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ABSTRACT
Frequency analysis of extreme storm surge is crucial for coastal flood risk assessments. To date, 
such analyses are based on traditional extreme value theory (EVT) and its associated general
ized extreme value (GEV) distribution. The metastatistical extreme value distribution (MEVD) 
provides a new approach that can alleviate limitations of EVT. This paper provides 
a comparison between the GEV distribution and the MEVD on their ability to predict “unseen” 
upper-tail quantiles of storm surge along the US coastline. We analyze the error structure of 
these distributions by performing a cross-validation experiment where we repeatedly divide 
the data record into a calibration and validation set, respectively, and then compute the 
predictive non-dimensional error. We find that the MEVD provides comparable estimates of 
extreme storm surge to those of the GEV distribution, with discrepancies being subtle and 
dependent on tide gauge location and calibration set length. Additionally, we show that 
predictions from the MEVD are more robust with less variability in error. Finally, we illustrate 
that the employment of the MEVD, as opposed to classical EVT, can lead to remarkable 
differences in design storm surge height; this has serious implications for engineering applica
tions at sites where the novel MEVD is found more appropriate.
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1. Introductory information

Coastal zones around the globe are vulnerable to 
floods because extreme weather conditions, e.g. 
(extra)tropical cyclones, can induce intense storm 
surges and significantly raise the sea water level 
(Pugh and Woodworth 2014; Wahl et al. 2017). 
Particularly in the United States (US), tropical cyclone- 
generated storm surges are among the costliest and 
deadliest natural hazards (Needham and Keim 2012,  
2014). As an example, the total economic losses follow
ing the aftermath of Hurricanes Harvey and Irma (2017) 
exceeded $120 billion, while more than 100 people 
lost their lives after the two hurricanes made landfall 
(Klotzbach et al. 2018).

More recently, Hurricane Ian (2022) unleashed cata
strophic storm surges leaving coastal communities in 
southwestern Florida devastated. Coastal flood risk is 
usually measured as the product of the probability of 
occurrence of an extreme storm surge event and the 
subsequent flooding consequence which, in turn, is 
the product of exposure and vulnerability to flooding 
(Hawkes et al. 2008). Thus, accurate computation of 
event occurrence probability through extreme value 
analysis plays a key role in risk assessments related to 
coastal hazards. This type of analysis becomes increas
ingly important considering that more than 600 million 

people, worldwide, reside currently in low-lying coastal 
areas with this number only expected to rise in the 
future (Kulp and Strauss 2019; Neumann et al. 2015). 
However, estimation of probabilities associated with 
the upper tail of a statistical distribution is challenging. 
Extreme storm surges are, by definition, highly unlikely 
to occur, while the observational record is most of the 
time considerably shorter than the return period of 
interest, e.g. from 50 years for the construction of 
a breakwater to even 10,000 years for the design of 
a nuclear power plant. As a result, uncertainty in 
upper-tail quantile estimates can be extremely high 
(Lin and Emanuel 2016).

Frequency analysis of extreme storm surge has 
been historically based on the well-grounded extreme 
value theory (EVT) (S. G. Coles and Tawn 1994; S. Coles  
2001; Reiss and Thomas 1997). The latter, represents 
a sound theoretical framework to calculate the prob
ability of occurrence of a variable at events of extre
mely high magnitude and has been used in many 
studies concerning other environmental processes as 
well, e.g. precipitation (Emmanouil et al. 2020; Hanel 
and Adri Buishand 2010), river discharge (Villarini and 
Smith 2010; Villarini et al. 2011) and wind (Alaya, 
Zwiers, and Zhang 2021; Fawad et al. 2019), among 
others. EVT identifies the generalized extreme value 
(GEV) distribution as a suitable candidate distribution 
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for fitting maxima of observations (or model simula
tions) within blocks. Typically, these blocks are 
assumed to be time periods of 1-year length with the 
sampling scheme then referred to as annual maxima 
(AM) (S. Coles 2001). In its original form, the GEV dis
tribution arises as an asymptotic distribution for the 
maximum of a sequence of n independent and identi
cally distributed (i:i:d:) random variables, while it also 
assumes that n!1. Earlier studies have shown that 
the GEV model can reliably estimate extreme storm 
surge in many regions around the world, e.g. 
Argentina (D’Onofrio, Fiore, and Romero 1999), wes
tern Europe (Hamdi et al. 2014), and southeastern Asia 
(Cid et al. 2018). In the US, specifically, FEMA (Federal 
Emergency Management Agency) recommends the 
GEV distribution for modeling extreme storm surge 
along the Pacific Coast (Wallace et al. 2005), while 
application of the model to extreme storm surge 
along the Gulf of Mexico and the Northwest Atlantic 
Ocean suggests that the GEV distribution can repro
duce upper-tail quantiles of storm surge (Bernier and 
Thompson 2006; Boumis, Moftakhari, and Moradkhani  
2023b; Huang, Xu, and Nnaji 2008; Rashid, Moftakhari, 
and Moradkhani 2024). Nevertheless, there exist two 
fundamental issues with the formulation of the GEV 
model: 1) it does not maximize the benefit of all avail
able information as it merely uses the AM and discards 
most observations including other extremes that may 
occur within a single year (Volpi et al. 2019), and 2) it 
presumes that the number of independent events 
per year becomes very large, i.e. n!1 (De Haan, 
and Ferreira 2006), as mentioned earlier. Considering 
these limitations, both practical and theoretical, it 
seems tempting to investigate possible alternatives 
that relax the latter assumption, while simultaneously 
take advantage of the entire observational record of 
possibly high frequency.

