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Abstract. We give a cohomological interpretation of the Heaviside filtration on the Varchenko—
Gelfand ring of a pair (A, K), where A is a real hyperplane arrangement and K is a convex open
subset of the ambient vector space. This builds on work of the first author, who studied the
filtration from a purely algebraic perspective, as well as work of Moseley, who gave a cohomo-
logical interpretation in the special case where K is the ambient vector space. We also define
the Gelfand-Rybnikov ring of a conditional oriented matroid, which simultaneously generalizes
the Gelfand—Rybnikov ring of an oriented matroid and the aforementioned Varchenko—Gelfand
ring of a pair. We give purely combinatorial presentations of the ring, its associated graded,

and its Rees algebra.
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1 Introduction

In the first half of this paper, the basic object of study is a pair consisting of a hyperplane ar-
rangement in a real vector space, and a convex open set in that vector space. We study the
Varchenko-Gelfand ring of such a pair, along with its Heaviside filtration, which was introduced
by the first author [DB22]. We give a cohomological interpretation of the Varchenko—Gelfand ring,
its associated graded, and its Rees algebra, generalizing work of de Longueville and Schultz [dSO01]
and Moseley [Mos17] in the case where the convex open set is equal to the vector space itself.
The second half of the paper is devoted to giving combinatorial presentations for these rings.
When the convex set is equal to the vector space, the rings depend only on the oriented matroid
associated with the hyperplane arrangement, and the definitions and presentations were extended
to arbitrary oriented matroids by Gelfand and Rybnikov [GR89] and Cordovil [Cor02]. Introducing
the convex open set requires generalizing from oriented matroids to conditional oriented matroids,
introduced by Bandelt, Chepoi, and Knauer [BCK18]. We define the Gelfand—Rybnikov algebra
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of a conditional oriented matroid, along with its Heaviside filtration, and we give presentations for

this algebra, its associated graded, and its Rees algebra.

1.1 Topology

Let V be a finite dimensional vector space over R and A a finite set of affine hyperplanes in V', and
consider the complement
Mi(A) =V \ | H,
HeA

which is simply the disjoint union of the chambers. The Varchenko—Gelfand ring VG(A) is
defined as the ring of locally constant Z-valued functions on M;(A). This is a boring ring with
an interesting filtration: it is generated as a ring by Heaviside functions, which take the value
1 on one side of a given hyperplane and 0 on the other side, and we define Fy(A) C VG(A) be
the subgroup generated by polynomial expressions in the Heaviside functions of degree at most k.
Varchenko and Gelfand [VG87] computed the relations between the Heaviside functions.

For any ring R equipped with an increasing filtration Fy C Fy C --- C R, one can define the

associated graded

gr R = (D Fi/Fia
k>0

and the Rees algebra

Rees R := @uka C R® Zu].
k>0

The Rees algebra is a torsion-free graded module over the polynomial ring Z[u], and we have

canonical isomorphisms
ReesR/{(u—1) = R and Rees R/(u) = gr R[]

The geometric meaning of the Heaviside filtration of VG(.A), along with its associated graded and
its Rees algebra, was explained in a paper of Moseley [Mosl7]. For each H € A, let Hy be the
linear hyperplane obtained by translating H to the origin. Let

HoR? :={(z,y,2) c VoR? |z c Handy,z € Hy},

and consider the space

Ms(A) =V oR*\ | HoR®.
HeA

This space admits an action of 7 := U(1) by identifying R?® with R x C and letting T act on C
by scalar multiplication; the fixed point set of this action can be identified with the space M;(A).

2We will always take the degree of u to be 2, which means that the isomorphism Rees R/(u) 2 gr R halves degrees.



Moseley showed that we have isomorphisms

VG(A) ® Q = H* (M3
grVG(A) @ Q = H* (M3
Rees VG(A) ® Q = H}p(M3(A); Q),

the latter being an isomorphism of graded algebras over H7(x; Q) = Q[u].

The first of the three isomorphisms above is immediate from the definition of VG(.A). When all
of the hyperplanes pass through the origin, the second isomorphism can be obtained by comparing
the results of Varchenko and Gelfand with the presentation of H*(M3(.A); Q) due to de Longueville
and Schultz [dS01, Corollary 5.6]. The most interesting is the last isomorphism, which interpolates
between the first two (see Section [2).

Our goal is to generalize these results to a larger class of rings and spaces, and also to work

with coefficients in Z rather than in Q. Fix an open, convex subset IC C V, and consider the spaces
Mi(AK) = Mi(A)NK and M3(AK) = {(m,y, z) € M3(A) | x € IC}.

Note that we still have an action of 7' on M3(A, K) with fixed point set isomorphic to M (A, K).
We define the Varchenko—Gelfand ring of the pair (A, ) to be the ring VG(A, K) of locally
constant Z-valued functions on M (A, K); this ring was introduced and studied by the first author
[DB22]. Our first main result is the following theorem.

Theorem 1.1. We have canonical isomorphisms

Rees VG(A, K) = Hp(Ms(A,K); Z),

the latter being an isomorphism of graded algebras over Hi.(x;7Z) = Z[u].

Remark 1.2. If we take £ = V, then M;(A,K) = M;(A) and M3(A,K) = M3(A). We then

recover Moseley’s result by tensoring with Q.

1.2 Combinatorics

Our proof of Theorem is purely topological, and does not require us to give presentations of any
of the rings involved. That said, each of the three rings in Theorem admits a nice combinatorial
presentation, which is the focus of the second half of our paper.

In the case where IC = V and all hyperplanes pass through the origin, the presentations depend
only on the oriented matroid determined by A. Indeed, Gelfand and Rybnikov [GR89] defined

a filtered ring associated with any oriented matroid, generalizing the Varchenko—Gelfand ring with



its Heaviside filtration, and gave a presentation generalizing the one in [VG87]. Independently,
Cordovil gave a presentation for the associated graded of this filtered ring [Cor02].

Just as the combinatorial data of a central real hyperplane arrangement is captured by an
oriented matroid, the combinatorial essence of a pair (A, K) is captured by a conditional oriented
matroid, introduced by Bandelt, Chepoi, and Knauer [BCK18]. We define the Gelfand—Rybnikov
ring of a conditional oriented matroid in a way that generalizes both the Gelfand—-Rybnikov ring
of an oriented matroid and the Varchenko-Gelfand ring of a pair (A,K). In Theorem we
give presentations for this ring, its associated graded, and its Rees algebra, extending the work of
[GR&9, [Cor(2] to conditional oriented matroids.

