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ABSTRACT

Frequency analysis of extreme storm surge is crucial for coastal flood risk assessments. To date,
such analyses are based on traditional extreme value theory (EVT) and its associated general-
ized extreme value (GEV) distribution. The metastatistical extreme value distribution (MEVD)
provides a new approach that can alleviate limitations of EVT. This paper provides
a comparison between the GEV distribution and the MEVD on their ability to predict “unseen”
upper-tail quantiles of storm surge along the US coastline. We analyze the error structure of
these distributions by performing a cross-validation experiment where we repeatedly divide
the data record into a calibration and validation set, respectively, and then compute the
predictive non-dimensional error. We find that the MEVD provides comparable estimates of
extreme storm surge to those of the GEV distribution, with discrepancies being subtle and
dependent on tide gauge location and calibration set length. Additionally, we show that
predictions from the MEVD are more robust with less variability in error. Finally, we illustrate
that the employment of the MEVD, as opposed to classical EVT, can lead to remarkable
differences in design storm surge height; this has serious implications for engineering applica-
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tions at sites where the novel MEVD is found more appropriate.

1. Introductory information

Coastal zones around the globe are vulnerable to
floods because extreme weather conditions, e.g.
(extra)tropical cyclones, can induce intense storm
surges and significantly raise the sea water level
(Pugh and Woodworth 2014; Wahl et al. 2017).
Particularly in the United States (US), tropical cyclone-
generated storm surges are among the costliest and
deadliest natural hazards (Needham and Keim 2012,
2014). As an example, the total economic losses follow-
ing the aftermath of Hurricanes Harvey and Irma (2017)
exceeded $120 billion, while more than 100 people
lost their lives after the two hurricanes made landfall
(Klotzbach et al. 2018).

More recently, Hurricane lan (2022) unleashed cata-
strophic storm surges leaving coastal communities in
southwestern Florida devastated. Coastal flood risk is
usually measured as the product of the probability of
occurrence of an extreme storm surge event and the
subsequent flooding consequence which, in turn, is
the product of exposure and vulnerability to flooding
(Hawkes et al. 2008). Thus, accurate computation of
event occurrence probability through extreme value
analysis plays a key role in risk assessments related to
coastal hazards. This type of analysis becomes increas-
ingly important considering that more than 600 million

people, worldwide, reside currently in low-lying coastal
areas with this number only expected to rise in the
future (Kulp and Strauss 2019; Neumann et al. 2015).
However, estimation of probabilities associated with
the upper tail of a statistical distribution is challenging.
Extreme storm surges are, by definition, highly unlikely
to occur, while the observational record is most of the
time considerably shorter than the return period of
interest, e.g. from 50 years for the construction of
a breakwater to even 10,000 years for the design of
a nuclear power plant. As a result, uncertainty in
upper-tail quantile estimates can be extremely high
(Lin and Emanuel 2016).

Frequency analysis of extreme storm surge has
been historically based on the well-grounded extreme
value theory (EVT) (S. G. Coles and Tawn 1994; S. Coles
2001; Reiss and Thomas 1997). The latter, represents
a sound theoretical framework to calculate the prob-
ability of occurrence of a variable at events of extre-
mely high magnitude and has been used in many
studies concerning other environmental processes as
well, e.g. precipitation (Emmanouil et al. 2020; Hanel
and Adri Buishand 2010), river discharge (Villarini and
Smith 2010; Villarini et al. 2011) and wind (Alaya,
Zwiers, and Zhang 2021; Fawad et al. 2019), among
others. EVT identifies the generalized extreme value
(GEV) distribution as a suitable candidate distribution
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for fitting maxima of observations (or model simula-
tions) within blocks. Typically, these blocks are
assumed to be time periods of 1-year length with the
sampling scheme then referred to as annual maxima
(AM) (S. Coles 2001). In its original form, the GEV dis-
tribution arises as an asymptotic distribution for the
maximum of a sequence of n independent and identi-
cally distributed (i.i.d.) random variables, while it also
assumes that n — oc. Earlier studies have shown that
the GEV model can reliably estimate extreme storm
surge in many regions around the world, e.g.
Argentina (D’Onofrio, Fiore, and Romero 1999), wes-
tern Europe (Hamdi et al. 2014), and southeastern Asia
(Cid et al. 2018). In the US, specifically, FEMA (Federal
Emergency Management Agency) recommends the
GEV distribution for modeling extreme storm surge
along the Pacific Coast (Wallace et al. 2005), while
application of the model to extreme storm surge
along the Gulf of Mexico and the Northwest Atlantic
Ocean suggests that the GEV distribution can repro-
duce upper-tail quantiles of storm surge (Bernier and
Thompson 2006; Boumis, Moftakhari, and Moradkhani
2023b; Huang, Xu, and Nnaji 2008; Rashid, Moftakhari,
and Moradkhani 2024). Nevertheless, there exist two
fundamental issues with the formulation of the GEV
model: 1) it does not maximize the benefit of all avail-
able information as it merely uses the AM and discards
most observations including other extremes that may
occur within a single year (Volpi et al. 2019), and 2) it
presumes that the number of independent events
per year becomes very large, i.e. n — co (De Haan,
and Ferreira 2006), as mentioned earlier. Considering
these limitations, both practical and theoretical, it
seems tempting to investigate possible alternatives
that relax the latter assumption, while simultaneously
take advantage of the entire observational record of
possibly high frequency.

