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1 Introduction

Let ! ⊂ R2 be a lattice. The eigenvalues of the Laplacian of the corresponding
flat torus M = R2/! are the values of the quadratic form

(1.1) BM(x, y) = 4π2‖xv1 + yv2‖2

at integer points, where {v1, v2} is a basis for the dual lattice !∗.
Let

0 = λ0 < λ1 ≤ λ2 · · ·
be the corresponding eigenvalues counted with multiplicity. By the Weyl’s law we
have

#{j : λj ≤ T} ∼ vol(M)
4π

T.

The set of eigenvalues has a clear symmetry; let us write j ∼ k if λj = BM(u) and
λk = BM(±u). Let α < β, and define the pair correlation function

RM(α,β,T) =
#{(j, k) : j ! k,λj,λk ≤ T, α ≤ λj − λk ≤ β}

T
.

The following was proved by Eskin, Margulis, and Mozes [EMM05].

1.1 Theorem ([EMM05], Theorem 1.7). Let M be a two-dimensional flat
torus, and let

BM(x, y) = ax2 + 2bxy + cy2

be the associated quadratic form giving the Laplacian spectrum of M, normalized
so that ac − b2 = 1. Suppose there exist A ≥ 1 such that for all (p1, p2, q) ∈ Z3

with q ≥ 2, we have

(1.2)
∣∣∣
b
a

− p1

q

∣∣∣ +
∣∣∣
c
a

− p2

q

∣∣∣ > q−A.

Then for any interval [α,β] with 0 /∈ [α,β], we have

(1.3) lim
T→∞

RM(α,β,T) = π2(β − α).

Prior to [EMM05], Sarnak [Sar97] showed that (1.3) holds on a set of full
measure in the space of flat tori. The case of inhomogeneous forms, which
correspond to eigenvalues of quasi-periodic eigenfunctions, was also studied by
Marklof [Mar03, Mar02], and by Margulis and the second-named author [MM11].
More recently, Blomer, Bourgain, Radziwill, and Rudnick [BBRlR17] studied
consecutive spacing for certain families of rectangular tori, i.e., b = 0. We also
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refer to the work of Strömbergsson and Vishe [SV20] where an effective version
of [Mar03] is obtained.

In this paper, we prove a polynomially effective version of Theorem 1.1, i.e.,
we provide a polynomial error term for RM(α,β,T).

1.2 Theorem. Let M be a two-dimensional flat torus,

BM(x, y) = ax2 + 2bxy + cy2

the associated quadratic form giving the Laplacian spectrum of M normalized so
that ac − b2 = 1, and let A ≥ 103. Then there are absolute constants δ0 and N,
some A′ depending on A, and C and T0 depending on A, a, b, and c, and for every
0 < δ ≤ δ0, a κ = κ(δ,A) so that the following holds.

Let T ≥ T0, assume that for all (p1, p2, q) ∈ Z3 with Tδ/A′
< q < Tδ we have

(1.4)
∣∣∣
b
a

− p1

q

∣∣∣ +
∣∣∣
c
a

− p2

q

∣∣∣ > q−A.

Then if
|RM(α,β,T) − π2(β − α)| > C(1 + |α| + |β|)NT−κ,

then there are two primitive vectors u1, u2 ∈ Z2 so that

(1.5) ‖u1‖, ‖u2‖ ≤ Tδ/A and |BM(u1, u2)| ≤ T−1+δ

and moreover

RM(α,β,T) − π2(β − α) =
MT (u1, u2)

T
+ O((1 + |α| + |β|)NT−κ)

with

MT (u1, u2) = #
{
((1, (2) ∈ 1

2
Z2 : (1u1 ± (2u2 ∈ Z2, BM((1u1 ± (2u2) ≤ T,

4BM(u1, u2)(1(2 ∈ [α,β]
}
.

Note that our result does not require the assumption that 0 /∈ [α,β] (a restriction
that appears in the work of Eskin, Margulis and Mozes, and is needed in order for
Theorem 1.1 to hold). The proof of Theorem 1.2 is effective, and for all of the
above implicit constants, one can give explicit expressions if desired.

Remark. Let us now elaborate on the term MT (u1, u2) in the statement of
Theorem 1.2: Let u1, u2 ∈ Z2 be two primitive vectors satisfying

0 < ‖ui‖ ≤ Tδ/A and |BM(u1, u2)| ≤ T−1+δ.
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Then for all ((1, (2) ∈ 1
2Z

2, we have

BM((1u1 + (2u2) − BM((1u1 − (2u2) = 4BM(u1, u2)(1(2.

In particular, if T−1−δ ≤ |BM(u1, u2)| ≤ T−1+δ, then there would be , T1−10δ pairs
of integers (1, (2 of size - T

1
2 (1−δ) (so that BM((1u1 + (2u2) ≤ T), such that

(1(2 ∈
[ α

4BM(u1, u2)
,

β

4BM(u1, u2)

]

as the last interval is of length , T1−δ. All such pairs contribute to MT (u1, u2),
making MT (u1,u2)

T , T−10δ, which is bigger than any fixed polynomial error term.
Moreover, even if (1.4) holds, such pairs u1, u2 ∈ Z2 can definitely exist.

If (1.4) holds, up to changing the order such a pair u1, u2 is unique—see
Lemma 2.5—hence there is no need for additional error terms. The subspaces
of R4 spanned by pairs (u1, u2) as above are called exceptional. In Section 6
we introduce a Margulis function that accounts for all the contributions towards
pairs RM out of exceptional spaces and show that exceptional subspaces are the
only source of large error terms.

We now state a corollary of Theorem 1.2. A rectangular torus has extra
multiplicities in the spectrum built in, so to accommodate that we consider the
modified pair correlation function

R′
M(α,β,T) =

#{(j, k) : λj .= λk < T, α ≤ λj − λk ≤ β}
T

.

1.3 Corollary. Let M be a two dimensional flat torus, and let

BM(x, y) = ax2 + 2bxy + cy2

be normalized so that ac − b2 = 1.
(1) Suppose there exist A ≥ 1 and q > 0 such that for all (m, n, k) ∈ Z3 \ {0},

(1.6) |am + bn + ck| > q‖(m, n, k)‖−A.

Then
|RM(α,β,T) − π2(β − α)| ≤ C(1 + |α| + |β|)NT−κ.

(2) Let M be a rectangular torus, i.e., b = 0. Assume there exist A ≥ 1 and q > 0
such that for all (m, n) ∈ Z2 \ {0} we have

|a2m + n| > q‖(m, n)‖−A.

Then
|R′

M(α,β,T) − π2(β − α)| ≤ C(1 + |α| + |β|)NT−κ,

where N is absolute, κ depends on A, and C depends on a, b, c, A, and q.



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 185

Indeed, under (1.6), pairs u1, u2 of primitive integer vectors as in Theorem 1.2
do not exist, and if M is a rectangular torus the unique (up to order) pair of primitive
vectors is given by e1 = (1, 0), e2 = (0, 1), for which the contribution of MT (e1, e2)
can be accounted for by looking at R′

M(α,β,T) instead of RM(α,β,T).
Note that in part (2), though the modified pair correlation function R′

M(α,β,T)
avoids counting zero values, the interval [α,β] is still allowed to contain 0. This is
slightly stronger than assuming 0 /∈ [α,β], as Corollary 1.3.(2) in particular gives
effective bounds on the number of extremely close eigenvalues.

The general strategy of the proof of Theorem 1.2 is similar to [EMM98]
and [EMM05]. That is, we deduce the above theorems froman equidistribution the-
orem for certain unbounded functions in homogeneous spaces. Unlike [EMM98]
and [EMM05], where the analysis takes place in the space of unimodular lattices
in R4, the homogeneous space in question here is

X = SL2(R) × SL2(R)/)′

where )′ is a finite index subgroup of SL2(Z) × SL2(Z).
This reduction is carried out in §3. The lower bound estimate will be proved

using the following effective equidistribution theorem that relies on [LMW22,
Thm. 1.1]:

Let G = SL2(R) × SL2(R). For all h ∈ SL2(R), we let !(h) denote the element
(h, h) ∈ G, and let H = !(SL2(R)). For every t ∈ R and every θ ∈ [0, 2π], let

at =

(
et 0
0 e−t

)

and rθ =

(
cos θ − sin θ

sin θ cos θ

)

.

1.4 Theorem. Assume ) is an arithmetic lattice in G. For every x0 ∈X = G/),
and large enough R (depending explicitly on X and the injectivity radius at x0), for
any et ≥ RD, at least one of the following holds.
(1) For every ϕ ∈ C∞

c (X) and 2π-periodic smooth function ξ on R, we have
∣∣∣∣

∫ 2π

0
ϕ(!(atrθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
ϕ dmX

∣∣∣∣ ≤ S(ϕ)S(ξ)R−κ0

where we use S(·) to denote an appropriate Sobolev norm on both X and R,
respectively.

(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RDtDe−t.

The constants D and κ0 are positive and depend on X but not on x0, and dX is a
fixed metric on X.
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This is a variant of [LMW22, Thm. 1.1]. Indeed, instead of expanding an orbit
segment of the unipotent flow !(us) where

us =

(
1 s
0 1

)

,

here we expand an orbit of the compact group {!(rθ)}. The deduction of Theo-
rem 1.4 from [LMW22, Thm. 1.1] is given in §5 using a fairly simple and standard
argument.

To prove the upper bound estimate, in addition to Theorem 1.4, we also need
to analyze Margulis functions à la [EMM98, EMM05]; our analysis simplifies
substantially thanks to the simpler structure of the cusp in SL2(R) × SL2(R)/)′

compared to that in SL4(R)/SL4(Z). This is the content of §6. Indeed Propo-
sition 6.1 reduces the analysis to special subspaces, see Definition 2.3, that are
closely connected to the pairs of almost BM-orthogonal vectors discussed above.
We study these special subspaces using the elementary Lemma 2.2; in particular,
using this lemma we establish Lemma 2.4, which shows that under (1.4) there are
at most two special subspaces. Finally, Lemma 2.6 shows that even for special
subspaces, only the range asserted in (1.5) can produce enough solutions to affect
the error term.

Acknowledgments. We would like to thank Jens Marklof for helpful con-
versations. We also thank the anonymous referee for valuable comments.

This paper is dedicated to Peter Sarnak on the occasion of his 70th birthday.
Peter’s deep and remarkably broad work touches many areas in mathematics, and
in particular this work is strongly connected to his work: whether directly [Sar97]
or indirectly through the paper of Eskin, Margulis and Mozes [EMM05] where
he is thanked for encouragement and many helpful conversation, as well as in
other ways—some we are aware of, and some that we will surely find out. Peter
has also been consistently and actively encouraging the research towards effective
equidistribution results for unipotent flows (indeed, he has authored one of the
first papers in this direction [Sar81] already in 1981!). The three of us have
been fortunate to benefit greatly from his profound knowledge and exceptional
generosity, and it is a pleasure to dedicate this paper to him with our sincere
gratitude for all he has done to help us and many, many others.
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2 Notation and preliminaries

In this paper

G =

{(
g1 0
0 g2

)

:g1, g2 ∈ SL2(R)

}

and H =

{(
g 0
0 g

)

: g ∈ SL2(R)

}

.

Let g = Lie(G) and h = Lie(H).
We identify G with SL2(R) × SL2(R) and H with

{(g, g) : g ∈ SL2(R)} ⊂ SL2(R) × SL2(R).

Indeed, to simplify the notation, we will often denote

g =

(
g1 0
0 g2

)

∈ G

by (g1, g2). Given v = (x1, y1, x2, y2) ∈ R4, we write g.v = (g1v1, g2v2) where
vi = (xi, yi) ∈ R for i = 1, 2 (for purely typographical reasons, we prefer to work
with row vectors even though representing these as column vectors would be more
consistent).

For all h ∈ SL2(R), we let !(h) = (h, h) ∈ H. In particular, for every t ∈ R and
every θ ∈ [0, 2π], !(at) and !(rθ) denote the images of

(
et 0
0 e−t

)

and

(
cos θ − sin θ

sin θ cos θ

)

in H, respectively.

2.1 Quadratic forms. Let Q0 denote the determinant form on R4:

Q0(x1, y1, x2, y2) = x1y2 − x2y1.

Note that H = G ∩ SO(Q0).
Let ! ⊂ R2 be a lattice and let !∗ be the dual lattice. We normalize !∗ to have

covolume (2π)−2 and fix gM ∈ SL2(R) so that

2π!∗ = gMZ2.

The eigenvalues of the Laplacian on R2/! are ‖v‖2 for v ∈ 2π!∗. Therefore,
given two eigenvalues λi = ‖vi‖2, i = 1, 2, we have

(2.1)
λ1 − λ2 = (‖v1‖2 − ‖v2‖2) = (v1 + v2) · (v1 − v2)

= Q0(v1 + v2,ω(v1 − v2))

where ω = ( 0 −1
1 0 ).
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Recall that G = SL2(R) × SL2(R) ⊂ SL4(R). Define

. = {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4.

Then {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ 2π!∗} = (gM,−ωgMω)..
Let )′ be the maximal subgroup of SL2(Z)×SL2(Z) which preserves .. More

explicitly,

)′ = {(γ1, γ2) ∈ SL2(Z) × SL2(Z) : γ1 ≡ ωγ2ω (mod 2)}.

Let X = G/)′.

Möbius transformations. In this section, we prove an elementary lemma
concerning Möbius transformations. This lemma will be used to complete the
proof of Lemma 2.5; it also will be used in the proof of Lemma 6.4.

Let P denote the set of primitive vectors in Z2. For every t ≥ 1, let

P(t) = {v ∈ P : ‖v‖ < et}.

2.2 Lemma. Let A ≥ 103, s > 0 and 0 < ηA < e−s/100. Assume that for
i = 1, 2 there are vi, vi

′, vi
′′ ∈ P(s) satisfying

(2.2) 1 ≤ |Q0(v,w)| - η−4, for v,w ∈ {vi, vi
′, vi

′′}.

Also suppose there are h ∈ PGL2(R) and C > 0 so that

(2.3) hv1 = µv2 + w1,2, hv1
′ = µ′v2

′ + w′
1,2, hv1

′′ = µ′′v2
′′ + w1,2

where |µ|, |µ′|, |µ′′| ≥ C−1 and ‖w‖ ≤ CηAe−s for w ∈ {w1,2, w′
1,2, w

′′
1,2}.

Then there exists Q ∈ Mat2(Z) with ‖Q‖ ≤ η−100 and λ ∈ R so that

‖h − λQ‖ ≤ C′ηA−50,

where C′ depends on C and polynomially on ‖h‖.

Proof. Let us write vi = (xi, yi), vi
′ = (x′

i, y
′
i), and vi

′′ = (x′′
i , y

′′
i ). The matrix

M1 =

(
y1 −x1

y′
1z1 −x′

1z1

)

for z1 =
x′′
1y1 − x1y′′

1

x′′
1y

′
1 − x′

1y
′′
1

acting on P1 takes (x1 : y1) to (0 : 1), (x′
1 : y′

1) to (1 : 0) and (x′′
1 : y′′

1) to (1 : 1). The
matrix

M2 =

(
−x′

2z2 x2

−y′
2z2 y2

)

for z2 =
x′′
2y2 − x2y′′

2

x′′
2y

′
2 − x′

2y
′′
2
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in turn takes (0 : 1) to (x2 : y2), (1 : 0) to (x′
2 : y′

2) and (1 : 1) to (x′′
2 : y′′

2). By (2.2),
we have that r = |det(M1) det(M2)|−1 is a rational number of height - η−20. Thus
by (2.3)

h = ±√
rM2M1 + O(ηA−50) or

h = ±√
r

(
1 0
0 −1

)

M2M1 + O(ηA−50).