Before stating the theorem, we review some definitions. Let Z be a finite set. A signed set is an
ordered pair X = (X, X ) of disjoint subsets of Z. The support of a signed set X = (X, X ™)
is the unsigned set X := X+ U X~. For any i € Z, we write X; = £ if i € X*, and X; = 0 if
i ¢ X. We write —X to denote the opposite signed set —X = (X, XT), so that (-X); = —X;.
The separating set of a pair of signed sets X, Y is the set of coordinates in the intersection of the
supports at which X and Y differ:

Sep(X,Y):={ieZ|X;=-Y;#0}.
The compositionE] X oY of two signed sets is a signed set defined by

X, ifX;#0
(X oY), := forall i € 7.
Y, otherwise

A conditional oriented matroid on the ground set Z is a collection £ of signed sets, called

covectors, satisfying both of the following two conditions:
e Face Symmetry (FS): If X,Y € L, then X o —Y € L.

e Strong Elimination (SE): If X,Y € £ and i € Sep(X,Y), then there exists Z € £ with Z; =0
and Z; = (X oY), for all j € 7\ Sep(X,Y).

If £ also contains the empty signed set ((),0), then £ is an oriented matroid. We defer the key
example to Example while we make a few more definitions; the reader is invited to skip ahead

for motivation.

Remark 1.3. The face symmetry condition also implies that £ is closed under composition, as
XoV=(Xo—-X)oY=Xo(—XoY)=Xo—(Xo-Y).

Remark 1.4. The definition of conditional oriented matroid in [BCK18|] includes the additional
hypotheses that Z and £ are both nonempty. We omit these hypotheses, both so that Example

3This operation is also sometimes called the face product.



always makes sense even when A or K is empty, and so that deletion and contraction are always
defined (see Section [4.2)).

Let T C L be the set of covectors that are nonzero in every coordinate. Note that, if there is an
element 7 € Z such that X; = 0 for all X € £ (such an i is called a coloop), then 7 = {). If there
are no coloops, then elements of 7 are called topes. We define the Gelfand—Rybnikov ring
GR(L) to be the ring of functions from 7 to Z. For each element i € Z, we define the Heaviside
functions hi € GR(L) by

1 if X; =+ 1 if X;=—
hFX)=4 and  ho(X)=1-hf(X)={

0 if X;=— ' 0 if X; = +.
These functions generate the ring GR(L), and we define a filtration by letting Fj (L) C GR(L) be
the subgroup generated by polynomial expressions in the Heaviside functions of degree at most k.
In Theorem the generators of our rings will be the images of the Heaviside functions, and
the relations will be indexed by circuits. The notion of a circuit of a conditional oriented matroid
does not appear in [BCK18]|, so we introduce it here. A signed set X is called a circuit of L if the

following two conditions hold:
e For every covector Y € L, X oY # Y.

e The signed set X is support-minimal with respect to this property. That is, if Z is a signed
set with Z C X, then there is some Y € £ with ZoY =Y.

We denote the set of circuits by C. When L is an oriented matroid, then this set agrees with the

usual notion of circuits for oriented matroids (see Lemma [4.5)).

Example 1.5. Let (A, K) be a pair consisting of an affine hyperplane arrangement A in a real
vector space V and a convex open subset K C V. Fix in addition a co-orientation of each H € V,
so that we can talk about the positive open half space H™ and the negative open half space H,
with V' = HT U H~ U H. For any signed set X in A, let

Hy = ﬂ HT N ﬂ H™ N ﬂ H.
HeX+ HeX— HeA\X

We then define
LIAK) :={X | Hx N K # 0},

and observe that L(A,K) is a conditional oriented matroid on A. The face symmetry property
comes from the fact that IC is open, and the strong elimination property comes from the fact that
K is convex. Each point p € K determines a covector X € L(A,K) by putting X = + if p € HT
and Xy =0 if p € H, and every covector arises in this manner. The conditional oriented matroid
L(A,K) is an oriented matroid if and only if there is a point that lies in every hyperplane as well
as in K, in which case L(A,K) = L(A,V).



When the conditional oriented matroid £(.A, ) has no coloops, the topes correspond to the
connected components of M;j(A,K), and therefore the the Gelfand-Rybnikov ring of £(A,K) co-
incides, as a filtered ring, with the Varchenko-Gelfand ring of (A, K). The circuits of L(A, K) are
the minimal signed sets X with the property that

ﬂ H™ N ﬂ H nK=0.
HeX+ HeX—

An explicit example of this form appears in Example

We are now ready to give our presentations. Consider the free graded Z[ul-algebra
R:=7 [u,e;r,e;]iez/<ejei_,ej +e —u ’ 1 €I> ,

with all generators having degree 2. For each signed set X, let
ex = H el H (—e; ) €R.
ieXt  iex-

+

Since e;" is congruent to —e; modulo u, ex — e_x is a multiple of u, and we may therefore define

ex —e_
fX::ueR'

u

Consider the ideals
Ip={ex|XeC)cR and Jp:=(fx|+XeC)cRY

For m € {0,1}, consider the quotient ring R,, := R/(u —m), and let I, and J.,, be the images
of Iy and Jy in R,,.

Theorem 1.6. We have canonical isomorphisms

R/ (Iea+ Je,)

grGR(L) = RO/(IE,O + Jc,o)

Rees GR(L) & R / (Ic + J[;)

12

GR(L)

given by sending each efc to the image of the corresponding Heaviside function h;t.

Remark 1.7. Theorem has many antecedents. When £ = L(A,V), it is due to Varchenko
and Gelfand [VG87] (see also [dS01, [Mos17] for the connections to cohomology and equivariant
cohomology, respectively). When £ is an oriented matroid, it is due to Gelfand and Rybnikov (see
[Cor02] for a study of the associated graded ring). When £ = £(A, K) as in Example it is due

“Whenever we write £X € C, we mean that both X and —X are circuits.



Figure 1: Four co-oriented lines 1,2, 3,4 in the plane along with a convex open subset K. The
co-orientation is indicated with a + on the positive side of a given line.

to the first author [DB22]E

Remark 1.8. The ideal I 1 + Jz 1 is inhomogeneous, and it is clear that its initial ideal contains
Ipo+ Jzo. The fact that its initial ideal is equal to Iz o + Jz o is not obvious; the proof of this
fact is a substantial part of the proof of Theorem [1.6] This is equivalent to the statement that

R/ (IE + J£> is a free module over Z[u].

Remark 1.9. If X; = +, then e;r fx = ex. For this reason, we may replace the ideal I, with the
ideal
I = <eX | X el —-X ¢C>

in the statement of Theorem If £ is an oriented matroid, then I = 0, thus we can eliminate
the ideals I and I ,, entirely from the statement of the theorem. This gives us the presentations
appearing in [VG87, IGR89, [dS01, Mos17].

Remark 1.10. The most difficult part proving Theorem is developing the theory of circuits
of conditional oriented matroids, leading up to the proof of Proposition This proposition has
a relatively easy proof when £ = L(A,K) (see Remark , but the proof for general conditional

oriented matroids is much more involved.