A different approach that overcomes the limitations
of the traditional GEV distribution is the doubly sto-
chastic and non-asymptotic distribution, first intro-
duced by Marani and Ignaccolo (2015), referred to as
the metastatistical extreme value distribution (MEVD)
(Marani and Ignaccolo 2015; Marani and Zorzetto
2019). This type of distribution treats both the para-
meters (6) and the number of events per year (n) as
random variables, a concept also known as supersta-
tistics (Beck and Cohen 2003). The metastatistical
extreme value (MEV) model is capable of estimating
upper-tail quantiles by utilizing non-extreme indepen-
dent events, i.e. by making use of all the available data
which can be assumed unrelated, in contrast to the
GEV distribution which relies only on annual maximum
values. The MEVD has been previously applied to flu-
vial flood frequency analysis in the US (Basso et al.
2021; Miniussi, Marani, and Villarini 2020) and
Germany (Mushtaq et al. 2022), recurrence of rainfall
extremes over Austria (Schellander, Lieb, and Hell
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2019) and the US (Marra et al. 2018; Zorzetto and
Marani 2020), and hurricane intensities over the
Atlantic Ocean (Hosseini, Scaioni, and Marani 2020).
More recently, Caruso and Marani (2022) applied the
MEVD to the combined effect of storm surge and tide,
i.e. the storm-tide in Europe, whereas Vidrio-Sahagun
and He (2022) developed an explicit non-stationary
formulation of the MEVD for rainfall extremes in
Mexico. The current literature indicates that the
MEVD provides at least comparable upper-tail quantile
estimates and reduces predictive uncertainty when
compared to the traditional GEV approach, especially
when the recurrence period of interest is substantially
longer than the available observational record.

To the best of our knowledge, however, the MEVD
has yet to be tested on the frequency analysis of
extreme storm surge hazard, let alone in coastal
regions of the US. This study aims therefore to exam-
ine the metastatistics of extreme storm surge along
the US coastline, by comparatively analyzing the
overall suitability and predictive performance of
both distributions (MEV and GEV) to observed and
unobserved events, respectively. To this end, we first
obtain still water level (SWL) measurements from
NOAA (National Oceanic and Atmospheric
Administration) tide gauge stations with a long
observational record and conduct harmonic analysis
to predict the deterministic tidal component of SWL.
We then compute the meteorologically induced sto-
chastic surge component as the non-tidal residual.
Subsequently, we analyze the characteristics of inde-
pendent non-extreme events of positive surge, useful
for the MEVD, and then evaluate how well the two
contrasting distributions fit all available data of each
tide gauge with the use of quantile-to-quantile plots.
We also examine extreme storm surge predictive
error and uncertainty associated with prediction of
the next anticipated extreme event that has not yet
been observed, by means of a cross-validation exer-
cise in which we repeatedly divide the available data
record into two distinct sets: 1) a short “gauged”
calibration set to be used for parameter estimation
and 2) a long “ungauged” validation set employed
for error estimation. Lastly, we demonstrate that opt-
ing for the MEVD over classical EVT might lead to
substantial differences in design storm surge height,
important for engineering practices, particularly
noteworthy in locations where the novel MEVD is
deemed more appropriate than the traditional GEV
distribution. In summary, this work, relevant for
coastal engineering applications, contributes to exist-
ing literature as it extends the MEV framework, for
the first time, to the meteorological component of
SWLs. In contrast to earlier works, it constitutes the
first attempt to apply the MEV model to storm surge
data of multiple coasts around the US, while it also
underscores and showcases the importance of
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tailoring the MEVD at each tide gauge location indi-
vidually, in particular with respect to modeling of
non-extreme events. In addition, it highlights practi-
cal implications of choosing this fairly new approach
of extreme value analysis over traditional EVT. Along
the way, as opposed to previous similar studies, we
also question the use of a generalized Pareto (GP)
distribution within the context of cross-validation.
This research article is organized as follows:
Section 2 introduces the data, pre-processing meth-
ods, and statistical tools used for this work, while our
findings are presented in Section 3 along with
a discussion of the results. Finally, our study is con-
cluded in Section 4.

