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Every Problem, Every Step, All in Focus: Learning to
Solve Vision-Language Problems

With Integrated Attention
Xianyu Chen , Jinhui Yang , Shi Chen , Louis Wang , Ming Jiang , and Qi Zhao , Senior Member, IEEE

Abstract—Integrating information from vision and language
modalities has sparked interesting applications in the fields of
computer vision and natural language processing. Existing meth-
ods, though promising in tasks like image captioning and visual
question answering, face challenges in understanding real-life is-
sues and offering step-by-step solutions. In particular, they typ-
ically limit their scope to solutions with a sequential structure,
thus ignoring complex inter-step dependencies. To bridge this gap,
we propose a graph-based approach to vision-language problem
solving. It leverages a novel integrated attention mechanism that
jointly considers the importance of features within each step as well
as across multiple steps. Together with a graph neural network
method, this attention mechanism can be progressively learned
to predict sequential and non-sequential solution graphs depend-
ing on the characterization of the problem-solving process. To
tightly couple attention with the problem-solving procedure, we
further design new learning objectives with attention metrics that
quantify this integrated attention, which better aligns visual and
language information within steps, and more accurately captures
information flow between steps. Experimental results on Visual-
How, a comprehensive dataset of varying solution structures, show
significant improvements in predicting steps and dependencies,
demonstrating the effectiveness of our approach in tackling various
vision-language problems.

Index Terms—Graph attention, integrated attention mechanism,
multimodal attention, vision-language problem solving.

I. INTRODUCTION

R ECENT years have witnessed impressive progress in com-
puter vision and natural language processing, enabling

intelligent systems to perform a broad range of joint vision-
language tasks, such as image captioning [1], [2], [3], [4], [5],
[6], visual storytelling [7], [8], visual question answering [9],
[10], [11], [12], [13], [14], [15], [16], visual dialog [17], [18],
[19], and natural language generation [20], [21], [22]. How-
ever, a major challenge still remains in developing artificial
intelligence that can understand vision-language problems and
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provide procedural solutions with step-by-step instructions. Hu-
mans exhibit remarkable ability in visually perceiving prob-
lems, comprehending goals, and mapping out plans and pro-
cedures to solve them. Developing similar procedural reason-
ing capabilities in artificial intelligence remains a significant
challenge.

Solving vision-language problems requires recognizing im-
portant visual details, understanding the multimodal context,
and predicting cohesive solutions incorporating visual illustra-
tions and natural language descriptions [23]. Understanding
and predicting such multimodal descriptions require an intel-
ligent system to decompose the solution into multiple steps.
For example, as shown in Fig. 1, visual illustrations (e.g.,
flowers, pillows) or natural language descriptions (e.g., “Look
for vintage glasses”) are used to describe specific steps taken
to decorate the tables for a vintage-themed wedding. Existing
methods [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34] have approached problem-solving with procedure planning,
representing each solution as a linear sequence of steps. Such
sequential approaches, while convenient, are unable to model
complex dependencies across multiple steps. Vision-language
problems often involve multiple dependencies between steps,
which might not fit neatly into a linear sequence: (1) a step
may depend on multiple steps. As shown in Fig. 1, step 6 must
depend on the completion of steps 2, 3, and 5, and (2) certain
problem-solving steps (e.g., paths 1-2, 3, 4-5 in Fig. 1) can occur
simultaneously. A sequential model might oversimplify the rela-
tionships and struggle to represent these cases effectively, facing
challenges in the following aspects: First, sequential models
inherently follow a linear structure, processing information in
a step-by-step fashion. This linear nature becomes a constraint
when dealing with multiple dependencies that don’t conform to
a straightforward sequence. Second, the efficiency of sequential
models is compromised when confronted with interdependen-
cies across multiple steps. Directly converting parallel processes
into a fixed-order sequence regardless of variations can lead to
suboptimal and inefficient solutions. Third, sequential models
often lack the interpretability required to understand complex
dependencies between different steps of the problem-solving
process, diminishing the trust and transparency essential for
real-world applications. Therefore, in light of these challenges,
our work is motivated by the need for a more flexible and struc-
tured approach to vision-language problem-solving. Therefore,
in light of these challenges, our work is motivated by the need
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for a more flexible and nuanced approach to vision-language
problem-solving.

In this work, to enable more general and flexible problem solv-
ing, we propose a graph neural network approach that represents
solutions as graphs. This structured representation allows graph-
based models to overcome the limitations of sequential models,
providing a more general and effective approach to handling
complex problem-solving scenarios. Our method leverages an
integrated attention mechanism that jointly models intra-step
attention and inter-step attention. This provides a more holistic
view compared to isolated step-based attention. To jointly and
progressively supervise the integrated attention, we further in-
troduce quantitative metrics that consider attention propagation
across the entire graph of solution steps. This graph-based
approach with the novel integrated attention mechanism aims
to provide an effective framework for modeling complex depen-
dencies across multiple steps and solving real-world problems,
such as those in autonomous driving, medical diagnosis, and
various other applications.

To summarize, the main contributions of this paper are as
follows:

1) We propose a graph neural network approach to represent
procedural solutions as graphs, capturing complex step
dependencies and enabling an integral understanding of
the entire problem-solving procedure.

2) We design an integrated attention mechanism that jointly
models the importance of multimodal features within each
step as well as across interdependent steps.

3) We introduce quantitative attention metrics to optimize
attention propagation across the full solution graph, en-
abling supervised learning of attention for complex vision-
language problem solving.

The remainder of this paper is structured as follows. In
Section II, we provide a concise overview of related research
pertaining to vision-language problem solving and attention
mechanisms in vision-language tasks. Section III outlines the
problem statement, introducing the formulation of the vision-
language problem solving task that we aim to address. The
details of our proposed method, designed to tackle the aforemen-
tioned task, are elaborated in Section IV. Extensive experiments
are presented in Section V, where we report quantitative and
qualitative results, along with comprehensive analyses of our
approach’s performance. We conclude this paper and discuss its
limitations in Section VI, while also providing directions for
future research and improvements.

II. RELATED WORKS

Our work is relevant to previous efforts on visual problem-
solving, attention mechanisms in vision-and-language tasks, and
supervision of attention.