A different approach that overcomes the limitations 
of the traditional GEV distribution is the doubly sto
chastic and non-asymptotic distribution, first intro
duced by Marani and Ignaccolo (2015), referred to as 
the metastatistical extreme value distribution (MEVD) 
(Marani and Ignaccolo 2015; Marani and Zorzetto  
2019). This type of distribution treats both the para
meters (θ) and the number of events per year (n) as 
random variables, a concept also known as supersta
tistics (Beck and Cohen 2003). The metastatistical 
extreme value (MEV) model is capable of estimating 
upper-tail quantiles by utilizing non-extreme indepen
dent events, i.e. by making use of all the available data 
which can be assumed unrelated, in contrast to the 
GEV distribution which relies only on annual maximum 
values. The MEVD has been previously applied to flu
vial flood frequency analysis in the US (Basso et al.  
2021; Miniussi, Marani, and Villarini 2020) and 
Germany (Mushtaq et al. 2022), recurrence of rainfall 
extremes over Austria (Schellander, Lieb, and Hell  

2019) and the US (Marra et al. 2018; Zorzetto and 
Marani 2020), and hurricane intensities over the 
Atlantic Ocean (Hosseini, Scaioni, and Marani 2020). 
More recently, Caruso and Marani (2022) applied the 
MEVD to the combined effect of storm surge and tide, 
i.e. the storm-tide in Europe, whereas Vidrio-Sahagún 
and He (2022) developed an explicit non-stationary 
formulation of the MEVD for rainfall extremes in 
Mexico. The current literature indicates that the 
MEVD provides at least comparable upper-tail quantile 
estimates and reduces predictive uncertainty when 
compared to the traditional GEV approach, especially 
when the recurrence period of interest is substantially 
longer than the available observational record.

To the best of our knowledge, however, the MEVD 
has yet to be tested on the frequency analysis of 
extreme storm surge hazard, let alone in coastal 
regions of the US. This study aims therefore to exam
ine the metastatistics of extreme storm surge along 
the US coastline, by comparatively analyzing the 
overall suitability and predictive performance of 
both distributions (MEV and GEV) to observed and 
unobserved events, respectively. To this end, we first 
obtain still water level (SWL) measurements from 
NOAA (National Oceanic and Atmospheric 
Administration) tide gauge stations with a long 
observational record and conduct harmonic analysis 
to predict the deterministic tidal component of SWL. 
We then compute the meteorologically induced sto
chastic surge component as the non-tidal residual. 
Subsequently, we analyze the characteristics of inde
pendent non-extreme events of positive surge, useful 
for the MEVD, and then evaluate how well the two 
contrasting distributions fit all available data of each 
tide gauge with the use of quantile-to-quantile plots. 
We also examine extreme storm surge predictive 
error and uncertainty associated with prediction of 
the next anticipated extreme event that has not yet 
been observed, by means of a cross-validation exer
cise in which we repeatedly divide the available data 
record into two distinct sets: 1) a short “gauged” 
calibration set to be used for parameter estimation 
and 2) a long “ungauged” validation set employed 
for error estimation. Lastly, we demonstrate that opt
ing for the MEVD over classical EVT might lead to 
substantial differences in design storm surge height, 
important for engineering practices, particularly 
noteworthy in locations where the novel MEVD is 
deemed more appropriate than the traditional GEV 
distribution. In summary, this work, relevant for 
coastal engineering applications, contributes to exist
ing literature as it extends the MEV framework, for 
the first time, to the meteorological component of 
SWLs. In contrast to earlier works, it constitutes the 
first attempt to apply the MEV model to storm surge 
data of multiple coasts around the US, while it also 
underscores and showcases the importance of 
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tailoring the MEVD at each tide gauge location indi
vidually, in particular with respect to modeling of 
non-extreme events. In addition, it highlights practi
cal implications of choosing this fairly new approach 
of extreme value analysis over traditional EVT. Along 
the way, as opposed to previous similar studies, we 
also question the use of a generalized Pareto (GP) 
distribution within the context of cross-validation. 
This research article is organized as follows: 
Section 2 introduces the data, pre-processing meth
ods, and statistical tools used for this work, while our 
findings are presented in Section 3 along with 
a discussion of the results. Finally, our study is con
cluded in Section 4.

