' Qo) = =g~ Qo(A(rg,v)) = ¢~ llvr X2 € I,

as it was claimed in (4). ]
We now turn to the proof of Lemma 3.4.

Proof of Lemma 3.4. For convenience we write 8, = 6,,. By Lemma 3.5
if f(A(a;rg)v) # 0, then all the following hold true:

(3.15a) q(l —2¢) < e '|loill < gq(1+e),
(3.15b) |0 — 0| < 2Ree™,
(3.15¢) e Nl € 19,

(3.15d) —q7'0) e I.
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We begin with the following computation which will be used in the proof of
both (3.7) and (3.9):

27 27
Sfilargvr) dO = fi(=€|lv1] sin6, e™"||vy || cos 6) dO.
0

Performing the change of variable z = —¢’||v1 || sin 8, the above integral equals

e—t 00 1
-t 1 — (et 2
o /_ Oofl(z,e loilly/1 = =2/ llor1)? ) e

(3.16) _ ||€u_1||/ fi(z, e o1 ) dz + O(R? Lip(fy )e ™)

=q (1 + O(e))e Ty (e "o |I) + OR® Lip(fr)e ™)

where in the last equality we used (3.15a) and (3.6).
Let us now begin the proof of (3.7). We can restrict the integration in (3.7) to 8
satisfying (3.15b). In this range

(3.17) IE(0) — E(01)] < 2Ree™ Lip(&).

Since 0 < f1, f> < 1 and £ is non-negative, we have

2 2r
(3.18) A S(A(arg)v)S(0)do < : Si(arg)<(0) do.
Moreover, in view of (3.17), we have

filarg)E®) = fiargonE @) + O(R® Lip(ee™™).
This, (3.18), and the fact that the range of integration is (3.15b) implies

21 2
e [ f(A(arp)v)E0)do < EO)e* | filarpor) + OR® Lip(&ee™™).
0 0

This and (3.16) imply that

2r
e | f(A(arg)v)E©) do
0

< g~ (1 + O(e)Jj (e ”"llv1 )E(O1) + OR® Lip(fi) Lip(&se ™).
Thus (3.7) follows from (3.19) in view of (3.15¢) and (3.15d).
Note that the claim regarding € follows as well, indeed if either (3.15a), (3.15¢)
or (3.15d) fails, both the left and right side of (3.7) equal zero.
The proof of (3.9) is similar. Indeed one argues as in the proof of Lemma 3.5
to show that if e~||v;|| € I} and Qy(v) € [a, B], then for all 8 in the range (3.15b),
one has

(3.19)

Salargvy) = 1.

One then repeats the above argument and obtains (3.9). ]



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 199
3.6 A smooth cell decomposition.

Let
Q= {(w1 + wy, w(w; — w7)) : ||well <1},
D={(v1,02) : |loell < 1}.

As before, write v = (01, v2) € R* where v, € R2. Let 7,(v) = (v1,0) and

72(v) = (0, vy); abusing the notation, we also consider 7;(Q) C R?.
Write Q \ D = Q; U Q; where

Q:={(v1, ) € Q:|o|| > 1} and

Q2 L= {(1)1,1)2) e Q: ||Ulll < 1a “1)2“ > 1}

A direct computation shows that (v, v;) € Q if and only if

o2l < 4 = lo1l1* = 2]1Qo(v1, v2)|.
It follows that for every v; € 71(€2;), we have
(3.20) {I1Ao1]l = (o1, Ao1) € Q1} = [0, V4 — [lo1]I?],

and for v, € m,(L,), we have

{I1Av2]l = (A2, 02) € o} = [0, min(1, \/4 — [[v2]1?)].
Fix some R > 103 and let 0 < ¢ < R0, Let E € N be so that

1 < 100R"Ye < ,
E E—1
and put

I = [% é} forall 1 <i<E.

Fix two families of smooth functions { &~} and { &} with C! norm < ¢~1° satisfying
the following:

(&-1) Forall i, 0 <& <& < 1,

& =1on2xl, supp(&) C 2 (1)),

¢ =1lon2x(l;)_sp, supp(;) C 2x(1) 2

(here we use the notation (3.4)). We extend é’l-i to 2z-periodic functions on R.
Similarly, let E’ € N be so that 2. < 100R%¢ < ', and let

J

I = [ngé} forall 1 <j<E.

Fix two families of functions { ¢/} and {g;} with C' norm « &' so that
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(¢-1) Foralli,0 < g7 <of <1,
ej =1 onRI;, supp(e}) C R,
QJ_ =1lon R(Ij)—4sz’ SUPP(QJ'_) - R(Ii)—Zsz-

Extend jS to R by defining them to equal O outside their supports.
Define

9: 0, 1)=& (O (r) and ¢ (0, r) =& (@) ().

We will consider go,ij as functions on R? using our slightly non-standard polar coor-
dinate system where any 0 % w € R? corresponds to (6,,, || w||) if rg,w = (0, [lw|]).
Let

Tt = {(,)) : supp(g) Ny () # 0},

Jr ={G, ) : supp(p; ) C m1(2)}.

(3.21)

We define Jjﬁ similarly with Q, and 7, in lieu of Q; and 7;. Note that fork =1, 2
and o =+

area(m(Q)) — Y / 07| < e

(i)€dg

We will work with £ = 1 for the remainder of this section; similar analysis
applies to k = 2 with the role of v; and v, switched. For all (i, j) € J7, let

QF = {(v1, 2+ w) : (01, 12) € Q1,9 (v1) = 1, [|w]| < 3Re}.

We will also define Q;; C Qf; as follows. In view of (3.20), we will call the
pair (i, j) typical if

inf{\/4 — Jlo1]|? : v1 € supp(pf)) N1 (QD} = Ve.

Let 51_ denote the set of (i, j) € J| where (i, j) is typical and for every

(01, A1) € Q1 N (supp(p;;) x R?)  with Aoyl € ([0, V4 — o1 ]12D—20e

we have (v1, 10; + w) € Q, for all w € R? with ||w|| < 10Re.

For any (i, )) € ﬁf, set
(3.22) Qi :={(v, 02+ w):(v1,02) € Q1 N (supp(gol-fj) X RZ),
' we R, [w] <&} NQ.

Since supp(golfj) Cc {w: go;:j(w) = 1}, we have Q;; C sz. Moreover, since
{supp(e; )} is a disjoint collection, {€2; ;} is a disjoint collection.
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In view of (¢-1), (p-1), and the above definitions,

(3.23a) lo, <) Loy <4 wuomyiul=y)s
5

(3.23b) > g, < g,
i

The intervals I} ;and [;;.  Inour application of Lemma 3.4, &E will play the
role of &; we will also work with f = fif, where f] is defined using jS above and f
is defined using Iy = [—¢~' 8, —q~'a] (for some R~ < ¢ < R) and intervals I;
which we now define. Put

I;;,=10,b7], b;=sup{v4— |o1]|>:01 € supp(p;;) N 71 (Q1)},

(3.24)
I[;_=10,b;;], b;;=inf{+/4 —|v1]|?>:01 € supp(p;;) N m1(21)}.

If (i, j) is typical, i.e., if b;; > Ve, put

(325) IZ] = (Il{,j,+)105' and IIT] = (I;,j,—)—ZOORIOS'

Since supp(¢;;) has diameter < 200R'% and & < R™°, if (i, j) is not typical, then
b}; < 24/e. In this case, put I} = [0, 3\/2].
We have the following lemma.

3.7 Lemma. Assume R > max{10°, |a|, |B|} and let R~' < g < R. Let
t> 10g(R28_1), where as before 0 < ¢ < R0,
(1) Let Iy =[—q~'B, —q~'al. Let (i,j) € I7 and let fy satisfy (3.3) with oj (and
with & = 200R'"¢ instead of ¢). If

T (e 01IDE7 On) 1o (=g~ QoD 1y (e flv2ll) #0

for some v = (v1, v2) € R*, then all the following hold
@ Qo(v) € ([, BDsoress and
(b) e7'v1 € supp(y; ), and
() e7'v € Q.
(2) Let (i,j) € 3. If v = (v1, 1) € e’QZ]- satisfies Qo(v) € [a, B, then

elloall € I,
Proof. We first prove part (1). If Qp(v) & ([, £])30r¢» then

—q7'Q0(v) & o)zor: = 1S,
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hence
L (=g~ Qo(v)) = 0.
Moreover, if we put v, := e~'vy, then §;; = 0,,, and v; & supp(p;;;) would imply
that Qj_(e_’llvl N (6,,) = 0. This in turn yields
0 < fikx, e o1& (6,,) < of (7" [lo1INE(6,,) =0,

see (3.3); thus, J;,(e7"|lo1 )& (6,,) = 0. In conclusion, we may assume that

(3.26) Jr (e oy |I)§,-_(901)1,(<)3>(—61_1Qo(v))1<15)<3>(e_’||02||) 70,
and that
Qo(v) € ([, fD3ors.  and 01 € supp(p; ).