Example 1.11. Figure[l]shows an arrangement A of four lines in the plane, along with a convex

"With the exception of [Mos17], none of these previous works explicitly mention the Rees algebra, but the third
isomorphism can be derived from the other two.



open subset K. Example tells us that we have C = {+X,Y, Z}, where

X = ({173}7{2}) = (+7_7+70)
Y= ({3},{4}) =(0,0+-)
Z = ({2}7{174}) = (_7+’O7_)'

Theorems and imply that
H7(M3(A,K);Z) =2 Rees VG(A, K) = ReesGR(L(A,K)) 2 R/(fx, ey, ez).
Explicitly, R/(fx,ey,ez) is equal to

Zlet ef vei et ul [(ef (u—cf).efes —efef +esef —uefef (e — ), (ef —wes (e} —u)),

where the first relation e} (u — ;") holds for i € {1,2,3,4}. The rings gr VG(A, K) and VG(A, K)

are obtained from Rees VG(A, K) by setting u equal to 0 and 1, respectively.

Acknowledgments: The authors are grateful to the organizers of the Arrangements at Home work-
shop series for bringing us together to work on these problems, and to Vic Reiner for helpful

conversations.

2 Background on Equivariant Cohomology

The main results of this section are Propositions and which are key steps in the proof
of Theorem The ideas in this section are not new, but we found it difficult to find precise
statements in the literature about equivariant cohomology with Z coefficients. We collect the
results that we need here, and point the reader to any of [Bor60, [AB84) IGKM98] for a standard

introduction to equivariant cohomology. For simplicity, we will only discuss actions of the group
T:=U(1).

2.1 The definition

Let ET := C* \ {0}. This is a contractible space, equipped with a free action of T'. Define the
quotient
BT := ET/T = CP*.

A T-space is a space equipped with a continuous action of the group T'. For any T-space M, the
Borel space of M is
Mp = (M x ET)/T,



where T acts diagonally on M x ET. The equivariant cohomology of M is the graded ring
Hy(M; Z) i= H* (M Z).

The T-equivariant projection from M x ET to ET descends to a fiber bundle 7w : My — BT with
fiber M. Pulling back along m makes H}(M;Z) into an algebra over Hy(x;Z) = H*(BT; Z) = Zlu.
Any T-equivariant map from M to another T-space N induces a map from Mp to Np that is
compatible with the bundle projections. In particular, this means that H}.(—;Z) is a contravariant
functor from the category of T-spaces with equivariant maps to the category of graded Z[u]-algebras.
If N C M is a T-subspace, we define the relative Z[u]-modules H}.(M, N;Z) := H*(Mr, Nr; Z).

Example 2.1. If T acts trivially on M, then Mp = M x BT, and
H7(M;Z) =2 H*(M;Z) @ H(BT;Z) = H*(M;Z) ® Z[u].

Example 2.2. If T acts freely on M, then My = M/T x ET, which is homotopy equivalent to
M/T, so Hp(M;Z) = H*(M/T;Z). More generally, if N C M is a T-subspace, then

Hi (M, N;Z) = H*(M /T, N/T; 7). (1)

2.2 Specializations

We now introduce two specialization homomorphisms @ and 1 that we will need for the proof of
Theorem The inclusion of a fiber ¢ : M — My defines a graded algebra homomorphism

o =1 Hp(M;Z) — H(M;Z),

called the forgetful homomorphism. By construction, the composition wo is constant, therefore
o(r*u) = (m*u) = (mov)*u = 0.

Since 7*u lies in the kernel of ¢, we have the induced homomorphism
o Hp(M;Z)/{(r*u) — H*(M;Z).

We will often abuse notation and use the symbol u to denote 7*u € H7}.(M;Z). This allows us to

rewrite the previous line as a specialization u = 0:
¢ Hp(M;Z) [ (u) — H*(M; Z).
The inclusion of the fixed point set x : MT — M induces another graded algebra homomorphism

Y=k HNMZ) = B (MT,2) 2 B (M7, Z) @ Zu).



When we set u equal to 1, this descends to a homomorphism
W (M;Z) ) (u— 1) — H*(MT;Z).

2.3 Localization

Lemma 2.3. Let M be a T-manifold of dimension d. If T acts freely on M\ M, then the relative
cohomology group Hy.(M, MT;7) is annihilated by u®.

Proof. Let N be a T-equivariant closed tubular neighborhood of M7 in M with interior U; this
exists by [Bre72, Theorem VI.2.2]. Then

H (M, MT;2) = Hy(M, N; Z) = Hy(M \ U, N\U; Z) = B (M \ U)/T, (N \ U)/T; Z),

where the first isomorphism is induced by the T-equivariant deformation retraction from N to M7,
the second by excision, and the third by Equation from Example Since T acts freely away
from MT, (M \ U)/T is a manifold with boundary (N \ U)/T. The cohomology of this manifold

vanishes in degrees greater than its dimension, and the lemma follows. O

Corollary 2.4. Let M be a T-manifold of dimension d. If T acts freely on M \ MT, then the

kernel and cokernel of the map
¢ Hp(M;2) — Hp(MT; Z)
are annihilated by u®.

Proof. Consider the long exact sequence in equivariant cohomology associated with the pair (M, MT).
This shows that the kernel (respectively cokernel) of ¢ is a submodule (respectively quotient mod-
ule) of HA(M, MT;7Z), thus the statement follows from Lemma O

Remark 2.5. If we drop the assumption that T acts freely on M\ M7, then (M \U)/T is a smooth
orbifold. This allows us to adapt the proof of Corollary for cohomology with coefficients in Q,
but not with coefficients in Z. For example, consider the action of 1" on itself as multiplication by

the square, so that the fixed locus is empty and the stabilizer of every point is {£1} C 7. Then
Ker(1) = Hy(T3 ) 2 B (B{1}; Z) = H*(RP®; Z) = Z[u) /(2u).
Only after tensoring with Q is this module annihilated by wu.

2.4 Equivariant formality

We say that the T-space M is equivariantly formal over Z if HY}.(M;Z) is free as a Z[u]-module
and the specialization ¢ : H}.(M;Z)/(u) — H*(M;Z) is an isomorphism. This is equivalent to the
collapse of the spectral sequence associated with the fiber bundle 7 : M7 — BT at the Es page. In

10



particular, if H*(M;Z) vanishes in odd degree, then all of the differentials in the spectral sequence

are zero for degree reasons, therefore M is automatically equivariantly formal over Z.

Proposition 2.6. If M is equivariantly formal over Z and x1, . .., x, € Hp(M;Z) are homogeneous
classes with the property that (1), ..., p(xy) generate H*(M;Z) as a ring, then x1, ..., x, generate
H}(M;Z) as a Z]u]-algebra.

Proof. Let R C H}(M;Z) be the subalgebra generated by the classes z1,...,x,. Assume for the
sake of contradiction that R C H}(M;Z), and let a € H}(M;Z) \ R be a homogeneous class of
minimal degree. Since ¢(R) = H*(M;Z), there exists a class © € R such that ¢(x) = ¢(«). Since

© is a homomorphism

0=¢(z) —p(a) = p(z — a).