2. Dataset & statistical methodology

2.1. Storm surge data & temporal trends

We selected 12 tide gauge stations which are distrib
uted along the US coastline and represent a variety of 
geographical regions, coastal morphologies, and storm 
surge regimes (Figure 1). These stations measure the 
hourly SWL, i.e. the combination of mean sea level 
(MSL), tide, and non-tidal residual (Serafin, Ruggiero, 
and Stockdon 2017), and have recorded data for > 75 
years (Table 1). These data were retrieved from https:// 
tidesandcurrents.noaa.gov with the use of the noaao
ceans R package. For our analysis, we discarded years 
for which � 20% of the data were missing. To obtain 

Figure 1. Distribution of selected tide gauges along the US coastline which are analyzed in this study. Orange color indicates 
stations of East Coast, whereas those of Gulf Coast and West Coast are presented with purple and blue color, respectively.

Table 1. Geographical information, length of record after data pre-processing (years), and average number of independent 
positive surge events (per year) for each tide gauge station under consideration.

Station Name State Longitude Latitude Length of Record # Independent Events

Boston MA −71.05 42.35 99 , 70/yr
The Battery NY −74.01 40.70 91 , 69/yr
Sewells Point VA −76.33 36.95 92 , 64/yr
Wilmington NC −77.95 34.22 85 , 73/yr
Key West FL −81.81 24.55 106 , 65/yr
Cedar Key FL −83.03 29.14 94 , 68/yr
Pensacola FL −87.21 30.40 95 , 62/yr
Galveston Pier 21 TX −94.79 29.31 107 , 67/yr
San Diego CA −117.17 32.71 112 , 69/yr
San Francisco CA −122.47 37.81 122 , 68/yr
Crescent City CA −124.18 41.75 76 , 66/yr
Seattle WA −122.34 47.60 123 , 67/yr
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the non-tidal residual, i.e. a reasonable proxy for the 
meteorologically induced surge (Nasr et al. 2021), we 
performed tidal harmonic analysis on a year-by-year 
basis using the TideHarmonics R package. Specifically, 
for each year, we fitted 60 major tidal constituents and 
predicted the tidal water level; the surge was then 
computed by subtraction of predictions from the 
observations of SWL. By conducting harmonic analysis 
on a rolling-year basis we discount the effect of MSL 
(involving its seasonal cycle) on the estimated surge 
component, and thus our non-tidal residuals are not 
affected by potential sea-level rise (Wahl et al. 2015). 
Finally, for the tide gauge at Crescent City in California, 
we disregarded the anomalously high (> 2:50 m) max
imum non-tidal residual in the year 2011 that is asso
ciated with the Great East Japan Earthquake and the 
resultant tsunami, thus not driven by meteorological 
factors.

We examined any possible trends in storm surge 
AM by means of the Mann-Kendall non-parametric 
test, which is based on the correlation between ranks 
of earlier and later values of a time series (Collaud Coen 
et al. 2020; Wang et al. 2020). The Mann–Kendall test 
statistic (S) can be assumed as normally distributed for 
a sample size of n � 8 (Mann 1945). Thus, inference on 
the null hypothesis (H0) of no trend follows then by 
comparing the standardized normal statistic 
(Sstd,Φ½0; 1�) with the theoretical value Φ1� α=2, where 
α is the significance level (in this case, 5%). The H0 

hypothesis cannot be rejected if pvalue > 0:05.

2.2. Traditional extreme value theory

For a given sample of storm surge AM, which can be 
assumed independent, classical EVT recognizes the 
GEV distribution as an appropriate non-degenerate 
and asymptotic distribution, expressed as: 

where F stands for cumulative distribution function, μ 
is the location parameter, σ denotes the scale para
meter, and � is the shape parameter. Depending on the 
numerical value of �, the behavior of the distribution’s 
tails changes according to three types: a) the heavy- 
tailed case (Fréchet type) for � > 0, b) the light-tailed 
case (Gumbel type) when �! 0, and c) the short-tailed 
case (Weibull type) if �< 0. These different cases are 
summarized in the 3-parameter distribution of 
Equation 1. For this study, the GEV distribution para
meters were obtained with the method of L-moments 
(Hosking 1990) by using the extRemes R package. 
When dealing with small sample sizes (see 
Subsection 2.5), parameter estimation via the 
L-moments method provides better estimates and is 
less sensitive to outliers compared to other 
approaches, e.g. Maximum Likelihood Estimation 

(MLE) (Martins and Stedinger 2000). Knowledge of 
the parameters allows then for retrieving quantiles of 
extreme storm surge associated with a specific prob
ability of exceedance, denoted by p, using the follow
ing equations: 

or, 

In common terms, zp is the return level with probability 
of occurrence p in any given year and is associated 
with the return period T ¼ 1=p. For more details on 
traditional EVT and the formulation of the GEV distri
bution, the reader is referred to Coles (2001).

2.3. Metastatistical extreme value distribution

The MEVD can be utilized in order to model the cumu
lative distribution of storm surge AM by using a greater 
number of independent events, the so-called “ordin
ary” events, than just merely the yearly maximum 
values. It is expressed in terms of the compound 
probability: 

where gðn; θÞ is the joint probability distribution of the 
number of events per year (n) and the parameters (θ), 
while Ωθ is the parameter population space. An 
approximate interpretation of the MEVD follows then 
as the sample average of yearly distributions of ordin
ary events: 

where M is the number of years in the observational 
record, Fðz; θjÞ is the “ordinary” cumulative distribution 
function of the jth year, and nj is the number of ordinary 
independent events in year j. It is to be noted that θj 

might be estimated on a time window which is longer 
than 1 year. Specifically, when nj is small, it seems 
beneficial to estimate the parameters of FðzÞ based 
on multiple years (e.g. blocks of 5 years). For practical 
applications, the desired storm surge quantile can be 
obtained numerically from inversion of Equation 5.