We need to show that (¢) is also satisfied.
Since Qo(v) € ([a, f1)30ris» Where R > max{ 103, |a]|, |f]} and ¢ < R~?°, and
llorll > €', there is A € R so that

(3.27) vy = Aoy +w, where w L v and ||w|l < 2R|v1]|”' < 2Re™".

Thus e vy = e 01 + e 'w = Ao; + e 'w.
Moreover, by (3.26), we have e~ ||v2|| € (I;;)® = (I;})30r:.» Where

I5 = (I, )—soopo, and  I,_ C [0, /4 — o1,
see (3.24) and (3.25). Since |le~'w| < 2Re™*, we conclude that

2011l € ([0, v/4 = l[lo112])-20r:-

In particular,
(01, A07) € Q) N (supp(p;)) x R?),

and v = €'(v;, Av;+e~'w) where |le~"w|| < 2Re~2'. By the definition ofjol_ and €; ;,
we conclude that e™'v € Q; ;. Thus, (c) also holds.
The proof of (2) is similar to the proof of (c), see in particular (3.27). ]

3.8 Upper bound estimates. Before starting the proof of Theorem 1.2,
we record a weaker (but more explicit) version of [EMM98, Thm. 2.3], which will
be used in the sequel—see also the very recent work of Kelmer, Kontorovich, and
Lutsko [KKL23].

For every R > 0, let

D(R) = {(v1, v2) : lloll < R}.
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Then D(R) \ D(e~'R) = D(R); U D(R),, where

Di(R) = {(v1,02) € D(R) : ¢ 'R < |los|| <R} and
D2(R) = {(v1,02) € D(R) : [lo1]| < e”'R,e™'R < [|v2]| < R}.

We constructed smooth cell decomposition for ; and €, in §3.6; in the following
lemma we will use a similar construction (without repeating this construction)
for Dy (R) and D,(R).

3.9 Lemma. Let g = (g1, g2) € G and put N’ = gA. Let
R = max{10°, |al, 181, lg:l*", llg2*'},
and let 0 < n < 1. There exists ty <K |log | so that if t > ty, then
#{v = (v1,02) € A" : max(||vy[l, [02]]) < Re', @ < Qo(v) < B} < @
where the implied constant depends polynomially on R.
Proof. The following basic lattice point estimate will be used:
(3.28) #{v e A Ne’DR)} « &

where the implied constant depends polynomially on R.

Since R is fixed, we will denote Di(R) by Dy (k = 1, 2) for the rest of the proof.
Let e = 107°R~2°. Apply the construction in §3.6 for 7{(D;) with this R and . In
particular, the functions &' are defined as in (&-1) with

i—1 i _ 1 o
Ii_[—,E} forall I < i < E where - < 100R"s <

E E—-1
and Q}' are defined as in (p-1) with
/ .] —1 .] . / 1 9
Ij:{ ,—} forall 1 <j < E" where — < 100R’¢ < .
E " F E E -1

For all i, j as above, let & =&, pj = Q}', and let ¢; ; = &ip;. Put
I7 ={(,)) : supp(g;;) N @i (Dy) # 0};

for all (i, j) € J{, we have supp(p;) C [e™>R,R] C [R™',R].
For all (i, j) € J%, put

Dij={(v1,02) € R*: g, j(v1) = 1, |||l < R}.

Then 1p, < ZJT lg,, < 4oer),-
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Define f; as in (3.3) for g and g;, and with 200R'%¢ instead of €. Let

(3:29) 2 =fi—g1 p—g1ar10.R15
see (3.5). Put f; ; = fif>. By the choice of R, we have ) fi; < 4p@r).
By Lemma 3.4, for any v = (v1, 02) € e’lf)l-,j with Qy(v) € [a, B], we have
2
& [ faarmio) @
0

=g~ (1+ 0@)g, (e 01 1DE0, (=g~ Qo(v), e~ [[0a )
+ O(Lip(fi) Lip(&e ™)

where the implied constant depends on R.

(3.30)

First note that, if 7 is large enough compared to R, we have
(3.3 O(Lip(f) Lip(&e ™) < 670%™ < &

Furthermore, for any v = (v, 02) € e’f)i,j so that Qp(v) € [a, fl, we have
(g7 00(v), e'||vz]]) = 1. Thus, using (3.6), we have

(3.32) J (e o1 DEB (G Qo(), e [lval) = & + O(e?).

Put x = gI"’. Summing (3.30) overallv € A’N e’f),-J- so that Qy(v) € [a, f] and
using (3.30) and (3.32), we conclude that

2
(3.33) e#{v e NNeD;j:a< Q) < f))<Kge” A f.j(A(arg)x) do,

where we used 0 < & < 1 and replaced &? + & + O(&?) obtained from adding (3.31)
and (3.32) by O(¢).
Summing (3.33) over all (i, j) € J} and using Zi,jﬁ,j < 4ppg), wWe get

2r
#oe A'NeD;:a < Q) < B K 8_161€2t/ iD(ZR)(A(atrH)x) do.
0

One obtains a similar bound for the number v € A’ N e’D, with Qp(v) € [a, B].
Since D\ e~!'D =D; UD; and ¢ = 107°R~2°, we conclude that

#{oe A'Ne'(D\ e 'D):a < Qo) < Bl
2r
< e lge” / 1per)(A(a;rp)x) dO.
0

Let z, be as in Lemma 3.2 applied with # and 2R, and let # > 10z,. Then by
Lemma 3.2,

#{v e A'NéeD \ e_lD) ta < Qo) < Bl K et
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We may repeat the above with r — € for all 0 < £ < ¢/2, and obtain
(3.34) #Hoe ANNe{D\e D) :a < Qo) < B} K M0,

we alsoused t — € > t/2 > t,, when applying Lemma 3.2 with 7 — €.
Since e'(e~‘D) = ¢'~‘D, summing (3.34) over 0 < £ < t/2, we conclude that

(3.35) #{ve A'Ne'(D\e™?D): a < Qo(v) < B} K 7",

The lemma follows from (3.35) and (3.28). Ul

4 Proof of Theorem 1.2

The proof relies on Theorem 3.1 and will be completed in some steps. Recall that
M = R2/A and that A* denotes the dual lattice. In view of our normalization,
2rA* = gMZ2 where gy € SL,(R). Let

0 —1
4.1 g = (gm, —wguw) = (g1, 82) € G where w = (1 0>.

4.1 Passage to Qp. As it was observed in (2.1), if 1; = ||v;]|%>, where for
i=1,2,v; € 2z A* is an eigenvalue of the Laplacian of M, then

4.2) A1 — A2 = Qo(v1 + 02, W(v1 — v2)).
Define Q = {(v; + v, w(v] — v2)) : ||v;|| < 1}; and let
AN ={(v1 + 02, (0] —v2)) 1 V1,02 € 2TA™} =gA

where A = {(v] + 02, (V] — 12)) : V1, V2 € Z?}.
Let T be a (large) parameter, and put ¢ = % log T. In view of (4.2),

4.3) Ru(a, B, T)=#{v e A,,Ne'Q:a < Qyv) < B};

recall that A!, = {(w1, wy) € A" : w; #0}.

Let A and 6 be as in Theorem 1.2. Without loss of generality, we assume
A>10%and0 < J < 1075, Let A be given by Theorem 3.1 applied with 103°A. We
will show the claim in Theorem 1.2 holds with A’ = 104. To simplify the notation,
write A = 10%A for the rest of the proof.

Thus let us assume (1.4) holds for A”: for T > Ty (Tj is a yet to be determined
large constant) and all (p, p2, q) € Z° with T4 < g < T,

“4.4)
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This implies that so long as ¢ = % log T is large enough (depending on a, b, and c),
we have

b
4.5 o = —gelmey = | 2
(4.5) 8 81 WEM WM (b C)

satisfies (3.2) with ¢, p = 6/10, A. That is: for every Q € Maty(Z) with
e’ < ||Q|| < e”" and all A € R, we have

(4.6) lgs'gr — A0l > Q7 = || Q|| =10,

4.2 Lemma. There are at most two gZ*-rational two-dimensional sub-
spaces L, L' so that if for some 2t/5 < s < t, Ly is a (d,/A, J,, s)-exceptional
subspace, then Ly =L or L.