2, Dataset & statistical methodology
2.1. Storm surge data & temporal trends

We selected 12 tide gauge stations which are distrib-
uted along the US coastline and represent a variety of
geographical regions, coastal morphologies, and storm
surge regimes (Figure 1). These stations measure the
hourly SWL, i.e. the combination of mean sea level
(MSL), tide, and non-tidal residual (Serafin, Ruggiero,
and Stockdon 2017), and have recorded data for >75
years (Table 1). These data were retrieved from https.//
tidesandcurrents.noaa.gov with the use of the noaao-
ceans R package. For our analysis, we discarded years
for which > 20% of the data were missing. To obtain
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Figure 1. Distribution of selected tide gauges along the US coastline which are analyzed in this study. Orange color indicates
stations of East Coast, whereas those of Gulf Coast and West Coast are presented with purple and blue color, respectively.

Table 1. Geographical information, length of record after data pre-processing (years), and average number of independent
positive surge events (per year) for each tide gauge station under consideration.

Station Name State Longitude Latitude Length of Record # Independent Events
Boston MA -71.05 4235 99 ~ 70/yr
The Battery NY —-74.01 40.70 91 ~ 69/yr
Sewells Point VA —-76.33 36.95 92 ~ 64/yr
Wilmington NC —-77.95 34.22 85 ~ 73/yr
Key West FL —-81.81 24.55 106 ~ 65/yr
Cedar Key FL —-83.03 29.14 94 ~ 68/yr
Pensacola FL -87.21 30.40 95 ~ 62/yr
Galveston Pier 21 X —-94.79 29.31 107 ~ 67/yr
San Diego CA -117.17 32.71 112 ~ 69/yr
San Francisco CA -122.47 37.81 122 ~ 68/yr
Crescent City CA -124.18 41.75 76 ~ 66/yr
Seattle WA —-122.34 47.60 123 ~ 67/yr
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the non-tidal residual, i.e. a reasonable proxy for the
meteorologically induced surge (Nasr et al. 2021), we
performed tidal harmonic analysis on a year-by-year
basis using the TideHarmonics R package. Specifically,
for each year, we fitted 60 major tidal constituents and
predicted the tidal water level; the surge was then
computed by subtraction of predictions from the
observations of SWL. By conducting harmonic analysis
on a rolling-year basis we discount the effect of MSL
(involving its seasonal cycle) on the estimated surge
component, and thus our non-tidal residuals are not
affected by potential sea-level rise (Wahl et al. 2015).
Finally, for the tide gauge at Crescent City in California,
we disregarded the anomalously high (>2.50 m) max-
imum non-tidal residual in the year 2011 that is asso-
ciated with the Great East Japan Earthquake and the
resultant tsunami, thus not driven by meteorological
factors.

We examined any possible trends in storm surge
AM by means of the Mann-Kendall non-parametric
test, which is based on the correlation between ranks
of earlier and later values of a time series (Collaud Coen
et al. 2020; Wang et al. 2020). The Mann-Kendall test
statistic (S) can be assumed as normally distributed for
a sample size of n > 8 (Mann 1945). Thus, inference on
the null hypothesis (Hp) of no trend follows then by
comparing the standardized normal statistic
(Ssta~ @10, 1]) with the theoretical value @;_,/,, where
a is the significance level (in this case, 5%). The Hy
hypothesis cannot be rejected if pygie >0.05.

2.2. Traditional extreme value theory

For a given sample of storm surge AM, which can be
assumed independent, classical EVT recognizes the
GEV distribution as an appropriate non-degenerate
and asymptotic distribution, expressed as:

_1
F(z:u,0,6) = e (169 © (1)
where F stands for cumulative distribution function, u
is the location parameter, o denotes the scale para-
meter, and £ is the shape parameter. Depending on the
numerical value of &, the behavior of the distribution’s
tails changes according to three types: a) the heavy-
tailed case (Fréchet type) for £>0, b) the light-tailed
case (Gumbel type) when £ — 0, and ¢) the short-tailed
case (Weibull type) if £ <0. These different cases are
summarized in the 3-parameter distribution of
Equation 1. For this study, the GEV distribution para-
meters were obtained with the method of L-moments
(Hosking 1990) by using the extRemes R package.
When dealing with small sample sizes (see
Subsection 2.5), parameter estimation via the
L-moments method provides better estimates and is
less sensitive to outliers compared to other
approaches, e.g. Maximum Likelihood Estimation
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(MLE) (Martins and Stedinger 2000). Knowledge of
the parameters allows then for retrieving quantiles of
extreme storm surge associated with a specific prob-
ability of exceedance, denoted by p, using the follow-
ing equations:

= U —gm ~(~log(1 = p))™), &#0 ()

or,

zp = p — olog(—log(1 —p)), &£&-—0 (3)

In common terms, z, is the return level with probability
of occurrence p in any given year and is associated
with the return period T = 1/p. For more details on
traditional EVT and the formulation of the GEV distri-
bution, the reader is referred to Coles (2001).