A necessary assumption of the MEVD is that 
ordinary events within a year are independent. To 
ensure independence, we considered surge values 
that are positive and are separated by a 3-day lag 
window. A separation threshold of 3 days has 
shown to be sufficient for achieving independence 
between two consecutive surge events (Bernardara 
et al. 2014; Cid et al. 2016). Practically, for 
each year, we began by selecting the maximum 
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surge value and then discarded all observations 
which are within ±3 days of the time associated 
with the selected maximum; we repeated this pro
cess until the last positive surge value had been 
extracted. Here, we restrict ourselves to positive 
surges only, since we are interested in quantifying 
extreme storm surge quantiles that can potentially 
cause coastal flooding. Hence, negative surges, 
which are more relevant to navigation issues rather 
than flooding (D’Onofrio, Fiore, and Pousa 2008), 
are not taken into account. It is evident that this 
procedure leads to a much greater number of 
events (including the annual maximum) per year, 
as opposed to the AM sampling approach.

To identify the most suitable distribution for 
ordinary events, we compared three different non- 
extreme value distributions appropriate for model
ing skewed data, namely: a) Weibull, b) Gamma, 
and c) LogNormal. Gamma has shown to be the 
best distribution for flood frequency analysis with 
the MEVD (Miniussi, Marani, and Villarini 2020), 
while Weibull has been utilized in many applica
tions of the MEVD to rainfall data (Marra et al.  
2018; Zorzetto, Botter, and Marani 2016). Because 
the average number of ordinary events per year is 
sufficient for each tide gauge (see Table 1), we 
obtained parameters θj using moment-matching 
estimation (Gamma and LogNormal) and MLE 
(Weibull) (Delignette-Muller and Dutang 2015) for 
each single year. Oppositely, in earlier applications 
of the MEVD, parameters of the “ordinary” distribu
tion have been estimated primarily in blocks of 5  
years with the use of the probability-weighted 
moment method (Greenwood et al. 1979; Hosking, 
Wallis, and Wood 1985).

2.4. Quantile-to-quantile graphs

For each tide gauge, in order to inspect the accu
racy of the two models in terms of capturing prob
abilities of observed events, quantile-to-quantile 
plots can be constructed after first fitting the 
MEVD and the GEV distribution to the entire data 
record of each station. In other words, these graphs 
help us to assess the so-called “goodness-of-fit” of 
each model. Given the ordered sample of storm 
surge AM, i.e. z1 � z2 � . . . � zn, an empirical cumu
lative distribution function following the correct 
plotting position of Weibull (Makkonen 2008) can 
be defined as: 

where i is the rank of zi in the ordered sample, and n is 
the number of years of record, or else, the number of 
storm surge AM. The quantile-to-quantile graphs con
sist then of the pairs: 

where F̂ is the modeled cumulative distribution func
tion, either by the GEV distribution or the MEVD.

2.5. Cross-validation of upper-tail quantile 
prediction

Although quantile-to-quantile graphs can provide 
a useful tool to assess the overall goodness-of-fit of 
the two distributions for modeling observed storm 
surge AM, these graphs are not able to capture the 
predictive error and associated uncertainty that one 
encounters when trying to estimate out-of-sample 
extremes. For this reason, we examined the ability of 
the GEV distribution and the MEVD to predict unob
served extreme storm surges with long return periods 
of typical interest, by carrying out a cross-validation 
experiment involving 1000 repetitions. More precisely, 
in each repetition, we first randomly selected C ( = 10, 
or 30) years as a calibration set to be used for para
meter estimation, instead of the full record, while the 
rest K ¼ M � C years were used for validation, i.e. pre
dictive error estimation. Here, M denotes the number 
of years in the full record, as in Equation 5. By perform
ing the cross-validation experiment for two different 
values of C, we can more comprehensively assess the 
predictive performance of the two models investigat
ing both a very short and a moderate length of record 
of 10 and 30 years, respectively. We chose to keep the 
calibration sample size relatively small considering that 
most tide gauges around the globe have a short obser
vational archive. For example, , 80% of the tide 
gauges which are part of the GESLA (Global Extreme 
Sea Level Analysis) database Version 3.0 (Haigh et al.  
2023) report data for < 30 years. Next, we sorted the 
AM of the validation set in ascending order and 
assigned an empirical probability of non-exceedance 
(~Fi) to each annual maximum (zi) given by 
~Fi ¼ i=ðK þ 1Þ, where i is the rank of zi and K is the 
number of years inside the validation set, similar to 
Equation 6. Subsequently, we estimated with both the 
GEV distribution and MEVD those quantiles associated 
with the maximum return period of the validation set, 
i.e. Tmax ¼ 1=ð1 � Fimax Þ. Finally, for both distributions, 
we calculated the non-dimensional error (NDE), also 
known as relative error; iterative calculation of this 
metric, through our cross-validation exercise, provided 
a way of quantifying predictive error variability. The 
NDE was computed using the following expression: 