Proof. Let 2¢t/5 < s < t. Recall that a (J, /A_, 01, s)-exceptional subspace is
spanned by two vectors (g w1, 0), (0, g2w») € gZ* satisfying

and
(S|S

0 < |lgiw;]l < >4,

“4.7)
|Qo(g1w1, g2w2)| < e”

We also note that
eals/ff < e(slz/ff and e~ < ¢ 201/
forany 2¢/5 < s < t.
Assume now that there are three pairs (possibly corresponding to different

values of_ 2t/5 <s < t) so that (4.7) is satisfied. Then Lemma 2.4, applied
with J; /A and 2A/5, implies that there is Q € Mat,(Z) with ||Q| < ¢'%%91/4 5o that

< o~ (2 —100)31/4)

b
gz g1 — 20| = H (E C) — 10

< max{ || Q| ~A/1000, 100 =PA/(10004)y

Since p//f < 51/A_ < p/100, this contradicts the fact that g5'g; satisfies (4.6)
with ¢, p, A—note that if |Q|| < /4, we may replace Q by an integral multiple
nQ with e?”/4 < ||[nQ|| < 2e¢”/4 . The proof is complete. [l

Let L and L’ be as in Lemma 4.2. Foraset E C R* and s > 0 we let

Ny(E) :=#{v € A,,NeE:a < Qy(v) < B},
Ny(E) :=#{v € (A, \ (L,UL))NE'E:a < Qo(v) < B}
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4.3 Counting and circular averages. For the rest of the proof, we
fix & = e7" for some 0 < 5 < 1/100 which is small and will be optimized
later. We will also assume f — a > ¢ otherwise Theorem 1.2 holds trivially.

Recall that

Q = {(w1 + w2, (w1 — wy)) : lw;il| < 1},

and that Q \ D = Q; U Q, where D = { (v, 12) € R* : |oi|| < 1}, and
Q) ={(v1,02) € Q: logf| > 1} and
Q) ={(v1,02) € Q: 1]l < 1, [loa]l > 1}

Let R be a large constant (we will always assume R < ¢~!/2°_ hence, R is much
smaller that e’), satisfying

R > max{ 10, |al, |B], |al, |bl, |c|};

note that 7;(Q) C B(0, R).
Apply the construction in §3.6 for 7;(€2;) with ¢ and R here. The analysis for
k =1 and 2 are similar, thus, let k = 1 until further notice. Let

goli] = g*l-igf for (i,)) € JI—L.

Note that supp(Qf—L) C [g — 200R"¢, q] c [R™', R] for some R™! < g < R, see
(0-1)—indeed in the case at hand, we have 1 < ¢ < 2.
For o = =, define f{" as in (3.3) for g and gf. Let

(4.8) 15 =t

0°%0,j

where I} = [—q7'B, —q'al and Iy = (I3)_ 005> se€ (3.5) and (3.4). Put
L =101

4.4 Lemma. Letthe notation be as above, and let L and L' denote (0, /A_, o1, b)-

exceptional subspaces if they exist.
If (i, j) € J7, then

2
@ > [ i@ e
(4.9) veALNLUL) 70
< (e+0(&) - N(Q;j) + O(e™).
Moreover for every (i, j) € I}, we have
2r
(4.10) (e +0(M) - NJ(QL) < g > / FE(A(@ra)v)EHO) do.
veAL\LUL) /0

The implied constants depend polynomially on R.
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The proof is similar to the proof of Lemma 3.9. More precisely, we will
use (3.7) for i and (3.9) for ;:j; let us now turn to the details.

Proof. When there is no confusion we drop i, j from the notation and denote 5
by f£, & by &%, ete. Also, we will put Iy = Iy and I, = [};, but will keep the more
cumbersome notation for /j and I7;.

By (3.7) in Lemma 3.4 applied with f~ = f, for any v € R*, we have

2
ge™ \ F(Aarp)v)E(0) do

< (1L +0@) s (7" |vy ||)5_(901)1,33)(—61_1Qo(v))llp(e_’||1)2||) +&,

(4.11)

where I® = I, 45, and
(4.12) & = O(Lip(f{ ) Lip(&)e™™);
furthermore, £ = 0 if
(=g ' Qo(v), eIl ¢I(()3) x If) or |oi]| > 2Re".
By (3.9) in Lemma 3.4 applied with f* = ,+J for any v € R* with e~||v,| € Il-fj
and Qy(v) € [a, B], we have
@ [ o @
=1+ 0N (e™ [0 INET (0o ) (=g~ Qo). e [[vall)
+ O(Lip(f;") Lip(&He ™).

In particular, (4.13) holds for all v € e’sz with Qo(v) € [a, f] thanks to part (2)
in Lemma 3.7.

(4.13)

Before analysing (4.11) and (4.13) further, we record the following:
(4.14) O(Lip(fi) Lip(¢H)e ™) = O(e ™ e ™) « &3,

so long as ¢ is large enough (recall that the implied constants depend polynomially
on R).

Let us now begin with (4.13). In view of (3.6), for any v = (vy, v2) € €'Q so
that a < Qy(v) < S, we have

Jrr(e N1 DE O (—g~ ' Qo(v), e 'lv2 )
= (e + 0N (e 01 DEF O, (=g~ Qo(v), e |vz ).

Moreover, for every v € e’QZ]-, satisfying a < Qo(v) < f,

L (=q7'00), e o2l =1, &',)=1, and g*(e”luil) = 1;

(4.15)



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 209

from this and (4.15), we conclude that

Jrr(e 7 o1 DEY B )y (=g~ Qo (), e 'l|v2]]) = (£ + O(&7)).
Together with (4.13) and (4.14), this implies that
2
(4.16) ge® | FF(A(arpv)ET(B)dd = & + O(e?)
0
for every v € €'Qf; with a < Qo(v) < B.
Summing (4.16) over all such v € A}, \ (LU L’), we obtain

2
(4.17) (e + O(%) - NJ(Q}) < ge™ Z /0 FT(A(arg)v)ET(H) db.
)

veAl,\(LUL

This establishes (4.10).

Let us now assume (i, j) € 51_ and obtain a lower bound for N,(€2; ;). For this,
we investigate the term appearing in the second line of (4.11).

We first claim that

Jr-(e" vy ||)f_(901)1,(()3)(—q_lQo(U))llf)(e_t||1)2||) #0,

then Qy(v) € [a, fland v € €'Q; ;.
To see the claim, recall that by part (1) in Lemma 3.7, for any v € R*,

Jr- (e llvy ||)§_(901)11(<)3>(—6]_1Qo(v))11§3>(€_t||l)2||) =0

unless all the following are satisfied

(4.18a) Qo(v) € [a + 50R¢, f — S0R¢],
(4.18b) v1 € €' supp(p;)),

and

(4.18¢) v E €'y

In deducing (4.18a) from Lemma 3.7, we used the definitions

1§ = Uy)s0me and Iy =([—q "B, —q~ " al)_ 10085

We conclude from (4.18a) that Qyg(v) € [a, f]. Using the definition of €;;
in (3.22) and since 2R%*¢™% < g, (4.18c) implies that v € €'Q; j, and completes the
proof of the claim.

We now return to the proof of the lemma. Recall that

i (€ o1 IDE™ o)1 (=g~ Qo) Lo (e~ l|v2 1)
< Jr-(e”'lo1]) = (e + O~ (e " lu1])) < &+ O(&?).
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This and the above claim imply that

S I DE @) (=g Qo@D (e llo21l)
(4.19) veA\@UL)

< (e+0(e)) - N(Q ).

Moreover, since (—g~'Qy(v), eIl & I(()S) X IES) or ||v1]| > 2Re' imply € =0, we
conclude from Lemma 3.9 applied with # = #’/10 that

Z e < 8—206—216(2+q)t < 8_21;

vel’

we used Lip(f;7) Lip(¢™)e™% <« 672%™, see (4.14), and & = e~ ", This, (4.19)
and (4.11) imply that

27
g Y F(A@rp0)E0) A0+ 02" < (& + 0(Y) - Ni(S4),

veAp\LUL 70

as we claimed in (4.9). O

We will use Theorem 3.1 to reduce both (4.9) and (4.10) to the study
of [, J% dmy, see (3.1). Let us begin with computing this integral.

4.5 Lemma. For o = = let f; = f{fy, where for k = 1,2, f is as in §4.3.
There is an absolute constant cp so that

@200 q [ fydme=casp= il [ of + 0 — i) [ of.