2.3. Metastatistical extreme value distribution

The MEVD can be utilized in order to model the cumu-
lative distribution of storm surge AM by using a greater
number of independent events, the so-called “ordin-
ary” events, than just merely the yearly maximum
values. It is expressed in terms of the compound
probability:

60 =3 | Fzorgnowe @

where g(n, 0) is the joint probability distribution of the
number of events per year (n) and the parameters (6),
while Qg is the parameter population space. An
approximate interpretation of the MEVD follows then
as the sample average of yearly distributions of ordin-
ary events:

1< _
Glz) =5 F(z:6)" (5)
j=1

where M is the number of years in the observational
record, F(z; 6;) is the “ordinary” cumulative distribution
function of the /' year, and n; is the number of ordinary
independent events in year j. It is to be noted that 6;
might be estimated on a time window which is longer
than 1year. Specifically, when n; is small, it seems
beneficial to estimate the parameters of F(z) based
on multiple years (e.g. blocks of 5 years). For practical
applications, the desired storm surge quantile can be
obtained numerically from inversion of Equation 5.

A necessary assumption of the MEVD is that
ordinary events within a year are independent. To
ensure independence, we considered surge values
that are positive and are separated by a 3-day lag
window. A separation threshold of 3days has
shown to be sufficient for achieving independence
between two consecutive surge events (Bernardara
et al. 2014; Cid et al. 2016). Practically, for
each year, we began by selecting the maximum
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surge value and then discarded all observations
which are within £3 days of the time associated
with the selected maximum; we repeated this pro-
cess until the last positive surge value had been
extracted. Here, we restrict ourselves to positive
surges only, since we are interested in quantifying
extreme storm surge quantiles that can potentially
cause coastal flooding. Hence, negative surges,
which are more relevant to navigation issues rather
than flooding (D'Onofrio, Fiore, and Pousa 2008),
are not taken into account. It is evident that this
procedure leads to a much greater number of
events (including the annual maximum) per year,
as opposed to the AM sampling approach.

To identify the most suitable distribution for
ordinary events, we compared three different non-
extreme value distributions appropriate for model-
ing skewed data, namely: a) Weibull, b) Gamma,
and c) LogNormal. Gamma has shown to be the
best distribution for flood frequency analysis with
the MEVD (Miniussi, Marani, and Villarini 2020),
while Weibull has been utilized in many applica-
tions of the MEVD to rainfall data (Marra et al.
2018; Zorzetto, Botter, and Marani 2016). Because
the average number of ordinary events per year is
sufficient for each tide gauge (see Table 1), we
obtained parameters 6; using moment-matching
estimation (Gamma and LogNormal) and MLE
(Weibull) (Delignette-Muller and Dutang 2015) for
each single year. Oppositely, in earlier applications
of the MEVD, parameters of the “ordinary” distribu-
tion have been estimated primarily in blocks of 5
years with the use of the probability-weighted
moment method (Greenwood et al. 1979; Hosking,
Wallis, and Wood 1985).

2.4. Quantile-to-quantile graphs

For each tide gauge, in order to inspect the accu-
racy of the two models in terms of capturing prob-
abilities of observed events, quantile-to-quantile
plots can be constructed after first fitting the
MEVD and the GEV distribution to the entire data
record of each station. In other words, these graphs
help us to assess the so-called “goodness-of-fit" of
each model. Given the ordered sample of storm
surge AM, i.e. z; <z, < ... < z,, an empirical cumu-
lative distribution function following the correct
plotting position of Weibull (Makkonen 2008) can
be defined as:

~ i
F pu—
@) n—+1

where i is the rank of z; in the ordered sample, and n is
the number of years of record, or else, the number of
storm surge AM. The quantile-to-quantile graphs con-
sist then of the pairs:

(6)

{(I:'](ni1),l:'1(n4i_1)):i: 1,...,n} @)

where F is the modeled cumulative distribution func-
tion, either by the GEV distribution or the MEVD.

2.5. Cross-validation of upper-tail quantile
prediction

Although quantile-to-quantile graphs can provide
a useful tool to assess the overall goodness-of-fit of
the two distributions for modeling observed storm
surge AM, these graphs are not able to capture the
predictive error and associated uncertainty that one
encounters when trying to estimate out-of-sample
extremes. For this reason, we examined the ability of
the GEV distribution and the MEVD to predict unob-
served extreme storm surges with long return periods
of typical interest, by carrying out a cross-validation
experiment involving 1000 repetitions. More precisely,
in each repetition, we first randomly selected C (=10,
or 30) years as a calibration set to be used for para-
meter estimation, instead of the full record, while the
rest K = M — C years were used for validation, i.e. pre-
dictive error estimation. Here, M denotes the number
of years in the full record, as in Equation 5. By perform-
ing the cross-validation experiment for two different
values of C, we can more comprehensively assess the
predictive performance of the two models investigat-
ing both a very short and a moderate length of record
of 10 and 30 years, respectively. We chose to keep the
calibration sample size relatively small considering that
most tide gauges around the globe have a short obser-
vational archive. For example, ~ 80% of the tide
gauges which are part of the GESLA (Global Extreme
Sea Level Analysis) database Version 3.0 (Haigh et al.
2023) report data for <30 years. Next, we sorted the
AM of the validation set in ascending order and
assigned an empirical probability of non-exceedance
(I:',») to each annual maximum (z) given by
Fi=1i/(K+1), where i is the rank of z and K is the
number of years inside the validation set, similar to
Equation 6. Subsequently, we estimated with both the
GEV distribution and MEVD those quantiles associated
with the maximum return period of the validation set,
i.e. Tmax = 1/(1 — F; ). Finally, for both distributions,
we calculated the non-dimensional error (NDE), also
known as relative error; iterative calculation of this
metric, through our cross-validation exercise, provided
a way of quantifying predictive error variability. The
NDE was computed using the following expression:
NDE — Zest ~ Zobs (8)
7