Since the denominators of the entries of M1 and M2 are bounded by η−4, and since
all our implicit constants are allowed to depend on ‖h‖, we may conclude the
claim. !

We draw some corollaries of Lemma 2.2.

Definition 2.3. Let g = (g1, g2) ∈ G. A two-dimensional gZ4-rational linear
subspace L ⊂ R4 is called (ρ,A, t)-exceptional if there are (v1, 0), (0, v2) ∈ Z4

satisfying

(2.4) ‖g1v1‖, ‖g2v2‖ ≤ eρt and |Q0(g1v1, g2v2)| ≤ e−Aρt

so that L ∩ gZ4 is spanned by {(g1v1, 0), (0, g2v2)}.
Given a (ρ,A, t)-special subspace L, we will refer to {(g1v1, 0), (0, g2v2)} as a

spanning set for L.

2.4 Lemma. Let A ≥ 103, and let g = (g1, g2) ∈ G. Let ρ ≤ A/100. Then for
all t large enough, depending on ‖g‖, at least one of the following holds:
(1) There are at most two different (ρ,A, t)-exceptional subspaces.
(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying ‖g−1
2 g1 − λQ‖ ≤ e−(A−100)ρt.

Proof. We begin by proving the first assertion in the lemma. Let η = e−ρt and
s = ρt. Indeed assume there are three different (ρ,A, t)-special subspaces in R4,
and let vi, vi

′, vi
′′ ∈ Ps, i = 1, 2, be the corresponding spanning vectors. Then

1 < |Q0(v,w)| - e2ρt, for v,w ∈ {v1, v
′
1, v1

′′}.
That is, {v1, v1

′, v1
′′} satisfies (2.2) with η = e−ρt so long as t is large enough to

account for the implied constant. Moreover, if we put h = g−1
2 g1, then

hv1 = µv2 + w1,2

where µ ∈ R satisfies |µ| , 1 and ‖w1,2‖ - e−Aρt = η(A−1)e−s (recall that the
implicit constants in these inequalities are allowed to depend polynomially on ‖g1‖
and ‖g2‖). Similarly,

hv ′
1 = µ′v ′

2 + w′
1,2 and hv ′′

1 = µ′′v ′′
2 + w′′

1,2
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where µ′, µ′′ ∈ R satisfy |µ′|, |µ′′| , 1 and ‖w′
1,2‖, ‖w′′

1,2‖ - e−Aρt. Therefore,
{v2, v2

′, v2
′′} also satisfy (2.2). Moreover, h = g−1

2 g1 satisfies (2.3) with A − 1, η,
and s, in view of the above discussion. Hence, Lemma 2.2 implies that the assertion
in part (2) of this lemma holds so long as t is large enough. !

Special subspaces and the spectrum of flat tori. Using the discussion
in §2.1, we translate the conclusion of Lemma 2.4 to a similar statement about the
quadratic form BM.

2.5 Lemma. Let A ≥ 104, and let ρ ≤ A/100. Recall that

BM(x, y) = ax2 + 2bxy + cy2

is renormalized so that ac − b2 = 1. Then for all t ≥ t0, depending on ρ, |a|, |b|,
and |c|, at least one of the following holds:
(1) There is a unique, up to change of order,pair of primitive vectors u1,u2∈Z2\{0}

satisfying

‖ui‖ ≤ eρt and |BM(u1, u2)| ≤ e−Aρt.

(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R
satisfying ∥∥∥∥∥

(
a b
b c

)

− λQ

∥∥∥∥∥ ≤ e−(A−100)ρt.

In particular, if M is a rectangular torus, i.e., b = 0, then t0 may be chosen
so that if part (2) is not satisfied, then (up to changing the order) u1 = (1, 0) and
u2 = (0, 1).

Proof. Let t1 be large enough so that Lemma 2.4 holds for all t ≥ t1. Since BM

is positive definite, there exists t′0 so that if t ≥ t′0, then

|BM(u1, u2)| < e−Aρt

implies that {u1, u2} is linearly independent.
Let t0 = max(t1, t′0) and let t ≥ t0. Put

g = (g1, 1) =

((
a b
b c

)

, 1

)

.

Note that if part (2) in Lemma 2.4 holds, then part (2) in this lemma holds and the
proof is complete. Thus let us assume that part (1) in Lemma 2.4 holds.
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Let ui = (xi, yi) ∈ Z2 \ {0}. Then

BM(u1, u2) = (x1, y1)

(
a b
b c

)(
x2

y2

)

= (ax1 + by1)x2 + (bx1 + cy1)y2

=

((
a b
b c

)(
x1

y1

))

∧
(

−y2

x2

)

= Q0
(
g1(x1, y1), (−y2, x2)

)
.

Thus if u1, u2 satisfy part (1), then (g1(x1, y1), (0, 0)) and ((0, 0), (−y2, x2)) span a
(ρ,A, t)-special subspace for gZ4.

By Lemma 2.4, there is at most two such subspaces. Moreover, since BM( , )
is symmetric, we conclude that

Q0(g1(x2, y2), (−y1, x1)) = Q0
(
g1(x1, y1), (−y2, x2)

)
.

This implies the two special subspaces are spanned by

{(g1(x1, y1), 0, 0), (0, 0,−y2, x2)} or {(g1(x2, y2), 0, 0), (0, 0,−y1, x1)}.

This shows part (1) in this lemma holds.
Assume now that b = 0, and suppose part (2) does not hold. Let ui be as in

part (1). Then

(2.5) |BM(u1, u2)| = |ax1x2 + a−1y1y2| ≤ e−Aρt.

Unless y1y2 = 0, the above contradicts that part (2) does not hold. Therefore, we
have y1y2 = 0. Assuming t is large enough so that the right side in (2.5) is < |a|,
we conclude x1x2 = 0 and the claim follows. !

The following lemma further investigates the contribution of special subspaces,
or more precisely, vectors u1, u2 satisfying part (1) in Lemma 2.5. We note that
condition (2.6) is (1.5) in Theorem 1.2.

2.6 Lemma. Let A ≥ 103 and 0 < ρ < 1/(100A). Let

BM(x, y) = ax2 + 2bxy + cy2

which is normalized so that ac−b2 = 1. The following holds for all large enough t,
depending on ρ, |a|, |b|, and |c|. Let u1, u2 ∈ Z2 \ {0} satisfy

‖ui‖ ≤ eρt and |BM(u1, u2)| ≤ e−Aρt.

Assume further that

(2.6) |BM(u1, u2)| > e(−2+2ρ)t.



192 E. LINDENSTRAUSS, A. MOHAMMADI AND Z. WANG

Let C > 0, then

#
{
((1, (2) ∈ 1

2
Z2 : |(i| ≤ Cet4BM(u1, u2)(1(2 ∈ [α,β]

}
- max(|α|, |β|)e(2−ρ)t

where the implied constant depends on C, a, b, and c.

Proof. Let ((1, (2) satisfy that |(i| ≤ Cet and

(2.7) 4BM(u1, u2)(1(2 ∈ [α,β].

Then the number of solutions with (1 = 0 or (2 = 0 is - et. Therefore, we assume
(i .= 0 for i = 1, 2 for the rest of the argument.

Assume that
|BM(u1, u2)| > e(−2+2ρ)t.

Then (2.7) implies that

(2.8) 0 < 4|(1(2| ≤ max(|α|, |β|)e(2−2ρ)t.

The number of ((1, (2) ∈ Z2 with 0 < |(1| ≤ Cet so that (2.8) holds is

- max(|α|, |β|)te(2−2ρ)t - max(|α|, |β|)e(2−ρ)t

as we claimed. !

3 Circular averages and values of quadratic forms

In this section, we state an equidistribution result for the action of SO(Q0). The-
orem 1.2 will be deduced from this equidistribution theorem in §4 using some
preparatory lemmas which will be established in this section.

Let fi be compactly supported bounded Borel functions on R2, and define f
on R4 by f (w1, w2) = f1(w1)f2(w2). For any g′ ∈ G, let

(3.1) f̂ (g′)′) =
∑

v∈g′.nz

f (v)

where

. = {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4,

.nz = {(w1, w2) ∈ . : w1 .= 0 and w2 .= 0},
)′ = {(γ1, γ2) ∈ SL2(Z) × SL2(Z) : γ1 ≡ ωγ2ω (mod 2)},

and ω = ( 0 −1
1 0 ). Note that )′ preserves . and .nz.

Let X = G/)′, and let mX denote the G-invariant probability measure on X.
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3.1 Theorem. For every A ≥ 104 and 0 < ρ ≤ 10−4, there exist Â (depending
on A) and δ1, δ2 (depending on ρ and A) with

ρ/Â ≤ δ1/A ≤ ρ/100,

so that for all g = (g1, g2) ∈ G and all large enough t, depending linearly on
log(‖gi‖), the following holds.

Assume that for every Q ∈ Mat2(Z) with eρt/Â ≤ ‖Q‖ ≤ eρt and all λ ∈ R, we
have

(3.2) ‖g−1
2 g1 − λQ‖ > ‖Q‖−A/1000.

There exists some C′ depending on A and polynomially on ‖gi‖ so that the following
holds. For any 2π-periodic smooth function ξ on R, if

∣∣∣∣
∫ 2π

0
f̂ (!(atrθ)g)′)ξ(θ) dθ −

∫ 2π

0
ξ dθ

∫

X
f̂ dmX

∣∣∣∣ > C′S(f )S(ξ)e−δ2t

then there are at least one, and at most two, (δ1/A,A, t)-exceptional subspaces,
say L and L′ (for notational convenience, if there is only one exceptional subspace,
set L′ = L). Moreover

∫ 2π

0
f̂ (!(atrθ)g)′)ξ(θ) dθ =

∫ 2π

0
ξ dθ

∫

X
f̂ dmX + M + O(S(f )S(ξ)e−δ2t)

where
M =

∫

C
f̂sp(θ)ξ(θ) dθ

with

f̂sp(θ) =
∑

v∈g.nz∩(L∪L′)

f (!(atrθ)v),

C = {θ ∈ [0, 2π] : f̂sp(θ) ≥ eδ1t}.

The proof of Theorem 3.1 will be completed in §7; it relies on results in §5
and §6. Notice that, even though the functions f1, f2 are bounded onR2, the resulting
function f̂ is unbounded on G/)′. It is well-recognized that such unboundedness
can be overcome with the use of cusp functions and their contracting functions;
see, e.g., [EM22]. The adaptation of this method to our setting where exceptional
subspaces are present will be contained in §6.

The goal in the remaining parts of this section and §4 is to complete the proof of
Theorem 1.2 using Theorem 3.1. We will also explicate the proof of Corollary 1.3
at the end of §4.

Before proceeding, however, let us record an a priori, i.e., without assum-
ing (3.2), upper bound for

∫ 2π
0 f̂ (!(atrθ)g)′) dθ.
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3.2 Lemma. For every 0 < η < 1, there exists tη - |log η| so that the
following hold. Let g = (g1, g2) ∈ G and R ≥ 1; assume that ‖gi‖ ≤ R. Let fi be
the characteristic function of {w ∈ R2 : ‖w‖ ≤ R}, and put f = f1f2.
(1) For every t ≥ tη we have

∫ 2π

0
f̂ (!(atrθ)g)′) dθ - eηt.

(2) Let t ≥ tη. Let L ⊂ R4 be a two-dimensional subspace so that L ∩ gZ4 is
spanned by {(g1v1, 0), (0, g2v2)} for (v1, 0), (0, v2) ∈ Z4 \ {0}. Then

∫

[0,2π]\CL

f̂L(θ) dθ - e(−1+η)t

where f̂L(θ) =
∑

v∈g.nz∩L f (!(atrθ)v) and

CL = {θ ∈ [0, 2π] : f̂L(θ) ≥ eηt}.

The implied constants depend polynomially on R.

We postpone the proof of this lemma to the end of §6. Part (1) in this Lemma
should be compared with [EMM98, Lemma 5.13]; indeed in loc. cit. the integral
appearing as part (1) in Lemma 3.2 is bounded by O(t) (vs. eo(t) that we give here)
which is sharp. The above however suffices for our needs.

3.3 A linear algebra lemma. The goal in the remaining parts of this
section is to relate the circular integrals as they appear in Theorem 3.1 to the
counting problem in Theorem 1.2. This is the content of Lemma 3.4 which should
be compared with [EMM98, Lemma 3.6] and [EM01, Lemma 3.4]. We will also
establish a certain upper bound estimate in Lemma 3.9 which will be used in the
proof of Theorem 1.2.

Let us begin by fixing some notation which will be used in Lemma 3.5 and
Lemma 3.4. Let α < β, R ≥ max{1, |α|, |β|}, R−1 ≤ q ≤ R, and 0 < ε < R−4. Let
3 : R → [0, 1] be a smooth function supported on [q − ε, q]. Let f1 be a smooth
function on R2 satisfying

(3.3) 1[− ε
2 ,

ε
2 ](x) · 3(y) ≤ f1(x, y) ≤ 1

[ −ε−ε2
2 , ε+ε2

2 ]
(x) · 3(y);

we chose 3 and f1 so that their partial derivatives are -R ε−10.
For an interval I = [a, b] and δ > 0, put

(3.4)
Iδ = [a − δ, b + δ] ⊃ I,

I−δ = [a + δ, b − δ] ⊂ I.
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Given two intervals I ⊂ [−R2,R2] and I ′ ⊂ [0,R], let fI,I′ be a smooth function
with partial derivatives -R ε−10 satisfying

(3.5) 1I(1) (x) · 1I′ (1) (|y|) ≤ fI,I′ (x, y) ≤ 1I(2) (x) · 1I′ (2) (|y|),
where we write I(k) = I10kR3ε (in the formula above we used k = 1, 2, but later also
large values of k will be used).

For any function h on R2, define

Jh(y) =
∫

R
h(x, y) dx.

Note that if f1 is as in (3.3), then

(3.6) Jf1 (y) = 3(y)(ε + O(ε2)).

Let f1 be as above (for this q and some 3) and let

f2 = fI0,I1

(for I0 = [−q−1β,−q−1α] and some I1 ⊂ [0,R]). Define f on R4 by

f (v1, v2) = f1(v1)f2(v2).

We will work with a slight variant of polar coordinates in R2: 0 .= w ∈ R2 is
denoted by (θw, ‖w‖) where θw ∈ [0, 2π] is so that rθww = (0, ‖w‖).

3.4 Lemma. Let the notation be as above. Let t > log(4R3ε−2), and let ξ be a
2π-periodic non-negative smooth function. Let v = (v1, v2) ∈ R4 with ‖vi‖ ≥ R−1.
Then

(3.7)

qe2t
∫ 2π

0
f (!(atrθ)v)ξ(θ) dθ

≤




(1 + O(ε))Jf1(e

−t‖v1‖)ξ(θ1) + O(Lip(f1) Lip(ξ)e−2t), if (3.8) holds,

0, otherwise,

where

(3.8) (−q−1Q0(v), e−t‖v2‖) ∈ I(3)
0 × I(3)

1 and ‖v1‖ ≤ 2Ret.