A. Problem Solving Methods

Procedural problem solving with instructional solutions has
gained increasing research attention. Several studies [23], [24],
[25], [26], [28], [29], [30], [34], [35] have curated datasets
of images or videos demonstrating procedures for daily tasks

like cooking, maintenance, sports, and healthcare. These ef-
forts have enabled data-driven approaches to generate solutions
for diverse problems. A series of previous methods focus on
developing captioning models to summarize instructional text
describing procedures [23], [24], [33]. Other works emphasize
aligning textual and visual modalities [23], [25], [26], [28],
[36]. They retrieve images given instruction text or localize
described activities. Alternative approaches factorize solutions
into discrete steps and predict structured representations [27],
[31], [32], [33], [35], [37], [38], [39]. However, these studies
oversimplify real-world solution procedures as sequential activ-
ities. Solutions often have complex, free-formed structures with
inter-dependencies between steps. Thus, while demonstrating
feasibility for varied tasks, existing methods are limited in
generalizing across problems regardless of solution structure.
They also do not perform joint reasoning over steps and their
relationships. Our work addresses these gaps by representing
solutions as graphs to capture step dependencies and provide a
comprehensive framework for complex problem solving.

B. Attention in Vision-Language Tasks

Attention mechanisms have become critical components in
vision-language models to effectively couple modalities and
identify salient features for various tasks. Prior studies have fo-
cused on designing attention for input feature prioritization [1],
[13], [40], [41], [42], cross-modal alignment [23], [43], and
concept-dependency modeling [44], [45], [46]. Early attention
approaches operated on grid-structured inputs like images or
text, using convolutional neural networks [47] or Transform-
ers [48], [49], while recent graph-based methods [44], [46]
allow modeling attention in structured inputs [50], [51], [52],
[53]. However, capturing the complex dependencies across steps
in procedural solutions requires structured representations that
consider attention shifts across multiple modalities and multiple
steps. We advance existing techniques with a novel integrated
attention mechanism that enables joint attention modeling for
both aspects and leverage this new attention mechanism to pro-
gressively construct structured solutions for various problems.

C. Supervised Learning of Attention

Instead of implicitly learning the attention mechanism with
the end objectives of different tasks, prior works have ex-
plored explicitly supervising attention mechanisms to improve
alignment with regions of interest. Various approaches have
been proposed to construct the ground truth attention based
on task annotation [13], [42], human attention [4], [5], [41],
[54], or adversarial learning [55]. Some supervision methods
use single-step supervision based on human annotations of
salient image regions [41], [42], [54], while others account for
integrating attention across the visual reasoning procedure [13].
However, focusing on local alignments limits modeling rela-
tionships between steps in structured problem solving. Without
propagating attention, these methods fail to capture complex
interdependencies in multi-step procedures. Differently, in this
work, we present a new metric that quantitatively measures the
contributions of attention for constructing the task solution, and
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Fig. 1. Problem-solving tasks such as “how to decorate the tables for a vintage-
themed wedding” often follow a non-sequential procedure. For example, steps
1, 3, and 4 can be completed in no particular order, as long as step 1 takes
place before step 2, step 4 happens before step 5, and all of them take place
before step 6. Our method represents such problem-solving procedures in a
graph structure. Steps are represented as nodes, and dependent steps are directly
connected by edges indicating ordering constraints. In this way, our approach can
handle various types of step dependencies in free-formed procedures. Attention
is optimized end-to-end over the full graph-based solution structure.

leverage it to progressively supervise both the intra- and inter-
step attention. It provides an integral view of problem-solving
procedures, resulting in enhanced performance in formulating a
structured representation of the solutions.

III. PROBLEM STATEMENT

The vision-language problem solving task involves compre-
hending general vision-language problems and generating struc-
tured instructions to address them, incorporating both visual
and textual information [23]. Previous research has explored
instructional images [24], [56] or videos [26], [28], [29], [35],
[57], but these were limited to predicting sequential instructions
for specific task categories. In contrast, our work considers
a wide range of problems and their corresponding solution
structures. The fundamental goals of our proposed approach
are twofold: (1) understanding the input problem description
and (2) constructing a solution graph consisting of essential
problem-solving steps, each associated with relevant images and
captions.

As shown in Fig. 1, the input of our proposed approach
consists of a problem description g, such as “how to decorate
the tables for a vintage-themed wedding,” and a pool of images
{I1, I2, . . . , IN} or captions {C1, C2, . . . , CN}. These images
and captions serve as candidate steps or actions that could be
relevant or irrelevant to solving the given problem. The main
challenge in the vision-language problem solving task is to
identify the essential steps and their correct order to construct a
coherent and effective solution for the problem at hand.

To tackle this challenge, our proposed approach involves
creating a solution graph G = {V, E} that encapsulates the
problem-solving process. The graph nodes in V represent es-
sential steps, including the start node (node 0), the end node
(node N + 1), and the nodes corresponding to the candidate
steps (nodes 1, . . . , N ) with their associated image or caption

capturing the possible actions that can be taken to solve the prob-
lem. The edges in E represent the dependencies or chronological
order between the steps. For instance, a directed edge between
the nodes corresponding to “prepare vintage centerpieces for
tables” and “add more flowers to the main table centerpiece”
indicates that the latter step should happen after the former.

By constructing such a directed graph, our approach can effec-
tively model the logical flow of the problem-solving procedure,
enabling a structured and coherent representation of the solution.
The directed graph representation also allows for the existence of
multiple paths from the start node to the end node, corresponding
to different ways of solving the problem. This flexibility in the
graph structure is particularly beneficial for handling vision-
language problems with multiple viable solutions or alternative
sequences of steps.

IV. METHOD

Our proposed Solution Graph Attention Network (SGAN) ad-
dresses the vision-language problem solving task by leveraging
both intra-step and inter-step attention mechanisms to iteratively
refine the solution graph. The key technical components of
our method are (1) a novel graph neural network approach
that progressively predicts solutions with diverse structures, (2)
an integrated attention mechanism combining intra-step atten-
tion and inter-step attention for a comprehensive understand-
ing of the problem-solving procedure, and (3) new attention
metrics and learning objectives to jointly supervise the atten-
tion throughout the solution graph by leveraging information
propagation. Together, these components empower SGAN to
effectively capture dependencies within individual steps and the
relationships between them, providing a powerful ability to han-
dle complex vision-language problems and generate coherent
solutions.

A. Solution Graph Attention Network

In problem-solving scenarios, dependencies between steps
can be complex and may not be readily apparent. To address this
challenge and predict the solution graph G, SGAN progressively
learns integrated attention using a graph attention network, en-
abling a better understanding of the problem-solving procedure.