By formality, the kernel of ¢ is generated by w, so there is a class 8 such that x — a = uf. In
particular, this 8 has degree strictly less than «. Since o had minimal degree, this means that
B € R, which contradicts the assumption that o ¢ R. [

Proposition 2.7. Suppose that M is a finite dimensional T-manifold with the property that T’ acts
freely on M\ MT, and that M is equivariantly formal over Z. Then

o Wy (M;Z) — Hp(M T3 Z)

1$ injective and

b Hp(M;Z)/{u— 1) — H (M7 Z)
18 an isomorphism.

Proof. Corollary tells us that the kernel of ¢ is annihilated by a power of u. Formality tells us
that the domain of v is a free Z[u]-module, thus the kernel of ¢ must be trivial.
For the second statement, recall from Example that Hi(M7T;Z) = H*(M™T;Z) ® Z[u], and

consider the short exact sequence
0 — H3H(M; Z) - HY(MT;Z) ® Z[u] — Coker(v)) — 0.
Taking the tensor product over Zlu| with @ := Z[u|/{(u — 1), we obtain the exact sequence
Tor (Coker(v), Q) — Hp(M;Z)/{(u — 1) -, H*(M™;Z) — Coker(1)) ®zp,) @ — 0.

Corollary implies that Coker(¢)) ®zp,) @ is zero. From the definition of @ and the fact that
Coker (1)) is graded, we have

Tor (Coker (1), Q) = {z € Coker(¢)) | (u— 1)z =0} = 0.

This completes the proof that 1 is an isomorphism. ]

11



2.5 The equivariant filtration

In this section we suppose that M is a finite dimensional T-manifold with the property that T
acts freely on M \ M7T. We also assume that the cohomology for M vanishes in odd degree, which
implies that M is equivariantly formal over Z, and therefore that ¢ is an isomorphism. It also
implies that the equivariant cohomology of M vanishes in odd degree. In this setting, H*(M7;Z)
admits an interesting filtration, which we describe now.
For k > 0, define
(M) € B (M5 2) = Hy(M; 2)/(u — 1)

to be the set of classes that can be lifted to H2¥(M;Z). Note that any class which can be lifted to
o € HZ(M;Z) can also be lifted to u'a € H?F(Hi)(M; Z) for i > 0. Thus the groups Fy(M) form a
filtration

Fo(M) c Fy(M) c ---c H*(MT;7),

which we call the equivariant filtration. The following proposition is immediate from the defi-

nition of the equivariant filtration.

Proposition 2.8. If M satisfies the hypotheses of Proposition and has vanishing odd cohomol-

ogqy, then the image of the inclusion
¢ Hp(M;2) — Hp (M Z)

is the Rees algebra of the equivariant filtration, and therefore i induces an isomorphism
H:(M;7Z) = Rees H* (M 7)

of graded Zlu|-algebras.

Remark 2.9. If one wants to drop the assumption that the odd cohomology vanishes, but still
assume equivariant formality over Z, one can alternatively define a filtration of H*(M7*'; Z) by taking
the k' filtered piece to be the images of classes of degree < k (rather than 2k) in H%(M;Z). The
Rees algebra of this filtration will be isomorphic to the algebra H7.(M;Z) ®z, Z[u'?], where now

the Rees parameter corresponds to v'/? rather than u.

2.6 Classes represented by submanifolds

We have now collected the key general results needed for the proof of Theorem In this sec-
tion, we construct a family of equivariant cohomology classes and state some of their properties.
Throughout this section, suppose that M is a manifold and N C M is a closedlﬂ submanifold of
codimension k. A coorientation of N (= a choice of orientation of the normal bundle) determines

a cohomology class [N] € H¥(M;Z). One construction of this class is as follows. Let U be an open

5We mean closed in the sense that N is a closed subset of M. We do not mean to imply that N is compact, which
is what topologists sometimes mean by the phrase “closed manifold”.
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tubular neighborhood of N in M, and let U := M/(M\U). Then U is isomorphic to the Thom space
of the normal bundle to N, and we therefore have the Thom isomorphism H*(N;Z) = H***(U; 7).
The class [N] is obtained by pulling back the class 1 € H'(N;Z) = H¥(U;Z) to M.

If T" acts on both M and NN, then we also define

[N]r = [Nr] € H*(Mr; Z) = H(M; Z).

This construction has the following properties. The first four follow from the corresponding non-

equivariant statements, while (v) follows from (iv) applied to the inclusion of M into Mrp.

(i) Reversing the coorientation of a submanifold N sends [N]r to —[N]r.
) If N1 and Nj are disjoint closed cooriented T-submanifolds, then [N; U Na|r = [Ny + [NVo]7.
(iii) If Ny and Ny are transverse closed cooriented T-submanifolds, then [N1NNa]p = [N1]7-[Na]7.
)

If N is a cooriented closed T-submanifold of M and f : M’ — M is a T-equivariant map that
is transverse to N, then f*([N]r) = [f~'N]r € H*(M'; Z).

(v) This construction is compatible with the forgetful homomorphism. That is, p([N]r) = [N].

Example 2.10. Let M = C with the standard action of 7. Then Mr is homotopy equivalent
to BT, so HHn(M;Z) = H*(BT;Z) = Z[u]. The class [{0}]r € H%(M;Z) is a generator, and can
therefore be identified with u.

Example 2.11. Let M =R3\ {0} = (R x C) \ {(0,0)}. Let
et = [Rsg x {0}]7 € HH(M;Z) and e = [Reg x {0}]r € HA(M; Z).

Note that (et) = —p(e™) generates H?(M;Z), so M is equivariantly formal over Z. Since et and
e~ are represented by disjoint submanifolds, we have eTe™ = 0 by (iii).

Consider the projection f: M — C. Since f is transverse to the submanifold {0}, we have the
following equalities in H2(M; Z)

u= fru=f([{0})r) = [f(0)r
= [Ro0 x {0} U Rep x {0}7 = [Rso x {0}]7 + [R<o x {0}]7

=et + e~

where the equality on the middle line comes from (ii) and the fact that the two manifolds are
disjoint. In particular, our discussion from Section implies that the class e™ + e~ is in the
kernel of ¢, and
HH(M;Z) = Zlet, e /{ete™).
The following lemma is not strictly necessary for proving our results, and will be referenced
only in Remark That said, it is a fundamental property of equivariant cohomology which we

believe is helpful for understanding the ideas in this paper.
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Lemma 2.12. If Ny,..., N, are (not necessarily transverse) closed cooriented T-submanifolds of
M with Nyn---NN, = @, then [NI]T' .- [NT]T =0.

Proof. The class [N1]r-- - [N;]r is equal to the image of the class [N1]r ® - -+ ® [N;]7 under the
composition
Hy(M;Z) @ - - ® Hin(M; Z) — Hp(M"; Z) 25 Hy(M; Z),

where M" is the direct sum of r copies of M and A is the diagonal map. Let

N; = {(p1,...,pr) € M" | p; € N;}.

