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Abstract. We give a cohomological interpretation of the Heaviside filtration on the Varchenko–

Gelfand ring of a pair (A,K), where A is a real hyperplane arrangement and K is a convex open

subset of the ambient vector space. This builds on work of the first author, who studied the

filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomo-

logical interpretation in the special case where K is the ambient vector space. We also define

the Gelfand–Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes

the Gelfand–Rybnikov ring of an oriented matroid and the aforementioned Varchenko–Gelfand

ring of a pair. We give purely combinatorial presentations of the ring, its associated graded,

and its Rees algebra.
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1 Introduction

In the first half of this paper, the basic object of study is a pair consisting of a hyperplane ar-

rangement in a real vector space, and a convex open set in that vector space. We study the

Varchenko–Gelfand ring of such a pair, along with its Heaviside filtration, which was introduced

by the first author [DB22]. We give a cohomological interpretation of the Varchenko–Gelfand ring,

its associated graded, and its Rees algebra, generalizing work of de Longueville and Schultz [dS01]

and Moseley [Mos17] in the case where the convex open set is equal to the vector space itself.

The second half of the paper is devoted to giving combinatorial presentations for these rings.

When the convex set is equal to the vector space, the rings depend only on the oriented matroid

associated with the hyperplane arrangement, and the definitions and presentations were extended

to arbitrary oriented matroids by Gelfand and Rybnikov [GR89] and Cordovil [Cor02]. Introducing

the convex open set requires generalizing from oriented matroids to conditional oriented matroids,

introduced by Bandelt, Chepoi, and Knauer [BCK18]. We define the Gelfand–Rybnikov algebra

1Supported by NSF grants DMS-1954050, DMS-2039316, and DMS-2053243.
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of a conditional oriented matroid, along with its Heaviside filtration, and we give presentations for

this algebra, its associated graded, and its Rees algebra.

1.1 Topology

Let V be a finite dimensional vector space over R and A a finite set of a�ne hyperplanes in V , and

consider the complement

M1(A) := V \
[

H2A
H,

which is simply the disjoint union of the chambers. The Varchenko–Gelfand ring VG(A) is

defined as the ring of locally constant Z-valued functions on M1(A). This is a boring ring with

an interesting filtration: it is generated as a ring by Heaviside functions, which take the value

1 on one side of a given hyperplane and 0 on the other side, and we define Fk(A) ⇢ VG(A) be

the subgroup generated by polynomial expressions in the Heaviside functions of degree at most k.

Varchenko and Gelfand [VG87] computed the relations between the Heaviside functions.

For any ring R equipped with an increasing filtration F0 ⇢ F1 ⇢ · · · ⇢ R, one can define the

associated graded

grR :=
M

k�0

Fk/Fk�1

and the Rees algebra

ReesR :=
M

k�0

u
k
Fk ⇢ R⌦ Z[u].

The Rees algebra is a torsion-free graded module over the polynomial ring Z[u], and we have

canonical isomorphisms

ReesR/hu� 1i ⇠= R and ReesR/hui ⇠= grR .
2

The geometric meaning of the Heaviside filtration of VG(A), along with its associated graded and

its Rees algebra, was explained in a paper of Moseley [Mos17]. For each H 2 A, let H0 be the

linear hyperplane obtained by translating H to the origin. Let

H ⌦ R3 := {(x, y, z) 2 V ⌦ R3 | x 2 H and y, z 2 H0},

and consider the space

M3(A) := V ⌦ R3 \
[

H2A
H ⌦ R3

.

This space admits an action of T := U(1) by identifying R3 with R ⇥ C and letting T act on C
by scalar multiplication; the fixed point set of this action can be identified with the space M1(A).

2We will always take the degree of u to be 2, which means that the isomorphism ReesR/hui ⇠= grR halves degrees.
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Moseley showed that we have isomorphisms

VG(A)⌦Q ⇠= H⇤(M3(A)T ;Q)

grVG(A)⌦Q ⇠= H⇤(M3(A);Q)

ReesVG(A)⌦Q ⇠= H⇤
T (M3(A);Q),

the latter being an isomorphism of graded algebras over H⇤
T
(⇤;Q) ⇠= Q[u].

The first of the three isomorphisms above is immediate from the definition of VG(A). When all

of the hyperplanes pass through the origin, the second isomorphism can be obtained by comparing

the results of Varchenko and Gelfand with the presentation of H⇤(M3(A);Q) due to de Longueville

and Schultz [dS01, Corollary 5.6]. The most interesting is the last isomorphism, which interpolates

between the first two (see Section 2).

Our goal is to generalize these results to a larger class of rings and spaces, and also to work

with coe�cients in Z rather than in Q. Fix an open, convex subset K ⇢ V , and consider the spaces

M1(A,K) := M1(A) \K and M3(A,K) :=
�
(x, y, z) 2 M3(A) | x 2 K

 
.

Note that we still have an action of T on M3(A,K) with fixed point set isomorphic to M1(A,K).

We define the Varchenko–Gelfand ring of the pair (A,K) to be the ring VG(A,K) of locally

constant Z-valued functions on M1(A,K); this ring was introduced and studied by the first author

[DB22]. Our first main result is the following theorem.

Theorem 1.1. We have canonical isomorphisms

VG(A,K) ⇠= H
⇤(M3(A,K)T ;Z)

grVG(A,K) ⇠= H⇤(M3(A,K);Z)

ReesVG(A,K) ⇠= H⇤
T (M3(A,K);Z),

the latter being an isomorphism of graded algebras over H
⇤
T
(⇤;Z) ⇠= Z[u].

Remark 1.2. If we take K = V , then M1(A,K) = M1(A) and M3(A,K) = M3(A). We then

recover Moseley’s result by tensoring with Q.

1.2 Combinatorics

Our proof of Theorem 1.1 is purely topological, and does not require us to give presentations of any

of the rings involved. That said, each of the three rings in Theorem 1.1 admits a nice combinatorial

presentation, which is the focus of the second half of our paper.

In the case where K = V and all hyperplanes pass through the origin, the presentations depend

only on the oriented matroid determined by A. Indeed, Gelfand and Rybnikov [GR89] defined

a filtered ring associated with any oriented matroid, generalizing the Varchenko–Gelfand ring with
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its Heaviside filtration, and gave a presentation generalizing the one in [VG87]. Independently,

Cordovil gave a presentation for the associated graded of this filtered ring [Cor02].

Just as the combinatorial data of a central real hyperplane arrangement is captured by an

oriented matroid, the combinatorial essence of a pair (A,K) is captured by a conditional oriented

matroid, introduced by Bandelt, Chepoi, and Knauer [BCK18]. We define the Gelfand–Rybnikov

ring of a conditional oriented matroid in a way that generalizes both the Gelfand–Rybnikov ring

of an oriented matroid and the Varchenko–Gelfand ring of a pair (A,K). In Theorem 1.6, we

give presentations for this ring, its associated graded, and its Rees algebra, extending the work of

[GR89, Cor02] to conditional oriented matroids.

Before stating the theorem, we review some definitions. Let I be a finite set. A signed set is an

ordered pair X = (X+
, X

�) of disjoint subsets of I. The support of a signed set X = (X+
, X

�)

is the unsigned set X := X
+ [ X

�. For any i 2 I, we write Xi = ± if i 2 X
±, and Xi = 0 if

i /2 X. We write �X to denote the opposite signed set �X = (X�
, X

+), so that (�X)i = �Xi.

The separating set of a pair of signed sets X,Y is the set of coordinates in the intersection of the

supports at which X and Y di↵er:

Sep(X,Y ) := {i 2 I | Xi = �Yi 6= 0}.

The composition
3
X � Y of two signed sets is a signed set defined by

(X � Y )i :=

8
<

:
Xi if Xi 6= 0

Yi otherwise
for all i 2 I.