If we moreover assume that e−t‖v2‖ ∈ I1 and Q0(v) ∈ [α,β], then

(3.9)

qe2t
∫ 2π

0
f (!(atrθ)v)ξ(θ) dθ

= (1 + O(ε))Jf1(e
−t‖v1‖)ξ(θ1)f2(−q−1Q0(v), e−t‖v2‖)

+ O(Lip(f1) Lip(ξ)e−2t).

The implied constants depend polynomially on R.
Analogous statements hold with the roles of v1 and v2 switched.
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The proof is based on a direct computation which we will carry out in the next
lemma.

3.5 Lemma. Let the notation be as in Lemma 3.4. Let t > log(4R3ε−2). If

f (!(atrθ)v) .= 0

for some v = (v1, v2) ∈ R4 with ‖vi‖ ≥ R−1 and some θ ∈ [0, 2π], then all of the
following properties hold
(1) q(1 − 2ε) ≤ e−t‖v1‖ ≤ q(1 + ε),
(2) |θ − θv1 | ≤ 2Rεe−2t,
(3) e−t‖v2‖ ∈ I(2)

1 , and
(4) −q−1Q0(v) ∈ I(3)

0 .

Proof. The definitions of f1 and f2 imply that

if ‖vi‖ > (R + 20R3ε)et, then f (!(atrθ)v) = 0

and there is nothing to prove. We thus assume that ‖vi‖ ≤ (R + 20R3ε)et for the
rest of the argument.

For convenience, we will write θ1 = θv1 . Since θ ∈ [0, 2π] satisfies

atrθv1 ∈
[−ε − ε2

2
,
ε + ε2

2

]
× [q − ε, q]

only if

(3.10) |θ − θ1| ≤ 3
2
εe−t‖v1‖−1 ≤ 2Rεe−2t,

we see that when

(3.11) q(1 − 2ε) ≤ e−t‖v1‖ ≤ q(1 + ε)

fails, f (!(atrθ)v) = 0.
Thus, assume that (3.10) and (3.11) hold for the rest of the argument, which is

to say the conditions (1) and (2) in the lemma are satisfied if f (!(atrθ)v) .= 0. We
now show (3) and (4) must also hold.

Let us write

rθ1v2 = (x̄2, ȳ2).

Recall that ‖vi‖ ≤ (R + 20R3ε)et and that θ is in the range (3.10), and write

rθv1 = (x′
1, y

′
1) and rθv2 = (x′

2, y
′
2).
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Then |x′
1| ≤ 4Rεe−t, |y′

1 − ‖v1‖| ≤ 4Rεe−t,

(3.12) |x′
2 − x̄2|, |y′

2 − ȳ2| ≤ 3Rεe−t‖v1‖−1‖v2‖ ≤ 4R3εe−t;

in the last inequality we used ε < R−4, ‖v2‖ ≤ (R + 20R3ε)et, and (3.11).
Thus, we conclude that

atrθv2 = (etx′
2, e

−ty′
2) = (etx̄2 + x2,θ, e−tȳ2 + y2,θ)

where |x2,θ| ≤ 4R3ε and |y2,θ| ≤ 4R3εe−2t.
In view of the definition of f2, we conclude that f2(atrθv2) = 0, unless

etx′
2 ∈ (I(1)

0 )20R3ε and e−ty′
2 ∈ (I(1)

1 )20R3ε + ε

These and the bound on x2,θ imply that

(3.13) etx̄2 ∈ (I(1)
0 )24R3ε

and hence using the upper bound on |x̄2| implied by (3.13), we get

(3.14) ||ȳ2| − ‖v2‖| ≤ R4e−2t

‖v2‖
.

Since e−ty′
2 ∈ (I(1)

1 )20R3ε+ε and |y2,θ| ≤ 4R3εe−2t, we conclude from (3.14) that if
f2(atrθv2) .= 0, then

e−t‖v2‖ ∈ (I(1)
1 )21R3ε

which establishes (3) in the lemma.
Finally, combining (3.13) and (3.11), we conclude that

q−1‖v1‖x̄2 ∈ (I(1)
0 )30R3ε.

Since !(rθ) ∈ SO(Q0) for all θ and !(rθ1)v = (0, ‖v1‖, x̄2, ȳ2), we get

−q−1Q0(v) = −q−1Q0(!(rθ1v)) = q−1‖v1‖x̄2 ∈ I(2)
0 ,

as it was claimed in (4). !
We now turn to the proof of Lemma 3.4.

Proof of Lemma 3.4. For convenience we write θ1 = θv1 . By Lemma 3.5
if f (!(atrθ)v) .= 0, then all the following hold true:

q(1 − 2ε) ≤ e−t‖v1‖ ≤ q(1 + ε),(3.15a)

|θ − θ1| ≤ 2Rεe−2t,(3.15b)

e−t‖v2‖ ∈ I(3)
1 ,(3.15c)

− q−1Q0(v) ∈ I(3)
0 .(3.15d)
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We begin with the following computation which will be used in the proof of
both (3.7) and (3.9):

∫ 2π

0
f1(atrθv1) dθ =

∫ 2π

0
f1(−et‖v1‖ sin θ, e−t‖v1‖ cos θ) dθ.

Performing the change of variable z = −et‖v1‖ sin θ, the above integral equals

(3.16)

e−t

‖v1‖
∫ ∞

−∞
f1
(
z, e−t‖v1‖

√
1 − (e−tz/‖v1‖)2

) 1√
1 − (e−tz/‖v1‖)2

dz

=
e−t

‖v1‖
∫ ∞

−∞
f1(z, e−t‖v1‖) dz + O(R2 Lip(f1)e−4t)

= q−1(1 + O(ε))e−2tJf1(e
−t‖v1‖) + O(R2 Lip(f1)e−4t)

where in the last equality we used (3.15a) and (3.6).
Let us now begin the proof of (3.7). We can restrict the integration in (3.7) to θ

satisfying (3.15b). In this range

(3.17) |ξ(θ) − ξ(θ1)| ≤ 2Rεe−2t Lip(ξ).

Since 0 ≤ f1, f2 ≤ 1 and ξ is non-negative, we have

(3.18)
∫ 2π

0
f (!(atrθ)v)ξ(θ) dθ ≤

∫ 2π

0
f1(atrθ)ξ(θ) dθ.

Moreover, in view of (3.17), we have

f1(atrθ)ξ(θ) = f1(atrθv1)ξ(θ1) + O(R2 Lip(ξ)εe−2t).

This, (3.18), and the fact that the range of integration is (3.15b) implies

e2t
∫ 2π

0
f (!(atrθ)v)ξ(θ) dθ ≤ ξ(θ1)e2t

∫ 2π

0
f1(atrθv1) + O(R2 Lip(ξ)εe−2t).

This and (3.16) imply that

(3.19)
e2t

∫ 2π

0
f (!(atrθ)v)ξ(θ) dθ

≤ q−1(1 + O(ε))Jf1(e
−t‖v1‖)ξ(θ1) + O(R2 Lip(f1) Lip(ξ)εe−2t).

Thus (3.7) follows from (3.19) in view of (3.15c) and (3.15d).
Note that the claim regarding E follows as well, indeed if either (3.15a), (3.15c)

or (3.15d) fails, both the left and right side of (3.7) equal zero.
The proof of (3.9) is similar. Indeed one argues as in the proof of Lemma 3.5

to show that if e−t‖v2‖ ∈ I1 and Q0(v) ∈ [α,β], then for all θ in the range (3.15b),
one has

f2(atrθv2) = 1.

One then repeats the above argument and obtains (3.9). !
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3.6 A smooth cell decomposition. Let

4 = {(w1 + w2,ω(w1 − w2)) : ‖wk‖ ≤ 1},
D = {(v1, v2) : ‖vk‖ ≤ 1}.

As before, write v = (v1, v2) ∈ R4 where vk ∈ R2. Let π1(v) = (v1, 0) and
π2(v) = (0, v2); abusing the notation, we also consider πk(4) ⊂ R2.

Write 4 \ D = 41 ∪ 42 where

41 : = {(v1, v2) ∈ 4 : ‖v1‖ > 1} and

42 : = {(v1, v2) ∈ 4 : ‖v1‖ ≤ 1, ‖v2‖ > 1}.

A direct computation shows that (v1, v2) ∈ 4 if and only if

‖v2‖2 ≤ 4 − ‖v1‖2 − 2|Q0(v1, v2)|.

It follows that for every v1 ∈ π1(41), we have

(3.20) {‖λv1‖ : (v1,λv1) ∈ 41} = [0,
√

4 − ‖v1‖2],

and for v2 ∈ π2(42), we have

{‖λv2‖ : (λv2, v2) ∈ 42} = [0,min(1,
√

4 − ‖v2‖2)].

Fix some R ≥ 103 and let 0 < ε < R−20. Let E ∈ N be so that

1
E

≤ 100R10ε ≤ 1
E − 1

,

and put

Ii =
[ i − 1

E
,

i
E

]
for all 1 ≤ i ≤ E.

Fix two families of smooth functions {ξ−
i } and {ξ+

i }with C1 norm- ε−10 satisfying
the following:

(ξ-1) For all i, 0 ≤ ξ−
i ≤ ξ+

i ≤ 1,

ξ+
i ≡ 1 on 2πIi, supp(ξ+

i ) ⊂ 2π(Ii)ε2,

ξ−
i ≡ 1 on 2π(Ii)−4ε2 , supp(ξ−

i ) ⊂ 2π(Ii)−2ε2

(here we use the notation (3.4)). We extend ξ±i to 2π-periodic functions on R.
Similarly, let E′ ∈ N be so that 1

E′ ≤ 100R9ε ≤ 1
E′−1 , and let

I ′
j =

[ j − 1
E′ ,

j
E′

]
for all 1 ≤ j ≤ E′.

Fix two families of functions {3+
j } and {3−

j } with C1 norm - ε−10 so that
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(3-1) For all i, 0 ≤ 3−
j ≤ 3+

j ≤ 1,

3+
j ≡ 1 on RIj, supp(3+

j ) ⊂ R(Ii)ε2,

3−
j ≡ 1 on R(Ij)−4ε2 , supp(3−

j ) ⊂ R(Ii)−2ε2 .

Extend 3±
j to R by defining them to equal 0 outside their supports.

Define

ϕ+
i,j(θ, r) = ξ+

i (θ)3+
j (r) and ϕ−

i,j(θ, r) = ξ−
i (θ)3−

j (r).

We will consider ϕ±
i,j as functions onR2 using our slightly non-standard polar coor-

dinate system where any 0 .= w ∈ R2 corresponds to (θw, ‖w‖) if rθww = (0, ‖w‖).
Let

(3.21)
I+
1 = {(i, j) : supp(ϕ+

i,j) ∩ π1(41) .= ∅},
I−
1 = {(i, j) : supp(ϕ−

i,j) ⊂ π1(41)}.

We define I±2 similarly with 42 and π2 in lieu of 41 and π1. Note that for k = 1, 2
and σ = ± ∣∣∣∣area(πk(4k)) −

∑

(i,j)∈Iσ
k

∫
ϕσ

i,j

∣∣∣∣ - ε.

We will work with k = 1 for the remainder of this section; similar analysis
applies to k = 2 with the role of v1 and v2 switched. For all (i, j) ∈ I+

1, let

4+
i,j = {(v1, v2 + w) : (v1, v2) ∈ 41,ϕ

+
i,j(v1) = 1, ‖w‖ ≤ 3Rε}.

We will also define 4i,j ⊂ 4+
i,j as follows. In view of (3.20), we will call the

pair (i, j) typical if

inf{
√

4 − ‖v1‖2 : v1 ∈ supp(ϕ+
i,j) ∩ π1(41)} ≥ √

ε.

Let I̊−
1 denote the set of (i, j) ∈ I−

1 where (i, j) is typical and for every

(v1,λv1) ∈ 41 ∩ (supp(ϕ−
i,j) × R2) with ‖λv1‖ ∈ ([0,

√
4 − ‖v1‖2])−20Rε

we have (v1,λv1 + w) ∈ 41 for all w ∈ R2 with ‖w‖ ≤ 10Rε.
For any (i, j) ∈ I̊−

1 , set

(3.22)
4i,j := {(v1, v2 + w) : (v1, v2) ∈ 41 ∩ (supp(ϕ−

i,j) × R2),

w ∈ R2, ‖w‖ ≤ ε} ∩ 41.

Since supp(ϕ−
i,j) ⊂ {w : ϕ+

i,j(w) = 1}, we have 4i,j ⊂ 4+
i,j. Moreover, since

{supp(ϕ−
i,j)} is a disjoint collection, {4i,j} is a disjoint collection.
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In view of (ξ-1), (3-1), and the above definitions,

141 ≤
∑

I+
1

14+
i,j

≤ 4 · 1{(v!,v2):‖vk‖≤3},(3.23a)

∑

I̊−
1

14i,j ≤ 141.(3.23b)

The intervals I+
i,j and I−

i,j. In our application of Lemma 3.4, ξ±i will play the
role of ξ; we will also work with f = f1f2 where f1 is defined using 3±

j above and f2
is defined using I0 = [−q−1β,−q−1α] (for some R−1 ≤ q ≤ R) and intervals I±i,j
which we now define. Put

(3.24)
I ′
i,j,+ = [0, b+

i,j], b+
i,j = sup{

√
4 − ‖v1‖2 :v1 ∈ supp(ϕ+

i,j) ∩ π1(41)},
I ′
i,j,− = [0, b−

i,j], b−
i,j = inf{

√
4 − ‖v1‖2 :v1 ∈ supp(ϕ+

i,j) ∩ π1(41)}.

If (i, j) is typical, i.e., if b−
i,j ≥ √

ε, put

(3.25) I+
i,j = (I ′

i,j,+)10ε and I−
i,j = (I ′

i,j,−)−200R10ε.

Since supp(ϕ±
i,j) has diameter ≤ 200R10ε and ε < R−20, if (i, j) is not typical, then

b+
i,j ≤ 2

√
ε. In this case, put I±i,j = [0, 3

√
ε].

We have the following lemma.

3.7 Lemma. Assume R ≥ max{103, |α|, |β|} and let R−1 ≤ q ≤ R. Let
t ≥ log(R2ε−1), where as before 0 < ε < R−20.
(1) Let I0 = [−q−1β,−q−1α]. Let (i, j) ∈ I̊−

1 and let f1 satisfy (3.3) with 3−
j (and

with ε′ = 200R10ε instead of ε). If

Jf1(e
−t‖v1‖)ξ−

i (θv1 )1I(3)
0

(−q−1Q0(v))1(I−i,j)
(3) (e−t‖v2‖) .= 0

for some v = (v1, v2) ∈ R4, then all the following hold
(a) Q0(v) ∈ ([α,β])30R4ε, and
(b) e−tv1 ∈ supp(ϕ−

i,j), and
(c) e−tv ∈ 4i,j.

(2) Let (i, j) ∈ I+
1 . If v = (v1, v2) ∈ et4+

i,j satisfies Q0(v) ∈ [α,β], then

e−t‖v2‖ ∈ I+
i,j.

Proof. We first prove part (1). If Q0(v) .∈ ([α,β])30R4ε, then

−q−1Q0(v) .∈ (I0)30R3ε = I(3)
0 ,
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hence
1I(3)

0
(−q−1Q0(v)) = 0.