As depicted in Fig. 2, the input features representing the can-
didates, denoted as v = {vi|i = 1, . . . , N}, are obtained with a
pre-trained image encoder (e.g., ResNeXT-101 [58], ViT [59])
for image candidates or a language embedding network (e.g.,
BERT [48]) for caption candidates. The language embedding
g represents the description of the input problem [23], [48].
SGAN is designed with a stack of L graph attention layers, al-
lowing the step-by-step refinement of the solution graph. Specif-
ically, the network iteratively updates the node representations
h(!) = {h(!)

i |i = 0, . . . , N + 1}, where ! = 1, . . . , L indicates
the !-th layer. It consists of the updated features of the graph
nodes start (i = 0), end (i = N + 1), and each candidate step
(i = 1, . . . , N ). The node representations of the previous layer
h(!−1) are passed to the current layer as the input, while the
first layer input is initialized as h(0) = {g, v̄1, . . . , v̄N ,W eg},
where v̄i is the average of vi,k across all k = 1, . . . ,K
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Fig. 2. Overview of the proposed SGAN architecture. The input consists of node representations h(0), features for images/caption candidates v1, . . . ,vN . The
network leverages an integrated attention mechanism that progressively processes the input features and predicts the output intra-step attention α(L) for capturing
salient information from the input images or captions, the inter-step attention P (L) characterizing the probabilities of dependencies across different steps, and the
final updated node representations h(L).

Algorithm 1. Graph Post-Processing Method to Obtain the Final Solution Graph

INPUT: Predicted dependency matrix P (L), retrieval threshold λr, and dependency threshold λd.
1: Filter candidate steps using λr over P (L)

0,1:N to obtain the node set S, where P (L)
0,i ≥ λr for i ∈ S.

2: Remove cycles between nodes i and j in S by updating P (L)
i,j = max(0,P (L)

i,j − P (L)
j,i ).

3: Initialize solution graph G with nodes V = {0, N + 1}, edges E = {(0, N + 1)}, and candidate edges W = {(0, N + 1)}
containing potential edges to add to the graph.

For u in S
4: Find the best node υb with maximum

b = max
v∈S,v/∈V

max
(v̄1,v̄2)∈W

( ∑

v̄3∈Pa(v̄1)

P (L)
v̄3,v + P (L)

v̄1,v + P (L)
v,v̄2

+
∑

v̄4∈Ch(v̄2)

P (L)
v,v̄4

)
,

where Pa(v̄1) and Ch(v̄2) represent the parent set of node v̄1 and child set of node v̄2 in the solution graph G, respectively.
5: If b > λd, Update the edge set E and node set V by adding node υb and candidate edges in W to ensure the graph remains a
directed acyclic graph.

OUTPUT: The final solution graph G = {V, E}

image patches or word tokens, and W e represents the learnable
parameters to transform the language embedding g as the end
node representation. Each layer also outputs the corresponding
intra-step attention α(!) and the inter-step attention P (!) (see
Section IV-B for details).

To convert the final-layer output P (L) into the solution graph
G, we employ the following process. Initially, a heuristic thresh-
old is applied to the dependency matrix P (L) to preserve the
most pertinent nodes (see Steps 1-3 in Algorithm 1). Next, these
selected nodes are iteratively added into the graph (see Steps
4-5 in Algorithm 1), along with their associated edges featuring
the highest values inP (L). This iterative process ensures that the
graph remains a directed acyclic graph without loops or isolated
nodes. Finally, attention weights α(L) assigned to each step’s
images and captions offer insights into what demands attention
for effectively solving the given problem.

The proposed network is powerful for learning the depen-
dencies between problem-solving steps. By using this iterative
approach, the network can generate free-formed solutions with
a better understanding of the problem-solving procedure. In the
following, we will describe the specific design of our integrated

attention mechanism to effectively capture the important con-
tents and dependencies across problem-solving steps.

B. Integrated Attention Mechanism

Attention is a crucial component that drives advancements in
natural language processing and computer vision, which enables
models to selectively focus on the most relevant parts of the
input data when performing different tasks. In the context of
problem-solving, our integrated attention mechanism plays a
critical role in identifying the key features and dependencies
between the steps involved in a solution. It combines intra-step
and inter-step attention to enable the network to capture both
the fine-grained details of each step and the broader context in
which they exist.

1) Intra-Step Attention: The intra-step attention focuses on
capturing salient information from the input images or captions
for understanding and completing each individual step. Specifi-
cally, in the !-th layer, for the i-th candidate step, we define the
intra-step attention weights as α(!)

i , which is computed based
on the input problem description g, the candidate features vi,
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and the node features h(!−1)
i :

a(!)
i,k = wT

a tanh(W vvi,k +W gh
(!−1)
0 +W hh

(!−1)
i ), (1)

where wa,W g,W v,W h are learnable parameters, and k =
1, . . . ,K indicates the k-th element of the input candidate (i.e.,
image patch or word token).

The attention weights a(!)
i are normalized as α(!)

i with a
masked softmax activation function

α(!)
i = softmax(a(!)

i ,mi), (2)

where mi is a binary vector and mi,k indicates the k-th element
(i.e., image patch or word token) of the i-th candidate features is
padded or not due to the variable length of the image or language
inputs.

Finally, we apply the attention to the candidate features v to
initialize the node representations for the !-th layer:

ĥ
(!)

i =

{
h(!−1)
i if i = 0 or N + 1∑
k α

(!)
i,kv

(!−1)
i,k if i = 1, . . . , N.

(3)

2) Inter-Step Attention: The inter-step attention is respon-
sible for capturing the chronological order between different
problem-solving steps, providing a coherent and structured rep-
resentation of the solution. By integrating inter-step attention
into our model, we aim to enable more effective joint reasoning
across multiple problem-solving steps. Specifically, we compute
graph attention weights [44], [46] to estimate the existence of a
dependency between each pair of steps based on the initial node

features ĥ
(!)
i computed in (3):

P (!)
i,j = σ

(
γ(!)T LeakyReLU(W (!)

l ĥ(!)
i +W (!)

r ĥ
(!)
j )

)
, (4)

where γ(!), W (!)
l and W (!)

r are learnable parameters and σ(·)
is the sigmoid function. This computation involves learning
parameters that weigh the significance of each step’s features
in establishing a dependency with another step. The resulting
weight matrix P (!) explicitly represents the probabilities of
dependency between steps in order to construct the final solution
graph.

With these inter-step attention weights, we proceed to update
the features of each node i by combining information from all
graph nodes, which involves measuring how much weight is
given to the connection between nodes i and j at the !-th layer
and then using these weights to update the features of node i:

h(!)
i = ELU




∑

j

P (!)
i,jW

(!)
r ĥ

(!)
j

∑
j′ P

(!)
i,j′



 , (5)

where ELU is the exponential linear unit function. This feature
update allows the model to adaptively refine the representation
of each node, incorporating insights from its connections in the
solution graph.