A conditional oriented matroid on the ground set I is a collection L of signed sets, called

covectors, satisfying both of the following two conditions:

• Face Symmetry (FS): If X,Y 2 L, then X � �Y 2 L.

• Strong Elimination (SE): If X,Y 2 L and i 2 Sep(X,Y ), then there exists Z 2 L with Zi = 0

and Zj = (X � Y )j for all j 2 I \ Sep(X,Y ).

If L also contains the empty signed set (;, ;), then L is an oriented matroid. We defer the key

example to Example 1.5 while we make a few more definitions; the reader is invited to skip ahead

for motivation.

Remark 1.3. The face symmetry condition also implies that L is closed under composition, as

X � Y = (X � �X) � Y = X � (�X � Y ) = X � �(X � �Y ).

Remark 1.4. The definition of conditional oriented matroid in [BCK18] includes the additional

hypotheses that I and L are both nonempty. We omit these hypotheses, both so that Example 1.5

3This operation is also sometimes called the face product.
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always makes sense even when A or K is empty, and so that deletion and contraction are always

defined (see Section 4.2).

Let T ⇢ L be the set of covectors that are nonzero in every coordinate. Note that, if there is an

element i 2 I such that Xi = 0 for all X 2 L (such an i is called a coloop), then T = ;. If there

are no coloops, then elements of T are called topes. We define the Gelfand–Rybnikov ring

GR(L) to be the ring of functions from T to Z. For each element i 2 I, we define the Heaviside

functions h
±
i
2 GR(L) by

h
+
i
(X) =

8
<

:
1 if Xi = +

0 if Xi = �
and h

�
i
(X) = 1� h

+
i
(X) =

8
<

:
1 if Xi = �

0 if Xi = +.

These functions generate the ring GR(L), and we define a filtration by letting Fk(L) ⇢ GR(L) be
the subgroup generated by polynomial expressions in the Heaviside functions of degree at most k.

In Theorem 1.6, the generators of our rings will be the images of the Heaviside functions, and

the relations will be indexed by circuits. The notion of a circuit of a conditional oriented matroid

does not appear in [BCK18], so we introduce it here. A signed set X is called a circuit of L if the

following two conditions hold:

• For every covector Y 2 L, X � Y 6= Y .

• The signed set X is support-minimal with respect to this property. That is, if Z is a signed

set with Z ( X, then there is some Y 2 L with Z � Y = Y .

We denote the set of circuits by C. When L is an oriented matroid, then this set agrees with the

usual notion of circuits for oriented matroids (see Lemma 4.5).

Example 1.5. Let (A,K) be a pair consisting of an a�ne hyperplane arrangement A in a real

vector space V and a convex open subset K ⇢ V . Fix in addition a co-orientation of each H 2 V ,

so that we can talk about the positive open half space H
+ and the negative open half space H

�,

with V = H
+ tH

� tH. For any signed set X in A, let

HX :=
\

H2X+

H
+ \

\

H2X�

H
� \

\

H2A\X

H.

We then define

L(A,K) := {X | HX \K 6= ;},

and observe that L(A,K) is a conditional oriented matroid on A. The face symmetry property

comes from the fact that K is open, and the strong elimination property comes from the fact that

K is convex. Each point p 2 K determines a covector X 2 L(A,K) by putting XH = ± if p 2 H
±

and XH = 0 if p 2 H, and every covector arises in this manner. The conditional oriented matroid

L(A,K) is an oriented matroid if and only if there is a point that lies in every hyperplane as well

as in K, in which case L(A,K) = L(A, V ).
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When the conditional oriented matroid L(A,K) has no coloops, the topes correspond to the

connected components of M1(A,K), and therefore the the Gelfand-Rybnikov ring of L(A,K) co-

incides, as a filtered ring, with the Varchenko–Gelfand ring of (A,K). The circuits of L(A,K) are

the minimal signed sets X with the property that

\

H2X+

H
+ \

\

H2X�

H
� \ K = ;.

An explicit example of this form appears in Example 1.11.

We are now ready to give our presentations. Consider the free graded Z[u]-algebra

R := Z
⇥
u, e

+
i
, e

�
i

⇤
i2I

.D
e
+
i
e
�
i
, e

+
i
+ e

�
i
� u

��� i 2 I
E
,

with all generators having degree 2. For each signed set X, let

eX :=
Y

i2X+

e
+
i

Y

i2X�

(�e
�
i
) 2 R.

Since e
+
i
is congruent to �e

�
i
modulo u, eX � e�X is a multiple of u, and we may therefore define

fX :=
eX � e�X

u
2 R.

Consider the ideals

IL :=
⌦
eX | X 2 C

↵
⇢ R and JL :=

⌦
fX | ±X 2 C

↵
⇢ R .

4

For m 2 {0, 1}, consider the quotient ring Rm := R/hu�mi, and let IL,m and JL,m be the images

of IL and JL in Rm.

Theorem 1.6. We have canonical isomorphisms

GR(L) ⇠= R1

.⇣
IL,1 + JL,1

⌘

grGR(L) ⇠= R0

.⇣
IL,0 + JL,0

⌘

ReesGR(L) ⇠= R

.⇣
IL + JL

⌘

given by sending each e
±
i

to the image of the corresponding Heaviside function h
±
i
.

Remark 1.7. Theorem 1.6 has many antecedents. When L = L(A, V ), it is due to Varchenko

and Gelfand [VG87] (see also [dS01, Mos17] for the connections to cohomology and equivariant

cohomology, respectively). When L is an oriented matroid, it is due to Gelfand and Rybnikov (see

[Cor02] for a study of the associated graded ring). When L = L(A,K) as in Example 1.5, it is due

4Whenever we write ±X 2 C, we mean that both X and �X are circuits.
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K

Figure 1: Four co-oriented lines 1, 2, 3, 4 in the plane along with a convex open subset K. The
co-orientation is indicated with a + on the positive side of a given line.

to the first author [DB22].5

Remark 1.8. The ideal IL,1 + JL,1 is inhomogeneous, and it is clear that its initial ideal contains

IL,0 + JL,0. The fact that its initial ideal is equal to IL,0 + JL,0 is not obvious; the proof of this

fact is a substantial part of the proof of Theorem 1.6. This is equivalent to the statement that

R

.⇣
IL + JL

⌘
is a free module over Z[u].

Remark 1.9. If Xi = +, then e
+
i
fX = eX . For this reason, we may replace the ideal IL with the

ideal

I
0
L :=

⌦
eX | X 2 C,�X /2 C

↵

in the statement of Theorem 1.6. If L is an oriented matroid, then I
0
L = 0, thus we can eliminate

the ideals IL and IL,m entirely from the statement of the theorem. This gives us the presentations

appearing in [VG87, GR89, dS01, Mos17].

Remark 1.10. The most di�cult part proving Theorem 1.6 is developing the theory of circuits

of conditional oriented matroids, leading up to the proof of Proposition 4.2. This proposition has

a relatively easy proof when L = L(A,K) (see Remark 4.4), but the proof for general conditional

oriented matroids is much more involved.

Example 1.11. Figure 1 shows an arrangement A of four lines in the plane, along with a convex

5With the exception of [Mos17], none of these previous works explicitly mention the Rees algebra, but the third
isomorphism can be derived from the other two.

7



open subset K. Example 1.5 tells us that we have C = {±X,Y, Z}, where

X = ({1, 3}, {2}) = (+,�,+, 0)

Y = ({3}, {4}) = (0, 0,+,�)

Z = ({2}, {1, 4}) = (�,+, 0,�).

Theorems 1.1 and 1.6 imply that

H⇤
T (M3(A,K);Z) ⇠= ReesVG(A,K) = ReesGR(L(A,K)) ⇠= R/hfX , eY , eZi.