The image of [N1]r @ -+ ® [N,]7 in Hi(M";Z) is equal to the product of the classes [N;]r. Since
the submanifolds N; are pairwise transverse, we can apply (iii) to this product. The product is

zero because the total intersection is empty. O

3 Proof of Theorem [1.1]

In this section, we will prove Theorem The key technical ingredient will be the statement that
M3(A, K) is equivariantly formal over Z (Proposition [3.5)).

Let V be a finite dimensional real vector space, A a finite set of affine hyperplanes in V', and
K C V aconvex open set. For any H € A, we define the deletion (A’, K'), which is a pair consisting
of an arrangement and a convex open subset in V, by setting A’ = A\ {H} and K’ = K. We also
define the contraction (A", K”), which is a pair consisting of an arrangement and a convex open
subset in H, by setting A” = {H'NH | H € A’} and K” = KN H. Note that we have an open
inclusion from M3(A, K) to M3(A’,K'), and the complement is equal to M3(.A”, K"). The following

lemma is standard in the case where I = V', and the proof in this more general setting is identical.
Lemma 3.1. We have a canonical isomorphism of graded abelian groups
H'(Ms (A, K'), M3(A, K); Z) = H'™(M3(A",K"); Z).

Proof. The key observation is that the normal bundle to M3(A”, K") inside of M3(A’, K') is a trivial
bundle of rank 3. By the Tubluar Neighborhood Theorem, the Excision Theorem, and the Kiinneth
Theorem, this implies that

HY (M3(A, K, M3(A,K);Z) = HT2(Ms(A”,K"); Z) @ HA(R3,R?\ {0};2)
~ H*(Ms(A",K"); Z).

This completes the proof. ]

Corollary 3.2. The cohomology of Ms(A, K) vanishes in odd degree, and for each k > 0, we have
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a short exact sequence
0 — H**(M3(A',K'); Z) — H**(M3(A,K); Z) — H* 2 (M3 (A", K"); Z) — 0.

Proof. Combining Lemma [3.1| with the long exact sequence of the pair (Ms(A',K'), M3(A, K)), we

obtain the long exact sequence
o HY (M3 (A K'); Z) — HY (M3 (A, K); Z) — B2 (M3 (A", K"); Z) — B (M (A K );Z) — - -

The vanishing of odd cohomology then follows from induction on the number of hyperplanes in A.
Once we know that the odd cohomology vanishes, we find that our long exact sequence is in fact a

collection of short exact sequences. O
Proposition 3.3. The restriction map H*(M3(A); Z) — H*(M3(A, K);Z) is surjective.
Proof. We proceed by induction on the cardinality of A, which allows us to assume that the
statement holds for (A’, K’) and (A", K"). Consider the map of short exact sequences

0 — H*(M3(A"); Z) —— H**(M5(A); Z) —— H**2(M3(A");Z) — 0

0— H2’“(M3(£’,IC’);Z) — H2’“(M3(£t,IC);Z) — H2’f—2(M3(lA",/c");Z) — 0

in which the two rows come from Corollary (the top row with K = V') and the vertical arrows
are restriction maps. Our inductive hypothesis tells us that the vertical maps on the left and right

are surjective. By the Four Lemma, the vertical map in the center is surjective, as well. ]

For each hyperplane H € A, let f : V — R be an affine linear form with vanishing locus H,
and consider the induced map
gm : Ms(A,K) — R\ {0}.

Let
eh = gi(eh)  and ey = gh(en),

where e, e~ € H%(R3\ {0};Z) are defined in Example

Remark 3.4. We note that fz induces a co-orientation of H, and the classes e; € H3(M3(A, K); Z)
will eventually be identified with the images of the classes eﬁ € R4 via the isomorphisms of The-

orems [L.1] and [L.6

Proposition 3.5. The T-space M3(A, K) is equivariantly formal over Z, and Hy(M3(A,K);Z) is
generated as a Z[u]-algebra by the classes {e3, | H € A}.

Proof. Equivariant formality over Z follows from the vanishing of cohomology in odd degree. In

the setting where L = V' and all hyperplanes go through the origin, |[dS01, Corollary 5.6] proved
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that H*(Mj3(A); Z) is generated as a ring by the classes {p(e;) | H € A}. Tt was extende to
affine arrangements A and K =V in [Mos17, Lemma 4.2]. Proposition implies that the classes
{go(efl) | H € A} also generate H*(M3(A,K);Z). The second statement of the proposition now
follows from Proposition O

Proof of Theorem [1.1] The first isomorphism follows from the definition of VG(A, K) and the fact
that M3(A,K)T = M;(A,K). Propositions and imply that we have an isomorphism of
graded Z[ul-algebras

5 (My (A, K); Z)  Rees H* (My (A, K); 2),

and equivariant formality tells us that setting u = 0 gives the isomorphism
H*(M3(A,K); Z) = gr H* (M1 (A, K); Z).

The one subtlety is that the isomorphism coming from Proposition involves the Rees algebra
of the equivariant filtration, and Theorem is about the Heaviside filtration. Thus we need to
check that these two filtrations coincide.

By definition, the k™ piece of the Heaviside filtration consists of classes that can be expressed
as polynomials of degree at most k in the Heaviside functions. On the other hand, the second half
of Proposition says that the k' piece of the equivariant filtration consists of classes that can
be expressed as polynomials of degree at most k in the restrictions of {efl | H e A} to M;(A,K),
with u specialized to 1. It is therefore sufficient to observe that the restriction of e}tl is precisely
the Heaviside function that takes the value 1 on H* and 0 on HT. O

4 Conditional oriented matroids

The main result of this section is Proposition 4.2 which is the key ingredient in the proof of Theorem
Proposition extends a standard result for oriented matroids [BLVST99, Exercise 4.46] to
the setting of conditional oriented matroids. We first state the proposition and then develop the
necessary theory to prove it.

Throughout this section, let £ be a conditional oriented matroid on the ground set Z. Fix a
linear ordering < on Z, so that the support of every nonzero signed set X has a unique minimum

element, min(X). For any signed set X with nonempty support, consider the unsigned set
X := X\ {min(X)}.

As in the introduction, we denote the set of circuits of £ by C. We call an unsigned set S C Z an

NBC set if it satisfies the following two conditions:

e If X €C is a circuit, then X ¢ S.

"Moseley states his result with Q coefficients rather than Z coefficients, but his proof, which employs a dele-
tion/contraction induction similar to the one that we use for Proposition 3.3|, goes through unchanged.
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o If £X €C are nonzer circuits, then X ¢ S.
We denote the collection of all NBC sets by N.

Remark 4.1. If £ is an oriented matroid, then the first condition is redundant because C is closed
under negation and does not contain the empty signed set. The set X is called a broken circuit,

and NBC stands for no broken circuit.

The following proposition relates the number of NBC sets to the number of covectors that are

nonzero in every coordinate; the remainder of this section will be devoted to its proof.
Proposition 4.2. The cardinality of N is equal to the cardinality of T .