Proof. We have

/Xﬁf,-dmx =cp /szf’/szza
=cA8/RQf/RZf20+O(82)/RQJq/szzU

where cp is absolute and the implied constants depend only on R.

Since f; is defined as in (4.8), we conclude that

/ £ =a7" B = I + O™ e(p — I ;

again the implied constant depends only on R. The lemma follows. (|



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 211

4.6 Lemma. Let the notation be as in Lemma 4.5. In particular,
f;j: =fl:tf2:ta

wherefklL are as in §4.3. Also put

Th=e- il [ & [ o
If (i, )) € I, then
(4.21) (X7 + OBFHSE ™)) < (1+0(e)) - Ni().
Moreover, for every (i, j) € J7, we have
(4.22) (1+0(e) - N(Qf) < (T + OS(F)S(ENe ™),
where the implied constants depends polynomially on R.

Proof. We will prove the lemma using Lemma 4.4 and Theorem 3.1. Let us
begin with restating the main conclusion of Theorem 3.1 in the form which will be
used here. When there is no confusion, we drop i, j from the notation and denote ,j;
by £, & by &E, etc.

Recall that A’ = gA where g = (g1, g2) is as in (4.1). Let L and L’ be as in
Lemma 4.2 if they exist. For ¢ = &4, put

f® =3 foAare),
veA'N(LUL')

C, = {0 €[0,27] : f7,(6) > ™'},

and define
o f70) 50, 6ect,,
fmod(e) = ~ P .
£, otherwise,
where we writef”(@) :fU(A(a,r(,)gF’).
Since g satisfies (4.6), Theorem 3.1 and the definition of f:flod(ﬁ) imply

2 ‘
(4.23) 77 () 0) o= / £d0 / Frdmy 4 O(ISE e,
0 X

With this established, we first show (4.21). Let ¢ = —. Assuming #’ in the
definition of & = e~"" is small enough, we have

OS(f7)8(E)e™) < *(f — a).

Recall from §3.6 that [ 0; > ¢ and that |I;;| > Ve. Thus (4.23), together with the
above and Lemma 4.5, implies that

2
(4.24) \ F i OE(O) O > (B — a).
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Moreover, by part (2) in Lemma 3.2 applied with J;, L, and L', we have
(4.25) / f;(@) d9 <« o1+
0,27]\C_

Recall that 6; < 1/100, hence, if ¥/ < 1/100, then =" < £*(f — o). Thus, we
get from (4.24) and (4.25)

2
3 / F(A@r))E=(0)do

veAl,\(LUL)

(4.26) - /0 F= a0 @) do — SO ©d0

[0,2z]\C
2
= (1+0(s)) i Frrod@E () do.

In view of (4.9) in Lemma 4.4,

2
ge” Y F~(Aarg))E () do+0(e™")

veA\LUL)Y 0

< (e+0(e?) - N(Q; ).

Using this and (4.26) (multiplied by ge*'), we conclude that
21
g€’ (1+ O(¢)) A Frod@E(0) A0+ O(e™?") < (e + O(e%)) - NJ(Q).
This, (4.23) and (4.20) yield
4.27) (X + OS(FISE ™) + 0(e™") < (1+0(2)) - Ny(Qi).
Assuming 7’ is small enough and ¢ large, we have

g8 <. <CA(/3—06)|Ii,j,—| /RQ,-_/Rfi_)-

Hence, (4.21) follows from (4.27).
We now show (4.22); the argument is similar and simpler. By (4.10),

(e+0(D) - N(Q) < g Y / FHA@re))E(6) d
(4.28) PN

< qe* i fntod(e>f+<0) de.

Thus, (4.22) follows from (4.28), (4.23) and (4.20), applied with ¢ = +. ]
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4.7 Lemma. There exists nj depending on n’ and some C | so that
(4.29) NA(Q\ D) = C1(B — @) + Mo+ O((1 + [ac] + | B])Ve®=27")
where N is absolute, the implied constants depend on R and

Mo=#oeA,N(LUL)NQ\D):a < Qo(v) < B

A similar assertion holds with Q \ D replaced by D \ e~ 'D.

Proof. We will prove the assertion for Q \ D, the proof for D \ e~ D is similar.
Recall that Q \ D = Q; U Q, where
Qp ={(v1,02) € Q: o] > 1}
and
Q) ={(v1,02) € Q: |og]| < 1, [loa]l > 1}

Fix k = 1 or 2. By (4.21), for all (i, ) € J;,
4.30) (T +O0S(F7)S(Ee™ ™)
' < (1+0(e) - Nj(Qij) < (1+0(e)) - N(€)),

where we used €;; C sz in the second inequality, (3.22).
Also by (4.22), for all ¢}; € Ji, we have

4.31) (1+0(e)) - N;(sz) < ez’(TZ]- + O(S(ﬂf})S(f})e“sZ’)).
Thus summing (4.30) over all (i, j) € ﬁk_,

e (7 + OS(F)8(ENe™™)
(4.32) g
< (1+0) Y N(Qij) < (1+0(e) D NJ(Q;).

gz 7
Moreover, summing (4.31) over all (i, j) € Jf, we get the following:

(1+0(2) > N(QF) < (1+0(2)) > N(Q)
0 —

I k

4.33) ) s
< &> (T} + OB(f1)S(ENe™ ™.
I

By (3.23a) and (3.23b), Q; ; C Q; are disjoint and £; C UJZ sz. Hence, (4.32)
implies that

(4.34) () < (1+0(e)N;() < (D),
where (/) is the first line in (4.32) and (/]) is the last line in (4.33).
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Recall from Lemma 4.6 that
TE = ca(f — @)l 4] / & / ok
R R
in view of (&-1), (p-1), and (3.25), the above implies that
ST =1+0E) Y =1+ 0E)(B — a)Cri
It 5

I

where (,_’k, 1 is absolute and the implied constants depend on R.
Furthermore, using & = e, we conclude that

S U8(E8EDe™™ < (1 + ol + BN e e
iJj

<L (1 + o] +|BDNe™/2,

where the implied constant depends on R and we assume 7’ is small enough so that
52 — Ni’], > 52/2
Altogether, there is some # > 0 so that for k = 1, 2, we have

NI(Q) = Cri(B — o)™ + (1 + |al + | )N e® 27",
Since Q \ D = Q; U €, is a disjoint union, we conclude that
(4.35) N{(Q\D) = Ci(B — a)e™ + (1 + |a| + | B)NeC7>"

where C_l = C_l,l + C_2,1-
The lemma follows from (4.35) and the definition of M. ]

Proof of Theorem 1.2. We will again use the following:
(4.36) #{v e A'NesD} < Cles

where C| depends on R, see (3.28).
First apply Lemma 4.7, with t and Q \ D. Then
N/(Q\D
(4.37) ‘ \_ ) 21— 22—
= Ci(Bf— )™+ M + O((1 + |a + | BN @200

where
M=#veA,NLUL)YNE(Q\D):a < Q) < B}

We now control the contribution of A’ N e’D to the count. Recall our notation
D(e~%) = e7D. Then ¢'D(e~¢) = ¢'~‘D, and

e~ {(D\ e 'D) =€ (D(e™ )\ (e7'D(e™)).
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Applying Lemma 4.7 with ¢ — £ (instead of 7) for £ < 3¢/5and D \ ¢~'D,

N;(D(e™) \ e™'D(e™))

(4.38) =
= C1(f— a)e® ™0 + My + O((1 + |a] + | BN eF~210=0)

where
My=#{ve A, NLUL)YNDEe )\ e 'De™)): a < Qo) < p)

and L, L’ are as in Lemma 4.2.
Summing (4.38) over 0 < £ < 3¢/5, we get

Nt(D \ e—3t/5D) — C=1(ﬁ _ a)eZI + M// + 0((1 + |OC| + |ﬁ|)Ne(2—17)t)
where M” = >~ M. This, (4.37) and (4.36) thus imply
(4.39) NAQ) = C1(B — ) + M+ O((1 + |a] + |81 e®)

where M =#{v e A, N(LUL)N&Q :a < Qy(v) < f}.
To conclude the proof, we rewrite (4.39) in the notation of Theorem 1.2 and
further analyze M. Recall that r = % log T, hence, by (4.3) and (4.39),

(4.40) Ru(a, B, T) = Ci(B — a)T + M+ O((1 + |al + [BYVT' ),

we now turn to the term M. Since

B _ ab
Qo(g1w1, g2w2) = Qo(85 'gawr, w) and  g3'gr = (b C> ‘

We conclude, as in the proof of Lemma 2.5, that if we put w; = (x;,y;) and
wy = (—Y2, X2), then u; = (x;, y;) satisfy

+1 +1 o1t/A 26,t/A
llu;|l < max{llg"Il, gz ' }e” " < >4 and

(4.41) o6/

|Bu(ui, u2)| = 100(g5 g1, wo)| < e

where we assumed 7 is large in the second inequality of the first line. Thus by
Lemma 2.5, the pair (w], w}) is obtained from (u2, u;) using the above relation,
that is, w} = (X2, y2) and w5 = (—y1, X1).