where NDE 2 ð� 1;þ1Þ, while zj
obs and zj

est denote 
the observed and estimated storm surge of 
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iteration j, respectively. We opted for the NDE 
which has a perfect value of zero (when 
zest ¼ zobs), since it provides a standardized way of 
assessing predictive accuracy, in contrast to a non- 
relative error metric, and thus allows for an 
enhanced communication of our results across var
ious coastal regions that exhibit extremes of differ
ent magnitude. As an example, a predictive non- 
relative error of 50 cm would have a totally different 
interpretation if it was to be obtained for tide 
gauges along the West Coast, where storm surges 
tend to be milder, as opposed to stations along the 
Gulf Coast which are historically struck by cata
strophic tropical cyclones. The NDE, on the contrary, 
facilitates a meaningful intercomparison of our 
results between various US coasts. In addition, this 
metric denotes an overestimation or underestima
tion based on its corresponding sign, i.e. positive or 
negative, respectively.

Because our cross-validation exercise embraces 
small-size calibration sets, and due to its inherent sto
chastic and repetitive nature, we decided to not con
sider the GP distribution (S. Coles 2001) as part of our 
comparative analysis, as was done in earlier similar 
works. The GP distribution relies on a peaks-over- 
threshold approach (Davison and Smith 1990) where 
the chosen threshold (u) should be high enough for 
the EVT assumptions to hold, while simultaneously 
small enough to provide a sufficient sample size for 
a robust statistical analysis. However, the selection of 
such a threshold is a considerably hard task for short 
datasets (Fukutome, Liniger, and Süveges 2015; 
Langousis et al. 2016; Solari et al. 2017). Also, since 
the calibration set is randomly picked in each iteration, 
application of the GP distribution would imply optimiz
ing u for each repetition, possibly via multiple thresh
old-detection methods (Langousis et al. 2016), thus 
rendering the cross-validation exercise a particularly 
difficult task. We illustrate how a single threshold, u, 
can be problematic within the context of a cross- 
validation exercise, by examining mean residual life 
plots (Davison and Smith 1990). Figure S1 shows the 
mean residual life plot for Boston, MA, as obtained 
considering all 99 years of record at site. According to 
the properties of the GP distribution (Text S1), an 
optimal u is found to be around 0.63 m. However, for 
C ¼ 10 random years of calibration data (i.e. a random 
cross-validation iteration), the same u appears to be 
a bad choice for fitting a GP distribution with; a better 
threshold is obtained for a value of 0.50 m (Figure S2). 
This suggests that the use of a single threshold u 
would result in biased GP quantile estimates, thus 
unfair comparison with the GEV distribution and the 
MEVD, while optimization of u for each repetition of 
the cross-validation exercise would be tedious and 
practically infeasible.

3. Results & discussion

3.1. Evaluation of temporal trends

For each tide gauge, we extracted the time series of 
storm surge yearly maxima and examined potential 
temporal trends. Because storm surge is associated 
with low-pressure weather systems, especially (extra) 
tropical cyclones, temporal trends in storm surge AM 
are indicative of storm activity and can reveal patterns 
of increasing/decreasing storm intensity over the years. 
Figures S3 to S5 illustrate the maximum storm surge on 
an annual basis for East Coast, Gulf Coast, and West 
Coast, respectively. The tide gauge at Wilmington, NC, 
appears to exhibit an increasing trend in storm surge 
AM (Figure S3), whereas a decreasing trend can be 
observed for the tide gauge at San Diego, CA (Figure 
S5). No apparent trends can be inferred for the rest of 
the tide gauges through visual inspection only. Indeed, 
as part of the Mann-Kendall non-parametric test 
(Subsection 2.1) we obtained a statistically significant 
positive and negative S statistic for Wilmington and 
San Diego, respectively, with pvalues < 0:05. However, 
the test also detected a statistically significant positive 
trend for the station at Pensacola, FL (pvalue ¼ 0:02). No 
trends were detected for the remaining stations 
(pvalues > 0 : 05). Our finding of statistically insignifi
cant storm surge trends for the majority of stations 
examined here, is in agreement with the latest litera
ture on the matter for the coastal regions under study 
(Tadesse et al. 2022). Also, these results support the 
assertion that trends in extreme SWLs along the US 
coastline are primarily due to MSL rise and not because 
of changes in storm activity (Boumis, Moftakhari, and 
Moradkhani 2023a; Menéndez and Woodworth 2010; 
Woodworth and Blackman 2004). Statistically signifi
cant temporal trends, obtained here for only 
a handful of tide gauges, call into question the suit
ability of stationary distributions for modeling extreme 
storm surge hazard at these specific locations. 
However, this finding does not have a noteworthy 
impact on our comparison between the GEV distribu
tion and the MEVD, at least with regard to predictive 
error estimation, since our cross-validation approach 
works by randomly selecting only a small number of 
years for parameter estimation, i.e. calibration set 
(Subsection 2.5), and thus eradicates any existing 
trends.