Remark 4.3. Recall that a coloop is an element ¢ € Z such that X; = 0 for all X € L. If there
exists a coloop, then T is clearly empty. Similarly, if 7 is a coloop, then either the empty signed set
is a circuit, or the two signed sets +X with support {i} are circuits, so N is also empty. If there
are no coloops, then 7 is the set of topes, and Proposition says that the number of NBC sets

is equal to the number of topes.

Remark 4.4. Proposition has a short proof in the setting of Example where £ = L(A, K).
Consider the poset of flats of A whose intersection with X are nonempty, ordered by reverse
inclusion, and let u be the Mobius function on that poset. Zaslavsky proves that |7 is equal to
Yoplu(V, F)| [ZasT7, Theorem 3.2(A) and Example A]. Since the lower interval [V, F] is a geometric
lattice for any F' in our poset, a theorem of Rota [Sag95, Theorem 1.1] says that |u(V, F)| is equal

to the number of NBC sets whose closure is F. Taking the sum over all F', we obtain |N|.

4.1 Circuits

In some of our arguments, we will reduce to the setting of oriented matroids and then appeal to
the extensive literature for the results that we need. In order to do that, we first need to show that
our notion of circuits agrees with the established notion for oriented matroids.

Recall that a circuit of a conditional oriented matroid £ is a support-minimal signed set X
satisfying X oY # Y for all Y € £. We use G to denote the set of (not necessarily support-

minimal) signed sets satisfying the same condition:
G:={X|XoY #Y forall Y € L}.

Given two signed sets X and Y, we say that they are orthogonal and write X | Y if either
X NY =0, or there exist 4,5 € X NY such that X; =Y; and X; = —Yj. Let

G:={X|X#®0) and X LY forall Y € L},

and let C be the set of support-minimal elements of G. When £ is an oriented matroid (that is,
when (,0) € £), a circuit is defined to be an element of C.

8The “zero” or “empty” signed set (0, ) is a circuit if and only if £ = ().
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Lemma 4.5. If £ is an oriented matroid, then C = C.

Proof. We will show that Q C G and that C C g~ These two statements will imply the lemma.
Suppose that X € GandY € L. If XNY = (), then X oY # Y. Otherwise, there is some j € XNY
with X; = —Yj}, which again implies that X oY # Y. Thus Gcg.

Now suppose that X € C. Since £ is an oriented matroid, X # (0,0). Assume for the sake
of contradiction that there is a covector ¥ € L that is not orthogonal to X. This means that
XNY # 0 and we either have X; = Y; foralli € XNY or X; = —Y; forall: € X NY. We may
assume the former (otherwise we can replace Y with —Y’). Define a new signed set Z by putting
Z; =X, forallie X\Y and Z; = 0 for all other j. Then Z C X, so there exists a covector W € L
such that Z o W = W. However, this implies that X o (Y o W) =Y o W, contradicting the fact
that X € G. O

Remark 4.6. Even when £ is an oriented matroid, the sets G and Q~ need not be equal. In
particular, G is upwardly closed: if X € G and X oY =Y, then Y € G. The same need not be true

of G, which is the set of nonzero vectors of the oriented matroid L.

4.2 Deletions and contractions

In this section, we review the definitions of deletion and contraction for conditional oriented ma-
troids, both of which were introduced in [BCK1§|. We then state and prove some results about
how circuits behave under these operations.

Fix an element ¢ € Z. For any signed set X on Z, we define 7(X) to be the signed set on Z\ {i}
obtained by forgetting the i*" coordinate: 7(X) j = X for all j # i. The deletion of £ at ¢ is

L= {r(X)| X € L}.

On the other hand, for any signed set X” on Z \ {i}, we define +(X”) to be the signed set on Z
obtained by extending by zero: ¢(X); = X7 for all j # i and +(X"); = 0. The contraction of L at
118

L= (X" (X" e L} ={n(X)| X € L and X; = 0}.

The deletion and the contraction are both themselves conditional oriented matroids on the ground

set I\ {i} [BCK18, Lemma 1].

Example 4.7. f L = L(A,K) and H € A as in Example then the deletion £ is equal to
L(A\{H},K). The contraction is slightly more subtle. Let

A" :={JNH|Je A\ {H}},

which is a multiset of hyperplanes in H. Then the contraction £” is equal to L(A”, KX N H), where
the definition of a conditional oriented matroid associated with a set of hyperplanes is extended to

multisets of hyperplanes in the obvious way. Things become trickier if we begin with a multiset of
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hyperplanes and contract an element of multiplicity greater than one. This creates coloops, which is

an illustration of why it is necessary to allow coloops when using a recursion involving contractions.

Remark 4.8. It’s not hard to see that, for any X € L, the deletion of the entire support set of X
is an oriented matroid. This observation was used in [BCKI18, Section 11.3] to study COMs as cell
complezes. Just as in our setting, the authors use this trick to reduce various statements to the

case of oriented matroids and then appeal to the extensive literature.

Lemma 4.9. Let i € Z be an element of the ground set of L, and let C' and C" be the sets of

circuits of L' and L", respectively.
1. We have C' ={X" | (X") € C} ={n(X) | X € C and X; =0}.
2. If i is not a coloop, then C" is the set of support-minimal elements of {m(X) | X € G}.
3. If i is not a coloop, X € C, and i € X, then w(X) € C".

Proof. Recall that C is defined to be the set of support-minimal elements of G. Define the analogous
sets G’ and G” for £ and L”, so that C" and C” are the support-minimal elements of G’ and G”,

respectively. To prove part (1), it will suffice to show that
¢ ={X'|uX)eG}={n(X)| X €G and X, = 0}.

First suppose X € G and X; = 0. For any Y € £, we have (X oY); =Y; but X oY # Y, which
implies that 7(X) on(Y) =m(X oY) # n(Y). Conversely, suppose that X’ € G’. For any Y € L,
we have T(.(X) oY) =X on(Y) #m(Y), s0 «(X') oY #Y. Thus «(X') € G.

To prove part (2), it will suffice to show that G” = {m(X) | X € G} whenever i is not a coloop.
First suppose that X” € G”. Consider the two signed sets X,Y characterized by the properties
that 7(X) = X" =n(Y), X; = 4, and Y; = —. We claim that at least one of these two signed sets
lies in G. If not, then there exist Z,W € L such that X o Z = Z and Y o W = W. Applying the
strong elimination axiom to Z and W gives us a covector U € £ with U; = 0 and X" on(U) = n(U),
contradicting the hypothesis that X” € G”.

Conversely, we need to show that 7(X) € G” for all X € G. Suppose for the sake of contradiction
that we have some Y” € L” such that 7(X)oY” =Y”. We know that X o (Y") # +(Y"), but the
previous equality tells us that they agree in all but the ™" coordinate, so we must have X; # 0.
Since 7 is not a coloop, we may choose a covector Y € L with Y; # 0. Assume first that Y; = Xj,
and let Z = «(Y")oY € L. Then X o Z = Z, contradicting the fact that X € G. If instead
Y; = —X;, then we can take Z = 1(Y") o —Y € L, and again X o Z = Z.