Letv € A’ N(LUL)N ' Q satisfy that a < Qy(v) < B. For simplicity, let us
assume that v € L and write v = £1(g w1, 0) + £2(0, gow>). Then,

v = (01 + 02, w(v; — 02)) = (£181W1, £282w2)



216 E. LINDENSTRAUSS, A. MOHAMMADI AND Z. WANG

where v; € 2rA* and ||v;|| < €'. Recall also that (g, g2) = (gm, —wguw) and
gMZ2 =2mx A*, hence,

flwl —fza)wz €1u1+€2u2
=8m
2 8 2
1wy + {rowy Ciuy — Crun
- e ey
2 & 2
—Ciu+loup
— 5

U1 = 8m
U2 = gMm

changing L to L’ yields v, = ng““;& and vy = gm
Altogether, (4.2) implies that

¢ £ Ciup — ¢
M= #{(C1, €2) 1 gu T2 =0 gy 2

2 2
v € 22", ol < ' < florll® = lloall® < B}

U2

By Lemma 2.6, applied with 25, /A and A/5, we conclude that

220y

M < max(jal, |fDe® # = max(lal, BT~
where the implied constant depends on a, b, and ¢ unless
|Bu(ur, u)| < 250 < T
Let x = min{#/2, d /A_}. Altogether, we conclude that
Ru(a, B, T) = C1(f — )T + O((L + |a| + | BDNT' ™)
unless {uy, uy} satisfy (1.5), in which case we have

(4.42) Ru(a, B, T) = C1(f — )T + M+ O((1 + |a| + | BN T'™").

‘We now show that M = Mr(uy, uz). Let (€1, £») be as in the definition of M, then

€1u1+€2u2 €1u1+€2u2 2
2 2
Bu( =2 = e === =P = e =T,
2 2
Similarly for v, = %. Moreover, we have

Cruy + Cou Ciuy — Cou
2 2 U1 22\ U1 2Up
ol = lloall” = Bu(—=5—=) = Bu(——5——)

= Bu(uy, u2)t 16> € [a, Bl.

Thus (£,/2, €, /2) satisfies the conditions in the definition M7 (u;, uy). Similarly if
(¢}, t4) satisfies the conditions in the definition My (u;, u,), then (2£7, 2£5) satisfy
the conditions in the definition of M.

The proof is complete. U
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Proof of Corollary 1.3. We first prove part (1). Recall our assumption that
there exist A, g > 0 so that for all (m, n, k) € Z> we have

(4.43) lam + bn + ck| > q||(m, n, k)| 72.

This implies that (1.4) holds for some A’, depending on A, and all T > Ty(A, q).
Furthermore, in view of (4.43), for u; = (x;, y;) € 72, we have

|Bm(u1, u2)| = [axixz +b(y1xz + X1y2) + Cy1y2|
> gll(xix2, yiX2 + X1y2, y1y2)|| ™4,

which implies (1.5) does not hold so long as ¢ is small enough. In view of
Theorem 1.2, this finishes the proof of part (1).

The proof of part (2) is similar. Recall thatb = 0 and ac = 1. By our assumption
there exist A, g > 0 so that for all (m, n) € Z?, we have

(4.44) |a’m +n| > qll(m, n)|| 7.

As in the previous case, we conclude that (1.4) holds for some A’, depending on A,
and all T > Ty(A, q). Hence, by Theorem 1.2, either

|Ru(a, B, T) — 2*(B — a)| < C(1+ |a| + BT,
which implies the claim in this part, or there are u;, u, € Z* \ {0} so that
(4.45) lurll, fluzll < T and  |Bu(uy, up)| < T~

and moreover

_ My(uy, u2)

(4.46)  Ru(a, B, T)—n*(f— a) -

+O(C(1 + |a| + |BDNT™)
where
1 2 2
M (uy, 1) :#{(51,52) €52l £ Ly € 22,
Bu(€iuy £ Coup) < T,4Bym(uy, ux)t 16, € [a,ﬁ]}-

By Lemma 2.5, if Ty is large enough, then By(u, u;) = 0. Hence My (uy, us)
does not contribute to Ry(a, f). This and (4.46) finish the proof of this case and
of the corollary. O
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S Equidistribution of expanding circles

In this section we prove an effective equidistribution result for circular averages;
the proof is based on [LMW?22].

Let G = SLy(R) x SL,(R) and let I' © G be a lattice; put X = G/I'. Let my
denote the G-invariant probability measure on X.

We fix a right invariant metric on G using the Killing form and the maximal
compact subgroup SO(2) x SO(2), and let dx denote the induced metric on X.
There exists D’ so that forall t > 2 and all 0 € R,

(5.1) dx(x,x') < €T dx(A(awro)x, Alamrg)x)).
For the convenience of the reader, we give again the statement of Theorem 1.4:

1.4 Theorem. Assume I is arithmetic. For every xo € X, and large enough R
(depending explicitly on X and the injectivity radius at xo), for any e¢' > RP, at
least one of the following holds.

(1) For every ¢ € C°(X) and 2r-periodic smooth function & on R, we have

2 27
‘ / S Aars)x0)E(6) d — / &0y do / $dmy| < S(HSEOR™
0 0

where we use 8(-) to denote an appropriate Sobolev norm on both X and R
respectively.
(2) There exists x € X such that Hx is periodic with vol(Hx) < R, and

dx(x, x9) < RPPe™".
The constants D and kg are positive and depend on X but not on x.

Proof. Fix 0 < ¢ < 1/10 such that the U~ AU decomposition is an analytic
diffeomorphism on the identity neighborhood of radius 2¢ in SL,(R), where U~
is the subgroup of lower triangular unipotent matrices, U is the subgroup of upper
triangular unipotent matrices, and A is the subgroup of diagonal matrices. In par-
ticular, there are analytic diffeomorphisms s—, 7, s from (—¢p, (o) to neighborhoods
of 0in (=1, 1), such that r = U () Ae(0) Us(0)- Note that

(5.2) w0 =0, () =+0E), s7() =~ +0(),
and £s =1+ 0(0).
Using this we approximate the circular average (on small intervals) with unipo-
tent average. First note that
A(atrf+()x0 = A(atus_—(c)ar(g‘)us(()rf)xo
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is within distance O(e ™% sT(O)+T() = O(e™* c+e 2) from A(auugsrg)xo. Therefore
forall 0 < ¢ < ¢ we have

1 /<
c /o P(A(are,)xo) dO

1 <
= E /0 ¢(A(atus(6’)r5)XO) do + O(S(QZS)(@_Z[C + 4‘2))
1 5O
=2 [ @ O) 0+ 06+ )

where we used the above estimate in the first equality and a change of variable in
the second equality.
Since 5(¢) — ¢ = O(£?), see (5.2), we conclude that

1 ¢ 1 ¢ -1 /
c /0 P(A(airg.p)xo) A = c /0 P(A(aiugre)xo)(s™ () d6 + OS($)0)

where we used e ™2/ + ¢ < 2.
Similarly, using supy |(s~1(0)) — 1| < ¢ and a change of variable,

1 /¢ 1 /¢
X / PA(r7.9)x0) 4O = ~ / B A (agprs)xo) dO + O(S(H))

1
- /0 S(A(auugsr)xo) ds + OSP)O).

Let 7 = —(log¢)/2. Then

1 1
s /0 H(A(aucarsxo) ds = /0 HA (@ rttgit 1oty )xo) ds
4)

1
= /0 P(A(a—usarg)xo) ds.

Let D; and x; be the constants given by [LMW22, Thm. 1.1] applied with X
(D; denotes A in [LMW22, Thm. 1.1]). We will show the proposition holds with

D=D,+D +1

where D' is as in (5.1).
Let T = ¢~" and R = " for some D” > 1 which will be explicated momen-
tarily. Assume ¢’ > RP, then

(5.5) T=e¢"T"=¢R VP > RP-! > R,

Apply [LMW22, Thm. 1.1], with x; := A(a.rs)xo, T > RP' see (5.5), then so
long as D” is large enough, at least one of the following holds:
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Case 1: For every £ € [0, 2x] and all ¢ € C(X),

1
(5.6) ’/0 P(A(aiogTuts)xs) ds — /¢dmx < S(¢p)R™™.