3.2. Assessment of overall goodness-of-fit

Model checking via quantile-to-quantile plots cannot 
justify extrapolation to “unseen” extremes beyond the 
length of the observational record. However, it pro
vides a reasonable way of assessing the total good
ness-of-fit of a distribution to all available data used to 
estimate the distribution’s parameters (S. Coles 2001). 
Figures 2 – 4 display quantile-to-quantile graphs for 
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stations along the East Coast, Gulf Coast, and West 
Coast, respectively. These graphs were derived by fit
ting the GEV distribution using the L-moments 
method, while for the MEVD, all three possible variants 
of the “ordinary” distribution were tested here, by 
employing moment-matching estimation (Gamma 
and LogNormal) and MLE (Weibull). From Figure 2 it 
can be inferred that, in general, the two distributions 
provide an adequate fit to storm surge AM of the 
studied stations at East Coast. However, it is also appar
ent that the goodness-of-fit of the MEVD heavily relies 
on the choice of the distribution used to model ordin
ary events, a choice which varies with tide gauge loca
tion. As an example, Gamma yields the most 
satisfactory fit of the MEVD for the station at Boston, 
MA, and The Battery, NY, whereas LogNormal and 
Weibull are preferred for the tide gauge at Sewells 
Point, VA, and Wilmington, NC, respectively. From all 
four panels (Figure 2), it is also evident that both the 
GEV distribution and the best variant of the MEVD 
underestimate upper-tail storm surges with the latter 
distribution yielding higher discrepancies than the 

former. The underestimations of upper quantiles are 
more pronounced for the station at The Battery, NY, 
where observed storm surge AM tend to be greater 
than that of other stations (see x axes in Figure 2). 
When examining tide gauges along the Gulf Coast 
(Figure 3), it is shown that at Cedar Key, FL, both the 
LogNormal variant of the MEVD and the GEV distribu
tion provide a suitable model for the bulk of the 
empirical data including the right tail. Interestingly, 
when contrasting LogNormal with Gamma as 
a suitable model for ordinary events of the MEVD at 
other tide gauges, i.e. Key West, FL, Pensacola, FL, and 
Galveston Pier 21, TX, it is clear that the former yields 
a better fit for upper quantiles than the latter, while it is 
inferior for lower storm surges. This finding may sug
gest that the storm surge data along the Gulf Coast are 
likely to originate from a fusion of storm surge popula
tions (e.g. tropical cyclone-related or not) and might be 
better modeled by a mixture of distributions. Besides, 
at the same tide gauges, both the GEV distribution and 
the MEVD are unable to capture the most extreme 
observations (Figure 3). Similar to East Coast, the 

Figure 2. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the East Coast. These plots are obtained 
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by 
orange dots, while the MEV model fit is shown with blue (Gamma), pink (LogNormal), and green (Weibull) dots, respectively. The 
gray dashed line represents the 1:1 line.
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goodness-of-fit of the MEVD for stations at West Coast 
greatly depends upon the choice of the so-called 
“ordinary” distribution (Figure 4). Even though 
Gamma appears to work well for the tide gauges at 
Seattle, WA, and San Francisco, CA, the MEVD fits the 
observed data better when LogNormal and Weibull are 
used for San Diego, CA, and Crescent City, CA, respec
tively. For every tide gauge examined along the West 
Coast, the best variant of the MEVD displays 
a satisfactory fit, analogous to that of the GEV distribu
tion, while both models capture most observations 
quite well without any prominent discrepancies.

3.3. Analysis of predictive error structure

We now assess the ability of the MEVD and the GEV 
distribution to predict previously unobserved upper- 
tail quantiles, by exploring the predictive error struc
ture. For all tide gauges under study, we carried out 
our cross-validation exercise testing different candi
date distributions to model ordinary surge events for 
the MEVD. It is to be noted that the optimal choice of 

“ordinary” distribution within the cross-validation con
text was highly station-dependent and therefore 
a universal choice could not be made; this is analogous 
to our finding about the overall goodness-of-fit of the 
MEVD, where all available data were assumed to have 
been observed and thus used for model fitting (see 
Subsection 3.2).

The distributions of the NDE for tide gauges along 
the East Coast, Gulf Coast and West Coast are shown in 
Figures 5–7, respectively; results are shown for both 
calibration sample sizes (C). These distributions are 
then summarized by their median values, which are 
shown in Tables 2 and 3 for C ¼ 10 and 30 years, 
respectively. These tables reveal subtle differences 
between median absolute errors of the GEV distribu
tion and the best variant of the MEVD for most stations. 
As an example, for the tide gauge at Boston, MA, both 
distributions yield a median absolute NDE of 0.18 when 
C ¼ 10 (Table 2), while a marginal difference of 0.02 
between median absolute NDEs is observed in favor of 
the MEVD when C ¼ 30 (Table 3). Similarly, at Cedar 
Key, FL, the GEV distribution exhibits a slightly better 