By integrating both intra-step attention and inter-step atten-
tion mechanisms into SGAN’s stack of attention layers, the
model achieves a comprehensive understanding of the problem-
solving procedure. The iterative refinement of the solution graph
across these layers enables SGAN to progressively capture

important features within individual steps and the relationships
between the steps. This integration introduces a novel and pow-
erful framework for SGAN to generate structured and coherent
solutions for a wide range of vision-language problem solving
tasks.

C. Learning Objectives

Our integrated attention mechanism progressively focuses on
salient information in visual and textual inputs, capturing step
dependencies for effective problem-solving. We propose novel
learning objectives, supervising attention to identify important
parts of the images and captions, and propagating information
across steps for high-quality solution graphs.

1) Learning Intra-Step Attention: We present the attention
learning loss to measure the prediction error of intra-step at-
tention, based on the ground-truth multimodal attention annota-
tions. These annotations are binary masks that indicate important
image regions or word tokens in the captions. To measure the
prediction error of the intra-step attention α(!)

i , the intra-step
attention loss is defined as

L(!)
att =

∑

i∈GT
latt(α

(!)
i ,α′

i), (6)

where GT is the set of ground-truth steps and latt is a dissimilar-
ity metric that measures the misalignment between the predicted
α(!)

i and the softmax-normalized ground-truth attentionα′
i [23].

In our implementation, we define latt as a cross-entropy loss:

Latt(αi,α
′
i) = −

∑

k

α′
i,k log(αi,k). (7)

Similarly, other attention evaluation metrics like SIM [60],
JSD [61], [62], and CC [60]) can also be used to measure the
intra-step attention alignment.

2) Learning Inter-Step Attention: To gain deeper insights
into the contributions of attention throughout the entire problem-
solving process, we adopt an integrated approach that consid-
ers attention allocation across multiple problem-solving steps.
Inspired by information retrieval techniques [45], [63], we
introduce novel learning objectives that involve propagating
the intra-step attention measurements along the edges of the
predicted solution graph, quantifying the impact of attention in
achieving successful solution prediction.

Specifically, given the ground truth solution graph represented
as an adjacency matrix G and the inter-step attention P (!)

predicted by the !-th layer, we compute F out(!) and F in(!)

that denote the probabilities of information propagation along
the ground-truth edges from step i, and those to step j, from
out-degree and in-degree perspectives, respectively:

F out
i,j

(!)
=

∑
k Gi,jP

(!)
i,k

∑
k P

(!)
i,k

, j = 0, . . . , N + 1 (8)

F in
i,j

(!)
=

∑
k Gk,jP

(!)
k,j

∑
k P

(!)
k,j

, i = 0, . . . , N + 1 (9)
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Based on these propagation probabilities, we define two inter-
step attention scores that quantify the information flow from
both in-degree and out-degree perspectives at the !-th layer,
respectively:

S(!)
out = mean[(F out(!) %D(!))Ts(!)], (10)

S(!)
in = mean[(D(!) % F in(!)

)Ts(!)], (11)

where % represents the Hadamard product, s(!) = [1, s(!)1 ,

. . . , s(!)N , 0]T denotes an intra-step attention similarity measure,
and D(!) is a distribution matrix measuring the probability
distribution of attention weights from step i to step j:

D(!)
i,j =

Gi,jP
(!)
i,j∑

k Gi,k
. (12)

Specifically, the similarity s(!)i is defined as

s(!)i = 1− JSD(α(!)
i ,α′

i)

ln 2
, (13)

where JSD is the Jensen–Shannon divergence [61], [62].
The above inter-step attention scores S(!)

out and S(!)
in compre-

hensively quantify the performance of inter-step attention pre-
diction from the out-degree and in-degree perspectives, where
higher scores indicate that attention can be more effectively
allocated over the important steps and dependencies to build
the solution graph, and the maximum score of 1 indicates the
perfect alignment with the ground-truth solution graph.

3) Overall Objectives: Our final objective function is defined
as a combination of the binary cross entropy loss LBCE that
evaluates the solution graph, the intra-step attention lossLatt

(!),
and the inter-step attention scores S(!)

out and S(!)
in across all graph

attention layers:

L = LBCE +
L∑

!=1

L(!)
att −

L∑

!=1

(S(!)
out + S(!)

in ), (14)

where

LBCE=−
L∑

!=1

∑

i,j

(
Gi,j logP

(!)
i,j +(1−Gi,j) log

(
1− P (!)

i,j

))
,

(15)
is the binary cross-entropy loss.

With this objective function, our method jointly and pro-
gressively supervises both intra-step attention and inter-step
attention. It enables an integrated optimization of the solution
with respect to multimodal attention alignment within individual
problem-solving steps, information propagation for between-
step connections, and the final solution graph. With the ability
to traverse the graph and selectively aggregate information,
our method achieves significant improvement in formulating
solutions to various problems.

V. EXPERIMENTS

In this section, we present comprehensive experiments to
demonstrate the advantages of our proposed method and assess

the contributions of its major components. The experimental re-
sults underscore the significance of progressive attention learn-
ing and the effectiveness of the proposed objectives, shedding
light on the intricacies of complex problem-solving processes.
These findings hold promise in substantially advancing the
domain of vision-language problem solving and paving the way
for more sophisticated intelligent systems.

A. Experimental Setup

In this subsection, we provide a thorough description of
our experiments and implementation details. We introduce the
dataset used for our multimodal problem-solving task, the com-
pared state-of-the-art models and baselines, the evaluation meth-
ods, and the implementation details of our proposed SGAN
method.

1) Dataset: Our experimental evaluation is conducted on the
VisualHow dataset [23], which comprises 20,028 real-life prob-
lems categorized hierarchically into 18 main categories and 317
subcategories. The number of problems in each category ranges
from 405 to 2,952, providing a diverse set of problem-solving
scenarios. Unlike previous datasets [24], [25], [26], [28], [29],
[35] that focus solely on sequential procedures, the VisualHow
dataset includes a solution graph for each problem, representing
the structured dependencies between individual steps. Impor-
tantly, a substantial portion of the graphs exhibit non-sequential
characteristics, featuring more complex inter-step dependencies.
Each solution graph consists of 3 to 10 steps, each described
with images and captions. The images encompass a variety of
formats, including realistic photos, cartoons, drawings, hand-
writing, charts, among others. The captions have a vocabulary
of 30,000 tokens, ensuring rich and informative descriptions. To
facilitate attention learning and evaluation, fine-grained atten-
tion annotations are provided for both images and captions.