Case 2: For some ¢ € [0, 2x], there exists x € X such that Hx is periodic with
vol(Hx) < R and

(5.7) dx(x,xg) < R”'(log T)P' T~

We will show that part 1 in the proposition holds if case 1 holds and part 2 in
the proposition holds if case 2 holds.
Let us first assume that case 1 holds. We begin with the following computation.

2z

1 2z 4 . .
H(Aara)xo)é0) do = - / / HA(@rr ) x0)E(E +6) dBAE
¢ Je=0 Jo

1 27 14 R R
= ¢ o (/0 P(A(arrgrg)xo) d@)f(() d¢
C:

+O(suplgl-  sup  1EC+0) —EQ)).

£el0,2x1,0€[0,¢1

Thus, we conclude

2z

: P(Alairg)xo)<(6) db
(5.8)

1 27 ¢ N .
= 2 [ ([ #ataraam )@ az+ o0,
£=
Furthermore, by (5.3) and (5.4), we have
1 /¢ !
CONN- /0 HA(@r49)x0) dO = /0 H(A(nogrits)x2) ds + OSP)).
Altogether, using (5.6), (5.8), and (5.9), we conclude that
2 2
‘ HA @00 — [0 a0 [ ¢amy
0 0
< 8(PS(HRT™,

where o = min{x, 2/D"}—we used (' = ¢** = R>P". Thus, part 1 in the
proposition holds if case 1 holds.

(5.10)

Let us now assume that case 2 holds and let x; = A(a,rs)xo be as in (5.7). Then
by (5.1), we have

dX(A(aTrf)_lx, x0) < P 'RP! (log P 7~!
< eHTRP P < RPPe,
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Furthermore, A(afrf)_lx has a periodic H-orbit of volume < R. Thus part 2 in the
proposition holds in this case. The proof is complete. (|

6 Cusp functions of Margulis and the upper bound

In this section, we put
I' =S1,(Z) x SL»(Z) C G.

Recall the following definition.

Definition 2.3. Let g = (g1, g2) € G. A two-dimensional gZ*-rational linear
subspace L c R* is called (p, A, r)-exceptional if there are (vy, 0), (0, v;) € Z*
satisfying

(6.1 lgivill, lgav2ll < € and  |Qo(g1v1, g2v2)| < e~

so that L N gZ* is spanned by {(g 01, 0), (0, go02)}.
Given a (p, A, t)-special subspace L, we will refer to {(g;v1, 0), (0, g202)} as a
spanning set for L.

Let f; € C.(R?), and define f on R* by f(w, w>) = fi(w;)f>(w;). For every
h € SLy(R), let

(6.2) foaa(h;gD) = > f(A(h)),
veN,(gZ*)
where N;(gZ*) denotes the set of vectors in gZ* not contained in any (p, A, 1)-
special subspace L and also not contained in R? x {0} U {0} U R?. In the sequel,
we will often drop the dependence on A, p, and ¢ from the notation and denote
Jo.au(h; gI') by f(h; g1).
The following is one of the main results of this section.

6.1 Proposition. For all A; > 10° we have the following: Let (g1, g>) € G.
Then for all small enough p and all large enough t at least one of the following
holds:

(1) Let C, = {0 € [0, 2x] : fa,ryg; gT) = €**'}. Then

/ Flare; gT) dO < &7/,
e

where f(h; gT) = f, 4, /(h; gT), see (6.2).
(2) There exists Q € Maty(Z) whose entries are bounded by e'°?" and 1 € R
satisfying ||g5' g1 — 20| K e=Ar=10001,
The implied constants depend polynomially on ||g|| and ||g2]|.

The proof of this proposition occupies most of this section.
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The cusp functions. Let P denote the set of primitive vectors in Z>. For
any h € SL,(R), define

(6.3) w(hSLy(Z)) = sup{1/||hv| : v € P}.
We begin with the following lemma.

6.2 Lemma (cf. Lemma 7.4 [EMOL1]). For every 0 < p < 2, there exists t,
and b, so that the following holds. For every x € SLy(R)/SLy(Z) and all t > t,,
we have

2
/ w(arex)y’ dO < 27 w(x)’ + by.
0

Proof. This is well known by now, see, e.g., [EM22]. O

The sets ©,(0) and ®;(0). To put an emphasis on the product structure
of G and X, we will often write X = G,/I"; x G,/I"; where G; = SL;(R) and
I'; = SLy(Z). Moreover, given g = (g1, g&2) € G, we write

(6.4) ;(gil'}) := w(giSLy(Z)).
Fori=1,2,letx; € G;/T;. Forallt > 0 and every 0 < 6 < 1/10, let
6.5) 0,00)={0 € [0, 27]: wr(arpx2)' "% < wi(argx) < wa(@rex2)' ™+

and let ®;(3) = [0, 2z] \ ©,(J).
We have the following:

6.3 Lemma. Let 0 <6 < 1/10, and put

(2+26)(1 + 36)

1
pl—(2—26)(1+§5) and p; = 1525 ;

note that py,p> < 2. Let t(6) = max(t,,, ty,) and b(0) = max(by,, b,,) where the
notation is as in Lemma 6.2. Then for all (x1, x;) € X and all t > 1(9)

/ (1(arrox))wa(a,rex2)) 2% 46 < 27" (e (x1) + w2 (x2)) + 2b(5).
0;(d)

Proof. Let us write ©;(J) = ©; ;(5) U O} ,(J), where

11(0) = {0 € [0,27] : walarox1) < wilarox)' ™}

@;,2(5) = {9 € [0, 271,'] : wZ(aterl) > wl(atr0x2)1+2¢5}'
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Using Lemma 6.2, for every t > t, we have

2r
/ (w1(arex))oy(argxa)) 2% do S/ wi(arx))" dO
@', 0
< 2_t/t”1 wy(x2) + bpl .

Similarly, for every ¢ > t,,, we have

21
/ (@1 (@rpx) (@) do < / sy d
0;,(9) 0
< 2_t/t”2601(xl) + bpz'

The claim follows from these two estimates. O

A Diophantine condition. The following lemma is a crucial input in the
proof of Proposition 6.1.
Forevery ¢t > 1, let

P={veP:e ! <|o|| <e,
P)={veP:|v| <.
6.4 Lemma. The following holds for all A > 10° and all p < 1/(100A). Let
(g1, &2) € G. There exist t; > 1, depending on p and polynomially on ||g;||, so that

ift > t, then at least one of the following holds:
(1) We have

#{v) € P, : Jua € P(1), |Q0(g101, g202)| < e} K 77

where the implied constant depends polynomially on | g;||.
(2) There exist Q € Maty(Z) whose entries are bounded by ¢'°”" and ) € R
satisfying ||g5'g1 — AQ|| < e=A~10021,

Proof. For simplicity in the notation, let us write # = e, Let A > 103, and
assume that

#{v) € P, : Fuy € P(1), |Qo(g101,8202)| < 7'}
> E(llg11llg21)Ene®.

We will show that if E is large enough, then part (2) holds.

Let us write
a b
h=gy'g = .
82 81 (C d>

(6.6)
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Then (6.6) and the fact that for any g € SL(2, R), A(g) € SO(Qy) implies that if ¢
is large enough, depending on ||Z||, for > 7e* many v; = (x1, y;) € P, both of the
following hold:

e We have |cx| +dy;| > n?e'.

e There exists at least one (X3, y2) € P(¢) so that

(6.7) |Q0(h(x1, Y1), (X2, y2))| < 7.

Moreover, the fact that there are > ne* vectors satisfying these two conditions
implies that there are vy, v{, v{ € P, satisfying the above two conditions so that

(68) 1 < |Q0(Ua w)l < ’7_4) for L, W E {Ul> Ui> Ui/}‘

Let us fix three vectors vy, vf, v{ satisfying (6.8), and let v, v5, v be the
corresponding vectors in P(¢) satisfying (6.7), respectively. Then

(6.9) hvy = pvy + w1

where x4 € R satisfies || < 1 and ||lw; 2] K e~ (recall that the implicit con-
stants in these inequalities are allowed to depend polynomially on ||A]|). Similarly,

fo_ ’ "o_ . n "
hvy = p'vy+w;, and hof = uv; +wi,

where 1/, 1" € R satisty |u'], [u”] = 1 and [[w) I, [lwf ]| < e,
With this notation we have

0
(6.10) h(v1 v}) = (03 v)) (g ;/) +O0(e™)

and similarly for vy, v and v/, v. Thus by (6.8)

(6.11) 1 < 1Q0(v2, 051, 1Q0(v2, V5], 1Qo(vh, V)| K 7.