Moreover, if we put v̄1 := e−tv1, then θv̄1 = θv1 , and v̄1 .∈ supp(ϕ−
i,j) would imply

that 3−
j (e−t‖v1‖)ξ−

i (θv1 ) = 0. This in turn yields

0 ≤ f1(x, e−t‖v1‖)ξ−
i (θv1 ) ≤ 3−

j (e−t‖v1‖)ξ−
i (θv1 ) = 0,

see (3.3); thus, Jf1(e
−t‖v1‖)ξ−

i (θv1 ) = 0. In conclusion, we may assume that

(3.26) Jf1(e
−t‖v1‖)ξ−

i (θv1 )1I(3)
0

(−q−1Q0(v))1(I−i,j)
(3) (e−t‖v2‖) .= 0,

and that
Q0(v) ∈ ([α,β])30R4ε and v̄1 ∈ supp(ϕ−

i,j).

We need to show that (c) is also satisfied.
Since Q0(v) ∈ ([α,β])30R4ε, where R ≥ max{103, |α|, |β|} and ε < R−20, and

‖v1‖ ≥ et, there is λ ∈ R so that

(3.27) v2 = λv1 + w, where w ⊥ v1 and ‖w‖ ≤ 2R‖v1‖−1 ≤ 2Re−t.

Thus e−tv2 = λe−tv1 + e−tw = λv̄1 + e−tw.
Moreover, by (3.26), we have e−t‖v2‖ ∈ (I−

i,j)
(3) = (I−

i,j)30R3ε, where

I−
i,j = (I ′

i,j,−)−200R10ε and I ′
i,j,− ⊂ [0,

√
4 − ‖v̄1‖2],

see (3.24) and (3.25). Since ‖e−tw‖ ≤ 2Re−2t, we conclude that

‖λv̄1‖ ∈ ([0,
√

4 − ‖v̄1‖2])−20Rε.

In particular,
(v̄1,λv̄1) ∈ 41 ∩ (supp(ϕ−

i,j) × R2),

and v = et(v̄1,λv̄1+e−tw) where ‖e−tw‖ ≤ 2Re−2t. By the definition of I̊−
1 and 4i,j,

we conclude that e−tv ∈ 4i,j. Thus, (c) also holds.
The proof of (2) is similar to the proof of (c), see in particular (3.27). !

3.8 Upper bound estimates. Before starting the proof of Theorem 1.2,
we record a weaker (but more explicit) version of [EMM98, Thm. 2.3], which will
be used in the sequel—see also the very recent work of Kelmer, Kontorovich, and
Lutsko [KKL23].

For every R > 0, let

D(R) = {(v1, v2) : ‖vk‖ ≤ R}.
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Then D(R) \ D(e−1R) = D(R)1 ∪ D(R)2, where

D1(R) = {(v1, v2) ∈ D(R) : e−1R < ‖v1‖ ≤ R} and

D2(R) = {(v1, v2) ∈ D(R) : ‖v1‖ ≤ e−1R, e−1R < ‖v2‖ ≤ R}.

We constructed smooth cell decomposition for 41 and 42 in §3.6; in the following
lemma we will use a similar construction (without repeating this construction)
for D1(R) and D2(R).

3.9 Lemma. Let g = (g1, g2) ∈ G and put .′ = g.. Let

R ≥ max{103, |α|, |β|, ‖g1‖±1, ‖g2‖±1},

and let 0 < η < 1. There exists t0 - |log η| so that if t ≥ t0, then

#{v = (v1, v2) ∈ .′ : max(‖v1‖, ‖v2‖) ≤ Ret,α ≤ Q0(v) ≤ β} - e(2+η)t

where the implied constant depends polynomially on R.

Proof. The following basic lattice point estimate will be used:

(3.28) #{v ∈ .′ ∩ et/2D(R)} - e2t

where the implied constant depends polynomially on R.
Since R is fixed, we will denote Dk(R) by Dk (k = 1, 2) for the rest of the proof.

Let ε = 10−6R−20. Apply the construction in §3.6 for π1(D1) with this R and ε. In
particular, the functions ξ+

i are defined as in (ξ-1) with

Ii =
[ i − 1

E
,

i
E

]
for all 1 ≤ i ≤ E where

1
E

≤ 100R10ε ≤ 1
E − 1

,

and 3+
j are defined as in (3-1) with

I ′
j =

[ j − 1
E′ ,

j
E′

]
for all 1 ≤ j ≤ E′ where

1
E′ ≤ 100R9ε ≤ 1

E′ − 1
.

For all i, j as above, let ξi = ξ+
i , 3j = 3+

j , and let ϕi,j = ξi3j. Put

I+
1 = {(i, j) : supp(ϕi,j) ∩ π1(D1) .= ∅};

for all (i, j) ∈ I+
1, we have supp(3j) ⊂ [e−2R,R] ⊂ [R−1,R].

For all (i, j) ∈ I+
1, put

D̂i,j = {(v1, v2) ∈ R4 : ϕi,j(v1) = 1, ‖v2‖ ≤ R}.

Then 1D1 ≤ ∑
I+

1
1D̂i,j

≤ 4D(2R)1 .
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Define f1 as in (3.3) for q and 3j, and with 200R10ε instead of ε. Let

(3.29) f2 = f[−q−1β,−q−1α],[0,R],

see (3.5). Put fi,j = f1f2. By the choice of R, we have
∑

fi,j ≤ 4D(2R).
By Lemma 3.4, for any v = (v1, v2) ∈ etD̂i,j with Q0(v) ∈ [α,β], we have

(3.30)

e2t
∫ 2π

0
fi,j(!(atrθ)v)ξi(θ) dθ

= q−1(1 + O(ε))Jf1(e
−t‖v1‖)ξi(θv1 )f2(−q−1Q0(v), e−t‖v2‖)

+ O(Lip(f1) Lip(ξi)e−2t)

where the implied constant depends on R.
First note that, if t is large enough compared to R, we have

(3.31) O(Lip(f1) Lip(ξi)e−2t) - ε−20e−2t ≤ ε2.

Furthermore, for any v = (v1, v2) ∈ etD̂i,j so that Q0(v) ∈ [α,β], we have
f2(q−1Q0(v), e−t‖v2‖) = 1. Thus, using (3.6), we have

(3.32) Jf1(e
−t‖v1‖)ξi(θv1 )f2(q

−1Q0(v), e−t‖v2‖) = ε + O(ε2).

Put x = g)′. Summing (3.30) over all v ∈ .′ ∩ etD̂i,j so that Q0(v) ∈ [α,β] and
using (3.30) and (3.32), we conclude that

(3.33) ε(#{v ∈ .′ ∩ etD̂i,j : α ≤ Q0(v) ≤ β})-qe2t
∫ 2π

0
f̂i,j(!(atrθ)x) dθ,

where we used 0 ≤ ξi ≤ 1 and replaced ε2 + ε+ O(ε2) obtained from adding (3.31)
and (3.32) by O(ε).

Summing (3.33) over all (i, j) ∈ I+
1 and using

∑
i,j fi,j ≤ 4D(2R), we get

#{v ∈ .′ ∩ etD1 : α ≤ Q0(v) ≤ β} - ε−1qe2t
∫ 2π

0
1̂D(2R)(!(atrθ)x) dθ.

One obtains a similar bound for the number v ∈ .′ ∩ etD2 with Q0(v) ∈ [α,β].
Since D \ e−1D = D1 ∪ D2 and ε = 10−6R−20, we conclude that

#{v ∈ .′ ∩ et(D \ e−1D) : α ≤ Q0(v) ≤ β}

- ε−1qe2t
∫ 2π

0
1̂D(2R)(!(atrθ)x) dθ.

Let tη be as in Lemma 3.2 applied with η and 2R, and let t > 10tη. Then by
Lemma 3.2,

#{v ∈ .′ ∩ et(D \ e−1D) : α ≤ Q0(v) ≤ β} - e(2+η)t.
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We may repeat the above with t − ( for all 0 ≤ ( ≤ t/2, and obtain

(3.34) #{v ∈ .′ ∩ et−((D \ e−1D) : α ≤ Q0(v) ≤ β} - e(2+η)(t−();

we also used t − ( ≥ t/2 ≥ tη when applying Lemma 3.2 with t − (.
Since et(e−(D) = et−(D, summing (3.34) over 0 ≤ ( ≤ t/2, we conclude that

(3.35) #{v ∈ .′ ∩ et(D \ e−t/2D) : α ≤ Q0(v) ≤ β} - e(2+η)t.

The lemma follows from (3.35) and (3.28). !

4 Proof of Theorem 1.2

The proof relies on Theorem 3.1 and will be completed in some steps. Recall that
M = R2/! and that !∗ denotes the dual lattice. In view of our normalization,
2π!∗ = gMZ2 where gM ∈ SL2(R). Let

(4.1) g = (gM,−ωgMω) = (g1, g2) ∈ G where ω =

(
0 −1
1 0

)

.

4.1 Passage to Q0. As it was observed in (2.1), if λi = ‖vi‖2, where for
i = 1, 2, vi ∈ 2π!∗ is an eigenvalue of the Laplacian of M, then

(4.2) λ1 − λ2 = Q0(v1 + v2,ω(v1 − v2)).

Define 4 = {(v1 + v2,ω(v1 − v2)) : ‖vi‖ ≤ 1}; and let

.′ = {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ 2π!∗} = g.

where . = {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ Z2}.
Let T be a (large) parameter, and put t = 1

2 log T . In view of (4.2),

(4.3) RM(α,β,T) = #{v ∈ .′
nz ∩ et4 : α ≤ Q0(v) ≤ β};

recall that .′
nz = {(w1, w2) ∈ .′ : wi .= 0}.

Let A and δ be as in Theorem 1.2. Without loss of generality, we assume
A ≥ 105 and 0 < δ < 10−5. Let Â be given by Theorem 3.1 applied with 103A. We
will show the claim in Theorem 1.2 holds with A′ = 10Â. To simplify the notation,
write Ā = 103A for the rest of the proof.

Thus let us assume (1.4) holds for A′: for T ≥ T0 (T0 is a yet to be determined
large constant) and all (p1, p2, q) ∈ Z3 with Tδ/A′

< q < Tδ,

(4.4)
∣∣∣
b
a

− p1

q

∣∣∣ +
∣∣∣
c
a

− p2

q

∣∣∣ > q−A.
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This implies that so long as t = 1
2 logT is large enough (depending on a, b, and c),

we have

(4.5) g−1
2 g1 = −ωg−1

M ωgM =

(
a b
b c

)

satisfies (3.2) with t, ρ = δ/10, Â. That is: for every Q ∈ Mat2(Z) with
eρt/Â ≤ ‖Q‖ ≤ eρt and all λ ∈ R, we have

(4.6) ‖g−1
2 g1 − λQ‖ > ‖Q‖−A = ‖Q‖−Ā/1000.

4.2 Lemma. There are at most two gZ4-rational two-dimensional sub-
spaces L,L′ so that if for some 2t/5 ≤ s ≤ t, Ls is a (δ1/Ā, δ1, s)-exceptional
subspace, then Ls = L or L′.

Proof. Let 2t/5 ≤ s ≤ t. Recall that a (δ1/Ā, δ1, s)-exceptional subspace is
spanned by two vectors (g1w1, 0), (0, g2w2) ∈ gZ4 satisfying

(4.7)
0 < ‖giwi‖ ≤ eδ1s/Ā, and

|Q0(g1w1, g2w2)| ≤ e−δ1s.

We also note that

eδ1s/Ā ≤ eδ1t/Ā and e−δ1s ≤ e−2δ1t/5

for any 2t/5 ≤ s ≤ t.
Assume now that there are three pairs (possibly corresponding to different

values of 2t/5 ≤ s ≤ t) so that (4.7) is satisfied. Then Lemma 2.4, applied
with δ1/Ā and 2Ā/5, implies that there is Q ∈ Mat2(Z) with ‖Q‖ ≤ e100δ1t/Ā so that

‖g−1
2 g1 − λQ‖ =

∥∥∥∥∥

(
a b
b c

)

− λQ

∥∥∥∥∥ ≤ e−( 2Ā
5 −100)(δ1/Ā)

≤ max{‖Q‖−Ā/1000, 100e−ρĀt/(1000Â)}.

Since ρ/Â ≤ δ1/Ā ≤ ρ/100, this contradicts the fact that g−1
2 g1 satisfies (4.6)

with t, ρ, Â—note that if ‖Q‖ ≤ eρt/Â, we may replace Q by an integral multiple
nQ with eρ/Â ≤ ‖nQ‖ ≤ 2eρt/Â . The proof is complete. !

Let L and L′ be as in Lemma 4.2. For a set E ⊂ R4 and s > 0 we let

Ns(E) := #{v ∈ .′
nz ∩ esE : α ≤ Q0(v) ≤ β},

N′
s(E) := #{v ∈ (.′

nz \ (Ls ∪ L′
s)) ∩ esE : α ≤ Q0(v) ≤ β}.
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4.3 Counting and circular averages. For the rest of the proof, we
fix ε = e−η′t for some 0 < η′ < 1/100 which is small and will be optimized
later. We will also assume β − α ≥ ε otherwise Theorem 1.2 holds trivially.

Recall that
4 = {(w1 + w2,ω(w1 − w2)) : ‖wi‖ ≤ 1},

and that 4 \ D = 41 ∪ 42 where D = {(v1, v2) ∈ R4 : ‖vk‖ ≤ 1}, and

41 = {(v1, v2) ∈ 4 : ‖v1‖ > 1} and

42 = {(v1, v2) ∈ 4 : ‖v1‖ ≤ 1, ‖v2‖ > 1}.

Let R be a large constant (we will always assume R < ε−1/20, hence, R is much
smaller that et), satisfying

R ≥ max{103, |α|, |β|, |a|, |b|, |c|};

note that πk(4) ⊂ B(0,R).
Apply the construction in §3.6 for πk(4k) with ε and R here. The analysis for

k = 1 and 2 are similar, thus, let k = 1 until further notice. Let

ϕ±
i,j = ξ±i 3±

j for (i, j) ∈ I±1 .

Note that supp(3±
j ) ⊂ [q − 200R10ε, q] ⊂ [R−1,R] for some R−1 ≤ q ≤ R, see

(3-1)—indeed in the case at hand, we have 1 ≤ q ≤ 2.
For σ = ±, define f σ

1 as in (3.3) for q and 3σ
j . Let

(4.8) f σ
2 = fIσ0 ,Iσi,j ,

where I+
0 = [−q−1β,−q−1α] and I−

0 = (I+
0 )−100R5ε, see (3.5) and (3.4). Put

f σ
i,j = f σ

1 f σ
2 .

4.4 Lemma. Let the notation be as above, and let L and L′ denote (δ1/Ā, δ1, t)-
exceptional subspaces if they exist.

If (i, j) ∈ I̊−
1 , then

(4.9)
qe2t

∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f−
i,j (!(atrθ)v)ξ−

i (θ) dθ

≤ (ε + O(ε2)) · N′
t (4i,j) + O(ε−21).

Moreover for every (i, j) ∈ I+
1 , we have

(4.10) (ε + O(ε2)) · N′
t (4

+
i,j) ≤ qe2t

∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f +
i,j(!(atrθ)v)ξ+

i (θ) dθ.

The implied constants depend polynomially on R.
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The proof is similar to the proof of Lemma 3.9. More precisely, we will
use (3.7) for f−

i,j and (3.9) for f +
i,j; let us now turn to the details.