Explicitly, R/hfX , eY , eZi is equal to

Z[e+1 , e
+
2 , e

+
3 , e

+
4 , u]

.D
e
+
i
(u� e

+
i
), e+1 e

+
2 � e

+
1 e

+
3 + e

+
2 e

+
3 � ue

+
2 , e

+
3 (e

+
4 � u), (e+1 � u)e+2 (e

+
4 � u)

E
,

where the first relation e
+
i
(u� e

+
i
) holds for i 2 {1, 2, 3, 4}. The rings grVG(A,K) and VG(A,K)

are obtained from ReesVG(A,K) by setting u equal to 0 and 1, respectively.

Acknowledgments: The authors are grateful to the organizers of the Arrangements at Home work-

shop series for bringing us together to work on these problems, and to Vic Reiner for helpful

conversations.

2 Background on Equivariant Cohomology

The main results of this section are Propositions 2.6 and 2.8, which are key steps in the proof

of Theorem 1.1. The ideas in this section are not new, but we found it di�cult to find precise

statements in the literature about equivariant cohomology with Z coe�cients. We collect the

results that we need here, and point the reader to any of [Bor60, AB84, GKM98] for a standard

introduction to equivariant cohomology. For simplicity, we will only discuss actions of the group

T := U(1).

2.1 The definition

Let ET := C1 \ {0}. This is a contractible space, equipped with a free action of T . Define the

quotient

BT := ET/T ⇠= CP1
.

A T -space is a space equipped with a continuous action of the group T . For any T -space M , the

Borel space of M is

MT := (M ⇥ ET )/T,
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where T acts diagonally on M ⇥ ET . The equivariant cohomology of M is the graded ring

H⇤
T (M ;Z) := H⇤(MT ;Z).

The T -equivariant projection from M ⇥ ET to ET descends to a fiber bundle ⇡ : MT ! BT with

fiber M . Pulling back along ⇡ makes H⇤
T
(M ;Z) into an algebra over H⇤

T
(⇤;Z) = H⇤(BT ;Z) ⇠= Z[u].

Any T -equivariant map from M to another T -space N induces a map from MT to NT that is

compatible with the bundle projections. In particular, this means that H⇤
T
(�;Z) is a contravariant

functor from the category of T -spaces with equivariant maps to the category of graded Z[u]-algebras.
If N ⇢ M is a T -subspace, we define the relative Z[u]-modules H⇤

T
(M,N ;Z) := H⇤(MT , NT ;Z).

Example 2.1. If T acts trivially on M , then MT
⇠= M ⇥BT , and

H⇤
T (M ;Z) ⇠= H⇤(M ;Z)⌦H⇤(BT ;Z) ⇠= H⇤(M ;Z)⌦ Z[u].

Example 2.2. If T acts freely on M , then MT
⇠= M/T ⇥ ET , which is homotopy equivalent to

M/T , so H⇤
T
(M ;Z) ⇠= H⇤(M/T ;Z). More generally, if N ⇢ M is a T -subspace, then

H⇤
T (M,N ;Z) ⇠= H⇤(M/T,N/T ;Z). (1)

2.2 Specializations

We now introduce two specialization homomorphisms '̄ and  ̄ that we will need for the proof of

Theorem 1.1. The inclusion of a fiber ◆ : M ! MT defines a graded algebra homomorphism

' := ◆
⇤ : H⇤

T (M ;Z) ! H⇤(M ;Z),

called the forgetful homomorphism. By construction, the composition ⇡�◆ is constant, therefore

'(⇡⇤u) = ◆
⇤(⇡⇤u) = (⇡ � ◆)⇤u = 0.

Since ⇡⇤u lies in the kernel of ', we have the induced homomorphism

'̄ : H⇤
T (M ;Z)/h⇡⇤ui ! H⇤(M ;Z).

We will often abuse notation and use the symbol u to denote ⇡⇤u 2 H⇤
T
(M ;Z). This allows us to

rewrite the previous line as a specialization u = 0:

'̄ : H⇤
T (M ;Z)/hui ! H⇤(M ;Z).

The inclusion of the fixed point set  : MT ! M induces another graded algebra homomorphism

 := 
⇤ : H⇤

T (M ;Z) ! H⇤
T (M

T ;Z) ⇠= H⇤(MT ;Z)⌦ Z[u].
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When we set u equal to 1, this descends to a homomorphism

 ̄ : H⇤
T (M ;Z)/hu� 1i ! H⇤(MT ;Z).

2.3 Localization

Lemma 2.3. Let M be a T -manifold of dimension d. If T acts freely on M \MT , then the relative

cohomology group H
⇤
T
(M,M

T ;Z) is annihilated by u
d.

Proof. Let N be a T -equivariant closed tubular neighborhood of MT in M with interior U ; this

exists by [Bre72, Theorem VI.2.2]. Then

H
⇤
T (M,M

T ;Z) ⇠= H
⇤
T (M,N ;Z) ⇠= H

⇤
T (M \ U,N \ U ;Z) ⇠= H⇤

⇣
(M \ U)/T, (N \ U)/T ;Z

⌘
,

where the first isomorphism is induced by the T -equivariant deformation retraction from N to M
T ,

the second by excision, and the third by Equation (1) from Example 2.2. Since T acts freely away

from M
T , (M \ U)/T is a manifold with boundary (N \ U)/T . The cohomology of this manifold

vanishes in degrees greater than its dimension, and the lemma follows.

Corollary 2.4. Let M be a T -manifold of dimension d. If T acts freely on M \ M
T , then the

kernel and cokernel of the map

 : H⇤
T (M ;Z) ! H⇤

T (M
T ;Z)

are annihilated by u
d.

Proof. Consider the long exact sequence in equivariant cohomology associated with the pair (M,M
T ).

This shows that the kernel (respectively cokernel) of  is a submodule (respectively quotient mod-

ule) of H⇤
T
(M,M

T ;Z), thus the statement follows from Lemma 2.3.

Remark 2.5. If we drop the assumption that T acts freely on M \MT , then (M \U)/T is a smooth

orbifold. This allows us to adapt the proof of Corollary 2.4 for cohomology with coe�cients in Q,

but not with coe�cients in Z. For example, consider the action of T on itself as multiplication by

the square, so that the fixed locus is empty and the stabilizer of every point is {±1} ⇢ T . Then

Ker( ) = H⇤
T (T ;Z) ⇠= H⇤(B{±1};Z) ⇠= H⇤(RP1;Z) ⇠= Z[u]/h2ui.

Only after tensoring with Q is this module annihilated by u.

2.4 Equivariant formality

We say that the T -space M is equivariantly formal over Z if H⇤
T
(M ;Z) is free as a Z[u]-module

and the specialization '̄ : H⇤
T
(M ;Z)/hui ! H⇤(M ;Z) is an isomorphism. This is equivalent to the

collapse of the spectral sequence associated with the fiber bundle ⇡ : MT ! BT at the E2 page. In
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particular, if H⇤(M ;Z) vanishes in odd degree, then all of the di↵erentials in the spectral sequence

are zero for degree reasons, therefore M is automatically equivariantly formal over Z.

Proposition 2.6. If M is equivariantly formal over Z and x1, . . . , xn 2 H⇤
T
(M ;Z) are homogeneous

classes with the property that '(x1), . . . ,'(xn) generate H
⇤(M ;Z) as a ring, then x1, . . . , xn generate

H
⇤
T
(M ;Z) as a Z[u]-algebra.

Proof. Let R ⇢ H⇤
T
(M ;Z) be the subalgebra generated by the classes x1, . . . , xn. Assume for the

sake of contradiction that R ( H⇤
T
(M ;Z), and let ↵ 2 H⇤

T
(M ;Z) \ R be a homogeneous class of

minimal degree. Since '(R) = H⇤(M ;Z), there exists a class x 2 R such that '(x) = '(↵). Since

' is a homomorphism

0 = '(x)� '(↵) = '(x� ↵).