In view of (6.8), (6.9), (6.10) and (6.11) the conditions in Lemma 2.2 hold. The
claim thus follows from Lemma 2.2 so long as ¢ is large enough to account for the
constant C in that lemma. U

Proof of Proposition 6.1. Recall that g = (g1, g2). Put
x; =g S1Ly(Z), fori=1,2.

LetA; > 10*,0 < p < 107* (small), and ¢ > 1 (large) be so that Lemma 6.4 holds
for these choices. Put § = 2p?/A, and define ®,(J) and ®/(J) as in (6.5) with ¢
and ¢ and x;. That is,

®t(6) = {0 S [0, 271'] . a)2(a,r9x2)l_2‘5 < wl(atraxl) < w2(atr9)€2)l+25},

and @,(0) = [0, 27] \ ©,(J).
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Apply Lemma 6.4 with A = A| and p. If part (2) in that lemma holds, then
part (2) in Proposition 6.1 holds and the proof is complete. Thus, assume for the
rest of the argument that part (1) in Lemma 6.4 holds. We will show that part (1)
in the Proposition 6.1 holds.

Motivated by the definition of £ and Lemma 2.4, define

(6.12) @(arrg; gT) = sup{ (larogivi lllarogava D)™ & (v1, v2) € P*(g)}

where P is the set of primitive vectors in Z? and P?(g) denotes the set of (vy, v5) € P?
so that { (g1v1, 0), (0, g2v72)} is not a spanning set for any (p, A1, t)-special subspace
of gZ*, see Definition 2.3.

It follows from the definition that

(6.13) a(a;rg; g1) < wi(asraxi)wa(arexs).

Put B, = {0 € [0, 2x] : @(a,rg; gT) <wi(a;rox1)wy(aroxz)}.
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and the
definition of f , we have

(6.14) Flayro; gT) < @(ayrg; gT).

Put G, = {60 € [0,27] : @(arg; gl) > €7}, In view of (6.14) and with this
notation, it suffices to show that

(6.15) / ary: gT)dO < e 71/A1,

G

Contribution of B,. Recall that if w(hSL,(Z)) > 2 for some h € SL,(R),
then there is some v;, € P so that

(6.16) lhop ™" = @(hSLy(Z)) and  ||ho|| > 1/2 for all v, #v € P.
Let @ € B,. By the definition of &, there exist v, v, € P so that
a(airg; gT) = llarogion ||~ llarogava || ™"
Since @(a,rg; g1) < wi(a;reg1l'1)wr(a,rgg212), we conclude that
min{ [|a,rag10111 7", laragavall ™'} < 2.
Therefore, for all such 6, we have

a(a;rg; g1) < 2max{wi(a;rpg11'1), wa(aregal’)}.
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Thus using Lemma 6.2, we have

5 . 4 ~ LT 3/2
_ @(arg; gl)do < e” 2 (arg; gT)Y* dO
B,NC;

B,

(6.17) < 2e_f¥ a)l(a,rgxl)% + a)l(a,rgxz)% do
0

Let ©,(0) and ®/(0) be as above, and put
C(0):=CNBNO,W) and (0 :=C NBLNOL.

We consider the contribution of these two sets to [ @ separately—indeed,
controling the contribution of C,(d) occupies the bulk of the proof.

Contribution of é;(é). By Lemma 6.3, for all ¢ large enough, we have
/ (1(@rgx)oa(arsx:)) 2% do < 1.
CAQ)
From this and (6.13), we conclude that
| damgnar < [ o@moarnms @

[AC) Ci(0)

(6.18) < e oPAu/2 / (@1 (argx)an(argx2)) '+ 2% do
A
Le

Contribution of C,(5). Recall that

0,(5) = {0 € [0, 27] : wr(arex>)"™2 < wi(arexy) < wr(arexs) ),

and C,(0) =€, N %tc N ©,(d). Note that the vectors which contribute to
(6.19) / a(a,rg; gI) dO
C.(9)

satisfy {(g1v1, g202) : |llg1v1]l, llg202]] < €'}. It is more convenient to consider the

cases ||giv1]l > |lg202]] and ||g1v1]| < |lg202]| separately. As the arguments are

similar in both cases, we assume ||g1v1]| > ||g2v2]| for the rest of the proof.
Recall our notation: fort > 1

P={oeP:e <|v| <e,

andP() ={v eP:|v| <€l
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Foreveryn € Nwithn < t+log||gi]l + 1 =: #;, we investigate the contribution
of P, to (6.19). For any v; € P, let

I, ={0 € [0, 2x] : |la;rogi1v1|| < 1/10}.

Then the intervals /,, are disjoint. Let P,={v; €Pp: I, N C.(9) # 0}.
Fix somen € N, n < ;. Letv; € P,, and let 0 € I, N @,(5). Then there exists

vy € P so that
1

larogionllllaragavall”
Since 6 € B,, we have @(a,rg; gI') = wi(a;rex;)wa(a;rgx;). Thus

a(arg; gl) =

(6.20) warex) = lagrogiil| ™ fori=1,2.
In view of (6.20), and the definitions of B, and ®,(0), thus

6:21) [ oangrar <5 [ langion =
Gt(b) n an Ivl

‘We also make some observations. Fix some n € N, n < ;. Letv; € (T’,, and
6el, N C,(0), and let v, € P be so that (6.20) holds. That is,

wi(arox;) = llarogivill =",
fori=1, 2, and
airg; gT) = (larogivs |llarogava )™
Since 0 € G,, we have @(asrg; gT) > 17 This gives
~Aipt,

lairogivillllarogavz2|l < e

which implies that

1Q0(A(ar9)(g101, 8202))| = |Qo(@rogiv1, arpgava)| < e~ 417",

Since A(a,ry) € SO(Qy), we conclude from the above that

(6.22) Qo(g1v1, g202) < e~ 7",
We claim:
(6.23) llgioill > €.

Indeed if ||giv1]] < e”, then since ||gov2]] < |lg1v1], it follows from (6.22) that
{(g1v1,0), (0, g2v2)} spans a (p, Ay, t)-special subspace. This contradicts the defi-
nition of @ and establishes (6.23).

Let us now return to estimating (6.21); we will estimate the sum on the right
side of (6.21) using the following elementary fact.
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Sublemma. Lett > 0, and let w € R? be a non-zero vector. Then
2 R
/ largwl 2 6 < Ce¥ ]| >~
0

where C is absolute.

First note that (6.22), and the fact that part 1 in Lemma 6.4 holds, imply that
there exist 7y and C so that for all 7) < n < t;, we have

(6.24) #P, < CeCPn,

Alsorecall from (6.23) that ||g;v; || > ', which in particular implies that ||v; || >> e”".
Since v, € P,, we conclude that n > pt + O(1). Thus (6.24) and the Sublemma
imply that

3 larogior |72 dO < P gt o(=2=20m
(6.25) bie®, M

—p%t _Adt —201.
L e le™ < e

in the last inequality, we used p?> = A;5/2 > 1006 and assumed ¢ is large.

‘We now sum over all n < #; and get that
ZZ/ larog o122 < 1o~ « =0
nop I,

This and (6.21) complete the proof in this case.
In combination with (6.18) and (6.17), the proof is complete. Ol

Proof of the Sublemma. Without loss of generality, we may assume
w = (0, 1). Put

[=[eT32 2 — =221 and I =[0,2x]\ L.

Then
/ 2m do » do N do
o llarew]?2 v llarow||>*20  J; layrow]|*+20
« 2N 24200 do

1 larowl|>+20

< 40t / do
<e  + —_——.
1 llargw]|*+2
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We now compute the integral over I. Note that ||a,rgw]|**?° > e?+299>+20 There-

fore,

do ' X
(—2—20)t —2-25
— Ke 0 do
| Taror= J

& o(~2201 ,(1426)2=20)1 —40%

Le

The proof is complete. U
We end this section with the proof of Lemma 3.2.