obs

where NDE € (—o0, +00), while ngs and Z,, denote
the observed and estimated storm surge of



iteration j, respectively. We opted for the NDE
which has a perfect value of zero (when
Zest = Zobs), Since it provides a standardized way of
assessing predictive accuracy, in contrast to a non-
relative error metric, and thus allows for an
enhanced communication of our results across var-
ious coastal regions that exhibit extremes of differ-
ent magnitude. As an example, a predictive non-
relative error of 50 cm would have a totally different
interpretation if it was to be obtained for tide
gauges along the West Coast, where storm surges
tend to be milder, as opposed to stations along the
Gulf Coast which are historically struck by cata-
strophic tropical cyclones. The NDE, on the contrary,
facilitates a meaningful intercomparison of our
results between various US coasts. In addition, this
metric denotes an overestimation or underestima-
tion based on its corresponding sign, i.e. positive or
negative, respectively.

Because our cross-validation exercise embraces
small-size calibration sets, and due to its inherent sto-
chastic and repetitive nature, we decided to not con-
sider the GP distribution (S. Coles 2001) as part of our
comparative analysis, as was done in earlier similar
works. The GP distribution relies on a peaks-over-
threshold approach (Davison and Smith 1990) where
the chosen threshold (u) should be high enough for
the EVT assumptions to hold, while simultaneously
small enough to provide a sufficient sample size for
a robust statistical analysis. However, the selection of
such a threshold is a considerably hard task for short
datasets (Fukutome, Liniger, and Siiveges 2015;
Langousis et al. 2016; Solari et al. 2017). Also, since
the calibration set is randomly picked in each iteration,
application of the GP distribution would imply optimiz-
ing u for each repetition, possibly via multiple thresh-
old-detection methods (Langousis et al. 2016), thus
rendering the cross-validation exercise a particularly
difficult task. We illustrate how a single threshold, u,
can be problematic within the context of a cross-
validation exercise, by examining mean residual life
plots (Davison and Smith 1990). Figure S1 shows the
mean residual life plot for Boston, MA, as obtained
considering all 99 years of record at site. According to
the properties of the GP distribution (Text S1), an
optimal u is found to be around 0.63 m. However, for
C = 10 random years of calibration data (i.e. a random
cross-validation iteration), the same u appears to be
a bad choice for fitting a GP distribution with; a better
threshold is obtained for a value of 0.50 m (Figure S2).
This suggests that the use of a single threshold u
would result in biased GP quantile estimates, thus
unfair comparison with the GEV distribution and the
MEVD, while optimization of u for each repetition of
the cross-validation exercise would be tedious and
practically infeasible.
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3. Results & discussion
3.1. Evaluation of temporal trends

For each tide gauge, we extracted the time series of
storm surge yearly maxima and examined potential
temporal trends. Because storm surge is associated
with low-pressure weather systems, especially (extra)
tropical cyclones, temporal trends in storm surge AM
are indicative of storm activity and can reveal patterns
of increasing/decreasing storm intensity over the years.
Figures S3 to S5 illustrate the maximum storm surge on
an annual basis for East Coast, Gulf Coast, and West
Coast, respectively. The tide gauge at Wilmington, NC,
appears to exhibit an increasing trend in storm surge
AM (Figure S3), whereas a decreasing trend can be
observed for the tide gauge at San Diego, CA (Figure
S5). No apparent trends can be inferred for the rest of
the tide gauges through visual inspection only. Indeed,
as part of the Mann-Kendall non-parametric test
(Subsection 2.1) we obtained a statistically significant
positive and negative S statistic for Wilmington and
San Diego, respectively, with p,gues <0.05. However,
the test also detected a statistically significant positive
trend for the station at Pensacola, FL (pyqe = 0.02). No
trends were detected for the remaining stations
(pvalues >0 : 05). Our finding of statistically insignifi-
cant storm surge trends for the majority of stations
examined here, is in agreement with the latest litera-
ture on the matter for the coastal regions under study
(Tadesse et al. 2022). Also, these results support the
assertion that trends in extreme SWLs along the US
coastline are primarily due to MSL rise and not because
of changes in storm activity (Boumis, Moftakhari, and
Moradkhani 2023a; Menéndez and Woodworth 2010;
Woodworth and Blackman 2004). Statistically signifi-
cant temporal trends, obtained here for only
a handful of tide gauges, call into question the suit-
ability of stationary distributions for modeling extreme
storm surge hazard at these specific locations.
However, this finding does not have a noteworthy
impact on our comparison between the GEV distribu-
tion and the MEVD, at least with regard to predictive
error estimation, since our cross-validation approach
works by randomly selecting only a small number of
years for parameter estimation, i.e. calibration set
(Subsection 2.5), and thus eradicates any existing
trends.