2) Models: To evaluate the effectiveness of our method in
handling vision-language problem-solving tasks, we compare it
with state-of-the-art approaches on the VisualHow dataset [23].
We treat these methods as multi-task models, addressing both
the retrieval of the multimodal instructions and the prediction
of step dependencies. The compared methods, including SEQ
GPO [64], SEQ GAP [23], and SEQ ATT [23], aim to predict
individual problem-solving steps and their dependencies using
various sequential processes. Specifically, SEQ GPO employs
a generalized pooling operator to align visual and language
features and jointly aggregates them during feature aggregation.
Similarly, SEQ GAP adopts a global average pooling method to
process features from different image regions and word tokens
independently, without considering their importance. Finally,
SEQ ATT utilizes an attention mechanism to highlight important
semantics in each modality and then aggregates them based on
learned weights, supervised with ground-truth attention annota-
tions from VisualHow [23].

To further investigate the role and significance of the in-
tegrated attention mechanism, we conduct a comprehensive
ablation study using three variants of our proposed model:
SGAN-Base, SGAN-Intra, and SGAN-Inter. SGAN-Base is a
basic model that uses the same architecture as SGAN but doesn’t
rely on any extra attention supervision from outside sources. This
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helps us understand how well the model performs when it learns
attention on its own from the solution graph. For SGAN-Intra
and SGAN-Inter, we supervise the model with the intra-step
attention loss and inter-step attention loss terms, respectively.
By comparing the performance of these three variants with our
full SGAN model, which incorporates intra-step and inter-step
attention supervision, we can analyze the specific contributions
of each attention component.

3) Evaluation: To ensure a fair comparison with other meth-
ods, we adhere to the official training and validation splits pro-
vided by the dataset. We construct candidate pools by sampling
images and captions from the corresponding subsets. These
candidate pools include positive samples corresponding to the
given problem and negative samples from other problems ran-
domly sampled from the dataset. Note that the candidate pools
contain only training data during the training phase, and only
validation data during the validation phase. Different from the
previous study [23] that samples unrelated steps from different
problems, in this paper, to obtain negative step dependencies, we
sample negative problems first, and include all steps and their
dependencies in the negative problems. This approach serves
as a suitable test bed for robustly evaluating and justifying the
model’s performance. Following the VisualHow [23] study and
our proposed attention evaluation methods, we evaluate model
performances with four categories of metrics:

Retrieval of Steps: To evaluate the performance models in
retrieving the correct ground-truth steps, we rank the candidate
steps based on their predicted relevance to the input problem
(i.e., P (L)

0,i , i = 1, 2, . . . , N ). We employ the mean reciprocal
rank (MRR) [17], [18], [23], Recall@K [17], [18], [23], [64],
[65], [66], and recall sum (RSUM) [23], [64], [65], [66] metrics.
The MRR computes the reciprocal rank of a correct step, which
is defined as 1 divided by its position in the ranked list. Recall@K
measures the presence of the correct step in the top-K ranked
steps. The RSUM is defined as the sum of recall metrics at
different values of K (e.g., K = {1, 5, 10}). The combination of
these metrics provides a comprehensive summary of the model’s
overall performance in image and caption retrieval.

Step Dependency Prediction: The prediction of dependencies
between steps is evaluated using the area under the ROC curve
(AUC) [23], [67], the area under the precision-recall curve
(AUPR) [67], and the intersection over union (IoU) [23], [27],
[68]. The AUC represents the overall performance of the model
in distinguishing positive (correctly predicted edges) from neg-
ative (incorrectly predicted edges) dependencies between steps.
The AUPR is a useful performance metric for imbalanced data
in a setting with a bigger focus on positive examples, which
is the case for our experiments. To measure IoU, we apply a
threshold (e.g., 0.25, 0.5, 0.75) [23] to the model output P (L)

to determine the graph edges and count the edges for the inter-
section and union between the predicted graph and the ground
truth. These metrics enable a comprehensive evaluation of the
model’s performance in predicting the structure of solutions.

Intra-Step Attention: To evaluate the intra-step attention, the
output α(L) is first normalized and converted into an attention
map, where each value indicates the attention probability of an

image patch or word token. The ground-truth attention maps are
computed similarly as the annotations. Three attention metrics
are used to compute the attention maps: the linear Correlation
Coefficient (CC) [60], [69] scores are computed as Pearson’s
linear correlation between the attention maps; the similarity
of histogram intersection (SIM) [60] computes the sum of the
minimum values at every location; Kullback-Leibler divergence
(KL) [60] measures the difference between two distributions
based on information theory.

Inter-Step Attention: The inter-step attention is evaluated
based on the final-layer outputs α(L) and P (L) simultaneously
by three metrics that measure out-degree S(L)

out (see (10)), in-
degree S(L)

in (see (11)) attention scores, and an overall attention
score S(L)

all computed as

S(L)
all = mean

[(
F out(L) %D(L) % F in(L)

)T
s(L)

]
. (16)

4) Implementation Details: To extract discriminative visual-
linguistic features, we adopt state-of-the-art pre-trained models.
For the visual features, we use ResNeXT-101 [58] (32× 8d)
trained on Instagram images (WSL) [70], with image size
256× 256. Regarding the language features, we use a pre-
trained BERT model [48] optimized on a massive corpus of
text. We use these models to extract features from the candidate
image and caption pools, which are then used as inputs to our
SGAN model. We train our model using the Adam [71] optimizer
with learning rate 2× 10−4, weight decay 10−4 and batch size
16. A cosine annealing scheduler schedules the learning rate.
We set L = 3 as the total number of network layers. To ad-
dress the imbalance between the positive and negative samples
from the solution graph, we train the model with the loss related
to the retrieval task for 5 epochs and then train the model with
the loss related to the whole solution graph for the remaining 20
epochs. A hard negative mining strategy [72], [73] is also used.
The post-processing method to obtain the final solution graph is
implemented following Algorithm 1, where we set dependency
threshold λd = 0.8 and retrieval threshold λr = 0.45.

B. Quantitative Results

1) Comparison With the State-of-the-Art: Our approach
demonstrates superior performance across all metrics for gen-
eralizing solutions to vision-language problems, as shown in
Table I. Overall, it outperforms the state-of-the-art SEQ GPO,
SEQ GAP, and SEQ ATT methods [23] across all evaluation met-
rics. In terms of retrieving multimodal instructions for individual
problem-solving steps, it achieves an impressive improvement
of 11.1% and 12.5% in MRR scores for images and captions, re-
spectively, as well as an improvement of 10.9% in RSUM scores
which aggregate the Recall@K scores over both modalities.
Further, in terms of predicting the step dependencies, our method
exhibits strong capability in capturing the diverse structures of
solutions, which has been a challenge for existing methods. It
shows 81.0% and 45.3% improvements in the average IoU scores
(i.e., 0.25, 0.5, and 0.75) for images and captions, respectively.
These observations not only demonstrate the advantages of our
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TABLE I
SOLUTION GRAPH PREDICTION RESULTS FROM RETRIEVAL AND DEPENDENCY ASPECTS

approach in solving complex vision-language problems but also
highlight the significance of progressively constructing task
solutions.