Figure 3. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the Gulf Coast. These plots are obtained 
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by 
orange dots, while the MEV model fit is shown with blue (Gamma), pink (LogNormal), and green (Weibull) dots, respectively. The 
gray dashed line represents the 1:1 line.
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median absolute NDE of 0.05 than that of the MEVD 
which is 0.07 when Tmax ¼ 84 (Table 2), whereas both 
distributions display the same median absolute NDE 
when Tmax ¼ 64 (Table 3). In another instance, at San 
Francisco, CA, these discrepancies remain quite small, 
but in favor of the GEV distribution, with values being 
0.03 and 0.04 when C ¼ 10 (Table 2) and C ¼ 30 
(Table 3), respectively. It is essential to note that the 
cross-validation experiment is a stochastic procedure, 
and thus minor variations in these results can be antici
pated when using a different random seed for sam
pling. Also, different parameter estimation methods 
may result in dissimilar variances of the parameters, 
hence using different estimation methods for different 
distributions may add a source of small, yet potential, 
discrepancies in median NDE estimates and its var
iance. Therefore, these findings, i.e. the subtle differ
ences observed in the NDE distributions of many tide 
gauges, prevent a definitive assertion regarding which 
model is more suitable for estimating low-probability 
unobserved storm surges. Nevertheless, there are 
some cases where the disparities between the GEV 

distribution and the optimal version of the MEVD are 
more noticeable. For instance, at The Battery, NY, the 
MEV model employing a LogNormal distribution 
demonstrates superior performance compared to the 
GEV model, whether with a very brief (see Table 2) or 
an extended (see Table 3) calibration set. Conversely, 
at Galveston Pier 21, TX, the GEV distribution produces 
a significantly smaller nondimensional error, suggest
ing its superiority over the MEVD.

Besides, it is evident from the cross-validation 
results that three other remarks can be transparently 
made. Initially, both distributions consistently result in 
underestimations when attempting to predict extreme 
unobserved storm surge events. This pattern holds 
true for all three coastal regions investigated, regard
less of the calibration sample sizes, as evident from the 
prevalent negative values in Tables 2 and 3. Secondly, 
the MEVD displays reduced variability in predictive 
error, evident in narrower boxplots with fewer outliers, 
compared to the GEV distribution for most tide gauges 
(see Figures 5–7). The GEV distribution, on the other 
hand, shows high sensitivity to the subset of data used 

Figure 4. Quantile-to-quantile plots of storm surge annual maxima for tide gauges along the West Coast. These plots are obtained 
by fitting both distributions to all available data in the observational record of each tide gauge. The GEV model fit is denoted by 
orange dots, while the MEV model fit is shown with blue (Gamma), pink (LogNormal), and green (Weibull) dots, respectively. The 
gray dashed line represents the 1:1 line.
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for model calibration, particularly pronounced when 
the calibration set length is short, i.e. 10 years, as 
a consequence of predicting an event with a much 
longer return period. In conclusion, as highlighted ear
lier, there is no unanimous agreement on the “ordin
ary” distribution for the MEV model that could be 
universally applied across tide gauges in all three 
coastal regions of the US. Our findings indicate that 
this decision should be best made on a site-by-site 
basis to attain optimal performance. For example, at 
Wilmington, NC, and Seattle, WA, the Gamma distribu
tion demonstrates significantly better predictive per
formance. Meanwhile, at Key West, FL, and The Battery, 
NY, the Weibull and LogNormal distribution, respec
tively, appear to be the most suitable choice for ordin
ary surge events (Tables 2 and 3). To further conclude, 
our study underscores the importance of tailoring the 
choice of the “ordinary” distribution within the MEV 
framework to the specific characteristics of each tide 
gauge location. This nuanced understanding, exempli
fied by the varied performance of different distribu
tions at specific stations, highlights the complexity of 

modeling storm surge events and emphasizes the 
need for a location-specific strategy when employing 
the MEV framework.

3.4. Implications for design storm surge height

In the field of coastal engineering, conventional appli
cations of traditional EVT are pivotal. EVT has estab
lished an essential framework for the design and 
evaluation of structures, allowing engineers to take 
into account uncommon yet potentially catastrophic 
events unique to coastal settings. This ensures that 
structures are reliable and resilient enough to endure 
these rare but impactful incidents. Notably, classical 
EVT has been prevalent in scientific literature addres
sing coastal engineering, underlining its established 
significance in the field (Hawkes et al. 2008). The 
MEVD, however, stemming from recent advancements 
in extreme value statistics, presents an alternative 
approach that may prove more reliable and robust 
for estimating extreme sea levels. Importantly, this 
effectiveness can be site-specific, as shown earlier, 