3.2. Assessment of overall goodness-of-fit

Model checking via quantile-to-quantile plots cannot
justify extrapolation to “unseen” extremes beyond the
length of the observational record. However, it pro-
vides a reasonable way of assessing the total good-
ness-of-fit of a distribution to all available data used to
estimate the distribution’s parameters (S. Coles 2001).
Figures 2 - 4 display quantile-to-quantile graphs for
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Figure 2. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the East Coast. These plots are obtained
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by
orange dots, while the MEV model fit is shown with blue (Gamma), pink (LogNormal), and green (Weibull) dots, respectively. The

gray dashed line represents the 1:1 line.

stations along the East Coast, Gulf Coast, and West
Coast, respectively. These graphs were derived by fit-
ting the GEV distribution using the L-moments
method, while for the MEVD, all three possible variants
of the “ordinary” distribution were tested here, by
employing moment-matching estimation (Gamma
and LogNormal) and MLE (Weibull). From Figure 2 it
can be inferred that, in general, the two distributions
provide an adequate fit to storm surge AM of the
studied stations at East Coast. However, it is also appar-
ent that the goodness-of-fit of the MEVD heavily relies
on the choice of the distribution used to model ordin-
ary events, a choice which varies with tide gauge loca-
tion. As an example, Gamma yields the most
satisfactory fit of the MEVD for the station at Boston,
MA, and The Battery, NY, whereas LogNormal and
Weibull are preferred for the tide gauge at Sewells
Point, VA, and Wilmington, NC, respectively. From all
four panels (Figure 2), it is also evident that both the
GEV distribution and the best variant of the MEVD
underestimate upper-tail storm surges with the latter
distribution yielding higher discrepancies than the

former. The underestimations of upper quantiles are
more pronounced for the station at The Battery, NY,
where observed storm surge AM tend to be greater
than that of other stations (see x axes in Figure 2).
When examining tide gauges along the Gulf Coast
(Figure 3), it is shown that at Cedar Key, FL, both the
LogNormal variant of the MEVD and the GEV distribu-
tion provide a suitable model for the bulk of the
empirical data including the right tail. Interestingly,
when contrasting LogNormal with Gamma as
a suitable model for ordinary events of the MEVD at
other tide gauges, i.e. Key West, FL, Pensacola, FL, and
Galveston Pier 21, TX, it is clear that the former yields
a better fit for upper quantiles than the latter, while it is
inferior for lower storm surges. This finding may sug-
gest that the storm surge data along the Gulf Coast are
likely to originate from a fusion of storm surge popula-
tions (e.g. tropical cyclone-related or not) and might be
better modeled by a mixture of distributions. Besides,
at the same tide gauges, both the GEV distribution and
the MEVD are unable to capture the most extreme
observations (Figure 3). Similar to East Coast, the
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Figure 3. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the Gulf Coast. These plots are obtained
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by
orange dots, while the MEV model fit is shown with blue (Gamma), pink (LogNormal), and green (Weibull) dots, respectively. The
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goodness-of-fit of the MEVD for stations at West Coast
greatly depends upon the choice of the so-called
“ordinary” distribution (Figure 4). Even though
Gamma appears to work well for the tide gauges at
Seattle, WA, and San Francisco, CA, the MEVD fits the
observed data better when LogNormal and Weibull are
used for San Diego, CA, and Crescent City, CA, respec-
tively. For every tide gauge examined along the West
Coast, the best variant of the MEVD displays
a satisfactory fit, analogous to that of the GEV distribu-
tion, while both models capture most observations
quite well without any prominent discrepancies.

3.3. Analysis of predictive error structure

We now assess the ability of the MEVD and the GEV
distribution to predict previously unobserved upper-
tail quantiles, by exploring the predictive error struc-
ture. For all tide gauges under study, we carried out
our cross-validation exercise testing different candi-
date distributions to model ordinary surge events for
the MEVD. It is to be noted that the optimal choice of

“ordinary” distribution within the cross-validation con-
text was highly station-dependent and therefore
a universal choice could not be made; this is analogous
to our finding about the overall goodness-of-fit of the
MEVD, where all available data were assumed to have
been observed and thus used for model fitting (see
Subsection 3.2).