Proof. When there is no confusionwe drop i, j from the notation and denote f±i,j
by f±, ξ±i by ξ±, etc. Also, we will put I0 = I−

0 and I1 = I−
i,j, but will keep the more

cumbersome notation for I+
0 and I+

i,j.
By (3.7) in Lemma 3.4 applied with f− = f−

i,j , for any v ∈ R4, we have

(4.11)
qe2t

∫ 2π

0
f−(!(atrθ)v)ξ−(θ) dθ

≤ (1 + O(ε))Jf −
1
(e−t‖v1‖)ξ−(θv1 )1I(3)

0
(−q−1Q0(v))1I(3)

1
(e−t‖v2‖) + E,

where I(k) = I10kR3ε and

(4.12) E = O(Lip(f−
1 ) Lip(ξ−)e−2t);

furthermore, E = 0 if

(−q−1Q0(v), e−t‖v2‖) .∈ I(3)
0 × I(3)

1 or ‖v1‖ > 2Ret.

By (3.9) in Lemma 3.4 applied with f + = f +
i,j, for any v ∈ R4 with e−t‖v2‖ ∈ I+

i,j

and Q0(v) ∈ [α,β], we have

(4.13)

qe2t
∫ 2π

0
f +(!(atrθ)v)ξ+(θ) dθ

= (1 + O(ε))Jf +
1
(e−t‖v1‖)ξ+(θv1 )f

+
2 (−q−1Q0(v), e−t‖v2‖)

+ O(Lip(f +
1 ) Lip(ξ+)e−2t).

In particular, (4.13) holds for all v ∈ et4+
i,j with Q0(v) ∈ [α,β] thanks to part (2)

in Lemma 3.7.
Before analysing (4.11) and (4.13) further, we record the following:

(4.14) O(Lip(f±1 ) Lip(ξ±)e−2t) = O(ε−20e−2t) - ε3,

so long as t is large enough (recall that the implied constants depend polynomially
on R).

Let us now begin with (4.13). In view of (3.6), for any v = (v1, v2) ∈ et41 so
that α ≤ Q0(v) ≤ β, we have

(4.15)
Jf +

1
(e−t‖v1‖)ξ+(θv1 )f

+
2 (−q−1Q0(v), e−t‖v2‖)

= (ε + O(ε2))3+(e−t‖v1‖)ξ+(θv1 )f
+
2 (−q−1Q0(v), e−t‖v2‖).

Moreover, for every v ∈ et4+
i,j, satisfying α ≤ Q0(v) ≤ β,

f +
2 (−q−1Q0(v), e−t‖v2‖) = 1, ξ+(θv1 ) = 1, and 3+(e−t‖v1‖) = 1;
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from this and (4.15), we conclude that

Jf +
1
(e−t‖v1‖)ξ+(θv1 )f

+
2 (−q−1Q0(v), e−t‖v2‖) = (ε + O(ε2)).

Together with (4.13) and (4.14), this implies that

(4.16) qe2t
∫ 2π

0
f +(!(atrθ)v)ξ+(θ) dθ = ε + O(ε2)

for every v ∈ et4+
i,j with α ≤ Q0(v) ≤ β.

Summing (4.16) over all such v ∈ .′
nz \ (L ∪ L′), we obtain

(4.17) (ε + O(ε2)) · N′
t (4

+
i,j) ≤ qe2t

∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f +(!(atrθ)v)ξ+(θ) dθ.

This establishes (4.10).
Let us now assume (i, j) ∈ I̊−

1 and obtain a lower bound for Nt(4i,j). For this,
we investigate the term appearing in the second line of (4.11).

We first claim that

Jf −
1
(e−t‖v1‖)ξ−(θv1 )1I(3)

0
(−q−1Q0(v))1I(3)

1
(e−t‖v2‖) .= 0,

then Q0(v) ∈ [α,β] and v ∈ et4i,j.
To see the claim, recall that by part (1) in Lemma 3.7, for any v ∈ R4,

Jf −
1
(e−t‖v1‖)ξ−(θv1 )1I(3)

0
(−q−1Q0(v))1I(3)

1
(e−t‖v2‖) = 0

unless all the following are satisfied

Q0(v) ∈ [α + 50R5ε,β − 50R5ε],(4.18a)

v1 ∈ et supp(ϕ−
i,j),(4.18b)

and

v ∈ et4i,j.(4.18c)

In deducing (4.18a) from Lemma 3.7, we used the definitions

I(3)
0 = (I−

0 )30R3ε and I−
0 = ([−q−1β,−q−1α])−100R5ε.

We conclude from (4.18a) that Q0(v) ∈ [α,β]. Using the definition of 4i,j

in (3.22) and since 2R3e−2t < ε, (4.18c) implies that v ∈ et4i,j, and completes the
proof of the claim.

We now return to the proof of the lemma. Recall that

Jf −
1
(e−t‖v1‖)ξ−(θv1 )1I(3)

0
(−q−1Q0(v))1I(3)

1
(e−t‖v2‖)

≤ Jf −
1
(e−t‖v1‖) = (ε + O(ε2))3−(e−t‖v1‖) ≤ ε + O(ε2).
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This and the above claim imply that

(4.19)

∑

v∈.′
nz\(L∪L′)

Jf −
1
(e−t‖v1‖)ξ−(θv1 )1I(3)

0
(−q−1Q0(v))1I(3)

1
(e−t‖v2‖)

≤ (ε + O(ε2)) · N′
t (4i,j).

Moreover, since (−q−1Q0(v), e−t‖v2‖) .∈ I(3)
0 × I(3)

1 or ‖v1‖ > 2Ret imply E = 0, we
conclude from Lemma 3.9 applied with η = η′/10 that

∑

v∈.′
E - ε−20e−2te(2+η)t - ε−21;

we used Lip(f−
1 ) Lip(ξ−)e−2t - ε−20e−2t, see (4.14), and ε = e−η′t. This, (4.19)

and (4.11) imply that

qe2t
∑

v∈.′
nz\L∪L′

∫ 2π

0
f−(!(atrθ)v)ξ(θ) dθ + O(ε−21) ≤ (ε + O(ε2)) · N′

t (4i,j),

as we claimed in (4.9). !
We will use Theorem 3.1 to reduce both (4.9) and (4.10) to the study

of
∫
X f̂±i,j dmX, see (3.1). Let us begin with computing this integral.

4.5 Lemma. For σ = ± let f σ
i,j = f σ

1 f σ
2 , where for k = 1, 2, f σ

k is as in §4.3.
There is an absolute constant c. so that

(4.20) q
∫

X
f̂ σ
i,j dmX = c.ε(β − α)|Iσ

i,j|
∫

3σ
j + O(ε2)(β − α)|Iσ

i,j|
∫

3σ
j .

Proof. We have
∫

X
f̂ σ
i,j dmX = c.

∫

R2
f σ
1

∫

R2
f σ
2

= c.ε

∫

R
3σ

j

∫

R2
f σ
2 + O(ε2)

∫

R
3σ

j

∫

R2
f σ
2

where c. is absolute and the implied constants depend only on R.

Since f2 is defined as in (4.8), we conclude that

∫
f σ
2 = q−1(β − α)|Iσ

i,j| + O(q−1ε(β − α)|Iσ
i,j|);

again the implied constant depends only on R. The lemma follows. !
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4.6 Lemma. Let the notation be as in Lemma 4.5. In particular,

f±i,j = f±1 f±2 ,

where f±k are as in §4.3. Also put

ϒ±
i,j = c.(β − α)|I±i,j|

∫
ξ±i

∫
3±

j .

If (i, j) ∈ I̊−
1 , then

(4.21) e2t(ϒ−
i,j + O(S(f−

i,j )S(ξ
−
i )e−δ2t)) ≤ (1 + O(ε)) · N′

t (4i,j).

Moreover, for every (i, j) ∈ I+
1 , we have

(4.22) (1 + O(ε)) · N′
t (4

+
i,j) ≤ e2t(ϒ+

i,j + O(S(f +
i,j)S(ξ

+
i )e−δ2t)),

where the implied constants depends polynomially on R.

Proof. We will prove the lemma using Lemma 4.4 and Theorem 3.1. Let us
begin with restating the main conclusion of Theorem 3.1 in the form which will be
used here. When there is no confusion, we drop i, j from the notation and denote f±i,j
by f±, ξ±i by ξ±, etc.

Recall that .′ = g. where g = (g1, g2) is as in (4.1). Let L and L′ be as in
Lemma 4.2 if they exist. For σ = ±, put

f̂ σ
sp(θ) =

∑

v∈.′∩(L∪L′)

f σ
sp(!(atrθ)v),

Cσ = {θ ∈ [0, 2π] : f̂ σ
sp(θ) ≥ eδ1t},

and define

f̂ σ
mod(θ) =





f̂ σ(θ) − f̂ σ

sp(θ), θ ∈ Cσ,

f̂ σ(θ), otherwise,

where we write f̂ σ(θ) = f̂ σ(!(atrθ)g)′).
Since g satisfies (4.6), Theorem 3.1 and the definition of f̂ σ

mod(θ) imply

(4.23)
∫ 2π

0
f̂ σ
mod(θ)ξ

σ(θ) dθ=
∫

ξσdθ

∫

X
f̂ σdmX + O(S(f σ)S(ξσ)e−δ2t).

With this established, we first show (4.21). Let σ = −. Assuming η′ in the
definition of ε = e−η′t is small enough, we have

O(S(f−)S(ξ−)e−δ2t) < ε4(β − α).

Recall from §3.6 that
∫

3−
j ≥ ε and that |I−

i,j| ≥ √
ε. Thus (4.23), together with the

above and Lemma 4.5, implies that

(4.24)
∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ , ε3(β − α).
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Moreover, by part (2) in Lemma 3.2 applied with δ1, L, and L′, we have

(4.25)
∫

[0,2π]\C−
f̂−
sp (θ) dθ - e(−1+δ1)t.

Recall that δ1 < 1/100, hence, if η′ < 1/100, then e(−1+δ1)t < ε4(β − α). Thus, we
get from (4.24) and (4.25)

(4.26)

∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f−(!(atrθ)v)ξ−(θ) dθ

=
∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ −
∫

[0,2π]\C−
f̂−
sp (θ)ξ−

i (θ) dθ

= (1 + O(ε))
∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ.

In view of (4.9) in Lemma 4.4,

qe2t
∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f−(!(atrθ)v)ξ−(θ) dθ+O(ε−21)

≤ (ε + O(ε2)) · N′
t (4i,j).

Using this and (4.26) (multiplied by qe2t), we conclude that

qe2t(1 + O(ε))
∫ 2π

0
f̂−
mod(θ)ξ

−(θ) dθ + O(ε−21) ≤ (ε + O(ε2)) · N′
t (4i,j).

This, (4.23) and (4.20) yield

(4.27) e2t(ϒ−
i,j + O(S(f−)S(ξ−)e−δ2t) + O(ε−21) ≤ (1 + O(ε)) · N′

t (4i,j).

Assuming η′ is small enough and t large, we have

ε−23 < e2t ·
(

c.(β − α)|Ii,j,−|
∫

R
3−

j

∫

R
ξ−
i

)
.

Hence, (4.21) follows from (4.27).
We now show (4.22); the argument is similar and simpler. By (4.10),

(4.28)

(ε + O(ε2)) · N′
t (4

+
i,j) ≤ qe2t

∑

v∈.′
nz\(L∪L′)

∫ 2π

0
f +(!(atrθ)v)ξ+(θ) dθ

≤ qe2t
∫ 2π

0
f̂ +
mod(θ)ξ

+(θ) dθ.

Thus, (4.22) follows from (4.28), (4.23) and (4.20), applied with σ = +. !
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4.7 Lemma. There exists η depending on η′ and some C̄1 so that

(4.29) Nt(4 \ D) = C̄1(β − α)e2t + M0 + O((1 + |α| + |β|)Ne(2−2η)t)

where N is absolute, the implied constants depend on R and

M0 = #{v ∈ .′
nz ∩ (L ∪ L′) ∩ et(4 \ D) : α ≤ Q0(v) ≤ β}.

A similar assertion holds with 4 \ D replaced by D \ e−1D.

Proof. We will prove the assertion for 4 \D, the proof for D \ e−1D is similar.
Recall that 4 \ D = 41 ∪ 42 where

41 = {(v1, v2) ∈ 4 : ‖v1‖ > 1}
and

42 = {(v1, v2) ∈ 4 : ‖v1‖ ≤ 1, ‖v2‖ > 1}.

Fix k = 1 or 2. By (4.21), for all (i, j) ∈ I̊−
k ,

(4.30)
e2t(ϒ−

i,j+O(S(f σ
i,j)S(ξ

+
i )e−δ2t))

≤ (1 + O(ε)) · N′
t (4i,j) ≤ (1 + O(ε)) · Nt(4+

i,j),

where we used 4i,j ⊂ 4+
i,j in the second inequality, (3.22).

Also by (4.22), for all ϕ+
i,j ∈ I+

k , we have

(4.31) (1 + O(ε)) · N′
t (4

+
i,j) ≤ e2t(ϒ+

i,j + O(S(f +
i,j)S(ξ

+
i )e−δ2t)).

Thus summing (4.30) over all (i, j) ∈ I̊−
k ,

(4.32)

e2t
∑

I̊−
k

(ϒ−
i,j + O(S(f +

i,j)S(ξ
+
i )e−δ2t))

≤ (1 + O(ε))
∑

I̊−
k

N′
t (4i,j) ≤ (1 + O(ε))

∑

I̊−
k

N′
t (4

+
i,j).

Moreover, summing (4.31) over all (i, j) ∈ I+
k , we get the following:

(4.33)

(1 + O(ε))
∑

I̊−
k

N′
t (4

+
i,j) ≤ (1 + O(ε))

∑

I+
k

N′
t (4

+
i,j)

≤ e2t
∑

I+
k

(ϒ+
i,j + O(S(f +

i,j)S(ξ
+
i )e−δ2t).

By (3.23a) and (3.23b), 4i,j ⊂ 4k are disjoint and 4k ⊂ ⋃
I+

k
4+

i,j. Hence, (4.32)
implies that

(4.34) (I) ≤ (1 + O(ε))N′
t(4k) ≤ (II),

where (I) is the first line in (4.32) and (II) is the last line in (4.33).
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Recall from Lemma 4.6 that

ϒ±
i,j = c.(β − α)|Ii,j,±|

∫

R
ξ±i

∫

R
3±

j ;

in view of (ξ-1), (3-1), and (3.25), the above implies that
∑

I+
k

ϒ+
i,j = (1 + O(ε))

∑

I̊−
k

ϒ−
i,j = (1 + O(ε))(β − α)C̄k,1

where C̄k,1 is absolute and the implied constants depend on R.
Furthermore, using ε = e−η′

, we conclude that
∑

i,j

S(f±i,j,)S(ξ
±
i )e−δ2t - (1 + |α| + |β|)Nε−Ne−δ2t

- (1 + |α| + |β|)Ne−δ2t/2,

where the implied constant depends on R and we assume η′ is small enough so that
δ2 − Nη′ > δ2/2.

Altogether, there is some η > 0 so that for k = 1, 2, we have

N′
t (4k) = C̄k,1(β − α)e2t + (1 + |α| + |β|)Ne(2−2η)t.

Since 4 \ D = 41 ∪ 42 is a disjoint union, we conclude that

(4.35) N′
t (4 \ D) = C̄1(β − α)e2t + (1 + |α| + |β|)Ne(2−2η)t

where C̄1 = C̄1,1 + C̄2,1.
The lemma follows from (4.35) and the definition of M0. !