Figure 5. Distribution of the non-dimensional error (NDE) for tide gauges along the East Coast. Results for both calibration sample 
sizes (C), i.e. 10 and 30 years, are shown. Orange boxplots refer to the GEV distribution, while those with blue, pink, and green color 
denote the MEVD with a Gamma, LogNormal, and Weibull “ordinary” distribution, respectively. The black horizontal dashed line 
indicates a perfect NDE of zero value.
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meaning that the MEV model might be particularly 
advantageous in certain locations. As an illustration 
of the consequences of employing the MEVD over 
the GEV distribution in coastal engineering practices, 
we focus on prediction of the 100-year storm surge 
event at The Battery, NY. The findings in Subsection 3.3 
revealed that for the tide gauge at The Battery, NY, 
utilizing the MEVD with a LogNormal distribution 
results in notably lower errors when extrapolating to 
out-of-sample extreme events (Tables 2 and 3), i.e. its 
predictive ability is superior to that of the GEV distribu
tion. Hence, we proceeded to fit both the GEV distribu
tion and the MEVD using the entire 91-year record at 
the site (Table 1), aiming to predict the storm surge 
height with an average recurrence period of 100 years 
using both distributions, and then make a comparison. 
The GEV distribution resulted in a height of 2.21 m, 
while the MEVD yielded a height of 2.88 m for the 
same 100-year return period. This disparity of approxi
mately 65 cm is crucial as it can lead to underestimat
ing the required design specifications, potentially 
compromising the integrity and performance of 
coastal defenses. It is also worth mentioning that the 

storm surge height obtained with the MEVD (2.88 m) 
falls outside the 95% confidence interval computed 
with the GEV distribution, which is found to be (1.75  
m, 2.84 m). This further underlines the distinct differ
ence in design storm surge height that the two dis
tributions yield. Therefore, choosing between the GEV 
distribution and the MEVD becomes an important 
decision when informing construction of reliable 
coastal structures.

4. Conclusion

In this work, we applied the MEV model to storm surge 
data along the US coastline. Specifically, we analyzed 
the goodness-of-fit and predictive performance of the 
MEVD comparing it with that of classical EVT and its 
associated GEV distribution. Upon visually inspecting 
quantile-to-quantile plots, created by fitting both 
models to the entire data record of each tide gauge, 
it was observed that both the GEV distribution and the 
MEVD offer reasonable estimates of observed extreme 
storm surge events. However, the former generally 
exhibits smaller underestimations. In our cross- 

Figure 6. Distribution of the non-dimensional error (NDE) for tide gauges along the Gulf Coast. Results for both calibration sample 
sizes (C), i.e. 10 and 30 years, are shown. Orange boxplots refer to the GEV distribution, while those with blue, pink, and green color 
denote the MEVD with a Gamma, LogNormal, and Weibull “ordinary” distribution, respectively. The black horizontal dashed line 
indicates a perfect NDE of zero value.
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validation exercise, repeatedly dividing the observa
tional record into a small calibration set and a larger 
validation set, we observed that the GEV predictions 
for “unseen” extreme storm surges were unstable. This 
instability was marked by significant variability in pre
dictive error. However, the MEVD, leveraging 
enhanced information from ordinary surge events, 
demonstrated the ability to minimize predictive 

uncertainty. Specifically, the predicted upper-tail quan
tiles were found to be robust and less sensitive to the 
random samples used for calibration. These findings 
are in-line with earlier comparative studies involving 
the MEVD (Zorzetto, Botter, and Marani 2016). Overall, 
our findings indicate that the disparities in the average 
predictive performance of the two models are often 
subtle and contingent on factors such as the length of 

Figure 7. Distribution of the non-dimensional error (NDE) for tide gauges along the West Coast. Results for both calibration sample 
sizes (C), i.e. 10 and 30 years, are shown. Orange boxplots refer to the GEV distribution, while those with blue, pink, and green color 
denote the MEVD with a Gamma, LogNormal, and Weibull “ordinary” distribution, respectively. The black horizontal dashed line 
indicates a perfect NDE of zero value.

Table 2. Median value of the nondimensional error (NDE) distribution for all tide gauge stations. Results 
pertain to a calibration sample size of C ¼ 10 years, or else, a maximum return period for validation of 
Tmax ¼ M � C, where M is the data record length of each station. An asterisk indicates the lowest 
absolute NDE for the respective station.

Station Name GEV MEVD (Gamma) MEVD (LogNormal) MEVD (Weibull)

Boston −0.18* −0.20 0.18* −0.32
The Battery −0.27 −0.35 −0.02* −0.43
Sewells Point −0.04* −0.21 0.17 −0.30
Wilmington −0.05 −0.02* 0.20 −0.18
Key West −0.26 −0.50 −0.31 0.14*
Cedar Key −0.05* −0.28 0.07 −0.38
Pensacola −0.27* −0.54 −0.31 −0.59
Galveston Pier 21 −0.29* −0.57 −0.39 0.63
San Diego −0.26 −0.45 −0.17 0.07*
San Francisco −0.04* −0.07 0.41 −0.20
Crescent City −0.34 −0.29* −0.34 −0.37
Seattle −0.08 −0.04* 0.42 −0.15
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the calibration set and the location of the tide gauge 
(Tables 2 and 3). Additionally, our analysis underscores 
the importance of choosing the “ordinary” distribution 
for the MEVD on a site-by-site basis for optimal results. 
In conclusion, we also provided an example illustrating 
how the newly emerged MEVD can result in signifi
cantly different design storm surge heights compared 
to the well-established GEV distribution. In coastal 
areas where the MEVD proves to be more effective in 
predicting out-of-sample extreme events, it is worth 
re-thinking the use of traditional extreme-value statis
tical tools.
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