By formality, the kernel of ' is generated by u, so there is a class � such that x � ↵ = u�. In

particular, this � has degree strictly less than ↵. Since ↵ had minimal degree, this means that

� 2 R, which contradicts the assumption that ↵ /2 R.

Proposition 2.7. Suppose that M is a finite dimensional T -manifold with the property that T acts

freely on M \MT , and that M is equivariantly formal over Z. Then

 : H⇤
T (M ;Z) ! H⇤

T (M
T ;Z)

is injective and

 ̄ : H⇤
T (M ;Z)/hu� 1i ! H⇤(MT ;Z)

is an isomorphism.

Proof. Corollary 2.4 tells us that the kernel of  is annihilated by a power of u. Formality tells us

that the domain of  is a free Z[u]-module, thus the kernel of  must be trivial.

For the second statement, recall from Example 2.1 that H⇤
T
(MT ;Z) ⇠= H⇤(MT ;Z) ⌦ Z[u], and

consider the short exact sequence

0 ! H⇤
T (M ;Z)  �! H⇤(MT ;Z)⌦ Z[u] ! Coker( ) ! 0.

Taking the tensor product over Z[u] with Q := Z[u]/hu� 1i, we obtain the exact sequence

Tor1(Coker( ), Q) ! H⇤
T (M ;Z)/hu� 1i  ̄�! H⇤(MT ;Z) ! Coker( )⌦Z[u] Q ! 0.

Corollary 2.4 implies that Coker( ) ⌦Z[u] Q is zero. From the definition of Q and the fact that

Coker( ) is graded, we have

Tor1(Coker( ), Q) ⇠= {x 2 Coker( ) | (u� 1)x = 0} = 0.

This completes the proof that  ̄ is an isomorphism.
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2.5 The equivariant filtration

In this section we suppose that M is a finite dimensional T -manifold with the property that T

acts freely on M \MT . We also assume that the cohomology for M vanishes in odd degree, which

implies that M is equivariantly formal over Z, and therefore that  ̄ is an isomorphism. It also

implies that the equivariant cohomology of M vanishes in odd degree. In this setting, H⇤(MT ;Z)
admits an interesting filtration, which we describe now.

For k � 0, define

Fk(M) ⇢ H⇤(MT ;Z) ⇠= H⇤
T (M ;Z)/hu� 1i

to be the set of classes that can be lifted to H2k
T
(M ;Z). Note that any class which can be lifted to

↵ 2 H2k
T
(M ;Z) can also be lifted to u

i
↵ 2 H2(k+i)

T
(M ;Z) for i � 0. Thus the groups Fk(M) form a

filtration

F0(M) ⇢ F1(M) ⇢ · · · ⇢ H⇤(MT ;Z),

which we call the equivariant filtration. The following proposition is immediate from the defi-

nition of the equivariant filtration.

Proposition 2.8. If M satisfies the hypotheses of Proposition 2.7 and has vanishing odd cohomol-

ogy, then the image of the inclusion

 : H⇤
T (M ;Z) ! H⇤

T (M
T ;Z)

is the Rees algebra of the equivariant filtration, and therefore  induces an isomorphism

H⇤
T (M ;Z) ⇠= ReesH⇤(MT ;Z)

of graded Z[u]-algebras.

Remark 2.9. If one wants to drop the assumption that the odd cohomology vanishes, but still

assume equivariant formality over Z, one can alternatively define a filtration of H⇤(MT ;Z) by taking

the k
th filtered piece to be the images of classes of degree  k (rather than 2k) in H⇤

T
(M ;Z). The

Rees algebra of this filtration will be isomorphic to the algebra H⇤
T
(M ;Z)⌦Z[u] Z[u1/2], where now

the Rees parameter corresponds to u
1/2 rather than u.

2.6 Classes represented by submanifolds

We have now collected the key general results needed for the proof of Theorem 1.1. In this sec-

tion, we construct a family of equivariant cohomology classes and state some of their properties.

Throughout this section, suppose that M is a manifold and N ⇢ M is a closed6 submanifold of

codimension k. A coorientation of N (= a choice of orientation of the normal bundle) determines

a cohomology class [N ] 2 Hk(M ;Z). One construction of this class is as follows. Let U be an open

6We mean closed in the sense that N is a closed subset of M . We do not mean to imply that N is compact, which
is what topologists sometimes mean by the phrase “closed manifold”.
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tubular neighborhood ofN inM , and let Ū := M/(M\U). Then Ū is isomorphic to the Thom space

of the normal bundle to N , and we therefore have the Thom isomorphism H⇤(N ;Z) ⇠= H⇤+k(Ū ;Z).
The class [N ] is obtained by pulling back the class 1 2 H0(N ;Z) ⇠= Hk(Ū ;Z) to M .

If T acts on both M and N , then we also define

[N ]T = [NT ] 2 Hk(MT ;Z) = Hk

T (M ;Z).

This construction has the following properties. The first four follow from the corresponding non-

equivariant statements, while (v) follows from (iv) applied to the inclusion of M into MT .

(i) Reversing the coorientation of a submanifold N sends [N ]T to �[N ]T .

(ii) If N1 and N2 are disjoint closed cooriented T -submanifolds, then [N1[N2]T = [N1]T +[N2]T .

(iii) If N1 and N2 are transverse closed cooriented T -submanifolds, then [N1\N2]T = [N1]T ·[N2]T .

(iv) If N is a cooriented closed T -submanifold of M and f : M 0 ! M is a T -equivariant map that

is transverse to N , then f
⇤([N ]T ) = [f�1

N ]T 2 H⇤(M 0;Z).

(v) This construction is compatible with the forgetful homomorphism. That is, '([N ]T ) = [N ].

Example 2.10. Let M = C with the standard action of T . Then MT is homotopy equivalent

to BT , so H⇤
T
(M ;Z) ⇠= H⇤(BT ;Z) ⇠= Z[u]. The class [{0}]T 2 H2

T
(M ;Z) is a generator, and can

therefore be identified with u.

Example 2.11. Let M = R3 \ {0} = (R⇥ C) \ {(0, 0)}. Let

e
+ := [R>0 ⇥ {0}]T 2 H2

T (M ;Z) and e
� := [R<0 ⇥ {0}]T 2 H2

T (M ;Z).

Note that '(e+) = �'(e�) generates H2(M ;Z), so M is equivariantly formal over Z. Since e+ and

e
� are represented by disjoint submanifolds, we have e

+
e
� = 0 by (iii).

Consider the projection f : M ! C. Since f is transverse to the submanifold {0}, we have the

following equalities in H2
T
(M ;Z)

u = f
⇤
u = f

⇤([{0}]T ) = [f�1(0)]T

= [R>0 ⇥ {0} [ R<0 ⇥ {0}]T = [R>0 ⇥ {0}]T + [R<0 ⇥ {0}]T
= e

+ + e
�

where the equality on the middle line comes from (ii) and the fact that the two manifolds are

disjoint. In particular, our discussion from Section 2.2 implies that the class e
+ + e

� is in the

kernel of ', and

H⇤
T (M ;Z) ⇠= Z[e+, e�]/he+e�i.

The following lemma is not strictly necessary for proving our results, and will be referenced

only in Remark 5.2. That said, it is a fundamental property of equivariant cohomology which we

believe is helpful for understanding the ideas in this paper.
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Lemma 2.12. If N1, . . . , Nr are (not necessarily transverse) closed cooriented T -submanifolds of

M with N1 \ · · · \Nr = ;, then [N1]T · · · [Nr]T = 0.

Proof. The class [N1]T · · · [Nr]T is equal to the image of the class [N1]T ⌦ · · · ⌦ [Nr]T under the

composition

H⇤
T (M ;Z)⌦ · · ·⌦H⇤

T (M ;Z) ! H⇤
T (M

r;Z) �⇤
�! H⇤

T (M ;Z),

where M
r is the direct sum of r copies of M and � is the diagonal map. Let

N̄i := {(p1, . . . , pr) 2 M
r | pi 2 Ni}.