Proof of Theorem 1.2. We will again use the following:

(4.36) #{v ∈ .′ ∩ e
2t
5 D} ≤ C′

1e
8t
5

where C′
1 depends on R, see (3.28).

First apply Lemma 4.7, with t and 4 \ D. Then

(4.37)
N′

t (4 \ D)

= C̄1(β − α)e2(t−() + M′ + O((1 + |α| + |β|)Ne(2−2η)(t−())

where
M′ = #{v ∈ .′

nz ∩ (L ∪ L′) ∩ et(4 \ D) : α ≤ Q0(v) ≤ β}.
We now control the contribution of .′ ∩ etD to the count. Recall our notation

D(e−() = e−(D. Then etD(e−() = et−(D, and

et−((D \ e−1D) = et(D(e−() \ (e−1D(e−()).
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Applying Lemma 4.7 with t − ( (instead of t) for ( ≤ 3t/5 and D \ e−1D,

(4.38)
N′

t (D(e−() \ e−1D(e−())

= ¯̄C1(β − α)e2(t−() + M( + O((1 + |α| + |β|)Ne(2−2η)(t−())

where

M( = #{v ∈ .′
nz ∩ (L ∪ L′) ∩ et(D(e−() \ e−1D(e−()) : α ≤ Q0(v) ≤ β}

and L,L′ are as in Lemma 4.2.

Summing (4.38) over 0 ≤ ( ≤ 3t/5, we get

Nt(D \ e−3t/5D) = ¯̄C1(β − α)e2t + M′′ + O((1 + |α| + |β|)Ne(2−η)t)

where M′′ =
∑

M(. This, (4.37) and (4.36) thus imply

(4.39) Nt(4) = C1(β − α)e2t + M + O((1 + |α| + |β|)Ne(2−η)t)

where M = #{v ∈ .′
nz ∩ (L ∪ L′) ∩ et4 : α ≤ Q0(v) ≤ β}.

To conclude the proof, we rewrite (4.39) in the notation of Theorem 1.2 and
further analyze M. Recall that t = 1

2 log T , hence, by (4.3) and (4.39),

(4.40) RM(α,β,T) = C1(β − α)T + M + O((1 + |α| + |β|)NT1− η
2 ),

we now turn to the term M. Since

Q0(g1w1, g2w2) = Q0(g−1
2 g2w1, w2) and g−1

2 g2 =

(
a b
b c

)

.

We conclude, as in the proof of Lemma 2.5, that if we put w1 = (x1, y1) and
w2 = (−y2, x2), then ui = (xi, yi) satisfy

(4.41)
‖ui‖ ≤ max{‖g±1

1 ‖, ‖g±1
2 ‖}eδ1t/Ā ≤ e2δ1t/Ā and

|BM(u1, u2)| = |Q0(g−1
2 g1w1, w2)| ≤ e−2δ1t/5,

where we assumed t is large in the second inequality of the first line. Thus by
Lemma 2.5, the pair (w′

1, w
′
2) is obtained from (u2, u1) using the above relation,

that is, w′
1 = (x2, y2) and w′

2 = (−y1, x1).

Let v ∈ .′ ∩ (L ∪ L′) ∩ et4 satisfy that α ≤ Q0(v) ≤ β. For simplicity, let us
assume that v ∈ L and write v = (1(g1w1, 0) + (2(0, g2w2). Then,

v = (v1 + v2,ω(v1 − v2)) = ((1g1w1, (2g2w2)
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where vi ∈ 2π!∗ and ‖vi‖ ≤ et. Recall also that (g1, g2) = (gM,−ωgMω) and
gMZ2 = 2π!∗, hence,

v1 = gM
(1w1 − (2ωw2

2
= gM

(1u1 + (2u2

2
,

v2 = gM
(1w1 + (2ωw2

2
= gM

(1u1 − (2u2

2
;

changing L to L′ yields v1 = gM
(1u1+(2u2

2 and v2 = gM
−(1u1+(2u2

2 .
Altogether, (4.2) implies that

M = #
{
((1, (2) : gM

(1u1 + (2u2

2
= v1, gM

(1u1 − (2u2

2
= v2

vi ∈ 2π!∗, ‖vi‖ ≤ et,α ≤ ‖v1‖2 − ‖v2‖2 ≤ β
}
.

By Lemma 2.6, applied with 2δ1/Ā and Ā/5, we conclude that

M - max(|α|, |β|)e(2− 2δ1
Ā )t = max(|α|, |β|)T1− δ1

Ā ,

where the implied constant depends on a, b, and c unless

|BM(u1, u2)| ≤ e(−2+ 2δ1
Ā

)t ≤ T−1+δ.

Let κ = min{η/2, δ1/Ā}. Altogether, we conclude that

RM(α,β,T) = C1(β − α)T + O((1 + |α| + |β|)NT1−κ)

unless {u1, u2} satisfy (1.5), in which case we have

(4.42) RM(α,β,T) = C1(β − α)T + M + O((1 + |α| + |β|)NT1−κ).

We now show that M = MT (u1, u2). Let ((1, (2) be as in the definition of M, then

BM

((1u1 + (2u2

2

)
=
∥∥∥gM

(1u1 + (2u2

2

∥∥∥
2

= ‖v1‖2 ≤ e2t = T.

Similarly for v2 = (1u1−(2u2
2 . Moreover, we have

‖v1‖2 − ‖v2‖2 = BM

((1u1 + (2u2

2

)
− BM

((1u1 − (2u2

2

)

= BM(u1, u2)(1(2 ∈ [α,β].

Thus ((1/2, (2/2) satisfies the conditions in the definition MT (u1, u2). Similarly if
((′

1, (
′
2) satisfies the conditions in the definition MT (u1, u2), then (2(′

1, 2(′
2) satisfy

the conditions in the definition of M.
The proof is complete. !
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Proof of Corollary 1.3. We first prove part (1). Recall our assumption that
there exist A, q > 0 so that for all (m, n, k) ∈ Z3 we have

(4.43) |am + bn + ck| > q‖(m, n, k)‖−A.

This implies that (1.4) holds for some A′, depending on A, and all T ≥ T0(A, q).
Furthermore, in view of (4.43), for ui = (xi, yi) ∈ Z2, we have

|BM(u1, u2)| = |ax1x2 + b(y1x2 + x1y2) + cy1y2|
> q‖(x1x2, y1x2 + x1y2, y1y2)‖−A,

which implies (1.5) does not hold so long as δ is small enough. In view of
Theorem 1.2, this finishes the proof of part (1).

The proof of part (2) is similar. Recall that b = 0 and ac = 1. By our assumption
there exist A, q > 0 so that for all (m, n) ∈ Z2, we have

(4.44) |a2m + n| > q‖(m, n)‖−A.

As in the previous case, we conclude that (1.4) holds for some A′, depending on A,
and all T ≥ T0(A, q). Hence, by Theorem 1.2, either

|RM(α,β,T) − π2(β − α)| ≤ C(1 + |α| + |β|)NT−κ,

which implies the claim in this part, or there are u1, u2 ∈ Z2 \ {0} so that

(4.45) ‖u1‖, ‖u2‖ ≤ Tδ/A and |BM(u1, u2)| ≤ T−1+δ

and moreover

(4.46) RM(α,β,T) − π2(β − α) =
MT (u1, u2)

T
+ O(C(1 + |α| + |β|)NT−κ)

where

MT (u1, u2) = #
{
((1, (2) ∈ 1

2
Z2 : (1u1 ± (2u2 ∈ Z2,

BM((1u1 ± (2u2) ≤ T, 4BM(u1, u2)(1(2 ∈ [α,β]
}
.

By Lemma 2.5, if T0 is large enough, then BM(u1, u2) = 0. Hence MT (u1, u2)
does not contribute to R′

M(α,β). This and (4.46) finish the proof of this case and
of the corollary. !
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5 Equidistribution of expanding circles

In this section we prove an effective equidistribution result for circular averages;
the proof is based on [LMW22].

Let G = SL2(R) × SL2(R) and let ) ⊂ G be a lattice; put X = G/). Let mX

denote the G-invariant probability measure on X.
We fix a right invariant metric on G using the Killing form and the maximal

compact subgroup SO(2) × SO(2), and let dX denote the induced metric on X.
There exists D′ so that for all τ ≥ 2 and all θ ∈ R,

(5.1) dX(x, x′) ≤ eD′τdX(!(aτrθ)x,!(aτrθ)x′).

For the convenience of the reader, we give again the statement of Theorem 1.4:

1.4 Theorem. Assume ) is arithmetic. For every x0 ∈ X, and large enough R
(depending explicitly on X and the injectivity radius at x0), for any et ≥ RD, at
least one of the following holds.
(1) For every φ ∈ C∞

c (X) and 2π-periodic smooth function ξ on R, we have
∣∣∣∣
∫ 2π

0
φ(!(atrθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
φ dmX

∣∣∣∣ ≤ S(φ)S(ξ)R−κ0

where we use S(·) to denote an appropriate Sobolev norm on both X and R
respectively.

(2) There exists x ∈ X such that Hx is periodic with vol(Hx) ≤ R, and

dX(x, x0) ≤ RDtDe−t.

The constants D and κ0 are positive and depend on X but not on x0.

Proof. Fix 0 < ζ0 < 1/10 such that the U−AU decomposition is an analytic
diffeomorphism on the identity neighborhood of radius 2ζ0 in SL2(R), where U−

is the subgroup of lower triangular unipotent matrices, U is the subgroup of upper
triangular unipotent matrices, and A is the subgroup of diagonal matrices. In par-
ticular, there are analytic diffeomorphisms s−, τ, s from (−ζ0, ζ0) to neighborhoods
of 0 in (−1, 1), such that rζ = u−

s−(ζ)aτ(ζ)us(ζ). Note that

(5.2) τ(ζ) = O(ζ2), s(ζ) = ζ + O(ζ2), s−(ζ) = −ζ + O(ζ2),

and d
dζ s = 1 + O(ζ).

Using this we approximate the circular average (on small intervals) with unipo-
tent average. First note that

!(atrζ̂+ζ)x0 = !(atu−
s−(ζ)aτ(ζ)us(ζ)rζ̂)x0

= !(atu−
s−(ζ)a−taτ(ζ))!(atus(ζ)rζ̂)x0
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is within distanceO(e−2ts−(ζ)+τ(ζ)) = O(e−2tζ+ζ2) from!(atus(ζ)rζ̂)x0. Therefore
for all 0 ≤ ζ ≤ ζ0 we have

1
ζ

∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ

=
1
ζ

∫ ζ

0
φ(!(atus(θ)rζ̂)x0) dθ + O(S(φ)(e−2tζ + ζ2))

=
1
ζ

∫ s(ζ)

0
φ(!(atuθrζ̂(x0)(s−1(θ))′ dθ + O(S(φ)(e−2tζ + ζ2))

where we used the above estimate in the first equality and a change of variable in
the second equality.

Since s(ζ) − ζ = O(ζ2), see (5.2), we conclude that

1
ζ

∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ =

1
ζ

∫ ζ

0
φ(!(atuθrζ̂)x0)(s−1(θ))′ d θ + O(S(φ)ζ)

where we used e−2tζ + ζ2 ≤ 2ζ.
Similarly, using supθ∈(0,ζ) |(s−1(θ))′ − 1| - ζ and a change of variable,

(5.3)

1
ζ

∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ =

1
ζ

∫ ζ

0
φ(!(atuθrζ̂)x0) dθ + O(S(φ)ζ)

=
∫ 1

0
φ(!(atuζsrζ̂)x0) ds + O(S(φ)ζ).

Let τ = −(log ζ)/2. Then

(5.4)

∫ 1

0
φ(!(atuζsrζ̂)x0) ds =

∫ 1

0
φ(!(at−τaτuζsa−τaτrζ̂)x0) ds

=
∫ 1

0
φ(!(at−τusaτrζ̂)x0) ds.

Let D1 and κ1 be the constants given by [LMW22, Thm. 1.1] applied with X
(D1 denotes A in [LMW22, Thm. 1.1]). We will show the proposition holds with

D = D1 + D′ + 1

where D′ is as in (5.1).
Let T = et−τ and R = eD′′τ for some D′′ ≥ 1 which will be explicated momen-

tarily. Assume et ≥ RD, then

(5.5) T = et−τ = etR−1/D′′ ≥ RD−1 ≥ RD1 .

Apply [LMW22, Thm. 1.1], with xζ̂ := !(aτrζ̂)x0, T ≥ RD1 , see (5.5), then so
long as D′′ is large enough, at least one of the following holds:
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Case 1: For every ζ̂ ∈ [0, 2π] and all φ ∈ C∞
c (X),

(5.6)
∣∣∣∣
∫ 1

0
φ(!(alogTus)xζ̂) ds −

∫
φ dmX

∣∣∣∣ ≤ S(φ)R−κ1.

Case 2: For some ζ̂ ∈ [0, 2π], there exists x ∈ X such that Hx is periodic with
vol(Hx) ≤ R and

(5.7) dX(x, xζ̂) ≤ RD1 (logT)D1T−1.

We will show that part 1 in the proposition holds if case 1 holds and part 2 in
the proposition holds if case 2 holds.

Let us first assume that case 1 holds. We begin with the following computation.
∫ 2π

0
φ(!(atrθ)x0)ξ(θ) dθ =

1
ζ

∫ 2π

ζ̂=0

∫ ζ

0
φ(!(atrζ̂+θ)x0)ξ(ζ̂ + θ) dθ dζ̂

=
1
ζ

∫ 2π

ζ̂=0

(∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ

)
ξ(ζ̂) dζ̂

+ O
(
sup |φ| · sup

ζ̂∈[0,2π],θ∈[0,ζ]
|ξ(ζ̂ + θ) − ξ(ζ̂)|

)
.

Thus, we conclude

(5.8)

∫ 2π

0
φ(!(atrθ)x0)ξ(θ) dθ

=
1
ζ

∫ 2π

ζ̂=0

(∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ

)
ξ(ζ̂) dζ̂ + O(S(φ)S(ξ)ζ).

Furthermore, by (5.3) and (5.4), we have

(5.9)
1
ζ

∫ ζ

0
φ(!(atrζ̂+θ)x0) dθ =

∫ 1

0
φ(!(alogTus)xζ̂) ds + O(S(φ)ζ).

Altogether, using (5.6), (5.8), and (5.9), we conclude that

(5.10)

∣∣∣∣
∫ 2π

0
φ(!(at rθ)x0)ξ(θ) dθ −

∫ 2π

0
ξ(θ) dθ

∫
φ dmX

∣∣∣∣

≤ S(φ)S(ξ)R−κ0,

where κ0 = min{κ1, 2/D′′}—we used ζ−1 = e2τ = R2/D′′
. Thus, part 1 in the

proposition holds if case 1 holds.
Let us now assume that case 2 holds and let xζ̂ = !(aτrζ̂)x0 be as in (5.7). Then

by (5.1), we have

dX(!(aτrζ̂)
−1x, x0) ≤ eD′τRD1 (logT)D1T−1

≤ e(1+D′)τRD1 tD1e−t ≤ RDtDe−t.
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Furthermore, !(aτrζ̂)−1x has a periodic H-orbit of volume ≤ R. Thus part 2 in the
proposition holds in this case. The proof is complete. !