The distributions of the NDE for tide gauges along
the East Coast, Gulf Coast and West Coast are shown in
Figures 5-7, respectively; results are shown for both
calibration sample sizes (C). These distributions are
then summarized by their median values, which are
shown in Tables 2 and 3 for C = 10 and 30 years,
respectively. These tables reveal subtle differences
between median absolute errors of the GEV distribu-
tion and the best variant of the MEVD for most stations.
As an example, for the tide gauge at Boston, MA, both
distributions yield a median absolute NDE of 0.18 when
C = 10 (Table 2), while a marginal difference of 0.02
between median absolute NDEs is observed in favor of
the MEVD when C = 30 (Table 3). Similarly, at Cedar
Key, FL, the GEV distribution exhibits a slightly better
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Figure 4. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the West Coast. These plots are obtained
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by
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median absolute NDE of 0.05 than that of the MEVD
which is 0.07 when T,,.x = 84 (Table 2), whereas both
distributions display the same median absolute NDE
when T,.x = 64 (Table 3). In another instance, at San
Francisco, CA, these discrepancies remain quite small,
but in favor of the GEV distribution, with values being
0.03 and 0.04 when C =10 (Table 2) and C =30
(Table 3), respectively. It is essential to note that the
cross-validation experiment is a stochastic procedure,
and thus minor variations in these results can be antici-
pated when using a different random seed for sam-
pling. Also, different parameter estimation methods
may result in dissimilar variances of the parameters,
hence using different estimation methods for different
distributions may add a source of small, yet potential,
discrepancies in median NDE estimates and its var-
iance. Therefore, these findings, i.e. the subtle differ-
ences observed in the NDE distributions of many tide
gauges, prevent a definitive assertion regarding which
model is more suitable for estimating low-probability
unobserved storm surges. Nevertheless, there are
some cases where the disparities between the GEV

distribution and the optimal version of the MEVD are
more noticeable. For instance, at The Battery, NY, the
MEV model employing a LogNormal distribution
demonstrates superior performance compared to the
GEV model, whether with a very brief (see Table 2) or
an extended (see Table 3) calibration set. Conversely,
at Galveston Pier 21, TX, the GEV distribution produces
a significantly smaller nondimensional error, suggest-
ing its superiority over the MEVD.

Besides, it is evident from the cross-validation
results that three other remarks can be transparently
made. Initially, both distributions consistently result in
underestimations when attempting to predict extreme
unobserved storm surge events. This pattern holds
true for all three coastal regions investigated, regard-
less of the calibration sample sizes, as evident from the
prevalent negative values in Tables 2 and 3. Secondly,
the MEVD displays reduced variability in predictive
error, evident in narrower boxplots with fewer outliers,
compared to the GEV distribution for most tide gauges
(see Figures 5-7). The GEV distribution, on the other
hand, shows high sensitivity to the subset of data used
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for model calibration, particularly pronounced when
the calibration set length is short, i.e. 10years, as
a consequence of predicting an event with a much
longer return period. In conclusion, as highlighted ear-
lier, there is no unanimous agreement on the “ordin-
ary” distribution for the MEV model that could be
universally applied across tide gauges in all three
coastal regions of the US. Our findings indicate that
this decision should be best made on a site-by-site
basis to attain optimal performance. For example, at
Wilmington, NC, and Seattle, WA, the Gamma distribu-
tion demonstrates significantly better predictive per-
formance. Meanwhile, at Key West, FL, and The Battery,
NY, the Weibull and LogNormal distribution, respec-
tively, appear to be the most suitable choice for ordin-
ary surge events (Tables 2 and 3). To further conclude,
our study underscores the importance of tailoring the
choice of the “ordinary” distribution within the MEV
framework to the specific characteristics of each tide
gauge location. This nuanced understanding, exempli-
fied by the varied performance of different distribu-
tions at specific stations, highlights the complexity of

modeling storm surge events and emphasizes the
need for a location-specific strategy when employing
the MEV framework.

3.4. Implications for design storm surge height

In the field of coastal engineering, conventional appli-
cations of traditional EVT are pivotal. EVT has estab-
lished an essential framework for the design and
evaluation of structures, allowing engineers to take
into account uncommon yet potentially catastrophic
events unique to coastal settings. This ensures that
structures are reliable and resilient enough to endure
these rare but impactful incidents. Notably, classical
EVT has been prevalent in scientific literature addres-
sing coastal engineering, underlining its established
significance in the field (Hawkes et al. 2008). The
MEVD, however, stemming from recent advancements
in extreme value statistics, presents an alternative
approach that may prove more reliable and robust
for estimating extreme sea levels. Importantly, this
effectiveness can be site-specific, as shown earlier,
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meaning that the MEV model might be particularly
advantageous in certain locations. As an illustration
of the consequences of employing the MEVD over
the GEV distribution in coastal engineering practices,
we focus on prediction of the 100-year storm surge
event at The Battery, NY. The findings in Subsection 3.3
revealed that for the tide gauge at The Battery, NY,
utilizing the MEVD with a LogNormal distribution
results in notably lower errors when extrapolating to
out-of-sample extreme events (Tables 2 and 3), i.e. its
predictive ability is superior to that of the GEV distribu-
tion. Hence, we proceeded to fit both the GEV distribu-
tion and the MEVD using the entire 91-year record at
the site (Table 1), aiming to predict the storm surge
height with an average recurrence period of 100 years
using both distributions, and then make a comparison.
The GEV distribution resulted in a height of 221 m,
while the MEVD yielded a height of 2.88 m for the
same 100-year return period. This disparity of approxi-
mately 65 cm is crucial as it can lead to underestimat-
ing the required design specifications, potentially
compromising the integrity and performance of
coastal defenses. It is also worth mentioning that the