The image of [N1]T ⌦ · · ·⌦ [Nr]T in H⇤
T
(M r;Z) is equal to the product of the classes [N̄i]T . Since

the submanifolds N̄i are pairwise transverse, we can apply (iii) to this product. The product is

zero because the total intersection is empty.

3 Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. The key technical ingredient will be the statement that

M3(A,K) is equivariantly formal over Z (Proposition 3.5).

Let V be a finite dimensional real vector space, A a finite set of a�ne hyperplanes in V , and

K ⇢ V a convex open set. For anyH 2 A, we define the deletion (A0
,K0), which is a pair consisting

of an arrangement and a convex open subset in V , by setting A0 = A \ {H} and K0 = K. We also

define the contraction (A00
,K00), which is a pair consisting of an arrangement and a convex open

subset in H, by setting A00 = {H 0 \H | H 0 2 A0} and K00 = K \H. Note that we have an open

inclusion from M3(A,K) to M3(A0
,K0), and the complement is equal to M3(A00

,K00). The following

lemma is standard in the case where K = V , and the proof in this more general setting is identical.

Lemma 3.1. We have a canonical isomorphism of graded abelian groups

Hi(M3(A0
,K0),M3(A,K);Z) ⇠= Hi�2(M3(A00

,K00);Z).

Proof. The key observation is that the normal bundle to M3(A00
,K00) inside of M3(A0

,K0) is a trivial

bundle of rank 3. By the Tubluar Neighborhood Theorem, the Excision Theorem, and the Künneth

Theorem, this implies that

Hi(M3(A0
,K0),M3(A,K);Z) ⇠= Hi�2(M3(A00

,K00);Z)⌦H2(R3
,R3 \ {0};Z)

⇠= Hi�2(M3(A00
,K00);Z).

This completes the proof.

Corollary 3.2. The cohomology of M3(A,K) vanishes in odd degree, and for each k > 0, we have
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a short exact sequence

0 ! H2k(M3(A0
,K0);Z) ! H2k(M3(A,K);Z) ! H2k�2(M3(A00

,K00);Z) ! 0.

Proof. Combining Lemma 3.1 with the long exact sequence of the pair (M3(A0
,K0),M3(A,K)), we

obtain the long exact sequence

· · · ! Hi(M3(A0
,K0);Z) ! Hi(M3(A,K);Z) ! Hi�2(M3(A00

,K00);Z) ! Hi+1(M3(A0
,K0);Z) ! · · · .

The vanishing of odd cohomology then follows from induction on the number of hyperplanes in A.

Once we know that the odd cohomology vanishes, we find that our long exact sequence is in fact a

collection of short exact sequences.

Proposition 3.3. The restriction map H⇤(M3(A);Z) ! H⇤(M3(A,K);Z) is surjective.

Proof. We proceed by induction on the cardinality of A, which allows us to assume that the

statement holds for (A0
,K0) and (A00

,K00). Consider the map of short exact sequences

0 H2k(M3(A0);Z) H2k(M3(A);Z) H2k�2(M3(A00);Z) 0

0 H2k(M3(A0
,K0);Z) H2k(M3(A,K);Z) H2k�2(M3(A00

,K00);Z) 0

in which the two rows come from Corollary 3.2 (the top row with K = V ) and the vertical arrows

are restriction maps. Our inductive hypothesis tells us that the vertical maps on the left and right

are surjective. By the Four Lemma, the vertical map in the center is surjective, as well.

For each hyperplane H 2 A, let fH : V ! R be an a�ne linear form with vanishing locus H,

and consider the induced map

gH : M3(A,K) ! R3 \ {0}.

Let

e
+
H

:= g
⇤
H(e+) and e

�
H

:= g
⇤
H(e�),

where e
+
, e

� 2 H2
T
(R3 \ {0};Z) are defined in Example 2.11.

Remark 3.4. We note that fH induces a co-orientation ofH, and the classes e±
H

2 H2
T
(M3(A,K);Z)

will eventually be identified with the images of the classes e±
H

2 RA via the isomorphisms of The-

orems 1.1 and 1.6.

Proposition 3.5. The T -space M3(A,K) is equivariantly formal over Z, and H⇤
T
(M3(A,K);Z) is

generated as a Z[u]-algebra by the classes {e±
H

| H 2 A}.

Proof. Equivariant formality over Z follows from the vanishing of cohomology in odd degree. In

the setting where K = V and all hyperplanes go through the origin, [dS01, Corollary 5.6] proved
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that H⇤(M3(A);Z) is generated as a ring by the classes {'(e±
H
) | H 2 A}. It was extended7 to

a�ne arrangements A and K = V in [Mos17, Lemma 4.2]. Proposition 3.3 implies that the classes

{'(e±
H
) | H 2 A} also generate H⇤(M3(A,K);Z). The second statement of the proposition now

follows from Proposition 2.6.

Proof of Theorem 1.1. The first isomorphism follows from the definition of VG(A,K) and the fact

that M3(A,K)T ⇠= M1(A,K). Propositions 2.8 and 3.5 imply that we have an isomorphism of

graded Z[u]-algebras
H⇤

T (M3(A,K);Z) ⇠= ReesH⇤(M1(A,K);Z),

and equivariant formality tells us that setting u = 0 gives the isomorphism

H⇤(M3(A,K);Z) ⇠= grH⇤(M1(A,K);Z).

The one subtlety is that the isomorphism coming from Proposition 2.8 involves the Rees algebra

of the equivariant filtration, and Theorem 1.1 is about the Heaviside filtration. Thus we need to

check that these two filtrations coincide.

By definition, the k
th piece of the Heaviside filtration consists of classes that can be expressed

as polynomials of degree at most k in the Heaviside functions. On the other hand, the second half

of Proposition 3.5 says that the k
th piece of the equivariant filtration consists of classes that can

be expressed as polynomials of degree at most k in the restrictions of {e±
H

| H 2 A} to M1(A,K),

with u specialized to 1. It is therefore su�cient to observe that the restriction of e±
H

is precisely

the Heaviside function that takes the value 1 on H
± and 0 on H

⌥.

4 Conditional oriented matroids

The main result of this section is Proposition 4.2, which is the key ingredient in the proof of Theorem

1.6. Proposition 4.2 extends a standard result for oriented matroids [BLVS+99, Exercise 4.46] to

the setting of conditional oriented matroids. We first state the proposition and then develop the

necessary theory to prove it.

Throughout this section, let L be a conditional oriented matroid on the ground set I. Fix a

linear ordering < on I, so that the support of every nonzero signed set X has a unique minimum

element, min(X). For any signed set X with nonempty support, consider the unsigned set

X̊ := X \ {min(X)}.

As in the introduction, we denote the set of circuits of L by C. We call an unsigned set S ⇢ I an

NBC set if it satisfies the following two conditions:

• If X 2 C is a circuit, then X 6⇢ S.

7Moseley states his result with Q coe�cients rather than Z coe�cients, but his proof, which employs a dele-
tion/contraction induction similar to the one that we use for Proposition 3.3, goes through unchanged.
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• If ±X 2 C are nonzero8 circuits, then X̊ 6⇢ S.

We denote the collection of all NBC sets by N .

Remark 4.1. If L is an oriented matroid, then the first condition is redundant because C is closed

under negation and does not contain the empty signed set. The set X̊ is called a broken circuit,

and NBC stands for no broken circuit.

The following proposition relates the number of NBC sets to the number of covectors that are

nonzero in every coordinate; the remainder of this section will be devoted to its proof.

Proposition 4.2. The cardinality of N is equal to the cardinality of T .