Proof of Lemma 3.2. We begin with part (1). Recall that f; is the charac-
teristic function of {w € R? : ||w|| < R}, and let f = fif>. Again by a variant of
Schmidt’s Lemma, we have

F(A(@rg)gl’) < w1(g1SLa(Z))wa(g2SLa(Z))

Let 0 = #/10. As it was done in (6.5), define

0,(0)={0 € [0, 27]: wr(@rpx) ™2 < wi(@rexi) < wa(arexs) 2%}

and let ©;(9) = [0, 2x] \ ®,(0) where x; = g;SL,(Z). Then by Lemma 6.3, we have
for all ¢ > ¢(d)

(6.26) F(A(arg)gl)do < / (w1(asrox1)wr(arex2)) df <K 1;
@) 01(9)

the implied constant depends polynomially on the injectivity radius of gI"”.
We now find an upper bound for the integral over ®,(J):

f(A(arg)gl)do < /wl(a,rgxl)2+25 40,
0,(9)

This, the sublemma, and standard arguments (which simplify significantly thanks
to (6.16)), see, e.g., [EM22], imply that

F(A(arg)gl) do < &'
0,(0)

The claim in part (1) of the lemma follows.
We now turn to the proof of part (2). Let (v1, 0) and (0, v,) be as in the statement.
Fori=1,2let w; = g;v;. By a variant of Schmidt’s Lemma,

(6.27) £0) < llargwi | largwa ||~

Fori=1,2, set
L={0:R'e™"/10 < |largwil|}.
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Ifogl N, thenf(@) > ¢, This, (6.27), and the definition of €, imply

N 1
fo < [ .
CL LNl ”atrewlllllatrngll

Thus, using Cauchy-Schwarz inequality, we need to find an upper bound for

< dg > l/2< dg > 1/2
n llarowy |1 1 llargws|? ’

The computation is similar to the one in the proof of the sublemma. Indeed,

we may assume w; = (0, 1); then there is R~! « ¢ < 1 so that
I; C [ce” M 27 — ce= (140,

From this, we conclude that

/ do < e(—l+n)t
I; ||a,r9w,~||2

as claimed. O

7 Proof of Theorem 3.1

In this section, we will prove Theorem 3.1. The proof combines a lower bound
estimate, which will be proved using Theorem 1.4, with an upper bound estimate,
which follows from Proposition 6.1, as we now explicate.

Proof of Theorem 3.1. Recall that f; € C>°(R?), and f is defined on R* by
S(wi, w2) = fi(w)f2(w2). We put

(7.1) fgTh= Y f)

veg' A,
where A = {(v] + 02, ©(v] — 1)) : 01, V2 € Z7} C R?,
I = {(y1,y2) € SLa(Z) x SLy(Z) : y1 = wyrc0  (mod 2)}

stabilizes A, and g’ = (g}, g5) € G. We also put X = G/I".

Let A and p be as in the statement, and let + > 0 be a parameter which
is assumed to be large. Let A be a constant which will be explicated later,
and let g =(g1, g2) € G satisfy the following: for every Q € Maty(Z) with
e”/A < ||Q|| < e and all 2 € R we have

(7.2) ligs'gr — 20l > [1Q|I /10,

We claim that (7.2) implies the following:
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Sublemma. Let g = (g1, g2) satisfy (7.2). There exists Ay > max(4D, A),
where D is as in Theorem 1.4 so that the following holds. For all t so that
t > 4Dlogt and for every x € X with vol(Hx) < e”/*1, we have

d(gl’, x) > ™2

We first assume the sublemma and complete the proof of the theorem. In view
of the sublemma, part (1) in Theorem 1.4 holds with R = ¢4 and ¢. Indeed,
Dp/A; < 1/4 and ” < €'/*, which imply

RDfDe_t — ert/A‘tDe_t < e—t/2;

hence, part (2) in Theorem 1.4 cannot hold.
For every S, let 1x, < g5 < lx,,, be a smooth function with 8(ps) <« S*, where

Xe ={x=(x1,x) € X : max(w1(x1), w2(x2)) < o},

see (6.4)—since I is a finite index subgroup of SL,(Z) x SL,(Z) this is well-
defined. Put fs = pgf; we let N be so that S(fs) < SVS(f).

Put # = kop/(2NA ), where kg is as in Theorem 1.4. We will show the claim in
the theorem holds with

A=3NAA|/ky, O =n, and & =n°/A°.
First note that
(7.3) p/ff =kop/(BNAA)) < n/A=35,/A < p/100.

We now turn to the rest of the argument. Apply Lemma 2.4 with (g, g») and
the triple (n/A, A, t). In view of (7.3) and (7.2), Lemma 2.4 implies that there are
at most two (7 /A, A, t)-special subspaces.

Denote these subspaces by L and L’ if they exist. For every 8 € [0, 2x], we
write

F(Aaro)gl") = fs(A(arp)gT") + feusp(Alaro)gT) + fip(Alarrg)gT)
where fs = go_f, ﬁusp is the contribution of gA,, \ (LU L") to f — f;, and f;p is the
contribution of gA,, N (LUL) to f — fs.

By Theorem 1.4, applied with R = e’/ for any smooth function & on [0, 27]
we have

2 o .
0 0 ;
K 8(f5)8(E)e™ M & SVS()S(E)e .

(7.4)

If we choose S = e = ¢“0P!/CNA) "the above is <& S()S(&)e™ /2.
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Moreover, by Lemma 6.2 applied with p = 3/2 and Chebyshevs inequality, we
have

(7.5) Sdo « §7325 =812,

/{H: Alarg)gl” ¢Xs)

This and (7.4) reduce the problem to investigating the integral of f — fs = f;uSP + f;p
over @ := {6 € [0, 2] :fA—fAS > S}
Let f be as in (6.2) with #7/A, A, and ¢. That is:

flgDy=" Y~ f(Ah)

veN,(gZ*)

where N;(gZ*) denotes the set of vectors in gZ* not contained in any (/A, A, 1)-
special subspaces and also not contained in R? x {0} U {0} UR?.
Let G, = {6 € [0, 27] : f(arg; gT) > ™ = S}. By the definitions,

/@ Susp(A(@r9)gTIEO) dO < €100 /@ flarg; gT) d6.

In view of (7.3), ¢!%97/4 is in the range where (7.2) holds, thus Proposition 6.1,
applied with /A and A, implies

/, f(A(a;rg)gF’) do < e_'73t/A3.

G

From these two, we conclude that

"o [ For(B@r)gT) 0 < e~

In view of (7.4), (7.5) and (7.6), we have

2r R 2 R
‘ / F(A(arr)gT)E@) d6 — / £do / fedmy
0 0 X

= /@ Fop(A(arg)gDIED) d + OS(H)S(E)e ™)

where C = {0 : fip(A(ayrg) > e}.
This completes the proof if we let §; = 5 and &, = 5’ /A>. O

Proof of the Sublemma. Letx = (hy, hp)I” be so that Hx is periodic. In
view of (the by now standard) non-divergence results, we may assume |/;] < 1
where the implied constant is absolute, see, e.g., [LM21, §3].

Since I" is a finite index subgroup of SL,(Z) x SL,(Z), we conclude that

{(h, 1) : h € SLo(R)} N (M SLa(Z)hy ') x (haSLa(Z)hy ')
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isalatticein {(h, h) : h € SL(R)}. Thisimplies thathlSLz(Z)hl_1 and hySLy(Z)hy 1
are commensurable. Hence, /5 I, belongs to the image of GL}(Q) in SL>(R), i.e.,
the commensurator of SL,(Z) in SL,(R).

Let Q' € Maty(Z) be so that h5'h; = 1Q’, where 1 = (detQ’)'/?. Since
||| < 1, we have

(7.7) Q"I < vol(Hx) < Q1"

where A, < 1 < A; and the implied constants are absolute, see, e.g., [LMW22,
Lemma 16.2].

We will show the sublemma holds with A; = 4DA/A,. Assume now, contrary
to our claim in the sublemma, that vol(Hx) < e”/41, for some A; which will be
determined later, and that dy(gI"’, x) < e™"/2.

Thus g| = €;h;y; and g» = €2k, ), where ||€;|| < e™/? and (1, y2) € . Since
ki) < 1, we conclude that ||y;|| < ||g;:||. Moreover, we have

(7.8) g g1 =ey3' 3 hiy,

where ||€|| <« e™"/? and the implied constants depend on | g;||. Put Q = yZ_IQ’yl.
Then

101l < Q]| < /A1 < /4

where we used (7.7), vol(Hx) < e”"/A1 and assumed #is large. Moreover, using (7.8)
and (7.7), we conclude that

(7.9) lgs'gr — 101 < e Q|| « 72 - et/

where the implied constants depend on || g;]|.

Assuming ¢ is large enough to account for the implied constant and using
A1 = 4DA/A,, the left side of (7.9) is < e™”'. Thus (7.9) contradicts (7.2) and
finishes the proof of the theorem. O
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