6 Cusp functions of Margulis and the upper bound

In this section, we put
) = SL2(Z) × SL2(Z) ⊂ G.

Recall the following definition.

Definition 2.3. Let g = (g1, g2) ∈ G. A two-dimensional gZ4-rational linear
subspace L ⊂ R4 is called (ρ,A, t)-exceptional if there are (v1, 0), (0, v2) ∈ Z4

satisfying

(6.1) ‖g1v1‖, ‖g2v2‖ ≤ eρt and |Q0(g1v1, g2v2)| ≤ e−Aρt

so that L ∩ gZ4 is spanned by {(g1v1, 0), (0, g2v2)}.
Given a (ρ,A, t)-special subspace L, we will refer to {(g1v1, 0), (0, g2v2)} as a

spanning set for L.

Let fi ∈ Cc(R2), and define f on R4 by f (w1, w2) = f1(w1)f2(w2). For every
h ∈ SL2(R), let

(6.2) f̃ρ,A,t(h; g)) =
∑

v∈Nt(gZ4)

f (!(h)v),

where Nt(gZ4) denotes the set of vectors in gZ4 not contained in any (ρ,A, t)-
special subspace L and also not contained in R2 × {0} ∪ {0} ∪ R2. In the sequel,
we will often drop the dependence on A, ρ, and t from the notation and denote
f̃ρ,A,t(h; g)) by f̃ (h; g)).

The following is one of the main results of this section.

6.1 Proposition. For all A1 ≥ 103 we have the following: Let (g1, g2) ∈ G.
Then for all small enough ρ and all large enough t at least one of the following
holds:
(1) Let Ct = {θ ∈ [0, 2π] : f̃ (atrθ; g)) ≥ eA1ρt}. Then

∫

Ct

f̃ (atrθ; g)) dθ - e−ρ3t/A1,

where f̃ (h; g)) = f̃ρ,A1,t(h; g)), see (6.2).
(2) There exists Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying ‖g−1
2 g1 − λQ‖ - e−(A1−100)ρt.

The implied constants depend polynomially on ‖g1‖ and ‖g2‖.

The proof of this proposition occupies most of this section.



222 E. LINDENSTRAUSS, A. MOHAMMADI AND Z. WANG

The cusp functions. Let P denote the set of primitive vectors in Z2. For
any h ∈ SL2(R), define

(6.3) ω(hSL2(Z)) = sup{1/‖hv‖ : v ∈ P}.

We begin with the following lemma.

6.2 Lemma (cf. Lemma 7.4 [EM01]). For every 0 < p < 2, there exists tp
and bp so that the following holds. For every x ∈ SL2(R)/SL2(Z) and all t ≥ tp,
we have ∫ 2π

0
ω(atrθx)p dθ ≤ 2−t/tpω(x)p + bp.

Proof. This is well known by now, see, e.g., [EM22]. !

The sets :t(δ) and :′
t(δ). To put an emphasis on the product structure

of G and X, we will often write X = G1/)1 × G2/)2 where Gi = SL2(R) and
)i = SL2(Z). Moreover, given g = (g1, g2) ∈ G, we write

(6.4) ωi(gi)i) := ω(giSL2(Z)).

For i = 1, 2, let xi ∈ Gi/)i. For all t ≥ 0 and every 0 < δ ≤ 1/10, let

(6.5) :t(δ)={θ ∈ [0, 2π] :ω2(atrθx2)1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)1+2δ}

and let :′
t(δ) = [0, 2π] \ :t(δ).

We have the following:

6.3 Lemma. Let 0 < δ < 1/10, and put

p1 = (2 − 2δ)(1 +
1
2
δ) and p2 =

(2 + 2δ)(1 + 1
2δ)

1 + 2δ
;

note that p1, p2 < 2. Let t(δ) = max(tp1, tp2 ) and b(δ) = max(bp1, bp2 ) where the
notation is as in Lemma 6.2. Then for all (x1, x2) ∈ X and all t ≥ t(δ)

∫

:′
t(δ)

(ω1(atrθx1)ω2(atrθx2))1+ 1
2 δ dθ ≤ 2−t/t(δ)(ω1(x1) + ω2(x2)) + 2b(δ).

Proof. Let us write :′
t(δ) = :′

t,1(δ) ∪ :′
t,2(δ), where

:′
t,1(δ) = {θ ∈ [0, 2π] : ω2(atrθx1) < ω1(atrθx2)1−2δ}

:′
t,2(δ) = {θ ∈ [0, 2π] : ω2(atrθx1) > ω1(atrθx2)1+2δ}.
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Using Lemma 6.2, for every t > tp1 we have

∫

:′
t,1(δ)

(ω1(atrθx1)ω2(atrθx2))1+ 1
2 δ dθ ≤

∫ 2π

0
ω1(atrθx1)p1 dθ

≤ 2−t/tp1 ω2(x2) + bp1 .

Similarly, for every t > tp2 , we have

∫

:′
t,2(δ)

(ω1(atrθx1)ω2(atrθx2))1+ 1
2 δ dθ ≤

∫ 2π

0
ω2(atrθx2)p2 dθ

≤ 2−t/tp2 ω1(x1) + bp2 .

The claim follows from these two estimates. !

A Diophantine condition. The following lemma is a crucial input in the
proof of Proposition 6.1.

For every t ≥ 1, let

Pt = {v ∈ P : et−1 ≤ ‖v‖ < et},
P(t) = {v ∈ P : ‖v‖ < et}.

6.4 Lemma. The following holds for all A ≥ 103 and all ρ ≤ 1/(100A). Let
(g1, g2) ∈ G. There exist t1 ≥ 1, depending on ρ and polynomially on ‖gi‖, so that
if t ≥ t1, then at least one of the following holds:
(1) We have

#{v1 ∈ Pt : ∃v2 ∈ P(t), |Q0(g1v1, g2v2)| ≤ e−Aρt} - e(2−ρ)t

where the implied constant depends polynomially on ‖gi‖.
(2) There exist Q ∈ Mat2(Z) whose entries are bounded by e100ρt and λ ∈ R

satisfying ‖g−1
2 g1 − λQ‖ ≤ e−(A−100)ρt.

Proof. For simplicity in the notation, let us write η = e−ρt. Let A ≥ 103, and
assume that

(6.6)
#{v1 ∈ Pt : ∃v2 ∈ P(t), |Q0(g1v1,g2v2)| ≤ ηA}

> E(‖g1‖‖g2‖)Eηe2t.

We will show that if E is large enough, then part (2) holds.
Let us write

h := g−1
2 g1 =

(
a b
c d

)

.
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Then (6.6) and the fact that for any q ∈ SL(2,R), !(q) ∈ SO(Q0) implies that if t
is large enough, depending on ‖h‖, for , ηe2t many v1 = (x1, y1) ∈ Pt both of the
following hold:

• We have |cx1 + dy1| ≥ η2et.
• There exists at least one (x2, y2) ∈ P(t) so that

(6.7) |Q0(h(x1, y1), (x2, y2))| ≤ ηA.

Moreover, the fact that there are , ηe2t vectors satisfying these two conditions
implies that there are v1, v1

′, v1
′′ ∈ Pt satisfying the above two conditions so that

(6.8) 1 ≤ |Q0(v,w)| - η−4, for v,w ∈ {v1, v1
′, v1

′′}.
Let us fix three vectors v1, v1

′, v1
′′ satisfying (6.8), and let v2, v2

′, v2
′′ be the

corresponding vectors in P(t) satisfying (6.7), respectively. Then

(6.9) hv1 = µv2 + w1,2

where µ ∈ R satisfies |µ| 7 1 and ‖w1,2‖ - ηAe−t (recall that the implicit con-
stants in these inequalities are allowed to depend polynomially on ‖h‖). Similarly,

hv ′
1 = µ′v ′

2 + w′
1,2 and hv ′′

1 = µ′′v ′′
2 + w′′

1,2

where µ′, µ′′ ∈ R satisfy |µ′|, |µ′′| 7 1 and ‖w′
1,2‖, ‖w′′

1,2‖ - ηAe−t.
With this notation we have

(6.10) h(v1 v
′
1) = (v2 v

′
2)

(
µ 0
0 µ′

)

+ O(ηAe−t)

and similarly for v1, v ′′
1 and v ′

1, v
′′
1. Thus by (6.8)

(6.11) 1 ≤ |Q0(v2, v
′
2)|, |Q0(v2, v

′′
2)|, |Q0(v ′

2, v
′′
2)| - η−4.

In view of (6.8), (6.9), (6.10) and (6.11) the conditions in Lemma 2.2 hold. The
claim thus follows from Lemma 2.2 so long as t is large enough to account for the
constant C in that lemma. !

Proof of Proposition 6.1. Recall that g = (g1, g2). Put

xi = giSL2(Z), for i = 1, 2.

Let A1 ≥ 104, 0 < ρ < 10−4 (small), and t ≥ 1 (large) be so that Lemma 6.4 holds
for these choices. Put δ = 2ρ2/A1, and define :t(δ) and :′

t(δ) as in (6.5) with t
and δ and xi. That is,

:t(δ) = {θ ∈ [0, 2π] : ω2(atrθx2)1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)1+2δ},

and :′
t(δ) = [0, 2π] \:t(δ).
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Apply Lemma 6.4 with A = A1 and ρ. If part (2) in that lemma holds, then
part (2) in Proposition 6.1 holds and the proof is complete. Thus, assume for the
rest of the argument that part (1) in Lemma 6.4 holds. We will show that part (1)
in the Proposition 6.1 holds.

Motivated by the definition of f̃ and Lemma 2.4, define

(6.12) ω̃(atrθ; g)) = sup{(‖atrθg1v1‖‖atrθg2v2‖)−1 : (v1, v2) ∈ P2(g)}

whereP is the set of primitive vectors inZ2 andP2(g) denotes the set of (v1, v2) ∈ P2

so that {(g1v1, 0), (0, g2v2)} is not a spanning set for any (ρ,A1, t)-special subspace
of gZ4, see Definition 2.3.

It follows from the definition that

(6.13) ω̃(atrθ; g)) ≤ ω1(atrθx1)ω2(atrθx2).

Put Bt = {θ ∈ [0, 2π] : ω̃(atrθ; g))<ω1(atrθx1)ω2(atrθx2)}.
By a variant of Schmidt’s Lemma, see also [EMM98, Lemma 3.1], and the

definition of f̃ , we have

(6.14) f̃ (atrθ; g)) - ω̃(atrθ; g)).

Put C̃t = {θ ∈ [0, 2π] : ω̃(atrθ; g)) ≥ eA1ρt}. In view of (6.14) and with this
notation, it suffices to show that

(6.15)
∫

C̃t

ω̃(atrθ; g)) dθ - e−ρ2t/A1 .

Contribution of Bt. Recall that if ω(hSL2(Z)) ≥ 2 for some h ∈ SL2(R),
then there is some vh ∈ P so that

(6.16) ‖hvh‖−1 = ω(hSL2(Z)) and ‖hv‖ > 1/2 for all vh .= v ∈ P.

Let θ ∈ Bt. By the definition of ω̃, there exist v1, v2 ∈ P so that

ω̃(atrθ; g)) = ‖atrθg1v1‖−1‖atrθg2v2‖−1.

Since ω̃(atrθ; g)) < ω1(atrθg1)1)ω2(atrθg2)2), we conclude that

min{‖atrθg1v1‖−1, ‖atrθg2v2‖−1} ≤ 2.

Therefore, for all such θ, we have

ω̃(atrθ; g)) ≤ 2 max{ω1(atrθg1)1),ω2(atrθg2)2)}.
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Thus using Lemma 6.2, we have

(6.17)

∫

Bt∩C̃t

ω̃(atrθ; g)) dθ ≤ e− A1ρt
2

∫

Bt

ω̃(atrθ; g))3/2 dθ

≤ 2e− A1ρt
2

∫ 2π

0
ω1(atrθx1)

3
2 + ω1(atrθx2)

3
2 dθ

- e− A1ρt
2 .

Let :t(θ) and :′
t(δ) be as above, and put

C̃t(δ) := C̃t ∩ B!
t ∩ :t(δ) and C̃′

t(δ) := C̃t ∩ B!
t ∩ :′

t(δ).

We consider the contribution of these two sets to
∫

ω̃ separately—indeed,
controling the contribution of C̃t(δ) occupies the bulk of the proof.

Contribution of C̃′
t(δ). By Lemma 6.3, for all t large enough, we have

∫

:′
t(δ)

(ω1(atrθx1)ω2(atrθx2))1+ 1
2 δ dθ - 1.

From this and (6.13), we conclude that

(6.18)

∫

C̃′
t(δ)

ω̃(atrθ; g)) dθ ≤
∫

C̃′
t(δ)

ω1(atrθx1)ω2(atrθx2) dθ

≤ e−δρA1t/2
∫

:′
t(δ)

(ω1(atrθx1)ω2(atrθx2))1+ 1
2 δ dθ

- e−ρ3t.

Contribution of C̃t(δ). Recall that

:t(δ) = {θ ∈ [0, 2π] : ω2(atrθx2)1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)1+2δ},

and C̃t(δ) = C̃t ∩ B!
t ∩ :t(δ). Note that the vectors which contribute to

(6.19)
∫

C̃t(δ)
ω̃(atrθ; g)) dθ

satisfy {(g1v1, g2v2) : ‖g1v1‖, ‖g2v2‖ ≤ et}. It is more convenient to consider the
cases ‖g1v1‖ ≥ ‖g2v2‖ and ‖g1v1‖ ≤ ‖g2v2‖ separately. As the arguments are
similar in both cases, we assume ‖g1v1‖ ≥ ‖g2v2‖ for the rest of the proof.

Recall our notation: for t ≥ 1

Pt = {v ∈ P : et−1 ≤ ‖v‖ < et},

and P(t) = {v ∈ P : ‖v‖ ≤ et}.
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For every n ∈ N with n ≤ t + log ‖g1‖ + 1 =: t1, we investigate the contribution
of Pn to (6.19). For any v1 ∈ Pn, let

Iv1 = {θ ∈ [0, 2π] : ‖atrθg1v1‖ ≤ 1/10}.

Then the intervals Iv1 are disjoint. Let P̃n = {v1 ∈ Pn : Iv1 ∩ C̃t(δ) .= ∅}.
Fix some n ∈ N, n ≤ t1. Let v1 ∈ P̃n, and let θ ∈ Iv1 ∩ C̃t(δ). Then there exists

v2 ∈ P so that

ω̃(atrθ; g)) =
1

‖atrθg1v1‖‖atrθg2v2‖
.

Since θ ∈ Bt, we have ω̃(atrθ; g)) = ω1(atrθx1)ω2(atrθx2). Thus

(6.20) ωi(atrθxi) = ‖atrθgivi‖−1 for i = 1, 2.

In view of (6.20), and the definitions of Bt and :t(θ), thus

(6.21)
∫

C̃t(δ)
ω̃(atrθ; g)) dθ ≤

∑

n

∑

P̃n

∫

Iv1

‖atrθg1v1‖−2−2δ.

We also make some observations. Fix some n ∈ N, n ≤ t1. Let v1 ∈ P̃n and
θ ∈ Iv1 ∩ C̃t(δ), and let v2 ∈ P be so that (6.20) holds. That is,

ωi(atrθxi) = ‖atrθgivi‖−1,

for i = 1, 2, and
ω̃(atrθ; g)) = (‖atrθg1v1‖‖atrθg2v2‖)−1.