Remark 4.3. Recall that a coloop is an element i 2 I such that Xi = 0 for all X 2 L. If there

exists a coloop, then T is clearly empty. Similarly, if i is a coloop, then either the empty signed set

is a circuit, or the two signed sets ±X with support {i} are circuits, so N is also empty. If there

are no coloops, then T is the set of topes, and Proposition 4.2 says that the number of NBC sets

is equal to the number of topes.

Remark 4.4. Proposition 4.2 has a short proof in the setting of Example 1.5, where L = L(A,K).

Consider the poset of flats of A whose intersection with K are nonempty, ordered by reverse

inclusion, and let µ be the Möbius function on that poset. Zaslavsky proves that |T | is equal to
P

F
|µ(V, F )| [Zas77, Theorem 3.2(A) and Example A]. Since the lower interval [V, F ] is a geometric

lattice for any F in our poset, a theorem of Rota [Sag95, Theorem 1.1] says that |µ(V, F )| is equal
to the number of NBC sets whose closure is F . Taking the sum over all F , we obtain |N |.

4.1 Circuits

In some of our arguments, we will reduce to the setting of oriented matroids and then appeal to

the extensive literature for the results that we need. In order to do that, we first need to show that

our notion of circuits agrees with the established notion for oriented matroids.

Recall that a circuit of a conditional oriented matroid L is a support-minimal signed set X

satisfying X � Y 6= Y for all Y 2 L. We use G to denote the set of (not necessarily support-

minimal) signed sets satisfying the same condition:

G := {X | X � Y 6= Y for all Y 2 L}.

Given two signed sets X and Y , we say that they are orthogonal and write X ? Y if either

X \ Y = ;, or there exist i, j 2 X \ Y such that Xi = Yi and Xj = �Yj . Let

G̃ := {X | X 6= (;, ;) and X ? Y for all Y 2 L},

and let C̃ be the set of support-minimal elements of G̃. When L is an oriented matroid (that is,

when (;, ;) 2 L), a circuit is defined to be an element of C̃.
8The “zero” or “empty” signed set (;, ;) is a circuit if and only if L = ;.
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Lemma 4.5. If L is an oriented matroid, then C = C̃.

Proof. We will show that G̃ ⇢ G and that C ⇢ G̃. These two statements will imply the lemma.

Suppose that X 2 G̃ and Y 2 L. If X\Y = ;, then X �Y 6= Y . Otherwise, there is some j 2 X\Y

with Xj = �Yj , which again implies that X � Y 6= Y . Thus G̃ ⇢ G.
Now suppose that X 2 C. Since L is an oriented matroid, X 6= (;, ;). Assume for the sake

of contradiction that there is a covector Y 2 L that is not orthogonal to X. This means that

X \ Y 6= ; and we either have Xi = Yi for all i 2 X \ Y or Xi = �Yi for all i 2 X \ Y . We may

assume the former (otherwise we can replace Y with �Y ). Define a new signed set Z by putting

Zi = Xi for all i 2 X \Y and Zj = 0 for all other j. Then Z ( X, so there exists a covector W 2 L
such that Z � W = W . However, this implies that X � (Y � W ) = Y � W , contradicting the fact

that X 2 G.

Remark 4.6. Even when L is an oriented matroid, the sets G and G̃ need not be equal. In

particular, G is upwardly closed: if X 2 G and X �Y = Y , then Y 2 G. The same need not be true

of G̃, which is the set of nonzero vectors of the oriented matroid L.

4.2 Deletions and contractions

In this section, we review the definitions of deletion and contraction for conditional oriented ma-

troids, both of which were introduced in [BCK18]. We then state and prove some results about

how circuits behave under these operations.

Fix an element i 2 I. For any signed set X on I, we define ⇡(X) to be the signed set on I \{i}
obtained by forgetting the i

th coordinate: ⇡(X)j = Xj for all j 6= i. The deletion of L at i is

L0 := {⇡(X) | X 2 L}.

On the other hand, for any signed set X
00 on I \ {i}, we define ◆(X 00) to be the signed set on I

obtained by extending by zero: ◆(X)j = X
00
j
for all j 6= i and ◆(X 00)i = 0. The contraction of L at

i is

L00 := {X 00 | ◆(X 00) 2 L} = {⇡(X) | X 2 L and Xi = 0}.

The deletion and the contraction are both themselves conditional oriented matroids on the ground

set I \ {i} [BCK18, Lemma 1].

Example 4.7. f L = L(A,K) and H 2 A as in Example 1.5, then the deletion L0 is equal to

L(A \ {H},K). The contraction is slightly more subtle. Let

A00 :=
�
J \H | J 2 A \ {H}

 
,

which is a multiset of hyperplanes in H. Then the contraction L00 is equal to L(A00
,K \H), where

the definition of a conditional oriented matroid associated with a set of hyperplanes is extended to

multisets of hyperplanes in the obvious way. Things become trickier if we begin with a multiset of
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hyperplanes and contract an element of multiplicity greater than one. This creates coloops, which is

an illustration of why it is necessary to allow coloops when using a recursion involving contractions.

Remark 4.8. It’s not hard to see that, for any X 2 L, the deletion of the entire support set of X

is an oriented matroid. This observation was used in [BCK18, Section 11.3] to study COMs as cell

complexes. Just as in our setting, the authors use this trick to reduce various statements to the

case of oriented matroids and then appeal to the extensive literature.

Lemma 4.9. Let i 2 I be an element of the ground set of L, and let C0 and C00 be the sets of

circuits of L0 and L00, respectively.

1. We have C0 = {X 0 | ◆(X 0) 2 C} = {⇡(X) | X 2 C and Xi = 0}.

2. If i is not a coloop, then C00 is the set of support-minimal elements of {⇡(X) | X 2 G}.

3. If i is not a coloop, X 2 C, and i 2 X, then ⇡(X) 2 C00.

Proof. Recall that C is defined to be the set of support-minimal elements of G. Define the analogous

sets G0 and G00 for L0 and L00, so that C0 and C00 are the support-minimal elements of G0 and G00,

respectively. To prove part (1), it will su�ce to show that

G0 = {X 0 | ◆(X 0) 2 G} = {⇡(X) | X 2 G and Xi = 0}.

First suppose X 2 G and Xi = 0. For any Y 2 L, we have (X � Y )i = Yi but X � Y 6= Y , which

implies that ⇡(X) � ⇡(Y ) = ⇡(X � Y ) 6= ⇡(Y ). Conversely, suppose that X 0 2 G0. For any Y 2 L,
we have ⇡(◆(X 0) � Y ) = X

0 � ⇡(Y ) 6= ⇡(Y ), so ◆(X 0) � Y 6= Y . Thus ◆(X 0) 2 G.
To prove part (2), it will su�ce to show that G00 = {⇡(X) | X 2 G} whenever i is not a coloop.

First suppose that X
00 2 G00. Consider the two signed sets X,Y characterized by the properties

that ⇡(X) = X
00 = ⇡(Y ), Xi = +, and Yi = �. We claim that at least one of these two signed sets

lies in G. If not, then there exist Z,W 2 L such that X � Z = Z and Y �W = W . Applying the

strong elimination axiom to Z and W gives us a covector U 2 L with Ui = 0 and X
00�⇡(U) = ⇡(U),

contradicting the hypothesis that X 00 2 G00.

Conversely, we need to show that ⇡(X) 2 G00 for all X 2 G. Suppose for the sake of contradiction
that we have some Y

00 2 L00 such that ⇡(X) � Y 00 = Y
00. We know that X � ◆(Y 00) 6= ◆(Y 00), but the

previous equality tells us that they agree in all but the i
th coordinate, so we must have Xi 6= 0.

Since i is not a coloop, we may choose a covector Y 2 L with Yi 6= 0. Assume first that Yi = Xi,

and let Z = ◆(Y 00) � Y 2 L. Then X � Z = Z, contradicting the fact that X 2 G. If instead

Yi = �Xi, then we can take Z = ◆(Y 00) � �Y 2 L, and again X � Z = Z.