2) Comparison With Baseline Models: Table I also compares
our proposed SGAN model with different baselines, including
the SGAN-Base model that is learned without supervision from
attention annotations, the SGAN-Intra model supervised with
the intra-step attention loss, and the SGAN-Inter model super-
vised with the inter-step attention loss. The comparison shows
that even without any external supervision, the SGAN-Base can
still effectively learn the integrated attention from the ground-
truth solution graph, and achieve promising results. Its MRR,
RSUM, and IoU scores are all significantly better than those of
the SEQ ATT method (e.g., RSUM is improved from 410.77
to 433.55), demonstrating the effectiveness of the proposed
network design. Notably, the introduction of either intra-step
or inter-step attention supervision leads to substantial improve-
ments. In particular, compared with SGAN-Base, SGAN-Intra
achieves an improvement of 5.6% and 6.3% in MRR scores for
images and captions, respectively. Its RSUM score is improved
from 433.55 to 451.82, outperforming the SGAN-Base by 4.2%.
These improvements suggest that the supervision of intra-step
attention can benefit the localization of important information in
both modalities. Furthermore, SGAN-Inter’s performance high-
lights its practical significance in predicting step dependencies.
With inter-step attention supervision, it achieves an impressive
average improvement of 37.7% across AUC, AUPR, and IoU
scores. This suggests the models’ applicability in real-world
scenarios where detailed annotations may be limited. Overall,
incorporating both types of attention supervision achieves the
best results, demonstrating the effectiveness of the integral de-
sign of our method in modeling attention for vision-language
problem solving.

C. Qualitative Results

To further understand the proposed integrated attention mech-
anism and how it contributes to the prediction of problem-
solving procedures, we conduct a qualitative comparison of the
predicted solution graph and their intra-step attention maps.

The qualitative examples are shown in Fig. 3, where the
proposed SGAN method is compared with the state-of-the-art
SEQ ATT [23] method and the ground truth. For a clearer
illustration, we present the optimal predicted solution graph
obtained from the image or caption candidate pool. The results
consist of (1) the final solution graph obtained with Algorithm 1
showing the procedure flows across all steps, and (2) the intra-
step attention maps for each problem-solving step overlaid on
the images (i.e., hot areas) and the captions (i.e., bold text).

Despite leveraging explicit intra-step attention supervision
based on fine-grained annotations, SEQ ATT sometimes fails to
adequately attend to crucial objects relevant to problem-solving.
As shown in Fig. 3, SEQ ATT allocates insufficient attention
on the conditioner (see Fig. 3 A, step 1), the sugar and cocoa
powder (see Fig. 3 B, step 1), the structured meal plan (see Fig. 3
C, step 1), and the rinse action (see Fig. 3 D, step 3). On the
contrary, our proposed SGAN exhibits promising performance
by attending to essential information within various steps. The
comparison of intra-step attention between SEQ ATT and SGAN
shows that progressively refining attention is effective in terms of
learning accurate attention distribution in images and captions.

Furthermore, the inter-step attention mechanism is also shown
to be effective in predicting the solution graph correctly. Because
SEQ ATT sequentially predicts the dependencies one step at
a time, it results in suboptimal solutions (see Fig. 3 A-D).
Differently, the integration of intra-step attention and inter-step
attention in SGAN allows it to better understand the importance
of key objects (e.g., conditioner, sugar, cocoa powder, struc-
tured meal plan, rinse, etc.) across multiple steps. In addition,
the progressive learning of the integrated attention mechanism
allows SGAN to improve the solution graph by interactively
refining it. Therefore, with a holistic view of the problem-solving
procedure and interactive refinement, SGAN manages to predict
the dependencies more accurately.

D. Performance Analyses

We further present extensive analyses to understand the roles
and contributions of different components in our proposed
approach. Through these in-depth analyses, we aim to gain a
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Fig. 3. Qualitative comparison of the predicted solution graphs and intra-step attention maps. The green edges in the graphs indicate correct predictions, while
the red ones indicate wrong predictions. These solution graphs show a variety of categories of real-life tasks, including (a) hair care, (b) drinks, (c) sleep health,
and (d) teeth and mouth health.
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TABLE II
SOLUTION GRAPH PREDICTION RESULTS FOR SEQUENTIAL AND

NON-SEQUENTIAL SOLUTIONS

TABLE III
INTRA-STEP ATTENTION EVALUATION RESULTS

deeper understanding of the key factors that contribute to the
success of our approach in solving complex vision-language
problems.

1) Sequential and Non-Sequential Solutions: Unlike previ-
ous datasets that focus on sequential solutions, VisualHow is
a unique dataset that contains a variety of complex problem-
solving tasks. To demonstrate the effectiveness of our proposed
method on different types of solution structures, we present the
model’s performance on both sequential and non-sequential so-
lutions separately. In Table II, we evaluate the performance of our
method in both sequential and non-sequential problem-solving
scenarios. The results show that our SGAN method outper-
forms the state-of-the-art methods in both scenarios, achieving
the highest MRR and IoU@0.5 scores. This demonstrates that
SGAN excels in capturing the structure and dependencies of so-
lution steps, regardless of whether the problem-solving process
is sequential or not, making it a versatile approach for a wide
range of real-world applications that involve complex structures
and diverse multimodal instructions.

2) Intra-Step Attention: The results presented in Table III
provide insights into the performance of our intra-step attention
mechanism. The attention output α(L) is evaluated using three
metrics: CC, KLD, and SIM to quantify the quality of intra-
step attention learning and help assess the effectiveness of this
method in focusing on salient information. The state-of-the-art

TABLE IV
INTER-STEP ATTENTION EVALUATION RESULTS

TABLE V
PEARSON’S r BETWEEN ATTENTION EVALUATION SCORE AND OUR PROPOSED

SGAN MODEL’S PERFORMANCE

method SEQ ATT [23], which also learns intra-step attention
following a sequential approach, achieves moderate results for
both image and caption modalities. However, our proposed
SGAN with intra-step attention (SGAN-Intra) outperforms SEQ
ATT consistently across almost all the metrics (5/6) for both
modalities. This demonstrates that the progressive refinement
of the solution graph with intra-step attention enables the model
to focus on relevant information within each step, leading to
improved attention quality. On the other hand, the impact of
inter-step attention (SGAN-Inter) alone is not as significant on
these evaluation metrics. However, integrating the two atten-
tion mechanisms is able to further improve the model’s ability
in finding important information in the images and captions.
This highlights the importance of combining both attention
mechanisms to achieve a comprehensive understanding of the
problem-solving procedure.