Finally, we prove part (3). Suppose that X € C and i € X. We need to show that the element
7m(X) € G” is support-minimal. Suppose not, and let Z” € C” be a circuit whose support is strictly
contained in that of 7(X). We have shown in part (2) that there is some Z € C with Z" = n(Z).
This implies that Z C X, contradicting the fact that X € C. O
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Remark 4.10. Even when £ is an oriented matroid, there can exist a circuit X € C such that
m(X) ¢ C". For example, let £ = L(A, V), where A is a multiset consisting a a single hyperplane
H C V with multiplicity 3. Here £ has three circuits (up to sign), each of which is supported on a
set of cardinality 2. On the other hand, £” has two circuits (up to sign), each of which is supported
on a set of cardinality 1 (a coloop). One of the three pairs of circuits of £ projects to a pair of

non-minimal elements of G”.
Lemma 4.11. If £X € C are nonzero circuits, then there exists Y € L such that X NY = .

Proof. We proceed by induction on the cardinality of the ground set. The base case is the empty
ground set. There are two conditional oriented matroids on an empty ground set, both of which
satisfy the hypothesis since neither of them has a nonzero circuit.

Let £ be a conditional oriented matroid on a nonempty ground set, and assume that the lemma
holds for every contraction of £. Let £X € C be nonzero circuits, and choose any element ¢ € X.
Either ¢ is a coloop or ¢ is not a coloop, and we treat these cases separately.

When i is a coloop, both ({i},0) and (0, {i}) are circuits, and must therefore be equal to £X.
Since X is a circuit, (0,0) is not in G, so £ is nonempty. Any element Y € £ has Y; = 0, and
therefore satisfies the condition of the lemma.

Now assume that ¢ is not a coloop, and let £” denote the contraction of £ at the element 7.
By Lemma [4.9(3), we have £m(X) € C”. From our inductive hypothesis, there exists a covector
Y"e £ with n(X)NY” =0. Then Y := +(Y"”) is a covector with X NY = 0. O

Lemma 4.12. If both £X" € C" are nonzero circuits, then there exist +X € C with m(X) = X".

Proof. 1f i is a coloop, then we may take X = ¢(X”). Thus we may assume that 4 is not a coloop.
By Lemma 2), there is some X € C with 7(X) = X”. We need only show that —X € C, as
well. By Lemma [4.11] we may choose a covector Y € £” with X”NY" = . Consider the covector
Y := «(Y") € L, which has the property that X N Y = (). Let M be the conditional oriented
matroid obtained from £ by deleting all of the elements of Y. The covector Y € L projects to the
covector (0,0) € M, so M is an oriented matroid. Since we have only deleted elements outside
of the support of X, Lemma (1) tells us that the projection of X is a circuit of M. Since the
collection of circuits of an oriented matroid is closed under negation, the projection of —X is also
a circuit of M. Applying Lemma 1) again tells us that —X is a circuit of L. O

4.3 Proof of Proposition 4.2

In this section, we prove Proposition by showing that the cardinalities of both A" and T satisfy
the same deletion/contraction recurrence with the same initial conditions. We start with the
recurrence for 7. For elements X € T and i € Z, say that ¢ is a wall of X if «(7(X)) € L. Define

T+ = {XeT]|iisawallof X and X; = +},
T = {XeT|iisawallof X and X; = —},
T- = {X €T |iisnotawall of X}.
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Let 7" and T” denote the sets of topes of £ and L”, respectively.

Proposition 4.13. Ifi € T is not a coloop, then m restricts to bijections
T =T and T-UT-—T.

In particular, |T| = |T'| +|T"|.

Proof. Since 7 is not a coloop, we can fix a covector W € L with W; # 0. We will treat only the
case where W; = 4. If W; = —, the proof can be modified by replacing W with —W every time it
appears (even though —W need not be in £).

We begin with the contraction. Suppose that X € 7;. By the strong elimination axiom, there
is a (unique) covector Z € £ with Z; = 0 and Z; = X for all j # i. Then n(X) = n(Z) € T'. This
shows that 7. — 7" is a well defined injection. For any Y” € T”, we have «(Y") o W € T, and
m(t(Y) o W) =Y, thus our map is also surjective.

We now turn to the deletion. Suppose that X # X’ and 7(X) = 7(X’). This implies that
Sep(X, X’) = {i}, thus X and X’ cannot both be elements of 7_. On the other hand, strong
elimination implies that ¢(7(X)) = «(w(X’)) € L, so neither X nor X’ lies in 7—. Thus our map
is injective. To prove surjectivity, let Y’ € 7’ be given. By definition, there exists X € £ with
(X)) =Y. If X € T_UT-, we are done. If X € Ty, then X' := ((n(X)) o =W € T_ and
m(X') =Y, so we are again done. Thus we may assume that X; = 0. In this case, X o =W € T_
and 7(X o —W) =Y. O

We next state a lemma that we will need to prove the recursion for N.

Lemma 4.14. Let J CZ, and let U be any signed set on the ground set J. If J does not contain
the support of any circuit, then there exists a covector Y € L with Y; = Uj for all j € J.

Proof. Let M be the conditional oriented matroid on the ground set 7 obtained from £ by deleting
every element of Z\ J. By Lemma 1), the circuits of M are in bijection with the circuits of £
whose supports are contained in [J, but there are no such circuits. This implies that every signed
set on the ground set J is a covector of M. In particular, U € M. By definition of the deletion,
there is some Y € L that projects to U. 0

Now we turn to the recursion for NV, the collection of NBC sets of a conditional oriented matroid
L with respect to a fixed ordering of the ground set Z. Let ¢ € Z be the maximal element with
respect to this ordering, and let N/ and N” denote the collections of NBC sets for £ and L,

respectively.

Proposition 4.15. Ifi is not a coloop, then
N ={SeN|i¢S} and  {S"U{i} | S" e N"} ={SeN|ieS}.
In particular, |IN'| = |N'| + |N"|.
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Proof. Since 7 is the maximal element of Z and ¢ is not a coloop, whenever X are circuits with
i € X, we also have 7 € X. Thus the first equality follows from Lemma (1)

To prove the second equality, we show containment in both directions. We start by taking
S”U{i} € N and showing that S” € N'”. Suppose for the sake of contradiction that S” contains
the support of some X” € C”. By Lemma [4.9(2), there is a circuit X € C with 7(X) = X”. Then
S”U{i} contains the support of X, contradicting the hypothesis that S” U{i} € N. Next, suppose
for the sake of contradiction that S” contains X” for some nonzero =X” € C”. Lemma @ tells
us that there exist nonzero circuits +X € C with 7(X) = X”. Since $” contains X", the strictly
larger set S” U {i} contains X, contradicting the fact that S” U {i} € .