storm surge height obtained with the MEVD (2.88 m)
falls outside the 95% confidence interval computed
with the GEV distribution, which is found to be (1.75
m, 2.84 m). This further underlines the distinct differ-
ence in design storm surge height that the two dis-
tributions yield. Therefore, choosing between the GEV
distribution and the MEVD becomes an important
decision when informing construction of reliable
coastal structures.

4. Conclusion

In this work, we applied the MEV model to storm surge
data along the US coastline. Specifically, we analyzed
the goodness-of-fit and predictive performance of the
MEVD comparing it with that of classical EVT and its
associated GEV distribution. Upon visually inspecting
quantile-to-quantile plots, created by fitting both
models to the entire data record of each tide gauge,
it was observed that both the GEV distribution and the
MEVD offer reasonable estimates of observed extreme
storm surge events. However, the former generally
exhibits smaller underestimations. In our cross-
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Table 2. Median value of the nondimensional error (NDE) distribution for all tide gauge stations. Results
pertain to a calibration sample size of C = 10 years, or else, a maximum return period for validation of
Tmax = M — C, where M is the data record length of each station. An asterisk indicates the lowest

absolute NDE for the respective station.

Station Name GEV MEVD (Gamma) MEVD (LogNormal) MEVD (Weibull)
Boston —-0.18* —0.20 0.18* —0.32
The Battery -0.27 -0.35 —-0.02* -0.43
Sewells Point —0.04* —-0.21 0.17 -0.30
Wilmington —-0.05 —-0.02* 0.20 -0.18
Key West —-0.26 —0.50 —0.31 0.14*
Cedar Key —-0.05* -0.28 0.07 —-0.38
Pensacola —-0.27* -0.54 -0.31 —-0.59
Galveston Pier 21 —0.29* -0.57 -0.39 0.63
San Diego —0.26 —-0.45 -0.17 0.07*
San Francisco —-0.04* —-0.07 0.41 —-0.20
Crescent City -0.34 —-0.29* -0.34 -0.37
Seattle —-0.08 —0.04* 0.42 -0.15

validation exercise, repeatedly dividing the observa-
tional record into a small calibration set and a larger
validation set, we observed that the GEV predictions
for “unseen” extreme storm surges were unstable. This
instability was marked by significant variability in pre-
dictive error. However, the MEVD, leveraging
enhanced information from ordinary surge events,
demonstrated the ability to minimize predictive

uncertainty. Specifically, the predicted upper-tail quan-
tiles were found to be robust and less sensitive to the
random samples used for calibration. These findings
are in-line with earlier comparative studies involving
the MEVD (Zorzetto, Botter, and Marani 2016). Overall,
our findings indicate that the disparities in the average
predictive performance of the two models are often
subtle and contingent on factors such as the length of
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Table 3. Median value of the non-dimensional error (NDE) distribution for all tide gauge stations. Results
pertain to a calibration sample size of C = 30 years, or else, a maximum return period for validation of
Tmax = M — C, where M is the data record length of each station. An asterisk indicates the lowest

absolute NDE for the respective station.

Station Name GEV MEVD (Gamma) MEVD (LogNormal) MEVD (Weibull)
Boston -0.17 -0.21 0.15% -0.32
The Battery -0.22 —0.36 —0.06* —0.44
Sewells Point —0.04* -0.23 0.1 —-0.31
Wilmington —0.08 —0.03* 0.18 -0.18
Key West -0.12* -0.50 -0.31 0.14
Cedar Key —0.03* -0.29 0.03* -0.39
Pensacola —-0.26* -0.55 —-0.33 -0.59
Galveston Pier 21 -0.31* —-0.59 -0.39 —-0.63
San Diego -0.25 -0.44 -0.15* -0.28
San Francisco —0.04* —-0.08 0.38 -0.21
Crescent City -0.33 -0.31 -0.01* -0.38
Seattle —0.06 —0.05* 0.39 -0.16
the calibration set and the location of the tide gauge Basso, Stefano, Gianluca Botter, Ralf Merz, and

(Tables 2 and 3). Additionally, our analysis underscores
the importance of choosing the “ordinary” distribution
for the MEVD on a site-by-site basis for optimal results.
In conclusion, we also provided an example illustrating
how the newly emerged MEVD can result in signifi-
cantly different design storm surge heights compared
to the well-established GEV distribution. In coastal
areas where the MEVD proves to be more effective in
predicting out-of-sample extreme events, it is worth
re-thinking the use of traditional extreme-value statis-
tical tools.
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