3) Inter-Step Attention: Understanding how attention is
aligned across multiple steps in complex problem-solving is cru-
cial for developing effective learning models. Here, we provide
a detailed analysis of our method by examining the attention
alignment between steps. Table IV presents the results of the
inter-step attention evaluation, which sheds light on the model’s
ability to capture dependencies between problem-solving steps.
The metrics used to evaluate inter-step attention include S(L)

in ,
S(L)
out , and S(L)

all , which quantify the quality of attention propaga-
tion within the solution graph. The state-of-the-art method SEQ
ATT [23] exhibits limited performance in capturing inter-step
dependencies, as evidenced by the relatively low values of all
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TABLE VI
ABLATION STUDY OF THE NUMBER OF INTEGRATED ATTENTION LAYERS

metrics for both image and caption modalities. This is because
the sequential design of SEQ ATT cannot effectively propagate
attention to other steps across multiple steps, resulting in subop-
timal predictions. However, the most significant improvement is
observed with the addition of inter-step attention in the SGAN-
Inter model. The values of S(L)

in , S(L)
out , and S(L)

all for SGAN-Inter
are notably higher than those of SEQ ATT, SGAN-Base, and
SGAN-Intra. The full SGAN model, which combines both intra-
step and inter-step attention mechanisms, achieves the best re-
sults among all methods and modalities across all metrics. These
observations indicate that the inter-step attention mechanism
effectively captures the dependencies between problem-solving
steps, allowing the attended information to effectively propagate
across multiple steps, leading to improved reasoning about the
chronological order of various solution steps.

4) Correlation Between Attention Performance and Task Per-
formance: To further investigate how the intra-step and inter-
step attention contribute to the model performance in tackling
vision-language problems, we compute the Pearson’s r between
the attention evaluation scores CC, S(L)

all and task evaluation
scores MRR and IoU@0.5. Table V shows the Pearson’s cor-
relation coefficient (r) between the attention evaluation scores
and the performance of our proposed SGAN model on predicting
sequential solutions and non-sequential ones. For the intra-step
attention evaluation, we observe a significant positive correlation
between attention performance and model’s ability to predict
the dependencies in sequential solutions. The correlation co-
efficients for IoU@0.5 are 0.212 and 0.238 for the image and
caption modalities, respectively. On non-sequential problems,
the correlation coefficients are close to zero, indicating a weak
correlation between intra-step attention performance and model
performance. The weak correlations suggest that in the final
SGAN model, the quality of attention within individual steps
has limited impacts on the model’s performance. In contrast, the
inter-step attention evaluation shows strong positive correlations
between attention performance and model performance on both
sequential and non-sequential solutions. In particular, for non-
sequential ones, attention performance is highly correlation with
the IoU@0.5, with values of 0.738 and 0.732 for the image and
caption modalities, respectively. The strong positive correlations
suggest that the quality of inter-step attention is closely related

to the model’s ability to capture dependencies between problem-
solving steps and predict coherent and structured solutions.
These results indicate that the inter-step attention mechanism
plays a crucial role in improving the model’s performance on
both sequential and non-sequential problems.

5) Number of Attention Layers: Progressively refining atten-
tion is a fundamental component of our proposed SGAN archi-
tecture, which enables the network to iteratively focus on key
information within from visual and textual inputs and discover
the dependencies between the steps. To verify the effect of the
number of integrated attention layers, we conduct experiments
with four variants of our models. As shown in Table VI, for the
retrieval of the most relevant images and captions, increasing the
number of attention layers consistently improves the model’s
performance. We observe that with three attention layers, the
SGAN model achieves the highest MRR, Recall@K, and RSUM
scores for both the image and caption modalities. However,
adding more layers does not lead to further improvements in
the retrieval performance. Similar trends are observed for the
evaluation of step dependencies, with AUC, AUPR, and IoU
scores. Overall, this ablation study demonstrates that a three-
layer SGAN model results in the right balance between capturing
relevant information within individual steps and modeling the
dependencies between steps. This configuration achieves the
best performance for both retrieval and dependency aspects,
indicating its effectiveness in tackling complex multimodal
problem-solving tasks.

6) Progressive Attention Refinement Across Layers: Gradu-
ally refining attention constitutes an important element within
our proposed SGAN method, empowering the model to progres-
sively concentrate on key information across visual and textual
inputs, unraveling inter-step dependencies. To illustrate the ef-
fectiveness of progressively refining attention in our proposed
SGAN, we compare the outputs of different layers, including
the intra-step attention α(!) and the inter-step attention P (!)

(! = 1, 2, 3). As shown in Table VII, we find that the attention
alignments (Intra-Step Attention and Inter-Step Attention) ex-
hibit a progressive enhancement as the layers delve deeper. This
suggests that, with each subsequent layer, the model refines
its ability to focus on relevant information, capturing more
detailed relationships. This refinement in attention aligns with
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TABLE VII
EVALUATIONS ON INTRA-STEP ATTENTION, INTER-STEP ATTENTION, AND SOLUTION GRAPH PREDICTION RESULTS ACROSS LAYERS

TABLE VIII
ABLATION STUDY OF THE PROPORTION OF FINE-GRAINED DATA ANNOTATIONS

TABLE IX
SOLUTION GRAPH PREDICTION RESULTS WITH DIFFERENT SOURCES OF ATTENTION ANNOTATIONS

an observed improvement in prediction performance metrics,
including MRR and IoU@0.5, suggesting the significance of
this progressive attention mechanism in the success of problem
solving.

7) Proportion of Attention Annotations: In Table I, we have
demonstrated that SGAN-Base can self-learn attention from
the solution graph, which has performed better than the SEQ
ATT [23] model that requires additional attention annotations,
while learning from annotations with the proposed objectives
can further improve the model’s performance. To study the
impact of the annotations on model performance, we use dif-
ferent proportions of annotations in training, ranging from 0%
to 100%, and evaluate the model’s performance using various
metrics. Table VIII presents the results of our ablation study on
the proportion of fine-grained data annotations used in training
the SGAN model. For both the retrieval and the dependency eval-
uations, we observe that all evaluation scores increase steadily

TABLE X
COMPARISON OF MULTIMODAL PROCEDURE PLANNING MODELS

with a higher proportion of fine-grained annotations. This in-
dicates that providing more detailed annotations enhances the
model’s ability to accurately retrieve multimodal instructions
for individual problem-solving steps, as well as to better predict
the structured dependencies between steps.
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TABLE XI
ABLATION STUDY OF SIMILARITY FUNCTIONS USED IN THE PROPOSED EVALUATION METRICS

8) Using Pre-Trained Grounding as Attention Annotations:
Although providing more attention annotations can improve
model performance, the practicality of obtaining such annota-
tions may raise scalability concerns. To address this, instead
of leveraging human annotations, we generate ground-truth
attention annotations using a pre-trained GLIP [74] model,
which exhibits strong zero-shot and few-shot transferability to
diverse object-level recognition tasks. As shown in Table IX,
the GLIP-generated annotations demonstrate comparable per-
formance as the human annotations from the VisualHow dataset.
This consistency suggests that large pre-trained vision-language
models can provide sufficient attention annotations for modeling
intra-step attention across various problems, offering a viable
approach to scalability.