Conversely, let S” € N be given. We must now show that S” U {i} € M. If S” U {i} contains
the support of some X € C, then S” contains the support of 7(X) € G”, and therefore also the
support of some element of C”. This contradicts the hypothesis that S” € N”. Finally, suppose
for the sake of contradiction that S” U {i} contains X for some nonzero +X € C. If i € X, then
Lemma [4.9(3) implies that +7(X) € C”. But S” contains the support of 7(X), contradicting the
fact that S” € N”. So we may assume that i ¢ X, and therefore that X C S”.

We break the remainder of the proof up into two cases, depending on whether or not there
exists a covector Y € £ such that Y; =0 and X NY = (.

e Case 1. Suppose such a covector Y € L exists. Mimicking the proof of Lemma let
M be the conditional oriented matroid obtained from £ by deleting all of the elements of
Y. The covector Y € L projects to the covector (0,0) € M, so M is an oriented matroid.
Since we have only deleted elements outside of the support of X, Lemma (1) tells us that
the projection of X is a circuit of M. Since the collection of circuits of an oriented matroid
is closed under negation, the projection of —X is also a circuit of M. Note that we have
not deleted the element 7, so we can consider the contraction M” of M at ¢, which is again
an oriented matroid. By Lemma 2), there exist circuits £Z” of M” whose support is
contained in the support of X. We next observe that M” may also be realized as an iterated
deletion of £”, thus we may use Lemma [4.9(1) to extend £Z” by zero and obtain circuits
+W" of £". We have W” C X and therefore W” ¢ X c S" , contradicting the fact that
S// c N//'

e Case 2. Suppose no such Y € £ exists. We will show that there is a circuit Z” € C” with
Z" C X C S", contradicting the fact that S” € N”. Suppose for the sake of contradiction
that there is no such Z”. By Lemma there is a covector Y € £” with Y; = 0 for all
j € X. By the definition of the contraction, we have Y := 4(Y”) € £. Let m := min(X). We
have Y; =0 and X NY = (0, but we cannot have X NY = (), so we must have m € Y.
Suppose Yy, = X,,. By another application of Lemma[4.14] there is a covector U” € £” with
U/ = Xjforall j € X. Let U= 1(U) € L. Then YoU € L and X o (Y oU) =Y oU,
contradicting the fact that X € C. Finally, suppose that Y,,, = —X,,. This time, we use
Lemmato produce a covector U” € L” with U] = —X; for all j € X. Let U := o(U") € L.
Then —X o (Y oU) =Y o U, contradicting the fact that —X € C.

22



This completes the proof. O

Proof of Proposition[{.2. We proceed by induction on the cardinality of Z. If 7 is empty, there are
exactly two conditional oriented matroids on Z. For one of them, the zero signed set X = (0, 0) is
a covector and not a circuit, in which case X is the unique tope and ) is the unique NBC set. For
the other one, X is a circuit and not a covector, and both 7 and N are empty.

Now suppose that Z is nonempty and 4 is the maximal element. If 7 is a coloop, then A" and T

are both empty by Remark If 4 is not a coloop, then the proposition follows from the inductive
hypothesis using Propositions and O

5 Proof of Theorem 1.6

The goal of this section is to prove Theorem It suffices to give the presentation for Rees GR(L),
as the rest of Theorem will follow from specializing u to 0 or 1. We regard Rees GR(L) as a
subring of the ring of functions 7 — Z[u], generated by u times the Heaviside functions h*. We
will be concerned with the surjective Z[u]-algebra homomorphism p : R — Rees GR(L) sending e
to uhl:.t.

Lemma 5.1. The ideal Iy + Jz is contained in the kernel of p.

Proof. Suppose that X € C and Y € 7. We have

plex)(Y) = ()X WELTT v (v) I me (),

ieX+ ieX—

which is nonzero if and only if Y; = + for all i € X and Y; = — for all « € X~. If this were the
case, we would have X oY =Y, which contradicts the hypothesis that X € C. This proves that I
is contained in the kernel of p.

Now suppose that £X € C are nonzero circuits. Then

up(fx) = plufx) = plex —e—x) = plex) — ple-x) = 0.

Since Rees GR(L) is a torsion-free Z[u|-algebra, this implies that p(fx) = 0. Thus J. is contained
in the kernel of p. O

Remark 5.2. When £ = L(A,K) as in Example it is also possible to prove Lemma by
using Theorem [1.1] to interpret Rees GR(L(A, K)) = Rees VG(A, K) as the equivariant cohomology
ring H7(M3(A,K);Z). From this perspective, our homomorphism takes eli{ to the class

[£95 Rsolr € HF(M3(A,K);Z).

The fact that p(ex) = 0 for any vector X follows from Lemma
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Lemma implies that p descends to a surjective Z[u|-algebra homomorphism
5 R/ (Ig + Jﬁ) 5 Rees GR(L).

Now we prove that p is also injective.

Recall that we defined the specialization R; := R/{u — 1) in Section Choose a linear
ordering < on 7 as in Section |4, along with a degree monomial order < on Zej ];er = R; such that
elf < e;r if and only if ¢ < j. For any polynomial f € R;, we will write in(f) to denote its leading
term. Recall that we defined elements ex, fx € R; we now use the same notation to denote the

images of these elements in Ry. Then

in(ex) = Hej and in(fX)ZiH€j>

ieX ieX

where we have a minus sign in in(fx) if and only if min(X) € X~. This implies that the NBC

e

€S

monomials

Se/\/}

span R/ <IL + Jg) as a Z[u]-module.

Before proving Theorem |1.6] we state and prove one more lemma which is well known to
experts, but which we include here for completeness. Let A be an integral domain with fraction
field K, and let P be a finitely generated A-module. The rank of P is the dimension of P ® 4 K.
We will be interested in the domain Z[u] and the module Rees GR(L). In this example, we have
Rees GR(L) ®z(,) Q(u) = GR(L) ®z Q(u), therefore the rank is equal to the cardinality of 7.

Lemma 5.3. If P is a free A-module of rank r and Q is an arbitrary A-module of rank r, then

any surjection P — @Q is an isomorphism.

Proof. Let N be the kernel. The field K is a flat A-module, so we obtain a short exact sequence
0> NRIuUK—->PRsK—>Q®4 K—0.

The second map is a surjection of vector spaces of dimension 7, therefore an isomorphism, so

N ®4 K =0. Since N is a submodule of a free module, it is torsion-free, thus N = 0. O

Proof of Theorem[1.6. As observed above, it is sufficient to show that the ring homomorphism p is
in fact an isomorphism. Let r be the cardinality of N, which is also equal to the cardinality of T
by Proposition Then we have Z[u]-module surjections

Zlu]" — R / (IE + J[;) 7, Rees GR(L),

where the first map takes the r basis vectors to the » NBC monomials. Lemma |5.3| says that the

composition is an isomorphism, and therefore so is p. O
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