Finally, we prove part (3). Suppose that X 2 C and i 2 X. We need to show that the element

⇡(X) 2 G00 is support-minimal. Suppose not, and let Z 00 2 C00 be a circuit whose support is strictly

contained in that of ⇡(X). We have shown in part (2) that there is some Z 2 C with Z
00 = ⇡(Z).

This implies that Z ( X, contradicting the fact that X 2 C.
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Remark 4.10. Even when L is an oriented matroid, there can exist a circuit X 2 C such that

⇡(X) /2 C00. For example, let L = L(A, V ), where A is a multiset consisting a a single hyperplane

H ⇢ V with multiplicity 3. Here L has three circuits (up to sign), each of which is supported on a

set of cardinality 2. On the other hand, L00 has two circuits (up to sign), each of which is supported

on a set of cardinality 1 (a coloop). One of the three pairs of circuits of L projects to a pair of

non-minimal elements of G00.

Lemma 4.11. If ±X 2 C are nonzero circuits, then there exists Y 2 L such that X \ Y = ;.

Proof. We proceed by induction on the cardinality of the ground set. The base case is the empty

ground set. There are two conditional oriented matroids on an empty ground set, both of which

satisfy the hypothesis since neither of them has a nonzero circuit.

Let L be a conditional oriented matroid on a nonempty ground set, and assume that the lemma

holds for every contraction of L. Let ±X 2 C be nonzero circuits, and choose any element i 2 X.

Either i is a coloop or i is not a coloop, and we treat these cases separately.

When i is a coloop, both ({i}, ;) and (;, {i}) are circuits, and must therefore be equal to ±X.

Since X is a circuit, (;, ;) is not in G, so L is nonempty. Any element Y 2 L has Yi = 0, and

therefore satisfies the condition of the lemma.

Now assume that i is not a coloop, and let L00 denote the contraction of L at the element i.

By Lemma 4.9(3), we have ±⇡(X) 2 C00. From our inductive hypothesis, there exists a covector

Y
00 2 L00 with ⇡(X) \ Y

00 = ;. Then Y := ◆(Y 00) is a covector with X \ Y = ;.

Lemma 4.12. If both ±X
00 2 C00 are nonzero circuits, then there exist ±X 2 C with ⇡(X) = X

00.

Proof. If i is a coloop, then we may take X = ◆(X 00). Thus we may assume that i is not a coloop.

By Lemma 4.9(2), there is some X 2 C with ⇡(X) = X
00. We need only show that �X 2 C, as

well. By Lemma 4.11, we may choose a covector Y 00 2 L00 with X
00\Y

00 = ;. Consider the covector
Y := ◆(Y 00) 2 L, which has the property that X \ Y = ;. Let M be the conditional oriented

matroid obtained from L by deleting all of the elements of Y . The covector Y 2 L projects to the

covector (;, ;) 2 M, so M is an oriented matroid. Since we have only deleted elements outside

of the support of X, Lemma 4.9(1) tells us that the projection of X is a circuit of M. Since the

collection of circuits of an oriented matroid is closed under negation, the projection of �X is also

a circuit of M. Applying Lemma 4.9(1) again tells us that �X is a circuit of L.

4.3 Proof of Proposition 4.2

In this section, we prove Proposition 4.2 by showing that the cardinalities of both N and T satisfy

the same deletion/contraction recurrence with the same initial conditions. We start with the

recurrence for T . For elements X 2 T and i 2 I, say that i is a wall of X if ◆(⇡(X)) 2 L. Define

T+ = {X 2 T | i is a wall of X and Xi = +},

T� = {X 2 T | i is a wall of X and Xi = �},

T= = {X 2 T | i is not a wall of X}.
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Let T 0 and T 00 denote the sets of topes of L0 and L00, respectively.

Proposition 4.13. If i 2 I is not a coloop, then ⇡ restricts to bijections

T+ ! T 00 and T� [ T= ! T 0
.

In particular, |T | = |T 0|+ |T 00|.

Proof. Since i is not a coloop, we can fix a covector W 2 L with Wi 6= 0. We will treat only the

case where Wi = +. If Wi = �, the proof can be modified by replacing W with �W every time it

appears (even though �W need not be in L).
We begin with the contraction. Suppose that X 2 T+. By the strong elimination axiom, there

is a (unique) covector Z 2 L with Zi = 0 and Zj = Xj for all j 6= i. Then ⇡(X) = ⇡(Z) 2 T 0. This

shows that T+ ! T 00 is a well defined injection. For any Y
00 2 T 00, we have ◆(Y 00) �W 2 T+ and

⇡(◆(Y ) �W ) = Y , thus our map is also surjective.

We now turn to the deletion. Suppose that X 6= X
0 and ⇡(X) = ⇡(X 0). This implies that

Sep(X,X
0) = {i}, thus X and X

0 cannot both be elements of T�. On the other hand, strong

elimination implies that ◆(⇡(X)) = ◆(⇡(X 0)) 2 L, so neither X nor X
0 lies in T=. Thus our map

is injective. To prove surjectivity, let Y
0 2 T 0 be given. By definition, there exists X 2 L with

⇡(X) = Y . If X 2 T� [ T=, we are done. If X 2 T+, then X
0 := ◆(⇡(X)) � �W 2 T� and

⇡(X 0) = Y , so we are again done. Thus we may assume that Xi = 0. In this case, X � �W 2 T�
and ⇡(X � �W ) = Y .

We next state a lemma that we will need to prove the recursion for N .

Lemma 4.14. Let J ⇢ I, and let U be any signed set on the ground set J . If J does not contain

the support of any circuit, then there exists a covector Y 2 L with Yj = Uj for all j 2 J .

Proof. Let M be the conditional oriented matroid on the ground set J obtained from L by deleting

every element of I \ J . By Lemma 4.9(1), the circuits of M are in bijection with the circuits of L
whose supports are contained in J , but there are no such circuits. This implies that every signed

set on the ground set J is a covector of M. In particular, U 2 M. By definition of the deletion,

there is some Y 2 L that projects to U .

Now we turn to the recursion for N , the collection of NBC sets of a conditional oriented matroid

L with respect to a fixed ordering of the ground set I. Let i 2 I be the maximal element with

respect to this ordering, and let N 0 and N 00 denote the collections of NBC sets for L0 and L00,

respectively.

Proposition 4.15. If i is not a coloop, then

N 0 = {S 2 N | i /2 S} and {S00 [ {i} | S00 2 N 00} = {S 2 N | i 2 S}.

In particular, |N | = |N 0|+ |N 00|.
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Proof. Since i is the maximal element of I and i is not a coloop, whenever ±X are circuits with

i 2 X, we also have i 2 X̊. Thus the first equality follows from Lemma 4.9(1).

To prove the second equality, we show containment in both directions. We start by taking

S
00 [ {i} 2 N and showing that S00 2 N 00. Suppose for the sake of contradiction that S00 contains

the support of some X
00 2 C00. By Lemma 4.9(2), there is a circuit X 2 C with ⇡(X) = X

00. Then

S
00 [ {i} contains the support of X, contradicting the hypothesis that S00 [ {i} 2 N . Next, suppose

for the sake of contradiction that S
00 contains X̊ 00 for some nonzero ±X

00 2 C00. Lemma 4.12 tells

us that there exist nonzero circuits ±X 2 C with ⇡(X) = X
00. Since S

00 contains X̊ 00, the strictly

larger set S00 [ {i} contains X̊, contradicting the fact that S00 [ {i} 2 N .