9) Multimodal Procedure Planning Models: Table X com-
pares the performance of our method with state-of-the-art
multimodal procedure planning models, including Text-Image
Prompting (TIP) [75] and Skip-Plan [39]. TIP generates a se-
quence of step captions using the text-davinci-003 model [76],
and subsequently converting these captions into images using
Stable Diffusion [77]. Skip-Plan learns to predict solutions
by breaking down a long chain of steps into several reliable
sub-chains, addressing error accumulation in long sequence pre-
dictions. Since these sequential methods cannot handle complex
graph structures, we only compare them with our method by
evaluating them through image and caption retrieval. As shown
in Table X, there is a notable discrepancy in the retrieval capabil-
ities of the TIP model between image and caption retrieval tasks,
indicating a greater proficiency in processing and extracting
information from textual data compared to visual inputs. On the
other hand, the Skip-Plan model exhibits an improved retrieval
performance, a result of its end-to-end training on the Visu-
alHow [23] dataset. However, these state-of-the-art procedure
planning methods still underperform our SGAN model, because
of their sequential nature. The graph-based model architecture
and the novel attention mechanisms allow SGAN to capitalize on
the extensive in-domain problem-solving knowledge embedded
in the VisualHow dataset [23], achieving a significant perfor-
mance improvement. This improvement solidifies SGAN’s sta-
tus as a promising solution for effectively addressing multimodal
complexities in problem solving.

10) Similarity Functions Used in Attention Learning: In this
ablation study, we investigate the impact of adopting different
attention evaluation metrics on attention learning. We consider
three widely used similarity functions: SIM [60], JSD [61],
[62], and CC [60], which are applied to supervise the inter-step

TABLE XII
ABLATION STUDY ON DIFFERENT COMBINATIONS OF DEPENDENCY

THRESHOLD λd AND RETRIEVAL THRESHOLD λr

attention mechanism in our proposed SGAN model. The re-
sults in Table XI demonstrate that our attention supervision
method is robust against the choice of similarity function, as
all three metrics produce similar performance. This consistency
in performance indicates that our method effectively captures the
attention alignment from different perspectives, leading to com-
parable results regardless of the selected similarity function.
Based on these findings, we adopt JSD similarity in the mea-
surement of inter-step attention. Overall, these results affirm the
effectiveness of our approach in measuring attention alignment
from multiple angles. This versatility is crucial for the success
of our SGAN model in solving complex multimodal problem-
solving tasks, as it allows the model to capture fine-grained
dependencies between individual solution steps, leading to more
accurate and coherent predictions.

11) Graph Post-Processing Thresholds: Finally, we investi-
gate the impacts of the thresholds (i.e., dependency threshold
λd and retrieval threshold λr) on the predicted solution graph.
It is noteworthy that following the VisualHow [23] benchmark,
quantitative results presented in this paper, including the evalua-
tion of retrieval, dependency, intra-step attention, and inter-step
attention, are based on the probabilistic outputP (L). The depen-
dency threshold λd and retrieval threshold λr are only used to
binarize the soft probabilities into the final deterministic solution
graph. In Table XII, we show various threshold combinations and
their corresponding precision, recall, and F1 scores computed
with the final solution graph. These scores are derived from
comparing the ground-truth solution graph with binarized solu-
tion graphs after post-processing. The analysis reveals that the
final solution graphs are not significantly affected by the choice
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of the dependency threshold λd (0.2 ≤ λd ≤ 1.1). The retrieval
threshold λr acts as a balancing factor between precision and
recall, and the final solution graphs are not sensitive to the
choice of it (0.05 ≤ λr ≤ 0.65). Based on this observation, we
empirically choose λd = 0.8 and λr = 0.45 for our experiment.

VI. CONCLUSION

In this paper, we focus on addressing existing gaps in under-
standing and providing effective step-by-step instructions for
problem-solving in vision-and-language applications. Our con-
tribution is a novel Solution Graph Attention Network (SGAN)
approach that takes into account both intra-step and inter-step
attention mechanisms, enabling a progressive construction of so-
lutions by refining the dependencies between relevant problem-
solving steps. The flexibility of our method allows for the formu-
lation of solutions with various structures, accommodating both
sequential and non-sequential patterns. In order to enhance the
accuracy of attention in the problem-solving process, we have
introduced quantitative metrics to study the role of attention
in task accomplishment. These metrics serve as valuable tools
for attention supervision, providing insights into how attention
mechanisms can be leveraged effectively.

Our experimental results showcase the advantages of our
proposed method in tackling a wide range of vision-language
problems. By employing our model, we achieved significant
improvements in formulating solutions with complex graph
structures. Moreover, our findings shed light on the crucial
components that contribute to successful problem-solving, thus
offering valuable insights for future research and applications.
We believe that the insights gained from our work will have
a profound impact on solving intricate visual problems and
providing effective guidance for various daily-life activities.
Our method not only advances the state-of-the-art in vision-
language problem solving, but also lays the groundwork for
the development of more powerful and flexible attention mech-
anisms. With the hope that our work will inspire further ad-
vancements in this field, we envision that our proposed GNN-
based model and attention supervision techniques will continue
to drive progress in solving problems more effectively and
efficiently.

While our proposed method shows promising results in tack-
ling vision-language problem-solving tasks, it also has several
limitations and opens up interesting avenues for future research.
One limitation is that our method relies on annotated data for
training and supervision. We have explored GLIP-generated
annotations to reduce the data dependency and improve the
generalization capabilities of our model, which has shown
promising results. Another challenge we face in this work is
that the dependencies between steps may not always be clear-
cut. There can be cases where multiple possible dependencies
exist, leading to ambiguity in constructing the solution graph.
Developing methods to handle such ambiguity and effectively
capture uncertain dependencies is an important direction for
future research.
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