Since θ ∈ C̃t, we have ω̃(atrθ; g)) ≥ eA1ρt. This gives

‖atrθg1v1‖‖atrθg2v2‖ ≤ e−A1ρt,

which implies that

|Q0(!(atrθ)(g1v1, g2v2))| = |Q0(atrθg1v1, atrθg2v2)| ≤ e−A1ρt.

Since !(atrθ) ∈ SO(Q0), we conclude from the above that

(6.22) Q0(g1v1, g2v2) ≤ e−A1ρt.

We claim:

(6.23) ‖g1v1‖ ≥ eρt.

Indeed if ‖g1v1‖ < eρt, then since ‖g2v2‖ ≤ ‖g1v1‖, it follows from (6.22) that
{(g1v1, 0), (0, g2v2)} spans a (ρ,A1, t)-special subspace. This contradicts the defi-
nition of ω̃ and establishes (6.23).

Let us now return to estimating (6.21); we will estimate the sum on the right
side of (6.21) using the following elementary fact.
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Sublemma. Let t > 0, and let w ∈ R2 be a non-zero vector. Then

∫ 2π

0
‖atrθw‖−2−2δ dθ ≤ Ĉe4δt‖w‖−2−2δ

where Ĉ is absolute.

First note that (6.22), and the fact that part 1 in Lemma 6.4 holds, imply that
there exist t0 and C so that for all t0 ≤ n ≤ t1, we have

(6.24) #P̃n ≤ Ce(2−ρ)n.

Also recall from (6.23) that ‖g1v1‖≥eρt, which in particular implies that ‖v1‖,eρt.
Since v1 ∈ Pn, we conclude that n ≥ ρt + O(1). Thus (6.24) and the Sublemma
imply that

(6.25)

∑

v1∈P̃n

∫

Iv1

‖atrθg1v1‖−2−2δ dθ - e(2−ρ)ne4δte(−2−2δ)n

- e−ρ2te4δt ≤ e−2δt;

in the last inequality, we used ρ2 = A1δ/2 ≥ 100δ and assumed t is large.

We now sum over all n ≤ t1 and get that

∑

n

∑

P̃n

∫

Iv1

‖atrθg1v1‖−2−2δ - te−2δt - e−δt.

This and (6.21) complete the proof in this case.

In combination with (6.18) and (6.17), the proof is complete. !

Proof of the Sublemma. Without loss of generality, we may assume
w = (0, 1). Put

I = [e(−2+2δ)t, 2π − e(−2+2δ)t] and I ′ = [0, 2π] \ I.

Then
∫ 2π

0

dθ

‖atrθw‖2+2δ
-

∫

I′

dθ

‖atrθw‖2+2δ
+
∫

I

dθ

‖atrθw‖2+2δ

- e(−2+2δ)te(2+2δ)t +
∫

I

dθ
‖atrθw‖2+2δ

≤ e4δt +
∫

I

dθ

‖atrθw‖2+2δ
.



LOCAL STATISTICS OF THE SPECTRUM OF A FLAT TORUS 229

We now compute the integral over I. Note that ‖atrθw‖2+2δ , e(2+2δ)tθ2+2θ. There-
fore,

∫

I

dθ

‖atrθw‖2+2δ
- e(−2−2δ)t

∫

I
θ−2−2δ dθ

- e(−2−2δ)te(1+2δ)(2−2δ)t - e−4δ2t.

The proof is complete. !
We end this section with the proof of Lemma 3.2.

Proof of Lemma 3.2. We begin with part (1). Recall that fi is the charac-
teristic function of {w ∈ R2 : ‖w‖ ≤ R}, and let f = f1f2. Again by a variant of
Schmidt’s Lemma, we have

f̂ (!(atrθ)g)′) ≤ ω1(g1SL2(Z))ω2(g2SL2(Z))

Let δ = η/10. As it was done in (6.5), define

:t(δ)={θ ∈ [0, 2π] :ω2(atrθx2)1−2δ ≤ ω1(atrθx1) ≤ ω2(atrθx2)1+2δ}

and let :′
t(δ) = [0, 2π] \:t(δ) where xi = giSL2(Z). Then by Lemma 6.3, we have

for all t ≥ t(δ)

(6.26)
∫

:′
t(δ)

f̂ (!(atrθ)g)′) dθ ≤
∫

:′
t(δ)

(ω1(atrθx1)ω2(atrθx2)) dθ - 1;

the implied constant depends polynomially on the injectivity radius of g)′.
We now find an upper bound for the integral over :t(δ):

∫

:t(δ)
f̂ (!(atrθ)g)′) dθ ≤

∫
ω1(atrθx1)2+2δ dθ.

This, the sublemma, and standard arguments (which simplify significantly thanks
to (6.16)), see, e.g., [EM22], imply that

∫

:t(δ)
f̂ (!(atrθ)g)′) dθ - e4δt.

The claim in part (1) of the lemma follows.
We now turn to the proof of part (2). Let (v1, 0) and (0, v2) be as in the statement.

For i = 1, 2 let wi = givi. By a variant of Schmidt’s Lemma,

(6.27) f̂ (θ) ≤ ‖atrθw1‖−1‖atrθw2‖−1.

For i = 1, 2, set
Ii = {θ : R−1e−ηt/10 ≤ ‖atrθwi‖}.
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If θ .∈ I1 ∩ I2, then f̂ (θ) > eηt. This, (6.27), and the definition of CL imply
∫

CL

f̂ (θ) ≤
∫

I1∩I2

1
‖atrθw1‖‖atrθw2‖

.

Thus, using Cauchy-Schwarz inequality, we need to find an upper bound for
(∫

I1

dθ
‖atrθw1‖2

)1/2(∫

I2

dθ

‖atrθw2‖2

)1/2

.

The computation is similar to the one in the proof of the sublemma. Indeed,
we may assume wi = (0, 1); then there is R−1 - c < 1 so that

Ii ⊂ [ce−(1+η)t, 2π − ce−(1+η)t].

From this, we conclude that
∫

Ii

dθ

‖atrθwi‖2
- e(−1+η)t,

as claimed. !

7 Proof of Theorem 3.1

In this section, we will prove Theorem 3.1. The proof combines a lower bound
estimate, which will be proved using Theorem 1.4, with an upper bound estimate,
which follows from Proposition 6.1, as we now explicate.

Proof of Theorem 3.1. Recall that fi ∈ C∞
c (R2), and f is defined on R4 by

f (w1, w2) = f1(w1)f2(w2). We put

(7.1) f̂ (g′)′) =
∑

v∈g′.nz

f (v)

where . = {(v1 + v2,ω(v1 − v2)) : v1, v2 ∈ Z2} ⊂ R4,

)′ = {(γ1, γ2) ∈ SL2(Z) × SL2(Z) : γ1 ≡ ωγ2ω (mod 2)}

stabilizes ., and g′ = (g′
1, g

′
2) ∈ G. We also put X = G/)′.

Let A and ρ be as in the statement, and let t > 0 be a parameter which
is assumed to be large. Let Â be a constant which will be explicated later,
and let g = (g1, g2) ∈ G satisfy the following: for every Q ∈ Mat2(Z) with
eρt/Â ≤ ‖Q‖ ≤ eρt and all λ ∈ R we have

(7.2) ‖g−1
2 g1 − λQ‖ > ‖Q‖−A/1000.

We claim that (7.2) implies the following:
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Sublemma. Let g = (g1, g2) satisfy (7.2). There exists A1 ≥ max(4D,A),
where D is as in Theorem 1.4 so that the following holds. For all t so that
t > 4D log t and for every x ∈ X with vol(Hx) ≤ eρt/A1 , we have

d(g)′, x) > e−t/2.

We first assume the sublemma and complete the proof of the theorem. In view
of the sublemma, part (1) in Theorem 1.4 holds with R = eρt/A1 and t. Indeed,
Dρ/A1 ≤ 1/4 and tD ≤ et/4, which imply

RDtDe−t = eDρt/A1 tDe−t ≤ e−t/2;

hence, part (2) in Theorem 1.4 cannot hold.
For every S, let 1XS ≤ ϕS ≤ 1XS+1 be a smooth function with S(ϕS) - S;, where

X• = {x = (x1, x2) ∈ X : max(ω1(x1),ω2(x2)) ≤ •},

see (6.4)—since )′ is a finite index subgroup of SL2(Z) × SL2(Z) this is well-
defined. Put f̂S = ϕSf̂ ; we let N be so that S(f̂S) - SNS(f ).

Put η = κ0ρ/(2NA1), where κ0 is as in Theorem 1.4. We will show the claim in
the theorem holds with

Â = 3NAA1/κ0, δ1 = η, and δ2 = η3/A3.

First note that

(7.3) ρ/Â = κ0ρ/(3NAA′
1) ≤ η/A = δ1/A ≤ ρ/100.

We now turn to the rest of the argument. Apply Lemma 2.4 with (g1, g2) and
the triple (η/A,A, t). In view of (7.3) and (7.2), Lemma 2.4 implies that there are
at most two (η/A,A, t)-special subspaces.

Denote these subspaces by L and L′ if they exist. For every θ ∈ [0, 2π], we
write

f̂ (!(atrθ)g)′) = f̂S(!(atrθ)g)′) + f̂cusp(!(atrθ)g)′) + f̂sp(!(atrθ)g)′)

where f̂S = ϕSf̂ , f̂cusp is the contribution of g.nz \ (L ∪ L′) to f̂ − f̂S, and f̂sp is the
contribution of g.nz ∩ (L ∪ L′) to f̂ − f̂S.

By Theorem 1.4, applied with R = eρt/A′
, for any smooth function ξ on [0, 2π]

we have

(7.4)

∣∣∣∣
∫ 2π

0
f̂S(!(atrθ)g)′)ξ(θ) dθ −

∫ 2π

0
ξ dθ

∫

X
f̂S dmX

∣∣∣∣

- S(f̂S)S(ξ)e−κ0ρt/A′ - SNS(f )S(ξ)e−κ0ρt/A′
.

If we choose S = eηt = eκ0ρt/(2NA′), the above is - S(f )S(ξ)e−ηt/2.
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Moreover, by Lemma 6.2 applied with p = 3/2 and Chebyshev’s inequality, we
have

(7.5)
∫

{θ:!(atrθ)g)′ /∈XS}
S dθ - S−3/2S = S−1/2.

This and (7.4) reduce the problem to investigating the integral of f̂ − f̂S = f̂cusp + f̂sp
over Ĉ := {θ ∈ [0, 2π] : f̂ − f̂S ≥ S}.

Let f̃ be as in (6.2) with η/A, A, and t. That is:

f̃ (h; g)) =
∑

v∈Nt(gZ4)

f (!(h)v)

where Nt(gZ4) denotes the set of vectors in gZ4 not contained in any (η/A,A, t)-
special subspaces and also not contained in R2 × {0} ∪ {0} ∪ R2.

Let C̃t = {θ ∈ [0, 2π] : f̃ (atrθ; g)) ≥ eηt = S}. By the definitions,
∫

Ĉ
f̂cusp(!(atrθ)g))ξ(θ) dθ ≤ ‖ξ‖∞

∫

C̃t

f̃ (atrθ; g)′) dθ.

In view of (7.3), e100ηt/A is in the range where (7.2) holds, thus Proposition 6.1,
applied with η/A and A, implies

∫

C̃t

f̃ (!(atrθ)g)′) dθ - e−η3t/A3
.

From these two, we conclude that

(7.6)
∫

Ĉ
f̂cusp(!(atrθ)g)) dθ - ‖ξ‖∞e−η3t/A3

.

In view of (7.4), (7.5) and (7.6), we have
∣∣∣∣
∫ 2π

0
f̂ (!(atrθ)g))ξ(θ) dθ −

∫ 2π

0
ξ dθ

∫

X
f̂R dmX

∣∣∣∣

=
∫

C
f̂sp(!(atrθ)g))ξ(θ) dθ + O(S(f )S(ξ)e−η2t/A3

)

where C = {θ : f̂sp(!(atrθ) > eηt}.
This completes the proof if we let δ1 = η and δ2 = η3/A3. !
Proof of the Sublemma. Let x = (h1, h2))′ be so that Hx is periodic. In

view of (the by now standard) non-divergence results, we may assume ‖hi‖ - 1
where the implied constant is absolute, see, e.g., [LM21, §3].

Since )′ is a finite index subgroup of SL2(Z) × SL2(Z), we conclude that

{(h, h) : h ∈ SL2(R)}∩ (h1SL2(Z)h−1
1 ) × (h2SL2(Z)h−1

2 )
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is a lattice in {(h, h) : h ∈ SL2(R)}. This implies thath1SL2(Z)h−1
1 and h2SL2(Z)h−1

2

are commensurable. Hence, h−1
2 h1 belongs to the image of GL+

2(Q) in SL2(R), i.e.,
the commensurator of SL2(Z) in SL2(R).

Let Q′ ∈ Mat2(Z) be so that h−1
2 h1 = λQ′, where λ = (detQ′)1/2. Since

‖hi‖ - 1, we have

(7.7) ‖Q′‖A2 - vol(Hx) - ‖Q′‖A3,

where A2 ≤ 1 ≤ A3 and the implied constants are absolute, see, e.g., [LMW22,
Lemma 16.2].

We will show the sublemma holds with A1 = 4DA/A2. Assume now, contrary
to our claim in the sublemma, that vol(Hx) ≤ eρt/A1 , for some A1 which will be
determined later, and that dX(g)′, x) ≤ e−t/2.

Thus g1 = ε1h1γ1 and g2 = ε2h2γ2 where ‖εi‖ - e−t/2 and (γ1, γ2) ∈ )′. Since
‖hi‖ - 1, we conclude that ‖γi‖ - ‖gi‖. Moreover, we have

(7.8) g−1
2 g1 = εγ−1

2 h−1
2 h1γ1

where ‖ε‖ - e−t/2 and the implied constants depend on ‖gi‖. Put Q = γ−1
2 Q′γ1.

Then
‖Q‖ - ‖Q′‖ - eρt/A1A2 ≤ eρt/A

wherewe used (7.7), vol(Hx) - eρt/A1 and assumed t is large. Moreover, using (7.8)
and (7.7), we conclude that

(7.9) ‖g−1
2 g1 − λQ‖ - e−t/2‖Q′‖ - e−t/2 · eρt/(A1A2)

where the implied constants depend on ‖gi‖.
Assuming t is large enough to account for the implied constant and using

A1 = 4DA/A2, the left side of (7.9) is < e−ρt. Thus (7.9) contradicts (7.2) and
finishes the proof of the theorem. !
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[SV20] A. Strömbergsson and P. Vishe, An effective equidistribution result for SL(2,R)! (R2)⊕k

and application to inhomogeneous quadratic forms, J. Lond. Math. Soc. (2) 102 (2020),
143–204.

Elon Lindenstrauss
THE EINSTEIN INSTITUTE OF MATHEMATICS
EDMOND J. SAFRA CAMPUS, GIVAT RAM

THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM 91904, ISRAEL

email: elon.bl@mail.huji.ac.il

Amir Mohammadi
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA AT SAN DIEGO

LA JOLLA, CA 92093, USA
email: ammohammadi@ucsd.edu

Zhiren Wang
DEPARTMENT OF MATHEMATICS
PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PA 16802, USA
email: zhirenw@psu.edu

(Received May 27, 2023 and in revised form October 9, 2023)