Conversely, let S00 2 N 00 be given. We must now show that S00 [ {i} 2 N . If S00 [ {i} contains

the support of some X 2 C, then S
00 contains the support of ⇡(X) 2 G00, and therefore also the

support of some element of C00. This contradicts the hypothesis that S
00 2 N 00. Finally, suppose

for the sake of contradiction that S
00 [ {i} contains X̊ for some nonzero ±X 2 C. If i 2 X, then

Lemma 4.9(3) implies that ±⇡(X) 2 C00. But S00 contains the support of ⇡(X), contradicting the

fact that S00 2 N 00. So we may assume that i /2 X, and therefore that X̊ ⇢ S
00.

We break the remainder of the proof up into two cases, depending on whether or not there

exists a covector Y 2 L such that Yi = 0 and X \ Y = ;.

• Case 1. Suppose such a covector Y 2 L exists. Mimicking the proof of Lemma 4.12, let

M be the conditional oriented matroid obtained from L by deleting all of the elements of

Y . The covector Y 2 L projects to the covector (;, ;) 2 M, so M is an oriented matroid.

Since we have only deleted elements outside of the support of X, Lemma 4.9(1) tells us that

the projection of X is a circuit of M. Since the collection of circuits of an oriented matroid

is closed under negation, the projection of �X is also a circuit of M. Note that we have

not deleted the element i, so we can consider the contraction M00 of M at i, which is again

an oriented matroid. By Lemma 4.9(2), there exist circuits ±Z
00 of M00 whose support is

contained in the support of X. We next observe that M00 may also be realized as an iterated

deletion of L00, thus we may use Lemma 4.9(1) to extend ±Z
00 by zero and obtain circuits

±W
00 of L00. We have W

00 ⇢ X and therefore W̊ 00 ⇢ X̊ ⇢ S
00, contradicting the fact that

S
00 2 N 00.

• Case 2. Suppose no such Y 2 L exists. We will show that there is a circuit Z
00 2 C00 with

Z
00 ⇢ X̊ ⇢ S

00, contradicting the fact that S
00 2 N 00. Suppose for the sake of contradiction

that there is no such Z
00. By Lemma 4.14, there is a covector Y

00 2 L00 with Yj = 0 for all

j 2 X̊. By the definition of the contraction, we have Y := ◆(Y 00) 2 L. Let m := min(X). We

have Yi = 0 and X̊ \ Y = ;, but we cannot have X \ Y = ;, so we must have m 2 Y .

Suppose Ym = Xm. By another application of Lemma 4.14, there is a covector U 00 2 L00 with

U
00
j
= Xj for all j 2 X̊. Let U := ◆(U) 2 L. Then Y � U 2 L and X � (Y � U) = Y � U ,

contradicting the fact that X 2 C. Finally, suppose that Ym = �Xm. This time, we use

Lemma 4.14 to produce a covector U 00 2 L00 with U
00
j
= �Xj for all j 2 X̊. Let U := ◆(U 00) 2 L.

Then �X � (Y � U) = Y � U , contradicting the fact that �X 2 C.
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This completes the proof.

Proof of Proposition 4.2. We proceed by induction on the cardinality of I. If I is empty, there are

exactly two conditional oriented matroids on I. For one of them, the zero signed set X = (;, ;) is
a covector and not a circuit, in which case X is the unique tope and ; is the unique NBC set. For

the other one, X is a circuit and not a covector, and both T and N are empty.

Now suppose that I is nonempty and i is the maximal element. If i is a coloop, then N and T
are both empty by Remark 4.3. If i is not a coloop, then the proposition follows from the inductive

hypothesis using Propositions 4.13 and 4.15.

5 Proof of Theorem 1.6

The goal of this section is to prove Theorem 1.6. It su�ces to give the presentation for ReesGR(L),
as the rest of Theorem 1.6 will follow from specializing u to 0 or 1. We regard ReesGR(L) as a

subring of the ring of functions T ! Z[u], generated by u times the Heaviside functions h
±. We

will be concerned with the surjective Z[u]-algebra homomorphism ⇢ : R ! ReesGR(L) sending e
±
i

to uh
±
i
.

Lemma 5.1. The ideal IL + JL is contained in the kernel of ⇢.

Proof. Suppose that X 2 C and Y 2 T . We have

⇢(eX)(Y ) = (�1)|X
�|
u
|X|

Y

i2X+

h
+
i
(Y )

Y

i2X�

h
�
i
(Y ),

which is nonzero if and only if Yi = + for all i 2 X
+ and Yi = � for all i 2 X

�. If this were the

case, we would have X �Y = Y , which contradicts the hypothesis that X 2 C. This proves that IL
is contained in the kernel of ⇢.

Now suppose that ±X 2 C are nonzero circuits. Then

u⇢(fX) = ⇢(ufX) = ⇢(eX � e�X) = ⇢(eX)� ⇢(e�X) = 0.

Since ReesGR(L) is a torsion-free Z[u]-algebra, this implies that ⇢(fX) = 0. Thus JL is contained

in the kernel of ⇢.

Remark 5.2. When L = L(A,K) as in Example 1.5, it is also possible to prove Lemma 5.1 by

using Theorem 1.1 to interpret ReesGR(L(A,K)) ⇠= ReesVG(A,K) as the equivariant cohomology

ring H
⇤
T
(M3(A,K);Z). From this perspective, our homomorphism takes e±

H
to the class

[±g
�1
H

R>0 ]T 2 H
2
T (M3(A,K);Z) .

The fact that ⇢(eX) = 0 for any vector X follows from Lemma 2.12.
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Lemma 5.1 implies that ⇢ descends to a surjective Z[u]-algebra homomorphism

⇢̄ : R
.⇣

IL + JL

⌘
! ReesGR(L).

Now we prove that ⇢̄ is also injective.

Recall that we defined the specialization R1 := R/hu � 1i in Section 1.2. Choose a linear

ordering < on I as in Section 4, along with a degree monomial order � on Z[e+
i
]i2I ⇠= R1 such that

e
+
i
� e

+
j
if and only if i < j. For any polynomial f 2 R1, we will write in(f) to denote its leading

term. Recall that we defined elements eX , fX 2 R; we now use the same notation to denote the

images of these elements in R1. Then

in(eX) =
Y

i2X
e
+
i

and in(fX) = ±
Y

i2X̊

e
+
i
,

where we have a minus sign in in(fX) if and only if min(X) 2 X
�. This implies that the NBC

monomials (
Y

i2S
e
+
i

��� S 2 N
)

span R

.⇣
IL + JL

⌘
as a Z[u]-module.

Before proving Theorem 1.6, we state and prove one more lemma which is well known to

experts, but which we include here for completeness. Let A be an integral domain with fraction

field K, and let P be a finitely generated A-module. The rank of P is the dimension of P ⌦A K.

We will be interested in the domain Z[u] and the module ReesGR(L). In this example, we have

ReesGR(L)⌦Z[u] Q(u) ⇠= GR(L)⌦Z Q(u), therefore the rank is equal to the cardinality of T .

Lemma 5.3. If P is a free A-module of rank r and Q is an arbitrary A-module of rank r, then

any surjection P ! Q is an isomorphism.

Proof. Let N be the kernel. The field K is a flat A-module, so we obtain a short exact sequence

0 ! N ⌦A K ! P ⌦A K ! Q⌦A K ! 0.

The second map is a surjection of vector spaces of dimension r, therefore an isomorphism, so

N ⌦A K = 0. Since N is a submodule of a free module, it is torsion-free, thus N = 0.

Proof of Theorem 1.6. As observed above, it is su�cient to show that the ring homomorphism ⇢̄ is

in fact an isomorphism. Let r be the cardinality of N , which is also equal to the cardinality of T
by Proposition 4.2. Then we have Z[u]-module surjections

Z[u]r ! R

.⇣
IL + JL

⌘
⇢̄�! ReesGR(L),

where the first map takes the r basis vectors to the r NBC monomials. Lemma 5.3 says that the

composition is an isomorphism, and therefore so is ⇢̄.
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